Science.gov

Sample records for galvannealed advanced high

  1. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    SciTech Connect

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  2. AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel

    SciTech Connect

    S.W. Allison; D.L. Beshears; W.W. Manges

    1999-06-30

    This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

  3. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  4. AISI/DOE Advanced Process Control Program Vol. 5 of 6: Phase Measurement of Galvanneal

    SciTech Connect

    Cristopher Burnett; Ronald Guel; James R. Philips; L. Lowry; Beverly Tai

    1999-05-31

    Augmentation of the internal software of a commercial X-ray fluorescence gauge is shown to enable the instrument to extend its continuous on-line real-time measurements of a galvanneal coating's total elemental content to encompass similar measurements of the relative thickness of the coating's three principal metallurgical phases. The mathematical structure of this software augmentation is derived from the theory of neural networks. The performance of the augmented gauge is validated by comparing the gauge implied real-time phase distribution with the phase distribution independently measured off-line on between the gauge and laboratory measurements and to suggest preferred approaches to be followed in future application of the augmented gauge.

  5. Galvanneal Thermometry with a Thermographic Phosphor System

    SciTech Connect

    Manges, W.W., Allison, S.W. , Vehec, J.R.

    1997-12-31

    The accurate determination of temperature of galvanneal sheet emerging from a zinc bath is a challenging process measurement. The line moves at high speeds, up to 900 feet per minute, and the emissivity varies widely as it moves through the radio-frequency (RF) induction heating ovens and subsequently cools. This presents a great source of error if the pyrometric approach is used since the accuracy is sensitive to emissivity variation. This problem has been circumvented by an approach described here which uses a thermally sensitive phosphor technique for temperature measurement. For this, a small amount of a phosphor material is deposited on the liquid surface of the sheet. When the small layer of phosphor moves to the measurement station, it is illuminated by a short laser pulse which produces fluorescence from the material. The time dependence of the fluorescence indicates the temperature. Introduction of the microgram quantities of material has been shown to have no detrimental impact on product quality! This presentation describes a phosphor-based system for measuring temperature on a galvanneal manufacturing line. To date, measurements with an accuracy of +/- 5 deg F have been made at National Steel=s Midwest facility. This effort is a part of the Advanced Process Controls Program. The overall goal of the project is to provide accurate on-line temperature information that can be used to increase the yield and quality of the product, thereby reducing energy consumption and time.

  6. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    SciTech Connect

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  7. Influence of Gas Atmosphere Dew Point on the Galvannealing of CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-11-01

    The Fe-Zn reaction occurring during the galvannealing of a Si-bearing transformation-induced plasticity (TRIP) steel was investigated by field-emission electron probe microanalysis and field-emission transmission electron microscopy. The galvannealing was simulated after hot dipping in a Zn bath containing 0.13 mass pct Al at 733 K (460 °C). The galvannealing temperature was in the range of 813 K to 843 K (540 °C to 570 °C). The kinetics and mechanism of the galvannealing reaction were strongly influenced by the gas atmosphere dew point (DP). After the galvannealing of a panel annealed in a N2+10 pct H2 gas atmosphere with low DPs [213 K and 243 K (-60 °C and -30 °C)], the coating layer consisted of δ (FeZn10) and η (Zn) phase crystals. The Mn-Si compound oxides formed during intercritical annealing were present mostly at the steel/coating interface after the galvannealing. Galvannealing of a panel annealed in higher DP [263 K and 273 K, and 278 K (-10 °C, 0 °C, and +5 °C)] gas atmospheres resulted in a coating layer consisting of δ and Г (Fe3Zn10) phase crystals, and a thin layer of Г 1 (Fe11Zn40) phase crystals at the steel/coating interface. The Mn-Si oxides were distributed homogeneously throughout the galvannealed (GA) coating layer. When the surface oxide layer thickness on panels annealed in a high DP gas atmosphere was reduced, the Fe content at the GA coating surface increased. Annealing in a higher DP gas atmosphere improved the coating quality of the GA panels because a thinner layer of oxides was formed. A high DP atmosphere can therefore significantly contribute to the suppression of Zn-alloy coating defects on CMnSi TRIP steel processed in hot dip galvanizing lines.

  8. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  9. Modification of galvannealed steel through aluminum addition

    NASA Astrophysics Data System (ADS)

    Coddington, Trevor Q.; Cook, Desmond C.

    1998-12-01

    Aluminum is believed to modify and to some extent control the coating characteristics of commercially produced galvanneal sheet steel. These include mechanical, chemical, and aesthetic properties. Whereas the aluminum added to the molten zinc bath is known to form intermetallics before the steel is annealed, our research is primarily concerned with the effect aluminum has on suppression or enhancement of the particular iron--zinc alloy phases in the coating during galvannealing. The microstructure of four commercially important iron--zinc intermetallic phases containing varying aluminum content between 0--1.5 weight percent has been studied. It is also believed that an iron--aluminum alloy, known as the inhibition layer, forms on the steel surface following hot dipping and prior to annealing. Transmission and scattering Mössbauer spectroscopy as well as X-ray diffraction have been used to identify iron--zinc and iron--aluminum alloys present in the coatings. Discussion will be presented on the effect aluminum has on phase suppression for Fe--Zn alloys prepared in commercially produced galvanneal.

  10. The characterization of continuous hot-dip galvanized and galvannealed steels

    NASA Astrophysics Data System (ADS)

    Dionne, Sylvie

    2006-03-01

    The use of zinc-coated steels for automotive, construction, and appliance applications has grown continually during the past decade. An understanding of the effects of process parameters and substrate characteristics on the coating microstructure is critical for optimizing the performance of the zinc-based coatings. This paper presents an overview of the application of advanced electron and focused-ion-beam microscopy techniques to characterize the microstructure of galvanized and galvannealed coatings.

  11. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel.

    PubMed

    Schmid, P; Uran, K; Macherey, F; Ebert, M; Ullrich, H-J; Sommer, D; Friedel, F

    2009-04-01

    The formation of Fe-Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg-Brentano geometry for analysing thin crystalline layers because of its lower incidence angle alpha and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the zeta crystals in the ESEM.

  12. Metallographic preparation technique for hot-dip galvanized and galvannealed coatings on steel

    SciTech Connect

    Jordan, C.E.; Goggins, K.M.; Benscoter, A.O.; Marder, A.R. )

    1993-09-01

    A new metallographic technique for hot-dip galvanized and galvannealed coatings has been developed. The new polishing procedure and etchant have shown excellent results on commercial hot-dip galvanized and galvanneal coatings, as well as on laboratory-simulated hot-dip galvanneal produced under a variety of thermal processing parameters.

  13. An Industrial Gauge for Measuring The Phase Distribution of Galvanneal

    SciTech Connect

    Christopher BUrnett; Roland Gouel; James R. Phillips

    1996-01-19

    Augmentation of the internal software of a commercial x-ray fluorescence gauge is shown to enable the instrument to extend its continuous on-line real-time measurements of a galvanneal coating's total elemental content to encompass similar measurements of the relative thickness of the coating's three principal metallurgical phases. The mathematical structure of this software augmentation is derived from the theory of neural networks. The empirical basis for the numerics embedded in the software's decision logic is presented. The performance of the augmented gauge is validated by comparing the gauge-implied real-time phase distribution with the phase distribution independently measured off-line on time-tagged samples drawn from the galvanneal production line where the measurement gauge had been installed. The performance validation is shown to demonstrate good agreement between the gauge and laboratory measurements and to suggest preferred approaches to be followed in future applications of the augmented gauge.

  14. Morphology development in hot-dip galvanneal coatings

    SciTech Connect

    Jordan, C.E.; Marder, A.R. . Dept. of Materials Science and Engineering)

    1994-05-01

    Hot-dip galvanized drawing quality special killed (DQSK) steel and titanium stabilized interstitial free (IF) steel substrates were annealed under varying temperature and time conditions in order to characterize the coating structure development which occurs during the annealing portion of the galvannealing process. Through the use of light optical microscopy, the coating morphology development (Fe-Zn alloy layer growth) observed in cross section on both substrates was defined in three distinct stages. The three characteristic microstructures were classified as type 0 (underalloyed), type 1 (marginally alloyed), and type 2 (overalloyed) morphologies. The morphology transitions were quantitatively defined by total iron content in the coating and by the thickness of an interfacial Fe-Zn gamma phase layer. The DQSK steel coating type 1 to type 2 morphology transition occurred at an iron content of 9 to 10 wt pct. For the titanium IF material, the same type 1 to type 2 morphology transition occurred at an iron content of 10.5 to 11.5 wt pct and at an interfacial layer thickness of approximately 1.0 [mu]m. An increased amount of aluminum in the galvanizing bath delayed the alloying reaction during galvannealing for both substrates. The overall inhibition effect of aluminum was less pronounced on the titanium stabilized IF material, indicating that its coating alloying kinetics were not as significantly influenced by bath aluminum content.

  15. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    NASA Astrophysics Data System (ADS)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  16. Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kwak, J. H.; Kim, J. S.; Liu, Y. H.; Gao, N.; Tang, N.-Y.

    2009-08-01

    In general, Si-bearing advanced high-strength steels (AHSS) possess excellent mechanical properties but poor galvanizability. The galvanizability of a transformation-induced plasticity (TRIP) steel 1180TRIP containing 2.2 pct Mn and 1.7 pct Si and a complex phase steel 1180CP containing 2.7 pct Mn and 0.2 pct Si was extensively studied using a galvanizing simulator. The steel coupons were annealed at fixed dew points in the simulator. The surface features of the as-annealed steel coupons, together with galvanized and galvannealed coatings, were carefully examined using a variety of advanced analysis techniques. It was found that various oxides formed on the surface of these steels, depending on the steel composition and on the dew point control. Coating quality was good at 0 °C dew point but deteriorated as the dew point decreased to -35 °C and -65 °C. Based on the findings, guidance was provided for improving galvanizability by adjusting the Mn:Si ratio in steel compositions according to the dew point.

  17. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  18. Phase Measurement of Galvanneal Task JPL Task Order Number: RF-152 Amendment Number: 543

    SciTech Connect

    Lynn Lowry; Beverly Tai

    1995-03-01

    The objective of this task was to demonstrate an x-ray fluorescence (XRF) technique which would measure the phase composition of galvanneal coatings of sheet steel rapidly and non-destructively with an accuracy of 0.5%. This data acquisition and analysis method would be implemented as an on-line process control input. The AISI sample matrix evaluated for this study is shown in Appendix I. The Jet Propulsion Laboratory (JPL) and Data Measurement Corporation (DMC) measured iron and zinc XRF responses from these samples. In addition, JPL performed metallograph, x-ray diffraction (XRD), and transmission electron microscopy (TEM) to characterize the samples' galvanneal phase morphology. This data was correlated with the XRF experimental results and then compared to phase composition models, which were generated using a Fundamental Parameters Method (FPM) approach.

  19. Ratio Radiation Thermometers in Hot Rolling and Galvannealing of Steel Strip

    NASA Astrophysics Data System (ADS)

    Peacock, G. Raymond

    2003-09-01

    In steel processing, the applications in which ratio thermometers perform as well as, if not better than, single waveband thermometers occur when near gray body conditions prevail, such as found in the Hot Rolling process. One exception is zinc coated steel transforming from one emissivity condition to another, such as the Galvanneal process. A performance parameter for ratio devices, the "equivalent" wavelength approximation, is used to estimate errors with different waveband pairs for the two processes. Estimates of the expected temperature variations due to emissivity ratio uncertainty are compared with plant results from hot rolling of oxidized, low-carbon steel strip. The required insensitivity to emissivity ratio variations in galvannealing guided the selection of wavelength pairs, hence we changed a standard instrument design to obtain satisfactory performance. The results were subsequently validated in on-line process measurements and used for many years in production.

  20. Relating Surface Scattering Characteristics To Emissivity Changes During The Galvanneal Process

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Shoemaker, Richard L.; Dewitt, David P.; Gaskell, D. R.; Schiff, Tod F.; Stover, John C.; White, David A.; Gaskey, Ken M.

    1990-01-01

    The galvannealing of mild steel is a development of the familiar galvanizing process in which a thin coating of zinc on the surface of the steel, produced by immersion in a bath of liquid zinc, provides protection from corrosion. The zinc coating enhances surface quality as well as provides physical protection and, if the coating is ruptured, provides electrochemical protection by acting as the sacrificial anode in the bi-metallic cell. In the galvannealing process as shown schematically in Figure 1, steel strip is continuously run through a bath of liquid zinc at 465°C. Then it passes through air knives which control the thickness of the liquid zinc film and is then passed through a gas-fired galvannealing furnace, which heats the coated sheet to approximately 550° C. At this temperature the diffusion of iron into the liquid zinc causes the formation of an Fe-Zn intermetallic layer which grows and penetrates the free surface of the liquid zinc. On emerging from the furnace, the strip is air-cooled by fans and then coiled.

  1. Coating transformations in the early stages of hot-dip galvannealing of steel sheet

    NASA Astrophysics Data System (ADS)

    McDevitt, Erin Todd

    The present, comprehensive study of the reactions occurring early in galvanneal processing under conditions typical of commercial production represents the first detailed investigation of the microstructural evolution of the coating in the early stages of galvannealing and the results shed new light on the course of the coating microstructural development. During hot dipping, an Fe2Al5 inhibition layer formed on the surface of the steel substrate in the first instants of immersion in Zn baths containing as low as 0.10 wt.% Al. When hot-dipping in a 0.14 wt.% Al, the as-dipped coating microstructure consisted of an Fe2Al 5 layer on the steel surface. That layer was covered by a layer of the Fe-Zn compound Gamma1, which was covered by the zeta phase or unalloyed Zn. Substrate chemistry did not affect coating microstructure development in the bath. Thermodynamic predictions of the precipitation behavior during the bath reactions agrees well with experimental observations. A mechanism for coating microstructure development in the Zn bath which is consistent with all the experimental results is proposed. From this information, the metallurgical variables which govern inhibition layer formation are discerned. The breakdown of the Fe2Al5 inhibition layer during galvannealing at 500°C occurred without the formation of outbursts. Instead, the grain boundary diffusion of Al into the steel substrate accounted for dissolution of the inhibition layer in the first second of galvannealing. A mechanism for inhibition layer breakdown is presented. P-additions affected only the rate at which the inhibition layer dissolved and did not affect the rate of Fe-Zn compound formation. P in the substrate blocked grain boundary diffusion of Al into the substrate thus slowing inhibition layer dissolution. The slower overall galvannealing behavior often observed on P-bearing substrates is due to a longer period of inhibition layer survival which results in a longer incubation period for the

  2. Structure of Intermetallic Phases in Al-free Galvannealed Zinc Coatings

    NASA Astrophysics Data System (ADS)

    Zmrzlý, M.; Fiala, J.; Schneeweiss, O.; Houbaert, Y.

    2005-07-01

    Galvannealed coatings of thickness of (20 40) µm were prepared on the ultra low carbon (ULC) steel substrate. Metalography analysis was carried out to obtain the phase composition of coatings. Coatings were then transfered onto a polyacrylate foil. Transmission spectra yielding all the positions of iron within the coating thickness were measured. The doublet of zeta phase occured only after short annealing times, lower annealing temperatures and longer dipping times. Parameters of three sites of delta phase were observed to approach equilibrium values at higher annealing temperatures and longer annealing times. These changes are ascribed to diffusion transformations in the coatings during annelaing.

  3. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  4. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  5. Fe-Zn Alloy Coating on Galvannealed (GA) Steel Sheet to Improve Product Qualities

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Guin, Akshya Kumar; Raju, Pankaj; Manna, Manindra; Dutta, Monojit; Venugopalan, T.

    2014-09-01

    Galvannealed steel sheets (GA) have become the mainstream steel sheet for automobile applications because of their superior corrosion resistance, paintability, and weldability. To impart specific properties, different coatings on GA steel sheet were reported to improve properties further. In this context, we have developed an electroplating process (flash coating) for bright and adherent Fe-Zn alloy coating on GA steel sheet to enhance performances such as weldability, frictional behavior, phosphatability, and defect coverage. A comparative study with bare GA steel sheet was carried out for better elastration. The electroplating time was reduced below 10 s for practical applicability in an industrial coating line by modulating the bath composition. Electroplating was performed at current density of 200-500 A/m2 which yielded with higher cathode current efficiency of 85-95%. The performance results show that Fe-10 wt.% Zn-coated GA steel sheet (coating time 7 s) has better spot weldability, lower dynamic coefficient of friction (0.06-0.07 in lubrication), and better corrosion resistance compared to bare GA steel sheet. Uniform phosphate coating with globular crystal size of 2-5 µm was obtained on Fe-Zn flash-coated GA steel sheet. Hopeite was the main phosphate compound (77.9 wt.%) identified along with spencerite (13.6 wt.%) and phosphophyllite (8.5 wt.%).

  6. Multiple-cracking phenomenon of the galvannealed coating layer on steels under thermal and tensile stresses

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Okuda, H.; Iwamoto, S.; Tomida, T.; Nakamura, T.; Tanaka, M.; Hojo, M.

    2005-07-01

    The multiple-cracking phenomenon of the Fe-Zn intermetallic coating layer on the hot-dip galvannealed (GA) steels under thermal and tensile stresses was studied experimentally by tensile tests and analytically by means of the finite-element analysis. The multiple cracking of the coating layer had occurred in the as-supplied samples, and it progressed with increasing applied strain. Based on the calculated dependence of the stress of the coating layer on the crack spacing and applied strain, the multiple cracking in the as-supplied samples was accounted for by the thermally induced residual stress, and the further multiple cracking with increasing applied strain was accounted for by the increased stress of the coating layer. The experimentally observed decrease of the average crack spacing with increasing applied strain was described well, and the tensile strength of the coating layer was estimated to be 260 MPa, by application of the calculated relation between the increased stress of the coating layer and applied strain. The influences of the thickness of the coating layer and the substrate material on the multiple cracking were discussed based the stress analysis. It was revealed that the thinner the coating layer and the higher the flow stress of the substrate, the higher the stress of the coating layer becomes and, therefore, the smaller the crack spacing becomes.

  7. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  8. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    SciTech Connect

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Keum, Jong Kahk; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2016-12-22

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally, an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.

  9. Modeling the effect of coating weight on the kinetics of iron enrichment in hot dip galvanneal coatings on interstitial-free steel sheets

    SciTech Connect

    Xavier, C.R.; Seixas, U.R.; Rios, P.R.

    1997-10-01

    The coating weight is shown to have a significant effect on the isothermal kinetics of iron enrichment in hot dip galvanized coatings on interstitial-free (IF) steel sheets during a postcoating heat treatment that simulates galvannealing. A simple quantitative model is proposed to account for this effect and is found to give reasonable agreement with the experimental results obtained for the kinetics of iron enrichment for coating weights of 60 and 80 g/m{sup 2}.

  10. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  11. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  12. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  13. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  14. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  15. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  16. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  17. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  18. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2016-12-22

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less

  19. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  20. Noise impact of advanced high lift systems

    NASA Astrophysics Data System (ADS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-03-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  1. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  2. Experimental study and finite element analyses of electrode wear mechanisms during the resistance spot welding of galvannealed steel

    NASA Astrophysics Data System (ADS)

    Lu, Feng

    The wear mechanisms of electrodes used on resistance spot welding of galvannealed steels were studied. The study focused on the inter-relationship among the steel properties, welding parameters and electrode wear. Six different galvannealed steels were studied using a standard constant current welding test. With the same kind of Cu-Zr electrode, the tests were performed with the electrode force fixed at 600 lbs and the welding time fixed at 12 cycles for all the steels studied. The welding current is set at just below the expulsion limit for each of the steels. The microstructure and mechanical properties of these steels were examined by SEM and microhardness tests. The face profiles for electrodes subjected to various numbers of welds were examined using carbon imprint tests and low magnification optical microscopy. The alloys formed on the electrode face were studied by the EDS and WDS quantitative analyses and linescans. Changes in the microhardness of the electrode material near the electrode face during the electrode wear process were also studied. Combined with the experimental examination, a sequentially coupled finite element analysis procedure was used to analyze the detailed distribution and evolution of the electrical current, temperature and stress throughout the process of making a weld. These analyses have greatly enhanced the understanding of the experimental observations. The results of this study indicate that the welding current is the dominant factor influencing electrode life. When the electrode force and the welding time are fixed, the welding current is determined by the steel properties. Thicker steel sheets and higher steel sheet surface hardnesses will result in smaller welding current. When the electrode force and welding time are fixed, steels requiring higher welding currents will yield shorter electrode lives. With increasing welding current, the top and bottom electrodes in this study showed increasingly different wear behaviors

  3. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  4. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  5. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  6. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  7. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  8. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  9. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  10. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    SciTech Connect

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  11. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  12. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  13. High Temperature Wear of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  14. The Advanced Telescope for High Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  15. Advanced High-Definition Video Cameras

    NASA Technical Reports Server (NTRS)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  16. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  17. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  18. Advanced modeling of high intensity accelerators

    SciTech Connect

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  19. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  20. College Credit Earned in High School: Comparing Student Performance in Project Advance and Advanced Placement.

    ERIC Educational Resources Information Center

    Mercurio, Joseph A.; And Others

    1983-01-01

    Syracuse University's Project Advance (one of the first high school college cooperative programs in the United States through which college courses, taught in high schools by high school faculty, are taken for college credit) is described. (MLW)

  1. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 24-08-2015 Approved for public release; distribution is unlimited. Advanced Optical Fibers for...0946 ABSTRACT Advanced Optical Fibers for High power Fiber lasers Report Title A review of recent fiber developement for high power fiber lasers...Chapter 7 Advanced Optical Fibers for High Power Fiber Lasers Liang Dong Additional information is available at the end of the chapter http://dx.doi.org

  2. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  3. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark D.

    2013-01-01

    The materials selected to observe microstructural effects on formability included four 780 MPa strength, and four 980 MPa strength AHSS grades produced with varying processing conditions. The grades were an uncoated DP780, a high yield DP780, a galvanized DP780, a TRIP780, a galvannealed DP980, a galvanized DP980, an uncoated DP980, and a fine grained DP980. All AHSS grades were tensile tested to obtain values for ultimate tensile strength, yield strength, percent uniform and total elongation. An analysis was performed to quantify the average grain size of the primary and second phase constituents, as well as the second phase volume fraction present in each AHSS grade. Nanoindentation was performed for each AHSS grade to determine the average hardness of the primary and second phase constituents present. Evolution of microstructural damage in response to deformation was analyzed using a plane strain tensile method developed to impose a localized through-thickness shear fracture. Samples of each AHSS grade were strained to progressively higher percentages of their failure displacement, and microstructural damage was observed using a scanning electron microscope on a metallographic section removed from the localized shear deformation region. Micrographs were analyzed using ImageJ®, and the resulting void percent and number of voids were determined for each test performed. A direct correlation was observed between the number of voids and hardness ratio. The strength of the microstructural constituents affected mechanical properties, suggesting that constituent strength values should be considered when predicting formability limits for higher strength AHSS grades. Since all AHSS grades experienced some critical number of voids before fracture, it was concluded that suppression of void formation can extend the formability limits to higher strains. After observing a percent failure displacement value of 95%, it was determined that the final stage of fracture (void

  4. Advanced Biology [Sahuarita High School Career Curriculum Project.

    ERIC Educational Resources Information Center

    Christensen, Larry

    This course in advanced biology is entitled "Advanced Genetics" and is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of seven units of study, and 15 behavioral objectives relating to these units are stated. The topics covered include a review of genetics,…

  5. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  6. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  7. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  8. Advanced concepts for high-gradient acceleration

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.

  9. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  10. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  11. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  12. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  13. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  14. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  15. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  16. Accounting for Advanced High School Coursework in College Admission Decisions

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Tai, Robert H.

    2007-01-01

    The purpose of the current study is to investigate the feasibility of accounting for student performance in advanced high school coursework through the adjustment of high school grade point average (HSGPA) while separating out variables that are independently considered in the admission process, e.g., SAT/ACT scores, community affluence, type of…

  17. Advanced high-temperature alloys: Processing and properties

    SciTech Connect

    Allen, S.M.; Pelloux, R.M.; Widmer, R.

    1986-01-01

    Achievements in high-temperature metallurgy, solidification, and metals processing are highlighted in 16 conference papers. The first section is on solidification. It discusses direct casting of coilable ferrous alloy strips, metallurgical advances in investment casting technology, and the development of single-crystal superalloy turbine blades. The interface of rapidly solidified materials and particle metallurgy is presented by atomization models and mechanisms. Also covered in this second section are rapidly cast crystalline thin sheet materials and mechanical alloying for preparing superalloys. Another section looks into advanced mechanical processing. It reviews the role of hot isostatic pressing, advances in superplastic materials, and thermomechanical processing of Inconel 718 and its effects on properties. The final section deals with the trends and needs of high-temperature materials, superalloys in 2001, titanium aluminides as future turbine materials and creep damage. The information available through these proceedings will give the reader an updated look at high-temperature materials.

  18. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  19. Advanced Tribological Coatings for High Specific Strength Alloys

    DTIC Science & Technology

    1989-09-29

    Hard Anodised 4 HSSA12 (SHT) Plasma Nitrided 1 HSSA13 (H&G) Plasma Nitrided 2 HSSA14 (SHT) High Temperature Nitrocarburized 1 HSSA15 (H&G) Nitrox 1...HSSA26 ( High Temperature Plasma Nitriding) has recently arrived, and is currently undergoing metallographic examination. The remaining samples are still...Report No 3789/607 Advanced Tribological Coatings For High Specific Strength Alloys, R&D 5876-MS-01 Contract DAJ A45-87-C-0044 5th Interim Report

  20. Advances in the Prevention and Treatment of High Altitude Illness.

    PubMed

    Davis, Christopher; Hackett, Peter

    2017-05-01

    High altitude illness encompasses a spectrum of clinical entities to include: acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. These illnesses occur as a result of a hypobaric hypoxic environment. Although a mild case of acute mountain sickness may be self-limited, high altitude cerebral edema and high altitude pulmonary edema represent critical emergencies that require timely intervention. This article reviews recent advances in the prevention and treatment of high altitude illness, including new pharmacologic strategies for prophylaxis and revised treatment guidelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis.

    PubMed

    Lizak, Nathaniel; Lugaresi, Alessandra; Alroughani, Raed; Lechner-Scott, Jeannette; Slee, Mark; Havrdova, Eva; Horakova, Dana; Trojano, Maria; Izquierdo, Guillermo; Duquette, Pierre; Girard, Marc; Prat, Alexandre; Grammond, Pierre; Hupperts, Raymond; Grand'Maison, Francois; Sola, Patrizia; Pucci, Eugenio; Bergamaschi, Roberto; Oreja-Guevara, Celia; Van Pesch, Vincent; Ramo, Cristina; Spitaleri, Daniele; Iuliano, Gerardo; Boz, Cavit; Granella, Franco; Olascoaga, Javier; Verheul, Freek; Rozsa, Csilla; Cristiano, Edgardo; Flechter, Shlomo; Hodgkinson, Suzanne; Amato, Maria Pia; Deri, Norma; Jokubaitis, Vilija; Spelman, Tim; Butzkueven, Helmut; Kalincik, Tomas

    2017-03-01

    To evaluate variability and predictability of disability trajectories in moderately advanced and advanced multiple sclerosis (MS), and their modifiability with immunomodulatory therapy. The epochs between Expanded Disability Status Scale (EDSS) steps 3-6, 4-6 and 6-6.5 were analysed. Patients with relapse-onset MS and having reached 6-month confirmed baseline EDSS step (3/4/6) were identified in MSBase, a global observational MS cohort study. We used multivariable survival models to examine the impact of disease-modifying therapy, clinical and demographic factors on progression to the outcome EDSS step (6/6.5). Sensitivity analyses with varying outcome definitions and inclusion criteria were conducted. For the EDSS 3-6, 4-6 and 6-6.5 epochs, 1560, 1504 and 1231 patients were identified, respectively. Disability trajectories showed large coefficients of variance prebaseline (0.92-1.11) and postbaseline (2.15-2.50), with no significant correlations. The probability of reaching the outcome step was not associated with prebaseline variables, but was increased by higher relapse rates during each epoch (HRs 1.58-3.07; p<0.001). A greater proportion of each epoch treated with higher efficacy therapies was associated with lower risk of reaching the outcome disability step (HRs 0.72-0.91 per 25%; p≤0.02). 3 sensitivity analyses confirmed these results. Disease progression during moderately advanced and advanced MS is highly variable and amnesic to prior disease activity. Lower relapse rates and greater time on higher efficacy immunomodulatory therapy after reaching EDSS steps 3, 4 and 6 are associated with a decreased risk of accumulating further disability. Highly effective immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced relapse-onset MS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Mapping Mexico's Forest Lands with Advanced Very High Resolution Radiometer

    Treesearch

    David J. Evans; Zhiliang Zhu; Susan Eggen-McIntosh; Pedro García Mayoral; Jose Luis Ornelas de Anda

    1992-01-01

    Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a program sponsored by the U.S. Department of Agriculture, Forest Service, and the United Nations Food and Agriculture Organization to help scientists from Mexico generate forest-cover maps of that country. Two near-cloud-free composite images were generated for December and March 1990 from...

  3. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  4. Advanced alloy design technique: High temperature cobalt base superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Freche, J. C.; Sandrock, G. D.

    1972-01-01

    Advanced alloy design technique was developed for treating alloys that will have extended life in service at high temperature and intermediate temperatures. Process stabilizes microstructure of the alloy by designing it so that compound identified with embrittlement is eliminated or minimized. Design process is being used to develop both nickel and cobalt-base superalloys.

  5. Experiences of Advanced High School Students in Synchronous Online Recitations

    ERIC Educational Resources Information Center

    Mayer, Greg; Lingle, Jeremy; Usselman, Marion

    2017-01-01

    The question of how to best design an online course that promotes student-centred learning is an area of ongoing research. This mixed-methods study focused on a section of advanced high school students, in college-level mathematics courses, that used a synchronous online environment mediated over web-conferencing software, and whether the…

  6. Advanced Botany (Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "Advanced Botany" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of three units of study, and eight behavioral objectives relating to these units are stated. The topics covered include plant cells and taxonomy, functions and…

  7. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  8. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    ERIC Educational Resources Information Center

    Schmidt, Richard William

    2013-01-01

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds…

  9. Faster Fluorescence Microscopy: Advances in High Speed Biological Imaging

    PubMed Central

    Winter, Peter W.; Shroff, Hari

    2014-01-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and super-resolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration. PMID:24815857

  10. Review of recent technological advances in high power LED packaging

    NASA Astrophysics Data System (ADS)

    Panahi, Allen S.

    2012-06-01

    High Power LED is poised to replace traditional lighting sources such as Fluorescent, HID, Halogen and conventional incandescent bulbs in many applications. Due to the solid state compact nature of the light source it is inherently rugged and reliable and has been the favored lighting source for most indoor and outdoor applications including many hazardous locations that impact, and safety environments including mining, bridge, Aerospace, Automotive . In order to accelerate this transition many enhancements and advances are taking place to improve on the reliability, and thermal performance of these devices. This paper explores the various improvements and advances made in the packaging of LEDs to enhance their performance

  11. Faster fluorescence microscopy: advances in high speed biological imaging.

    PubMed

    Winter, Peter W; Shroff, Hari

    2014-06-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and superresolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration.

  12. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  13. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  14. High Speed, High Accuracy Stage for Advanced Lithography. Phase I

    DTIC Science & Technology

    2007-11-02

    noise and 5nm LSB of our laser interferometer. Zerodur Mounting bar Base expended in this direction Sensor heads Interferometer mirror ...state of the art. Their CORE machine claims an accuracy of 80nm over a 6- inch square field. This machine uses high-speed mirrors to scan multiple...variety of optical paths. If the laboratory is not quiet (e.g. if the interferometer mirror is moving, or if people are talking in the laboratory

  15. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  16. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  17. Advancing the technology base for high-temperature membranes

    SciTech Connect

    Dye, R.C.; Birdsell, S.A.; Snow, R.C.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  18. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  19. Rotor Performance at High Advance Ratio: Theory versus Test

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  20. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  1. Advanced Risk Analysis for High-Performing Organizations

    DTIC Science & Technology

    2006-01-01

    using traditional risk analysis techniques. Mission Assurance Analysis Protocol (MAAP) is one technique that high performers can use to identify and mitigate the risks arising from operational complexity....The operational environment for many types of organizations is changing. Changes in operational environments are driving the need for advanced risk ... analysis techniques. Many types of risk prevalent in today’s operational environments (e.g., event risks, inherited risk) are not readily identified

  2. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  3. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  4. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  5. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  6. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  7. High-temperature corrosion in advanced combustion systems

    SciTech Connect

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-11-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

  8. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  9. Summary of advanced methods for predicting high speed propeller performance

    NASA Technical Reports Server (NTRS)

    Bober, L. A.

    1980-01-01

    Three advanced analyses for predicting aircraft propeller performance at high subsonic speeds are described. Two of these analyses use a lifting line representation for the propeller blades and vortex filaments for the blade wakes but differ in the details of the solution. The third analysis is a finite difference solution of the unsteady, three dimensional Euler equations for the flow between adjacent blades. Analysis results are compared to data for a high speed propeller having eight swept blades integrally designed with the spinner and nacelle.

  10. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.

  11. High quality mask storage in an advanced Logic-Fab

    NASA Astrophysics Data System (ADS)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  12. Recent Advances in High-Birefringence Fiber Loop Mirror Sensors

    PubMed Central

    Frazão, Orlando; Baptista, José M.; Santos, José L.

    2007-01-01

    Recent advances in devices and applications of high-birefringence fiber loop mirror sensors are addressed. In optical sensing, these devices may be used as strain and temperature sensors, in a separate or in a simultaneous measurement. Other described applications include: refractive index measurement, optical filters for interrogate gratings structures and chemical etching control. The paper analyses and compares different types of high-birefringence fiber loop mirror sensors using conventional and microstructured optical fibers. Some configurations are presented for simultaneous measurement of physical parameters when combined with others optical devices, for example with a long period grating. PMID:28903273

  13. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  14. An advanced actuator for high-performance slewing

    NASA Technical Reports Server (NTRS)

    Downer, James; Eisenhaure, David; Hockney, Richard

    1988-01-01

    A conceptual design for an advanced momentum exchange actuator for application to spacecraft slewing is described. The particular concept is a magnetically-suspended, magnetically gimballed Control Moment Gyro (CMG). A scissored pair of these devices is sized to provide the torque and angular momentum capacity required to reorient a large spacecraft through large angle maneuvers. The concept described utilizes a composite material rotor to achieve the high momentum and energy densities to minimize system mass, an advanced superconducting magnetic suspension system to minimize system weight and power consumption. The magnetic suspension system is also capable of allowing for large angle gimballing of the rotor, thus eliminating the mass and reliability penalties attendant to conventional gimbals. Descriptions of the various subelement designs are included along with the necessary system sizing formulation and material.

  15. Advanced Synchrotron Techniques at High Pressure Collaborative Access Team (HPCAT)

    NASA Astrophysics Data System (ADS)

    Shen, G.; Sinogeikin, S. V.; Chow, P.; Kono, Y.; Meng, Y.; Park, C.; Popov, D.; Rod, E.; Smith, J.; Xiao, Y.; Mao, H.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation for studies of structure and materials properties at extreme conditions.. HPCAT consists of four active independent beamlines performing a large range of various experiments at extreme conditions. 16BM-B beamline is dedicated to energy dispersive and white Laue X-ray diffraction. The majority of experiments are performed with a Paris-Edinburgh large volume press (to 7GPa and 2500K) and include amorphous and liquid structure measurement, white beam radiography, elastic sound wave velocity measurement of amorphous solid materials, with viscosity and density measurement of liquid being under development. 16BM-D is a monochromatic diffraction beamline for powder and single crystal diffraction at high pressure and high (resistive heating) / low (cryostats) temperature. The additional capabilities include high-resolution powder diffraction and x-ray absorption near edge structure (XANES) spectroscopy. The insertion device beamline of HPCAT has two undulators in canted mode (operating independently) and LN cooled Si monochromators capable of providing a large range of energies. 16IDB is a microdiffraction beamline mainly focusing on high-pressure powder and single crystal diffraction in DAC at high temperatures (double-sided laser heating and resistive heating) and low temperature (various cryostats). The modern instrumentation allows high-quality diffraction at megabar pressures from light element, fast experiments with pulsed laser heating, fast dynamic experiments with Pilatus detector, and so on. 16ID-D beamline is dedicated to x-ray scattering and spectroscopy research

  16. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  17. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  18. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  19. Metastable Phases of Dross Particles Formed in a Molten Zinc Bath and Prediction of Soluble Aluminum During Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Paik, Doo-Jin; Hong, Moon-Hi; Huh, Yoon; Park, Joo Hyun; Chae, Hong-Kook; Park, Seok-Ho; Choun, Si-Youl

    2012-06-01

    The morphology, chemistry, and crystallographic characteristics of metastable dross particles were identified. These particles are formed during the initial stage of precipitation. The particles had aluminum concentrations of 15 to 80 mass pct, with values that decreased gradually as particle size increased. These metastable dross particles were a mixture of the crystalline phase of FeZn10, which is called the "delta phase," and the high-aluminum amorphous phase, which covered the surface of the crystalline phase. The new "meta Q" concept was proposed to predict the amount of soluble aluminum in the zinc bath by considering nucleation kinetics and particle growth. The results calculated using the "meta Q" concept were compared with the values measured by the aluminum sensor, which were taken during the same period at the commercial galvanizing line. The mean of the absolute values of the differences between the calculated and measured values was 9.7 ppm.

  20. High brightness laser systems incorporating advanced laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; Vethake, Thilo; Gottdiener, Mark; Wunderlin, Jens; Negoita, Viorel; Li, Yufeng; Barnowski, Tobias; Gong, Tim; An, Haiyan; Treusch, Georg

    2013-02-01

    The performance of high power and high brightness systems has been developing and is developing fast. In the multi kW regime both very high spatial and spectral brightness systems are emerging. Also diode laser pumped and direct diode lasers are becoming the standard laser sources for many applications. The pump sources for thin Disk Laser systems at TRUMPF Photonics enabled by high power and efficiency laser bars are becoming a well established standard in the industry with over two thousand 8 kW Disk Laser pumps installed in TruDisk systems at the customer site. These systems have proven to be a robust and reliable industrial tool. A further increase in power and efficiency of the bar can be easily used to scale the TruDisk output power without major changes in the pump source design. This publication will highlight advanced laser systems in the multi kW range for both direct application and solid state laser pumping using specifically tailored diode laser bars for high spatial and/or high spectral brightness. Results using wavelength stabilization techniques suitable for high power CW laser system applications will be presented. These high power and high brightness diode laser systems, fiber coupled or in free space configuration, depending on application or customer need, typically operate in the range of 900 to 1070 nm wavelength.

  1. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  2. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  3. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  4. Advanced Processing and Properties of High Performance Alloys.

    DTIC Science & Technology

    1985-11-29

    NUMBER Technical Report No. 3 M -A 4. TITLE (and Subtftle) S. TYPE OF REPORT A PERIOD COVERED Advanced Processing apd Properties of High Performance Alloys...conditions of either plane stress or plane strain: (a) 1100-0 Al in the form of 1 - sheet (plane stress deformation), (b) 7075-T6 Al also as 1 m sheet...increasing area fraction of holes occurs in a manner consistent with data for porous P/ M alloys; see Fig. 1. However, the dependence of ductility on the area

  5. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  6. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Grant, Glenn J; Frederick, D Alan; Dahl, Michael E

    2009-02-01

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  7. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  8. Recent Advances in High-Birefringence Fiber Loop Mirror Sensors.

    PubMed

    Frazão, Orlando; Baptista, José M T; Santos, José L

    2007-11-26

    Recent advances in devices and applications of high-birefringence fiber loopmirror sensors are addressed. In optical sensing, these devices may be used as strain andtemperature sensors, in a separate or in a simultaneous measurement. Other describedapplications include: refractive index measurement, optical filters for interrogate gratingsstructures and chemical etching control. The paper analyses and compares different types ofhigh-birefringence fiber loop mirror sensors using conventional and microstructured opticalfibers. Some configurations are presented for simultaneous measurement of physicalparameters when combined with others optical devices, for example with a long periodgrating.

  9. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  10. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  11. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  12. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  13. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1977-01-01

    Several NASA-sponsored benefit-cost studies have shown that very substantial benefits can be obtained by increasing material capability for aircraft gas turbines. Prealloyed powder processing holds promise for providing superalloys with increased strength for turbine disk applications. The developement of advanced powder metallurgy disk alloys must be based on a design of optimum processing and heat treating procedures. Materials considered for high temperature application include oxide dispersion strengthened (ODS) alloys, directionally solidified superalloys, ceramics, directionally solidified eutectics, materials combining the high strength of a gamma prime strengthened alloy with the elevated temperature strength of an ODS, and composites. Attention is also given to the use of high pressure turbine seals, approaches for promoting environmental protection, and turbine cooling technology.

  14. Bending-torsion flutter of a highly swept advanced turboprop

    NASA Technical Reports Server (NTRS)

    Mehmed, O.; Kaza, K. R. V.; Lubomski, J. F.; Kielb, R. E.

    1981-01-01

    Experimental and analytical results are presented for a bending-torsion flutter phenomena encountered during wind-tunnel testing of a ten-bladed, advanced, high-speed propeller (turboprop) model with thin airfoil sections, high blade sweep, low aspect ratio, high solidity and transonic tip speeds. Flutter occurred at free-stream Mach numbers of 0.6 and greater and when the relative tip Mach number (based on vector sum of axial and tangential velocities) reached a value of about one. The experiment also included two- and five-blade configurations. The data indicate that aerodynamic cascade effects have a strong destabilizing influence on the flutter boundary. The data was correlated with analytical results which include aerodynamic cascade effects and good agreement was found.

  15. High temperature electrical energy storage: advances, challenges, and frontiers.

    PubMed

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO4, and LiMn2O4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  16. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  17. Recent advances in high-power ignitron development

    SciTech Connect

    Loree, D.L.; Giesselmann, M.G.; Kristiansen, M. ); Shulski, A.P. ); Kihara, R. )

    1991-04-01

    The development of high-power ignitrons with peak current ratings of up to 1000 kA and simultaneous charge transfer rates of 250-500 C is currently under way in a joint effort between Texas Tech University (TTU), Lawrence Livermore National Laboratory (LLNL), and industry. Two industrial manufacturers, Richardson Electronics, US, and English Electric Valve, UK, have participated with TTU and LLNL in three workshops to advance the state of the art in high-power ignitrons. Less than three years after the start of the program, the cooperative efforts have led to the development of a new commercial tube (Richardson Electronics NL-9000). High power testing of prototypes of this tube and other unique ignitrons was done by Kihara at LLNL. Research at TTU is concentrated on plasma diagnostics, novel anode designs, electrode placements, and trigger schemes. Electrical measurements as well as optical and microwave plasma studies, such as high-speed framing photography, Mach- Zehnder and microwave interferometry, and spectroscopy have been performed. This paper describes the advances made in high-power ignitron switching capabilities in a comparison study between conventional Size D and Size E tubes, demountable experimental tubes and the new NL-9000 (Richardson Electronics). The paper shows the differences in tube design, and the associated peak current and charge transfer capabilities and lifetime expectancies. The critical design criteria are the anode shape and placement in order to control the plasma and prevent prefires. Tube failure modes and recent studies on alternate ignitor schemes are presented. In addition, results of plasma diagnostics performed on a demountable ignitron with optical access to the discharge plasma are shown.

  18. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  19. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  20. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    PubMed Central

    Zhou, Yufeng

    2014-01-01

    Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU) is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS) score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered. PMID:25053938

  1. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  2. Guidelines for Stretch Flanging Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Chintamani, J.

    2005-08-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  3. Guidelines for Stretch Flanging Advanced High Strength Steels

    SciTech Connect

    Sriram, S.; Chintamani, J.

    2005-08-05

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  4. Advanced Rock Drilling Technologies Using High Laser Power

    NASA Astrophysics Data System (ADS)

    Buckstegge, Frederik; Michel, Theresa; Zimmermann, Maik; Roth, Stephan; Schmidt, Michael

    Drilling through hard rock formations causes high mechanical wear and most often environmental disturbance. For the realization of an Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) power plant a new and efficient method for tunneling utilising laser technology to support mechanical ablation of rock formations will be developed. Laser irradiation of inhomogeneous rock surfaces causes irregular thermal expansion leading to the formation of cracks and splintering as well as melting and slag-formation. This study focuses on the interaction of laser irradiation with calcite, porphyrite and siderite rock formations. A high power disc laser system at 1030nm wavelength is used to investigate the specific energy necessary to remove a unit volume depending on interaction times and applied power. Specific energies have been measured and an increase of fragility and brittleness of the rock surface has been observed.

  5. Advanced high-temperature molten-salt storage research

    SciTech Connect

    Copeland, R J; Coyle, R T

    1983-08-01

    We are researching advanced high-temperature molten-salt thermal storage for use in direct absorption receiver and thermal storage (DARTS) solar thermal systems. A molten salt at 900/sup 0/C or higher is both the receiver heat transfer medium and the storage medium; a unique insulated platform (raft) separates the hot and cold medium in the thermocline thermal storage. We have measured raft performance experimentally, and it performs equally or better than a natural thermocline. Containment materials for the molten salts ae being experimentally screened. NaOH has a very high corrosion rate on ceramics and metals. Both carbonates and chlorides can be contained at 900/sup 0/C with relatively little corrosion. Based on the measured corrosion rates, the economic potential of molten-salt thermal storage was analyzed. Both the chlorides and carbonates have potential (i.e., cost less than value) at the capacity of storage expected for commercial-scale solar thermal systems.

  6. High-Fidelity Simulation for Advanced Cardiac Life Support Training

    PubMed Central

    Davis, Lindsay E.; Storjohann, Tara D.; Spiegel, Jacqueline J.; Beiber, Kellie M.

    2013-01-01

    Objective. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. Design. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). Assessment. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students’ knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. Conclusions. College curricula should incorporate simulation to complement but not replace lecture for ACLS education. PMID:23610477

  7. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  8. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  9. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and

  10. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  11. Development of high strength high toughness third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  12. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  13. Advances toward high spectral resolution quantum X-ray calorimetry

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  14. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  15. Gendered Fields: Sports and Advanced Course Taking in High School

    PubMed Central

    Pearson, Jennifer; Crissey, Sarah R.; Riegle-Crumb, Catherine

    2010-01-01

    This study explores the association between sports participation and course taking in high school, specifically comparing subjects with varied gendered legacies—science and foreign language. Analyses of a nationally representative longitudinal sample (N=5,447) of U.S. adolescents from the National Longitudinal Study of Adolescent Health and the linked Adolescent Health and Academic Achievement transcript study show that male and female athletes are more likely than non-athletes to take both advanced foreign language and Physics, largely because of their higher academic orientation. However, the association between sports participation and course taking was strongest for girls’ Physics coursework, suggesting that sports may provide girls with a unique opportunity to develop the skills and confidence to persevere in the masculine domain of science. PMID:20221304

  16. Gendered Fields: Sports and Advanced Course Taking in High School.

    PubMed

    Pearson, Jennifer; Crissey, Sarah R; Riegle-Crumb, Catherine

    2009-10-01

    This study explores the association between sports participation and course taking in high school, specifically comparing subjects with varied gendered legacies-science and foreign language. Analyses of a nationally representative longitudinal sample (N=5,447) of U.S. adolescents from the National Longitudinal Study of Adolescent Health and the linked Adolescent Health and Academic Achievement transcript study show that male and female athletes are more likely than non-athletes to take both advanced foreign language and Physics, largely because of their higher academic orientation. However, the association between sports participation and course taking was strongest for girls' Physics coursework, suggesting that sports may provide girls with a unique opportunity to develop the skills and confidence to persevere in the masculine domain of science.

  17. High-voltage electrical survey advances using UV/IR

    NASA Astrophysics Data System (ADS)

    Ninedorf, Daniel A.; Stolper, Roel; Hart, Jaco

    2008-03-01

    Technology miniaturization has made new advancements in high voltage electrical surveying possible. A solar-blind ultraviolet image overlaid onto infrared, combined with a solar-blind ultraviolet image and then overlaid onto color visible in the same camera with a weight of 6 pounds provides the comparison images and portability to allow an operator to do on-the-spot analysis and repair priority assignment. The UV-VIS image provides the quickest location and identification. The UV-IR image allows analysis to determine if there is damage and the severity. This can be accomplished in just seconds thru menu selection: before it required two separate cameras. This presentation will provide examples of different images and analysis, with operating time from hand-held, laboratory, vehicle and aerial camera mounts.

  18. Advances toward high spectral resolution quantum X-ray calorimetry

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  19. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  20. Fluorescence thermometry for advanced high-temperature materials

    SciTech Connect

    Cates, M.R.; Beshears, D.L.; Allison, S.W.

    1996-05-01

    Advanced high-temperature materials, such as ceramics, metals, and composites, are of critical importance to the development of new and improved technologies worldwide. For aircraft, automobiles, or other combustion-engine powered systems, major efficiency improvements depend on the ability to operate at temperatures closer to the adiabatic limit of the chemical processes involved. Materials able to function at higher temperatures must therefore be introduced into improved designs. Jet turbine engines, for example, already require air cooled rotors and stators in order that the nickel alloys used will not deteriorate and fail from overheating. In the case of ceramics, optimum temperature usage will often cause the refractory surfaces to glow red hot and the material itself to become partially translucent. For composites, especially where structural integrity, vibration resistance, and strength are concerned, the temperature behavior of dissimilar components must be well known and well understood before appropriate designs can be effected. As the need for higher temperature materials becomes increasingly more important, so does the requirement to properly measure the temperatures involved. Phosphor thermometry offers measurement solutions at very high temperatures that often cannot be achieved by more conventional methods. In this paper we discuss the phosphor technique and several examples of its application to high-temperature measurement.

  1. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  2. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10

  3. Advanced Flat Top Laser Heating System for High Pressure Research

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Kantor, I.; Kuznetsov, A.; Dera, P. K.; Rivers, M. L.; Sutton, S. R.

    2009-12-01

    quality x-ray scattering data suitable for structure analysis even from low-Z molten materials such as Si, SiO2, Fe, Fe:C etc. The FT-LH method opens a new era in high temperature high pressure studies using diamond anvil cell with combination of advanced synchrotron as well as lab techniques, and will lead to superior quality high temperature measurements including equation of state, melting curve, phase transformation, element portioning, elastic, electronic and optical properties.

  4. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  5. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  6. New heat treatment process for advanced high-strength steels

    NASA Astrophysics Data System (ADS)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  7. Development of third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (<0.2wt%) were employed to stabilize the austenite phase. Silicon additions between 1 and 2 wt% were added to suppress cementite formation. Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  8. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations.

    PubMed

    Patel, Darshan C; Wahab, M Farooq; Armstrong, Daniel W; Breitbach, Zachary S

    2016-10-07

    The need for improved liquid chromatographic chiral separations has led to the advancement of chiral screening techniques as well as the development of new, high efficiency chiral separation methods and stationary phases. This review covers these advancements, which primarily occurred over the last 15 years. High throughput techniques include multi-column screening units, multiple injection sequences, and fast gradient SFC screening. New separation methods and column technologies that aim at high efficiency chiral separations include the use of achiral UHPLC (i.e. sub-2μm) columns for separating derivatized chiral analytes or using chiral additives in the run buffer, UHPLC chiral stationary phases, and superficially porous particle based chiral stationary phases. Finally, the enhancement of chiral separations through these new technologies requires that certain instrumental considerations be made. Future directions in continuing to improve chiral separations are also discussed.

  9. Advances in high-speed low-latency communications for nanopositioning in advanced microscopy

    NASA Astrophysics Data System (ADS)

    Jordan, Scott C.

    2012-06-01

    We present a comparison of classical and recently developed communications interfacing technologies relevant to scanned imaging. We adopt an applications perspective, with a focus on interfacing techniques as enablers for enhanced resolution, speed, stability, information density or similar benefits. A wealth of such applications have emerged, ranging from nanoscale-stabilized force microscopy yielding 100X resolution improvement thanks to leveraging the latest in interfacing capabilities, to novel approaches in analog interfacing which improve data density and DAC resolution by several orders of magnitude. Our intent is to provide tools to understand, select and implement advanced interfacing to take applications to the next level. We have entered an era in which new interfacing techniques are enablers, in their own right, for novel imaging techniques. For example, clever leveraging of new interfacing technologies has yielded nanoscale stabilization and atomic-force microscopy (AFM) resolution enhancement. To assist in choosing and implementing interfacing strategies that maximize performance and enable new capabilities, we review available interfaces such as USB2, GPIB and Ethernet against the specific needs of positioning for the scanned-imaging community. We spotlight recent developments such as LabVIEW FPGA, which allows non-specialists to quickly devise custom logic and interfaces of unprecedentedly high performance and parallelism. Notable applications are reviewed, including a clever amalgamation of AFM and optical tweezers and a picometer-scaleaccuracy interferometer devised for ultrafine positioning validation. We note the Serial Peripheral Interface (SPI), emerging as a high-speed/low-latency instrumentation interface. The utility of instrument-specific parallel (PIO) and TTL sync/trigger (DIO) interfaces is also discussed. Requirements of tracking and autofocus are reviewed against the time-critical needs of typical applications (to avoid, for example

  10. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  11. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  12. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    SciTech Connect

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  13. High-Density Superconducting Cables for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  14. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  15. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  16. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  17. High-Density Superconducting Cables for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  18. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  19. Advanced very high resolution radiometer, Mod 2 engineering report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced High Resolution Radiometer, Mod 2 (AVHRR/2) is a modification of the original AVHRR (AVHRR/1) to expand the number of channels from four to five and provide additional sensing in the infrared region. A comparison of the spectral regions employed in the two instruments is given. Three of the channels are the same on both instruments. The difference in instruments is in the long wave IR region where a single channel was replaced by two channels. The modification from AVHRR/1 to AVHRR/2 was done with a minimum of changes. The areas of change are highlighted and the modifications by module are summarized. It is seen that the primary changes are in the relay optics and in the cooler. In this development program only two models are involved. The first model, the Optical Test Model was constructed and tested to prove the performance and structural integrity of the optical system and the modified cooler. The second model constructed is the Protoflight. Only the areas of the AVHRR/2 which were modified from the AVHRR/1 design are discussed.

  20. Recent advances in quantitative high throughput and high content data analysis.

    PubMed

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  1. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  2. High-pressure propulsion - advanced concepts for cooling

    NASA Astrophysics Data System (ADS)

    Schoerman, Leonard

    The state-of-the-art liquid propellant cooled combustion chambers utilized in the space shuttle are third-generation designs which have evolved from a continuing demand for higher operating pressure and aircraft-type reusability. History has shown that major advances in cooling occur in approximately ten-year cycles, with each cycle providing a nominal 400% increase in operating pressure and/or a higher degree of reusability. The previous technologies include the first-generation double-wall steel jackets used in the 220 psi V-2 and Aerobee, and the second generation wire-wrapped double tapered tubular assemblies typical of the 800 psi Titan I, II, and III, and 1000 psi F-1 engines. The third-generation designs utilize milled slot, high thermal conductivity liners and electrodeposited nickel closures. The space shuttle main engine operating at 3200 psia is adequate for individual flights; however, the desired goal of 55 service-free missions has yet to be realized. Future single-stage-to-orbit propulsion concepts can benefit from a further increase in operating pressures to 6000 to 10,000 psi combined with engine reuse capabilities in excess of the 55 flight goals of the space shuttle. A fourth-generation approach will be required to attain these more ambitious goals. These new designs will require a combination of cooling processes, including regenerative and transpiration, combined with improved high-temperature materials and new fabrication techniques. The limitations of the third-generation designs, the impact of propellant/coolant selection, and the approaches for the coming fourth-generation cooling technologies are discussed.

  3. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  4. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  5. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  6. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  7. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  8. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  9. Advanced waveform decomposition for high-speed videoendoscopy analysis.

    PubMed

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J

    2013-05-01

    This article presents a novel approach to analyze nonperiodic vocal fold behavior of high-speed videoendoscopy (HSV) data. Although HSV can capture true vibrational motions of the vocal folds, its clinical advantage over the videostroboscopy has not widely been accepted. One of the key advantages of the HSV over the videostroboscopy is its ability to capture vocal folds' nonperiodic behavior, which is more prominent in pathological vocal folds. However, such nonperiodicity in the HSV data has not been fully explored quantitatively beyond simple perturbation analysis. This article presents an advanced waveform modeling and decomposition technique for HSV-based waveforms. Waveforms are modeled to have three components: harmonic signal, deterministic nonharmonic signal, and random nonharmonic signal. This decomposition is motivated by the fact that voice disorders introduce signal content that is nonharmonic but carries deterministic quality such as subharmonic or modulating content. The proposed model is aimed to isolate such disordered behaviors as deterministic nonharmonic signal and quantify them. In addition to the model, the article outlines model parameter estimation procedures and a family of harmonics-to-noise ratio (HNR) parameters. The proposed HNR parameters include harmonics-to-deterministic-noise ratio (HDNR) and harmonics-to-random-noise ratio. A preliminary study demonstrates the effectiveness of the extended model and its HNR parameters. Vocal folds with and without benign lesions (Nwith = 13; Nwithout = 20) were studied with HSV glottal area waveforms. All three HNR parameters significantly distinguished the disordered condition, and the HDNR reported the largest effect size (Cohen's d = 2.04). Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

    DTIC Science & Technology

    1994-03-01

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY N"m A.R. TURNER AND A. WHITE...TO biEPROOU.; AND SELL THIS REPORT Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography A.R...8217/......... .. Availability Cooes Dist Avaiardlo A-i Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

  11. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski

    1999-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The seventh reporting period in Phase II (April 1-June 30, 1999) included experimental activities and combined chemistry-mixing modeling on advanced gas reburning. The goal of combustion tests was to determine the efficiency of advanced reburning using coal as the reburning fuel. Tests were conducted in Boiler Simulator Facility (BSF). Several coals were tested. The modeling effort was focused on the description of N-agent injection along with overfire air. Modeling identified process parameters that can be used to optimize the AR-Lean process.

  12. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Pete M. Maly

    2000-03-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The tenth reporting period in Phase II (January 1-March 31, 2000) included proof-of concept tests in the 10 x 10{sup 6} Btu/hr Tower Furnace. Several variants of Second Generation Advanced Reburning (SGAR) were studied, including AR-Lean, AR-Rich, reburning + SNCR, and Multiple Injection Advanced Reburning (MIAR). Tests demonstrated that the SGAR performance was the most effective under MIAR conditions achieving maximum overall NO{sub x} reduction of 96%.

  13. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  14. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  15. Advances in Reservoir Monitoring Using High Resolution Radar Imagery

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.; Ferretti, A.; Novali, F.; Tamburini, A.; Fumagalli, A.; Rucci, A.; Falorni, G.

    2009-12-01

    Surface deformation monitoring provides unique data for observing and measuring the performance of producing hydrocarbon reservoirs, for Enhanced Oil Recovery (EOR) and for Carbon Dioxide Capture and Storage (CCS). To this aim, radar interferometry (InSAR) and, in particular, multi-interferogram Permanent Scatterer (PS) techniques are innovative, valuable and cost-effective tools. Depending on reservoir characteristics and depth, oil or gas production can induce surface subsidence or, in the cases of EOR and CCS, ground heave, potentially triggering fault reactivation and in some cases threatening well integrity. Mapping the surface effects of fault reactivation, due to either fluid extraction or injection, usually requires the availability of hundreds of measurement points per square km with millimeter-level precision, which is time consuming and expensive to obtain using traditional monitoring techniques, but can be readily obtained with InSAR data. Moreover, more advanced InSAR techniques developed in the last decade are capable of providing millimeter precision, comparable to optical leveling, and a high spatial density of displacement measurements, over long periods of time without need of installing equipment or otherwise accessing the study area. Until recently, a limitation to the application of InSAR was the relatively long revisiting time (24 or 35 days) of the previous generation of C-band satellites (ERS1-2, Envisat, Radarsat). However, a new generation of X-band radar satellites (TerraSAR-X and the COSMO-SkyMed constellation), which have been operational since 2008, are providing significant improvements. TerraSAR-X has a repeat cycle of 11 days while the two sensors of the COSMO-SkyMed constellation have an effective repeat cycle of just 8 days (the third sensor has already been successfully launched and is presently in the calibration phase). With the launch of the fourth satellite of the constellation, COSMO-SkyMed will have a revisiting time of

  16. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    DTIC Science & Technology

    2015-05-01

    Moffett Field, California May 2015 NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the...advancement of aeronautics and space science. The NASA scientific and technical information ( STI ) program plays a key part in helping NASA maintain this...important role. The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for

  17. Amityville Memorial High School History Journal Advance Placement History.

    ERIC Educational Resources Information Center

    Howlett, Charles F., Ed.

    The history of Amityville, New York, compiled by 11th and 12th grade advance placement history students, is presented in journal form. Six papers focus on: (1) South Oaks: The Long Island Home; (2) A History of Bethel African Methodist Episcopal Church, Amityville; (3) Amityville: A Vacationland; (4) Amityville School System from 1904 to Present;…

  18. Recent Advances in High-Performance Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.; hide

    1996-01-01

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.

  19. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  20. An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

  1. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  2. Advances in high-resolution RIXS for the study of excitation spectra under high pressure

    SciTech Connect

    Kim, Jungho

    2016-07-09

    Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS under high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.

  3. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  4. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  5. Advanced Boost System Developing for High EGR Applications

    SciTech Connect

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  6. Highly Automated Module Production Incorporating Advanced Light Management

    SciTech Connect

    Perelli-Minetti, Michael; Roof, Kyle

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF film over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition

  7. Creating an advance-care-planning decision aid for high-risk surgery: a qualitative study.

    PubMed

    Schuster, Anne Lr; Aslakson, Rebecca A; Bridges, John Fp

    2014-01-01

    High-risk surgery patients may lose decision-making capacity as a result of surgical complications. Advance care planning prior to surgery may be beneficial, but remains controversial and is hindered by a lack of appropriate decision aids. This study sought to examine stakeholders' views on the appropriateness of using decision aids, in general, to support advance care planning among high-risk surgery populations and the design of such a decision aid. Key informants were recruited through purposive and snowball sampling. Semi-structured interviews were conducted by phone until data collected reached theoretical saturation. Key informants were asked to discuss their thoughts about advance care planning and interventions to support advance care planning, particularly for this population. Researchers took de-identified notes that were analyzed for emerging concordant, discordant, and recurrent themes using interpretative phenomenological analysis. Key informants described the importance of initiating advance care planning preoperatively, despite potential challenges present in surgical settings. In general, decision aids were viewed as an appropriate approach to support advance care planning for this population. A recipe emerged from the data that outlines tools, ingredients, and tips for success that are needed to design an advance care planning decision aid for high-risk surgical settings. Stakeholders supported incorporating advance care planning in high-risk surgical settings and endorsed the appropriateness of using decision aids to do so. Findings will inform the next stages of developing the first advance care planning decision aid for high-risk surgery patients.

  8. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  9. Advanced packaging technology for high frequency photonic applications

    SciTech Connect

    Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

    1996-03-01

    An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

  10. Advances in Electromagnetic Modelling through High Performance Computing

    SciTech Connect

    Ko, K.; Folwell, N.; Ge, L.; Guetz, A.; Lee, L.; Li, Z.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Xiao, L.; /SLAC

    2006-03-29

    Under the DOE SciDAC project on Accelerator Science and Technology, a suite of electromagnetic codes has been under development at SLAC that are based on unstructured grids for higher accuracy, and use parallel processing to enable large-scale simulation. The new modeling capability is supported by SciDAC collaborations on meshing, solvers, refinement, optimization and visualization. These advances in computational science are described and the application of the parallel eigensolver Omega3P to the cavity design for the International Linear Collider is discussed.

  11. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  12. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir Zamansky

    2000-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The eleventh reporting period in Phase II (April 1-June 30, 2000) included design validation AR-Lean tests (Task 2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

  13. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Vitali V. Lissianski

    1999-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The ninth reporting period in Phase II (October 1-December 31, 1999) included preparation of the 10 x 10{sup 6} Btu/hr Tower Furnace for tests and setting the SGAR model to predict process performance under Tower Furnace conditions. Based on results of previous work, a paper has been prepared and submitted for the presentation at the 28 Symposium (International) on Combustion to be held at the University of Edinburgh, Scotland.

  14. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Roy Payne; Lary Swanson; Antonio Marquez; Ary Chang; Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-09-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The twelfth reporting period in Phase II (July 3-October 15, 2000) included design validation AR-Lean tests (Task No.2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

  15. Parametric instability in the high power era of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  16. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The thirteenth reporting period in Phase II (October 1-December 31, 2000) included SGAR tests in which coal was used as the reburning fuel. All test work was conducted at GE-EER's 1.0 MMBtu/hr Boiler Simulator Facility. Three test series were performed including AR-Lean, AR-Rich, and reburning + SNCR. Tests demonstrated that over 90% NO{sub x} reduction could be achieved with utilization of coal as a reburning fuel in SGAR. The most effective SGAR variant is reburning + SNCR followed by AR-Lean and AR-Rich.

  17. Advanced calcium-thionyl chloride high-power battery

    NASA Astrophysics Data System (ADS)

    Peled, Emanuel

    1989-07-01

    Recently, a breakthrough was made in the development of two advanced Ca-TC systems which have much better electric storage properties than the state-of-the-art Ca-SOC cell. This was done by replacing the CaX2 (X=AlCl4) electrolyte by SrX2 (type A), or BaX2 (type B). The project's goals are to gain a better understanding of the electrochemistry of the advanced systems and to establish their safety and performance. In this phase, the cell performance was improved significantly. An improved C-size A7 type cell delivers 4.4 Ah at 0.9 A rate and room temperature which is 50 percent more than similar size commercial lithium cells have. The SAFT LSH14 lithium-thionyl chloride and the Duracell L028SH lithium-SO2 cells have at this rate only 2.9 and 2.7 Ah respectively. During one year of storage at room temperature the heat generation rate of 150 sq cm C-size A7 type cells decreased to a level of 60 to 70 microwatts. A cell lost 0.3 Ah after this storage period. The effect of several parameters on the corrosion rate of calcium in TC solutions was studied. Preliminary results indicate: SO2 decreases corrosion, there is no stress corrosion due to twisting of Ca foils, the native oxide layer helps in preventing corrosion, Ca foils as received contain only about 90 percent metallic calcium. The role native calcium oxide layer plays depends on the type of electrolyte used.

  18. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...based upon the perovskite structure that have potential to provide superior high power microwave (vacuum electronic) device cathodes (thermionic or

  19. Method and system for advancement of a borehole using a high power laser

    DOEpatents

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  20. The Role of Advanced High School Coursework in Increasing STEM Career Interest

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert

    2014-01-01

    Several avenues are open to students who wish to study advanced science or mathematics in high school, which include Advanced Placement courses and teacher-designed courses unaffiliated with organized programs. We employ a retrospective cohort study of 4,691 nationally representative college students at 34 randomly selected, colleges and…

  1. The Role of Advanced High School Coursework in Increasing STEM Career Interest

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert

    2014-01-01

    Several avenues are open to students who wish to study advanced science or mathematics in high school, which include Advanced Placement courses and teacher-designed courses unaffiliated with organized programs. We employ a retrospective cohort study of 4,691 nationally representative college students at 34 randomly selected, colleges and…

  2. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  3. Stereotype Threat? Male and Female Students in Advanced High School Courses

    NASA Astrophysics Data System (ADS)

    Corra, Mamadi

    Propositions of stereotype threat theory imply that the social consequences of academic distinction in advanced quantitative areas (such as math and the physical sciences) for women may promote the under representation of female students in advanced quantitative academic courses. The hypothesis that female students will be underrepresented in advanced quantitative (honors and advanced placement math and physical science) courses is tested using academic performance and enrollment data for high school students in a "Student/Parent Informed Choice" (open registration) school district in North Carolina. Results show female students to be overrepresented in both advanced verbal/writing intensive (honors and advanced placement English, foreign language, and social science) and advanced quantitative (honors and advanced placement math and physical science) courses compared to their proportion of the student body. More surprisingly, results also indicate female students (compared to male students) to be overrepresented in advanced courses compared to their proportion of high-performing students. Furthermore, as with patterns observed at the district level, additional analysis of enrollment data for the entire state reveals similar results. Taken together, the findings call into question the prevailing presumption that female students continue to be underrepresented in math and physical science courses. Instead, the changing social context within which females and males experience schooling may provide an explanation for the findings.

  4. Development of an advanced high-temperature fastener system for advanced aerospace vehicle application

    NASA Technical Reports Server (NTRS)

    Kull, F. R.

    1975-01-01

    The results of a program to develop a lightweight high temperature reusable fastening system for aerospace vehicle thermal protection system applications are documented. This feasibility program resulted in several fastener innovations which will meet the specific needs of the heat shield application. Three systems were designed from Hayes 188 alloy and tested by environmental exposure and residual mechanical properties. The designs include a clinch stud with a collar retainer, a weld stud with a split ring retainer, and a caged stud with a collar retainer. The results indicated that a lightweight, reusable, high temperature fastening system can be developed for aerospace vehicle application.

  5. Proceedings: 1986 Workshop on Advanced High-Strength Materials

    SciTech Connect

    1989-05-01

    Stress corrosion cracking (SCC) has contributed to many in-service failures of high-strength LWR components. In 25 workshop presentations, this report addresses the effects of metallurgical factors, manufacturing processes, design improvements, and installation practices on the resistance of high-strength alloys to SCC.

  6. Advanced mesospheric temperature mapper for high-latitude airglow studies.

    PubMed

    Pautet, P-D; Taylor, M J; Pendleton, W R; Zhao, Y; Yuan, T; Esplin, R; McLain, D

    2014-09-10

    Over the past 60 years, ground-based remote sensing measurements of the Earth's mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87  km. Several types of instruments have been employed to date: spectrometers, Fabry-Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5  μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5  km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87  km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument.

  7. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  8. Advancing the Technology Base for High Temperature Hydrogen Membranes

    SciTech Connect

    Dye, Robert C.; Moss, Thomas S.

    1997-12-31

    High purity hydrogen is a critical component for at least two major industrial processes: 1) the refining of conventional steels and raw pig iron into low carbon steels and high purity iron used for high performance magnets in motors, generators, alternators, transformers, and etc.; and 2) refining metallurgical grade silicon to the high- purity, polycrystalline silicon used in fabricating single crystal silicon wafers for semiconductor manufacturing. In the process of producing low carbon iron products, CO and CO2 impurities prevent efficient removal of the carbon already in the raw iron. In the refining of metallurgical grade silicon, the presence of any impurity above the part-per- million level prevents the ultimate fabrication of the large scale single crystals that are essential to the semiconductor device. In a lesser magnitude role, high quality hydrogen is used in a variety of other processes, including specialty metals refining (e.g., iridium, osmium, palladium, platinum, and ruthenium) and R{ampersand}D in areas such as organic synthesis and development of certain types of fuel cells. In all of these applications, a high-temperature hydrogen membrane can provide a method for achieving a very high purity level of hydrogen in a manner that is more economical and/or more rugged than existing techniques.

  9. Advanced Multifunctional Materials for High Speed Combatant Hulls

    DTIC Science & Technology

    2015-11-25

    processes for synthesizing the magnetic nanoparticles . We validated those properties experimentally. We developed a scalable and cost effective...high strength polymer fibers, are bolted onto the outer surface. One clear disadvantage of this approach is the large (>100%) increase in both size...and weight. Currently, the use of outer panels constructed from high strength polymer fibers, such as Dyneema or Spectra, has shown the most promise

  10. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-10-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The fourth reporting period in Phase II (July 1--September 30, 1998) included experimental activities at pilot scale and combined chemistry-mixing modeling on gas reburning. The pilot scale tests reported in previous Quarterly Reports QR-2 and QR-3 were continued. The objective was to simulate furnace conditions at the Greenidge boiler No. 6 owned and operated by NYSEG and to improve the process performance. The tests were conducted in EER's Boiler Simulator Facility (BSF). During the reporting period, measurements of CO and ammonia emissions were conducted for reburn + SNCR conditions, as well as tests on the effect of sodium on NO{sub x} control efficiency. Exhaust levels of CO remained below 100 ppm in all tests. Prospective process conditions for the full-scale facility have been identified that can provide over 80% NO{sub x} reduction while maintaining ammonia slip below 4 ppm. Addition of sodium resulted in NO{sub x} control improvement of about 7-10 percentage points. The objective of modeling work was to further understand the influence of the mixing process on gas reburning and to identify factors that can increase the effectiveness of NO reduction. Modeling results demonstrated that the main features of gas reburning could be described using a detailed chemical mechanism with one-dimensional representation of mixing.

  11. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  12. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... following public meeting: ``Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical... multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and public health...

  13. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect

    Peter C. Eklund; T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  14. Advances in solid polymer electrochemical capacitors for high rate applications

    NASA Astrophysics Data System (ADS)

    Lian, Keryn; Gao, Han

    2011-06-01

    All solid electrochemical capacitors (EC) have been demonstrated using proton conducting silicotungstic acid (SiWA) and poly(vinyl alcohol) (PVA) based polymer electrolytes. Graphite electrodes were utilized for electrochemical double layer capacitors (EDLC), while RuO2 electrodes were employed as pseudocapacitive electrodes. Both solid EDLC and pseudocapacitors exhibited very high charge/discharge rate capability. Especially for solid EDLC, a charge/discharge rate of 25 V/s and a 10 ms time constant ("factor of merit") were obtained. The rate capability of the solid EC is attributable to thin film thickness, good proton conductivity of the polymer electrolyte, and intimate contact between electrode and electrolyte. These results demonstrate promise of polymer electrolytes as enablers of high rate and high performance solid EC devices.

  15. Recent advances in high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1982-12-01

    Recent progress of some fast high-gain photon detectors using photoemission and secondary emission processes is reviewed and summarized. Specifically, performance characteristics are presented, of the new Amperex XP 2020, RCA 8854, and Hamamatsu R 647-01 conventionally design photomultipliers. Also, characteristics are presented of the ITT F 4129 and Hamamatsu R 1564U extended lifetime microchannel plate photomultipliers as well as certain special made photomultipliers intended for application in positron emission tomography, high energy physics and plasma diagnostic experimental systems. Finally, microchannel plates as photon detectors for ultraviolet and X-ray wavelengths are discussed.

  16. Advanced materials for high-temperature thermoelectric energy conversion

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles

    1992-01-01

    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  17. Advanced materials for high-temperature thermoelectric energy conversion

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles

    1992-01-01

    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  18. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    NASA Astrophysics Data System (ADS)

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

  19. Crew Escape Concepts for Advanced High Performance Aircraft.

    DTIC Science & Technology

    1978-08-01

    8217AIRCRAFT . IGH / . Final technical Report. \\ 1 Sep 77 - 1 Mar 78, \\°T DC^fe ./swans on (iy\\ Beciiu/pH V 2^ S. LONIRAji’Jfc...nose section for high speed or high altitude escape. Normal ejection occurs^Cover) . ’ >h £ v *— DO , j°" 71 1473 EDITION OF I NOV tS IS... Gowin , Don Fisher, Christopher L. West, Leonard Witonsky, Teresa K. Laird, Sheri K. Bard, and Jeanne M. Owens. Henry Horn of the Boeing Wichita

  20. Advanced Concurrent Interfaces for High-Performance Multi-Media Distributed C3 Systems

    DTIC Science & Technology

    1993-03-01

    RL-TR-93-17 Final Technical Report AD-A267 051 "March 1993i II l IIII I H ’PeIle ADVANCED CONCURRENT INTERFACES FOR HIGH-PERFORMANCE MULTI- MEDIA ...DISTRIBUTED C3 SYSTEMS MIT Media Lab Sponsored by Defense Advanced Research Projects Agency JJo DARPA Order No. 8474 APPR9OVED FOR PUBLIC RELEASE...that it be returned. ADVANCED CONCURRENT INTERFACES FOR HIGH-PERFORMANCE MULTI- MEDIA DISTRIBUTED C3 SYSTEMS Nicholas P. Negroponte Dr. Richard A

  1. Highly-Complex Environmentally-Realistic Mixtures: Challenges and Advances

    EPA Science Inventory

    The difficulties involved in design, conduct, analysis and interpretation of defmed mixtures experiments and use of the resulting data in risk assessment are now wellknown to the toxicology, risk assessment and risk management communities. The arena of highly-complex environment...

  2. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  3. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  4. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  5. Highly-Complex Environmentally-Realistic Mixtures: Challenges and Advances

    EPA Science Inventory

    The difficulties involved in design, conduct, analysis and interpretation of defmed mixtures experiments and use of the resulting data in risk assessment are now wellknown to the toxicology, risk assessment and risk management communities. The arena of highly-complex environment...

  6. Advanced MOSFET technologies for high-speed circuits and EPROM

    SciTech Connect

    Wu, A.T.T.

    1987-01-01

    In the first part of the thesis, two novel source-side injection EPROM (SI-EPROM) devices capable of 5-volt only, high-speed programming are studied. Both devices are asymmetrical n-channel stacked-gate MOSFETs, each with a short weak gate-control channel region introduced close to the source. Under high gate bias, a strong-channel electric field for hot-electron generation is created in this local region even at a relatively low drain voltage. Furthermore, the gate oxide field in this region is highly favorable for hot-electron injection into the floating-gate. As a results, a programming speed of 10..mu..s at a drain voltage of 5 volts was demonstrated with one of the SI-EPROM devices fabricated. In the second part of the thesis, technology design considerations accompanying MOSFET scaling are studied for high-speed analog circuits and densely packed digital circuits. It is shown that for sub-micron technologies, especially those for CMOS, the drain/source junction capacitances dominate device parasitic capacitances in digital applications. A novel MOS device structure that employs the COO and DOO schemes is described.

  7. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature

    NASA Astrophysics Data System (ADS)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2017-08-01

    Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.

  8. Advanced short haul systems in high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1975-01-01

    The design requirements, performance, economics, and noise aspects of STOL and VTOL conceptual aircraft developed for short haul air transportation are reviewed, along with the characteristics of areas of high-density annual passenger flow in which the aircraft are intended to operate. It is shown that aircraft of 100 to 200 passenger capacity provide the best return on investment in high density markets. The various STOL propulsive lift concepts have the same general trends with field length; their wing loadings are 20 to 30 pounds per square foot higher than the nonpropulsive lift concepts. A comparison of the aircraft under consideration shows that no one aircraft concept will be optimum for all future operational environments.

  9. High performance silicon solar arrays employing advanced structures

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Hedgepeth, J. M.; Adams, L.

    1981-01-01

    Specific design features to reduce cell mass, lower panel operating temperatures, and improve power to mass ratios for silicon solar cell arrays in space applications are presented. Because mass constraints limit payload capacity for launch into GEO, graphite/epoxy structures combined with high performance Si cells are needed to deliver a power/mass ratio of 265 W/kg, notably for Solar Electric Propulsion systems, compared with existing level of 65 W/kg. Shallow diffusion and back surface field cell technology have raised cell efficiencies to 15%, with a back emissivity of 1.64. Structural design requirements comprise Shuttle interface compatibility, full ground test capability, low mass, and high stiffness. Three array alternatives are discussed, and the STACBEAM configuration, which consists of a triangular truss and a piston deployer with folding accomplished on simple hinges, provides 0.2 Hz stiffness and achieves the design power/mass goals.

  10. Advanced electromagnetic design of cavities for high current accelerators

    SciTech Connect

    Krawczyk, F.L.

    1995-05-01

    For high-current accelerators such as those proposed for transmutation technologies or spallation sources, preconstruction numerical modeling has a high importance. Non axisymmetric cavities require a full 3-D modeling. A complex analysis of structures beyond tuning and the calculation of Q and shunt impedance is required and also the interaction with the mechanical properties of the structures has to be taken into account. This paper reports on recent work done at LANL for proposed beam funnels, a new normal-conducting medium-energy structure (CCDTL) and superconducting cavities for medium energy. The electromagnetic calculations have been done with MAFIA, Rel 3.2, the thermal and stress analysis results reported come from the ABAQUS engineering code.

  11. Advanced Electrodes for High Power Li-ion Batteries.

    PubMed

    Zaghib, Karim; Mauger, Alain; Groult, Henri; Goodenough, John B; Julien, Christian M

    2013-03-15

    While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  12. Advanced Electrodes for High Power Li-ion Batteries

    PubMed Central

    Zaghib, Karim; Mauger, Alain; Groult, Henri; Goodenough, John B.; Julien, Christian M.

    2013-01-01

    While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future. PMID:28809355

  13. Overview of NASA's advanced high temperature engine materials technology program

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Gray, Hugh R.

    1992-01-01

    NASA's 'HITEMP' program has been charged with development of propulsion systems technologies for next-generation civil and military aircraft, stressing high-temperature/low-density composites. These encompass polymer-matrix composites for fans, ducts, and compressor cases, and intermetallic and metallic alloy matrix composites for applications in turbine disks, blades, and vanes, and ceramic matrix composites for combustors and turbines. An overview is presented of program concerns and achievements to date.

  14. High-quality microcutting in silicon by advanced laser technology

    NASA Astrophysics Data System (ADS)

    Gallus, E.; Castelli, Paolo

    2003-11-01

    This paper reports on the potentialities of innovative lasers in microcutting of silicon, one of the most important materials in the field of microelectronics. In recent years, novel laser based micromachining methods have played an increasingly important role in the ongoing miniaturization of consumer electronics. Here, high-quality microcutting in silicon using a "green" laser, whose wavelength is readily absorbed by silicon, is presented.

  15. Advanced anodes for high-temperature fuel cells.

    PubMed

    Atkinson, A; Barnett, S; Gorte, R J; Irvine, J T S; McEvoy, A J; Mogensen, M; Singhal, S C; Vohs, J

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000 degrees C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

  16. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  17. Advances in high-rate uncooled detector fabrication at Raytheon

    NASA Astrophysics Data System (ADS)

    Black, S. H.; Kraft, R.; Medrano, A.; Kocian, T.; Bradstreet, D.; Williams, R.; Yang, T.

    2010-04-01

    Over the past two years Raytheon has made a major investment aimed at establishing a high volume uncooled manufacturing capability. This effort has addressed three elements of the uncooled value stream, namely bolometer fabrication, packaging and calibration/test. To facilitate a low cost / high volume source of bolometers Raytheon has formed a partnership with a high volume 200mm commercial silicon wafer fabrication. Over a 12 month period Raytheon has installed 200mm VOx deposition equipment, matched the metrology used on the Raytheon 150mm line, transferred the process flow used to fabricate Raytheon's double layer bolometer process and qualified the product. In this paper we will review the process transfer methodology and bolometer performance. To reduce bolometer packaging cost and increase production rates, Raytheon has implemented an automated packaging line. This line utilizes automated adhesive dispense, component pick and place, wire bonding and solder seal. In this paper we will review the process flow, qualification process and line capacity Calibration and test has traditionally been performed using a number of temperature chambers, with increased throughput being obtained by adding more chambers. This comes at the expense of increased test labor required to feed the chambers and an increased energy and floor space foot print. To avoid these collateral costs, Raytheon has implemented an automated robotic calibration cell capable of performing in excess of 5,000 calibrations a month. In this paper we will provide an overview of the calibration cell along with takt time and throughput data.

  18. Advances in high frequency ultrasound separation of particulates from biomass.

    PubMed

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    PubMed

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  20. Advances in engineering of high contrast CARS imaging endoscopes

    PubMed Central

    Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.

    2014-01-01

    The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538

  1. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  2. Strategy Guideline: Advanced Construction Documentation Recommendations for High Performance Homes

    SciTech Connect

    Lukachko, A.; Gates, C.; Straube, J.

    2011-12-01

    As whole house energy efficiency increases, new houses become less like conventional houses that were built in the past. New materials and new systems require greater coordination and communication between industry stakeholders. The Guideline for Construction Documents for High Performance Housing provides advice to address this need. The reader will be presented with four changes that are recommended to achieve improvements in energy efficiency, durability and health in Building America houses: create coordination drawings, improve specifications, improve detail drawings, and review drawings and prepare a Quality Control Plan.

  3. Noise exposure reduction of advanced high-lift systems

    NASA Technical Reports Server (NTRS)

    Haffner, Stephen W.

    1995-01-01

    The purpose of NASA Contract NAS1-20090 Task 3 was to investigate the potential for noise reduction that would result from improving the high-lift performance of conventional subsonic transports. The study showed that an increase in lift-to-drag ratio of 15 percent would reduce certification noise levels by about 2 EPNdB on approach, 1.5 EPNdB on cutback, and zero EPNdB on sideline. In most cases, noise contour areas would be reduced by 10 to 20 percent.

  4. Characteristics of Grosse Pointe High School Students in Advanced Placement Programs.

    ERIC Educational Resources Information Center

    Kaloger, James Heracles

    The purpose of this study was to attempt to identify those factors that influence a high school student's success on the Advanced Placement (AP) Examinations by examining and comparing the variables contained in the high school records of former AP participants. A total of 248 high school students participated in the research. The criterion for…

  5. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  6. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  7. Advanced Gate Drive for the SNS High Voltage Converter Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; Anderson, D.E.; /Oak Ridge

    2009-05-07

    SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

  8. High-speed parallel-processing networks for advanced architectures

    SciTech Connect

    Morgan, D.R.

    1988-06-01

    This paper describes various parallel-processing architecture networks that are candidates for eventual airborne use. An attempt at projecting which type of network is suitable or optimum for specific metafunction or stand-alone applications is made. However, specific algorithms will need to be developed and bench marks executed before firm conclusions can be drawn. Also, a conceptual projection of how these processors can be built in small, flyable units through the use of wafer-scale integration is offered. The use of the PAVE PILLAR system architecture to provide system level support for these tightly coupled networks is described. The author concludes that: (1) extremely high processing speeds implemented in flyable hardware is possible through parallel-processing networks if development programs are pursued; (2) dramatic speed enhancements through parallel processing requires an excellent match between the algorithm and computer-network architecture; (3) matching several high speed parallel oriented algorithms across the aircraft system to a limited set of hardware modules may be the most cost-effective approach to achieving speed enhancements; and (4) software-development tools and improved operating systems will need to be developed to support efficient parallel-processor use.

  9. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  10. High temperature superconductivity technology for advanced space power systems

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Myers, Ira T.; Connolly, Denis J.

    1990-01-01

    In 1987, the Lewis Research center of the NASA and the Argonne National Laboratory of the Department of Energy joined in a cooperative program to identify and assess high payoff space and aeronautical applications of high temperature superconductivity (HTSC). The initial emphasis of this effort was limited, and those space power related applications which were considered included microwave power transmission and magnetic energy storage. The results of these initial studies were encouraging and indicated the need of further studies. A continuing collaborative program with Argonne National Laboratory has been formulated and the Lewis Research Center is presently structuring a program to further evaluate HTSC, identify applications and define the requisite technology development programs for space power systems. This paper discusses some preliminary results of the previous evaluations in the area of space power applications of HTSC which were carried out under the joint NASA-DOE program, the future NASA-Lewis proposed program, its thrusts, and its intended outputs and give general insights on the anticipated impact of HTSC for space power applications of the future.

  11. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  12. Recent advances in the study of hyperdeformation at high spin

    NASA Astrophysics Data System (ADS)

    Abusara, Hazem; Afanasjev, A. V.

    2008-10-01

    The systematic investigation of hyperdeforation (HD) at high spin in the Z=40-58 part of nuclear chart has been performed in the framework of the cranked relativistic mean field theory. The properties of the HD bands such as quadrupole transition moments Qt, dynamic J^(2) and kinematic J^(1) moments of inertia have been studied. These observables are affected by centrifugal stretching. Our self-consistent calculations suggest that necking degree of freedom should play an important role in some nuclei at hyperdeformation. It is especially pronounced in the proton density distribution due to the repulsive Coulomb force. The density of the HD bands is high in the spin range where they are yrast or close to yrast in the majority of cases. In these cases the observation of discrete HD bands will most likely be impossible because the feeding intensity will be redistributed among many bands, thus, dropping below the observational limit of the experimental facilities. The calculations indicate Cd isotopes as the best candidates for a search of discrete HD bands. The HD configurations become yrast at lower spins in neutron-deficient nuclei than in the ones of the valley of β-stability. [1] W.Koepf and P.Ring, Nucl. Phys. A511, 279(1990), [2] A.V.Afanasjev and H.Abusara (submitted to Physical Review C)

  13. The Impact of At-Risk Students Enrolled in Advanced Placement Courses on a High School Culture

    ERIC Educational Resources Information Center

    Posthuma, David

    2010-01-01

    The purpose of this study was to determine student, teacher, and administrator perceptions of AVID [Advancement Via Individual Determination] students participating in advanced placement courses in high school. Access to advanced placement courses has been limited. Nevertheless, the numbers of students participating in advanced placement courses…

  14. Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry

    2010-01-01

    This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat

  15. Teaching Advanced Data Analysis Tools to High School Astronomy Students

    NASA Astrophysics Data System (ADS)

    Black, David V.; Herring, Julie; Hintz, Eric G.

    2015-01-01

    A major barrier to becoming an astronomer is learning how to analyze astronomical data, such as using photometry to compare the brightness of stars. Most fledgling astronomers learn observation, data reduction, and analysis skills through an upper division college class. If the same skills could be taught in an introductory high school astronomy class, then more students would have an opportunity to do authentic science earlier, with implications for how many choose to become astronomers. Several software tools have been developed that can analyze astronomical data ranging from fairly straightforward (AstroImageJ and DS9) to very complex (IRAF and DAOphot). During the summer of 2014, a study was undertaken at Brigham Young University through a Research Experience for Teachers (RET) program to evaluate the effectiveness and ease-of-use of these four software packages. Standard tasks tested included creating a false-color IR image using WISE data in DS9, Adobe Photoshop, and The Gimp; a multi-aperture analyses of variable stars over time using AstroImageJ; creating Spectral Energy Distributions (SEDs) of stars using photometry at multiple wavelengths in AstroImageJ and DS9; and color-magnitude and hydrogen alpha index diagrams for open star clusters using IRAF and DAOphot. Tutorials were then written and combined with screen captures to teach high school astronomy students at Walden School of Liberal Arts in Provo, UT how to perform these same tasks. They analyzed image data using the four software packages, imported it into Microsoft Excel, and created charts using images from BYU's 36-inch telescope at their West Mountain Observatory. The students' attempts to complete these tasks were observed, mentoring was provided, and the students then reported on their experience through a self-reflection essay and concept test. Results indicate that high school astronomy students can successfully complete professional-level astronomy data analyses when given detailed

  16. Advanced Propulsion System Studies in High Speed Research

    NASA Technical Reports Server (NTRS)

    Zola, Charles L.

    2000-01-01

    Propulsion for acceptable supersonic passenger transport aircraft is primarily impacted by the very high jet noise characteristics of otherwise attractive engines. The mixed flow turbofan, when equipped with a special ejector nozzle seems to be the best candidate engine for this task of combining low jet noise with acceptable flight performance. Design, performance, and operation aspects of mixed flow turbofans are discussed. If the special silencing nozzle is too large, too heavy, or not as effective as expected, alternative concepts in mixed flow engines should be examined. Presented herein is a brief summary of efforts performed under cooperative agreement NCC3-193. Three alternative engine concepts, conceived during this study effort, are herein presented and their limitations and potentials are described. These three concepts intentionally avoid the use of special silencing nozzles and achieve low jet noise by airflow augmentation of the engine cycle.

  17. Advanced high temperature instrument for hot section research applications

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Seasholtz, R. G.

    1989-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.

  18. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  19. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  20. Advanced high performance vertical hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  1. The advancement of the high precision stress polishing

    NASA Astrophysics Data System (ADS)

    Li, Chaoqiang; Lei, Baiping; Han, Yu

    2016-10-01

    The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.

  2. Economic study of multipurpose advanced high-speed transport configurations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A nondimensional economic examination of a parametrically-derived set of supersonic transport aircraft was conducted. The measure of economic value was surcharged relative to subsonic airplane tourist-class yield. Ten airplanes were defined according to size, payload, and speed. The price, range capability, fuel burned, and block time were determined for each configuration, then operating costs and surcharges were calculated. The parameter with the most noticeable influence on nominal surcharge was found to be real (constant dollars) fuel price increase. A change in SST design Mach number from 2.4 to Mach 2.7 showed a very small surcharge advantage (on the order of 1 percent for the faster aircraft). Configuration design compromises required for an airplane to operate overland at supersonic speeds without causing sonic boom annoyance result in severe performance penalties and require high (more than 100 percent) surcharges.

  3. Advanced high performance horizontal piezoelectric hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2012-01-01

    The present invention comprises a high performance, horizontal, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a horizontal piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The present invention is capable of installation in the wing surface as well as embedding in the wetted surfaces of a supersonic inlet. The jet velocity and mass flow rate for the SJA-H will be several times higher than conventional piezoelectric actuators.

  4. Advanced Gear Alloys for Ultra High Strength Applications

    NASA Technical Reports Server (NTRS)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  5. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  6. Advanced Coatings Enabling High Performance Instruments for Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh

    We propose a three-year effort to develop techniques for far-ultraviolet (FUV) and ultraviolet coatings both as reflective optics coatings and as out-of-band-rejection (solar-blind) filters that will have a dramatic effect on the throughput and efficiency of instruments. This is an ideal time to address this problem. On the one hand, exciting new science questions posed in UV and optical realm place exacting demands on instrument capabilities far beyond HST-COS, FUSE, and GALEX with large focal plane arrays and high efficiency requirements. And on the other hand, the development of techniques and process such as atomic layer deposition with its atomically precise capability and nano-engineered materials approach enables us to address the challenging materials issues in the UV where interaction of photons and matter happen in the first few nanometers of the material surface. Aluminum substrates with protective overlayers (typically XFy, where X = Li, Mg, or Ca) have been the workhorse of reflective coatings for ultraviolet and visible instruments; however, they have demonstrated severe limitations. The formation of oxide at the Al-XFy interface and thick protective layers both affect the overall optical performance, leading to diminished reflection at shorter wavelengths. To address these long-standing shortcomings of coatings, we will use our newly developed processes and equipment to produce high-quality single- and multi-layer films of a variety of dielectrics and metals deposited with nano-scale control. JPL s new ALD system affords high uniformity, low oxygen background, good plasma processes, and precise temperature control, which are vital to achieving the large scale, uniform, and ultrathin films that are free of oxygen at interfaces. For example, ALD-grown aluminum can be protected using our newly developed chemistry for ALD magnesium fluoride. Our work will verify that the ALD technique reliably prevents the oxidation of aluminum, and will subsequently be

  7. Advances in the Design of High-Performance Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Kevin K.

    This thesis tackles challenges in feedback control design for fluid flows, from multiple angles and approaches. It covers three major facets---stability theory, control, and reduced-order modeling---and it investigates three major challenges of these facets: nonlinearity, high dimensionality, and non-normality. The dissertation begins with a discussion of global stability via linearized Navier--Stokes eigendecompositions, including numerical algorithms for this analysis. This section then investigates the global stability of a pipe flow through a T-shaped bifurcation at mid-hundred Reynolds numbers, which exhibits vortex breakdown. The recirculation and sensitivity regions closely coincide, which we explain using an inviscid short-wavelength perturbation theory. We also discuss the stability and receptivity properties of this flow. The second part discusses feedback control design for fluid flows, including optimal actuator and sensor placement. It presents an algorithm that computes the gradient of a control measure with respect to such placements, allowing an efficient gradient-based optimization. The implementation on the linearized Ginzburg--Landau and the Orr--Sommerfeld/Squire models of fluid flow reveals that common methods for placement, such as global mode analysis, are suboptimal. We discuss heuristics, including sensitivity, that may predict optimal placements. The third part covers reduced-order flow modeling. It examines previously unknown properties of dynamic mode decomposition (DMD)---a data-based modeling technique---including the uniqueness of the numerical algorithm and the boundary conditions of DMD-based models. We also propose an "optimized" DMD that produces less spurious decompositions, and gives the user control over the number of output modes. We show examples from the two-dimensional laminar flow over a cylinder. This part also investigates the stability and performance of high dimensional (e.g., fluid) systems in closed-loop with reduced

  8. High-temperature behavior of advanced spacecraft TPS

    NASA Technical Reports Server (NTRS)

    Pallix, Joan

    1994-01-01

    The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).

  9. Advances in terahertz spectroscopy of high-T(c) superconductors

    NASA Astrophysics Data System (ADS)

    Corson, John Frederick

    Over the past 15 years much effort has been expended in the search for an understanding of the high temperature cuprate superconductors. As yet, however, the underlying mechanism of superconductivity in the cuprates remains undiscovered. In fact, there exists no satisfactory explanation of the normal state out of which the superconductivity arises. One experimental probe, important in investigating both of these phenomena, has been the optical conductivity. A gap exists, however, in the measured spectra of the cuprates in the crucial range 0.1 THz < nu < 1.0 THz, where hv ≈ kBT. The absence of such data prevents a full understanding of the optical conductivity. Using a coherent experimental technique, known as time-domain terahertz spectroscopy, we have measured the conductivity of an important cuprate system, Bi2Sr2CaCu2Og+delta (BSCCO). These measurements cover the frequency range from 0.1--1.0 THz and a wide range of doping delta. These measurements enable a step forward in our understanding of both the superconducting and normal states of BSCCO, as well as the transition between them. In the superconducting state, we find that the conductivity includes an additional contribution beyond the conventional two: the normal fluid (quasiparticles) and the superconducting condensate. We observe a low frequency collective mode (v ≈ 0.3 THz) whose spectral weight varies with temperature proportionally to that of the condensate. The fraction of the condensate spectral weight which is drawn into the collective mode increases greatly with increased with doping. Furthermore, once the collective mode contribution is recognized we are able to extract the transport scattering rate of the quasiparticles, 1/tau. We find 1/tau to vary approximately as kBT/ h below Tc. The transition from the superconducting to the normal state proceeds by the loss of phase coherence of the superconducting order parameter. This process continues to temperatures more than 10 degrees K above the

  10. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    ERIC Educational Resources Information Center

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  11. Barriers to Advanced Placement for Latino Students at the High-School Level

    ERIC Educational Resources Information Center

    Walker, Susan A.; Pearsall, Laura D.

    2012-01-01

    In order to gain a better understanding about Latino student underrepresentation in advanced placement (AP) coursework, this investigation explored the factors that inhibit and/or encourage Latino student enrollment in AP coursework at one suburban public high school in the Western United States. Latino high-school students and their parents…

  12. Effects of Early Acceleration of Students in Mathematics on Taking Advanced Mathematics Coursework in High School

    ERIC Educational Resources Information Center

    Ma, Xin

    2010-01-01

    Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…

  13. Factors Contributing to Rural High School Students' Participation in Advanced Mathematics Courses. Working Paper No. 34

    ERIC Educational Resources Information Center

    Anderson, Rick

    2006-01-01

    The focus of this paper is a group of rural high school students and the factors that contributed to their participation in mathematics classes beyond those minimally required for high school graduation. The author follows Gutierrez (2002) in referring to participation as course taking, particularly in elective and advanced mathematics classes.…

  14. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  15.  High prevalence of undiagnosed liver cirrhosis and advanced fibrosis in type 2 diabetic patients.

    PubMed

    Arab, Juan P; Barrera, Francisco; Gallego, Consuelo; Valderas, Juan P; Uribe, Sergio; Tejos, Cristian; Serrano, Cristóbal; Serrano, Cristóbal; Huete, Álvaro; Liberona, Jessica; Labbé, Pilar; Quiroga, Teresa; Benítez, Carlos; Irarrázaval, Pablo; Riquelme, Arnoldo; Arrese, Marco

    2016-01-01

     Background. Patients with type 2 diabetes mellitus (T2DM) are at risk for developing end-stage liver disease due to nonalcoholic steatohepatitis (NASH), the aggressive form of non-alcoholic fatty liver disease (NAFLD). Data on prevalence of advanced fibrosis among T2DM patients is scarce. To evaluate prevalence of steatosis, advanced fibrosis and cirrhosis using non-invasive methods in T2DM patients. 145 consecutive T2DM patients (> 55 years-old) were prospectively recruited. Presence of cirrhosis and advanced fibrosis was evaluated by magnetic resonance imaging (MRI) and NAFLD fibrosis score (NFS) respectively. Exclusion criteria included significant alcohol consumption, markers of viral hepatitis infection or other liver diseases. Results are expressed in percentage or median (interquartile range). 52.6% of patients were women, the median age was 60 years old (57-64), mean BMI was 29.6 ± 4.7 kg/m2 and diabetes duration was 7.6 ± 6.9 years. A high prevalence of liver steatosis (63.9%), advanced fibrosis assessed by NFS (12.8%) and evidence of liver cirrhosis in MRI (6.0%) was observed. In a multivariate analysis GGT > 82 IU/L (P = 0.004) and no alcohol intake (P = 0.032) were independently associated to advanced fibrosis. A high frequency of undiagnosed advanced fibrosis and cirrhosis was observed in non-selected T2DM patients. Screening of these conditions may be warranted in this patient population.

  16. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

  17. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  18. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  19. High copy number of mitochondrial DNA predicts poor prognosis in patients with advanced stage colon cancer.

    PubMed

    Wang, Yun; He, Shuixiang; Zhu, Xingmei; Qiao, Wei; Zhang, Juan

    2016-12-23

    The aim of this investigation was to determine whether alterations in mitochondrial DNA (mtDNA) copy number in colon cancer were associated with clinicopathological parameters and postsurgical outcome. By quantitative real-time PCR assay, the mtDNA copy number was detected in a cohort of colon cancer and matched adjacent colon tissues (n = 162). The majority of patients had higher mtDNA content in colon cancer tissues than matched adjacent colon tissues. Moreover, high mtDNA content in tumor tissues was associated with larger tumor size, higher serum CEA level, advanced TNM stage, vascular emboli, and liver metastases. Further survival curve analysis showed that high mtDNA content was related to the worst survival in patients with colon cancer at advanced TNM stage. High mtDNA content is a potential effective factor of poor prognosis in patients with advanced stage colon cancer.

  20. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  1. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  2. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    SciTech Connect

    Blanchard, James; Butt, Darryl; Meyer, Mitchell; Xu, Peng

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  3. Highly individualistic rates of plant phenological advance associated with arctic sea ice dynamics.

    PubMed

    Post, Eric; Kerby, Jeffrey; Pedersen, Christian; Steltzer, Heidi

    2016-12-01

    We analysed 12 years of species-specific emergence dates of plants at a Low-Arctic site near Kangerlussuaq, Greenland to investigate associations with sea ice dynamics, a potential contributor to local temperature variation in near-coastal tundra. Species displayed highly variable rates of phenological advance, from a maximum of -2.55 ± 0.17 and -2.93 ± 0.51 d yr(-1) among a graminoid and forb, respectively, to a minimum of -0.55 ± 0.19 d yr(-1) or no advance at all in the two deciduous shrub species. Monthly Arctic-wide sea ice extent was a significant predictor of emergence timing in 10 of 14 species. Despite variation in rates of advance among species, these rates were generally greatest in the earliest emerging species, for which monthly sea ice extent was also the primary predictor of emergence. Variation among species in rates of phenological advance reshuffled the phenological community, with deciduous shrubs leafing out progressively later relative to forbs and graminoids. Because early species advanced more rapidly than late species, and because rates of advance were greatest in species for which emergence phenology was associated with sea ice dynamics, accelerating sea ice decline may contribute to further divergence between early- and late-emerging species in this community. © 2016 The Author(s).

  4. Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.

    1986-01-01

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.

  5. Recent advances in high-throughput QCL-based infrared microspectral imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowlette, Jeremy A.; Fotheringham, Edeline; Nichols, David; Weida, Miles J.; Kane, Justin; Priest, Allen; Arnone, David B.; Bird, Benjamin; Chapman, William B.; Caffey, David B.; Larson, Paul; Day, Timothy

    2017-02-01

    The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introduction has established a clear path to translating the well-established diagnostic capability of infrared spectroscopy into clinical and pre-clinical histology, cytology and hematology workflows. Demand for even higher throughput while maintaining high-spectral fidelity and low-noise performance continues to drive innovation in QCL-based spectral imaging instrumentation. In this talk, we will present for the first time, recent technological advances in tunable QCL photonics which have led to an additional 10X enhancement in spectral image data collection speed while preserving the high spectral fidelity and SNR exhibited by the first generation of QCL microscopes. This new approach continues to leverage the benefits of uncooled microbolometer focal plane array cameras, which we find to be essential for ensuring both reproducibility of data across instruments and achieving the high-reliability needed in clinical applications. We will discuss the physics underlying these technological advancements as well as the new biomedical applications these advancements are enabling, including automated whole-slide infrared chemical imaging on clinically relevant timescales.

  6. Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept

    SciTech Connect

    Vrable, D.L.; Rosenwasser, S.N.; Korican, J.A. )

    1991-01-01

    An advanced lightweight and high stiffness railgun barrel design and incorporates several new design features and advanced materials is being developed by SPARTA, Inc. The program is sponsored by the U.S. Army Armament Research, Development, and Engineering Center ARDEC and by the Defense Advanced Research Projects Agency (DARPA). The railgun is 7 m long and has a 90 mm round bore. It is designed to accommodate both solid and plasma armatures. Muzzle energies are expected in the range of 9 to 15 MJ. Analysis and final design has been completed and the barrel and other railgun subassemblies are in the fabrication stage at SPARTA, Inc. in San Diego, California. Initial testing will be conducted at Maxwell Laboratories Green Farm facility in September 1990 and will subsequently be shipped to the ARDEC Railgun Laboratory in October 1990 for full power operation and testing. This paper discusses the design features and fabrication approaches for this high performance, lightweight railgun barrel system.

  7. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    A recently released National Research Council (NRC) report, "Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools", evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study,…

  8. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    A recently released National Research Council (NRC) report, "Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools", evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study,…

  9. Optimization of an Advanced Design Three-Element Airfoil at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Dominik, Chet J.

    1995-01-01

    New high-lift components have been designed for a three-element advanced high-lift research airfoil using a state-of-the-art computational method. The new components were designed with the aim to provide high maximum-lift values while maintaining attached flow on the single-segment flap at approach conditions. This three-element airfoil has been tested in the NASA Langley Low-Turbulence Pressure Tunnel at chord Reynolds number up to 16 million. The performance of the NASA research airfoil is compared to a reference advanced high-lift research airfoil. Effects of Reynolds number on slat and flap rigging have been studied experimentally. The performance trend of this new high-lift design is comparable to that predicted by the computational method over much of the angle of attack range. Nevertheless, the method did not accurately predict the airfoil performance or the configuration-based trends near maximum lift.

  10. Advances in Predictive Toxicology for Discovery Safety through High Content Screening.

    PubMed

    Persson, Mikael; Hornberg, Jorrit J

    2016-12-19

    High content screening enables parallel acquisition of multiple molecular and cellular readouts. In particular the predictive toxicology field has progressed from the advances in high content screening, as more refined end points that report on cellular health can be studied in combination, at the single cell level, and in relatively high throughput. Here, we discuss how high content screening has become an essential tool for Discovery Safety, the discipline that integrates safety and toxicology in the drug discovery process to identify and mitigate safety concerns with the aim to design drug candidates with a superior safety profile. In addition to customized mechanistic assays to evaluate target safety, routine screening assays can be applied to identify risk factors for frequently occurring organ toxicities. We discuss the current state of high content screening assays for hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, and genotoxicity, including recent developments and current advances.

  11. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  12. Teaching Advanced Placement United States History in the Urban, Minority High School: Successful Strategies.

    ERIC Educational Resources Information Center

    DiLorenzo, Robert

    1999-01-01

    Discusses teaching Advanced Placement (AP) U.S. history at an urban, minority high school. Addresses student recruitment; using a summer assignment; notetaking and the Document-Based Quiz, various teaching strategies; preparing and reviewing for the AP examination; using special events; and the importance of professional development and…

  13. Core Principles and Test Item Development for Advanced High School and Introductory University Level Food Science

    ERIC Educational Resources Information Center

    Laing-Kean, Claudine A. M.

    2010-01-01

    Programs supported by the Carl D. Perkins Act of 2006 are required to operate under the state or national content standards, and are expected to carry out evaluation procedures that address accountability. The Indiana high school course, "Advanced Life Science: Foods" ("ALS: Foods") operates under the auspices of the Perkins…

  14. Core Principles and Test Item Development for Advanced High School and Introductory University Level Food Science

    ERIC Educational Resources Information Center

    Laing-Kean, Claudine A. M.

    2010-01-01

    Programs supported by the Carl D. Perkins Act of 2006 are required to operate under the state or national content standards, and are expected to carry out evaluation procedures that address accountability. The Indiana high school course, "Advanced Life Science: Foods" ("ALS: Foods") operates under the auspices of the Perkins…

  15. A Phenomenological Exploration of Teacher Training Regarding Academically Advanced/High-Ability Students

    ERIC Educational Resources Information Center

    Sueker, Carrie Olstad

    2011-01-01

    The needs of academically advanced/high-ability students may not be met in today's schools. When educational needs are not met, students may not reach full potential, may lose intrinsic motivation for learning, and may develop poor work and study habits. The rural school district involved in this study lacks a formal gifted and talented program.…

  16. National Skill Standards for Advanced High Performance Manufacturing. Version 2.1.

    ERIC Educational Resources Information Center

    National Coalition for Advanced Manufacturing, Washington, DC.

    This document presents and discusses the national skill standards for advanced high-performance manufacturing that were developed during a project that was commissioned by the U.S. Department of Education. The introduction explains the need for national skill standards. Discussed in the next three sections are the following: benefits of national…

  17. A Phenomenological Exploration of Teacher Training Regarding Academically Advanced/High-Ability Students

    ERIC Educational Resources Information Center

    Sueker, Carrie Olstad

    2011-01-01

    The needs of academically advanced/high-ability students may not be met in today's schools. When educational needs are not met, students may not reach full potential, may lose intrinsic motivation for learning, and may develop poor work and study habits. The rural school district involved in this study lacks a formal gifted and talented program.…

  18. Latina Success: Following the Legacy of High School Advancement via Individualized Determination (AVID) to College

    ERIC Educational Resources Information Center

    Bruce, Gail Berg

    2010-01-01

    Advancement Via Individualized Determination (AVID) provides middle-achieving, underachieving and socio-economically disadvantaged students in grades 4-12 with success strategies, and rigorous coursework that prepares them for high school graduation and college acceptance. Based on a series of interviews with Latina students who had participated…

  19. Developing a Plan to Support Mathematics Students with Advanced Placement Potential at Indian River High School

    ERIC Educational Resources Information Center

    Timmons, Sara J.

    2009-01-01

    One of the many goals of schools is to have each student reach his/her fullest potential. One way schools challenge the accelerated learners is through the advanced placement (AP) program. Many able students at Indian River High School (IRHS) are choosing to enroll in college prep math courses instead of enrolling in honors and AP math. When…

  20. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  1. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  2. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Wójcik, Magdalena; Telzerow, Aline; Quax, Wim J.; Boersma, Ykelien L.

    2015-01-01

    Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms. PMID:26492240

  3. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Lopez, Alejandro; Freese, Katherine

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ɛ represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ~ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 107 GeVlesssim ɛ1/4 lesssim 1010 GeV and 0.19 lesssim χ lesssim 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  4. Access to Success:Patterns of Advanced Placement Participation in U.S. High Schools. Policy Information Report

    ERIC Educational Resources Information Center

    Handwerk, Philip; Tognatta, Namrata; Coley, Richard J.; Gitomer, Drew H.

    2008-01-01

    Providing high school students access to advanced coursework has long been considered an important means of preparing students for success after high school. This study merges data from College Board's Advanced Placement (AP) program for the 2003-2004 school year with data from the U.S. Department of Education for all U.S. public high schools to…

  5. Where the girls aren't: High school girls and advanced placement physics enrollment

    NASA Astrophysics Data System (ADS)

    Barton, Susan O'brien

    During the high school years, when many students first have some choice in course selection, research indicates that girls choose to enroll in more math and science courses, take more advanced placement courses, and take more honors courses in English, biology, chemistry, mathematics, and foreign languages than ever before. Yet, not only are boys more likely to take all of the three core science courses (biology, chemistry, and physics), boys enroll in advanced placement physics approximately three times as often as do girls. This study examines the perceptions, attitudes, and aspirations of thirty high school girls enrolled in senior-level science electives in an attempt to understand their high school science course choices, and what factors were influencing them. This is a qualitative investigation employing constructivist grounded theory methods. There are two main contributions of this study. First, it presents a new conceptual and analytical framework to investigate the problem of why some high school girls do not enroll in physics coursework. This framework is grounded in the data and is comprised of three existing feminist perspectives along the liberal/radical continuum of feminist thought. Second, this study illuminates a complex set of reasons why participants avoided high school physics (particularly advanced placement physics) coursework. These reasons emerged as three broad categories related to: (a) a lack of connectedness with physics curriculum and instruction; (b) prior negative experiences with physics and math classroom climates; and (c) future academic goals and career aspirations. Taken together, the findings of this study indicate that the problem of high school girls and physics enrollment---particularly advanced placement physics enrollment---is a problem that cannot be evaluated or considered from one perspective.

  6. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  7. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  8. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    NASA Astrophysics Data System (ADS)

    Rigsby, James Michael

    Interest in high speed rotorcraft has directed attention toward the slowed-rotor, high advance ratio compound autogyro concept as evidenced by the current DARPA Heliplane project. The behavior of partially unloaded rotors, autorotating at high advance ratio is not well understood and numerous technical issues must be resolved before the vehicle can be realized. Autorotation in helicopters usually indicates an emergency loss of power. For the concept vehicle autorotation is the normal working state of the rotor. The necessity for a reduction in rotor speed with increasing flight speed results in high advance ratio operation where the retreating side of the rotor is dominated by the reverse flow region. Further, rotor speed changes also affect the rotor dynamics and the associated hub moments generated by cyclic flapping. The result is rotor characteristics that vary widely depending on advance ratio. In the present work, rotor behavior is characterized in terms of issues relevant to the control system conceptual design and the rotor impact on the intrinsic vehicle flight dynamics characteristics. A series of trim, stability, and control analyses, based on features inherent in the concept vehicle, are performed. Trends are identified through parametric variation of rotor operating conditions, augmented by inclusion of the sensitivities to blade mass and blade stiffness properties. In this research, non-linear models, including the rotor speed degree of freedom, were created and analyzed with FLIGHTLAB(TM) rotorcraft modeling software. Performance analysis for rotors trimmed to autorotate with zero average hub pitching and rolling moments indicates reduced rotor thrust is achieved primarily through rotor speed reduction at lower shaft incidence angle, and imposing hub moment trim constraints results in a thrust increment sign reversal with collective pitch angle above advance ratio mu ˜ 1.0. Swashplate control perturbations from trim indicate an increase in control

  9. CUNY Doctoral Students Expand Access to Advanced Placement Physics in Urban High Schools

    NASA Astrophysics Data System (ADS)

    Fekete, Paula; Khalfan, Amish; Strozak, Victor

    2006-03-01

    The CUNY GK-12 Fellows Program addresses the need to increase the participation of low-income and underrepresented minority students in high-school-level Advanced Placement (AP) courses in mathematics and sciences, particularly in urban schools. The project provides a unique opportunity for doctoral science and math students to work with AP teachers and students in public high schools in the Bronx, NY. The project has demonstrated that doctoral science students can be a valuable resource to both teachers and students and that their presence in the classroom can greatly enhance instruction at this level. Participation in the program also enhances the fellows' communication and teaching skills and deepens their awareness of issues in urban science and math education. We present the results of our work in Advanced Placement Physics during the project's first three years.

  10. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  11. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  12. Advanced Non-Linear Control Algorithms Applied to Design Highly Maneuverable Autonomous Underwater Vehicles (AUVs)

    DTIC Science & Technology

    2007-08-01

    Advanced non- linear control algorithms applied to design highly maneuverable Autonomous Underwater Vehicles (AUVs) Vladimir Djapic, Jay A. Farrell...hierarchical such that an ”inner loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while a...library of ”outer-loop” non- linear controllers are available to implement specific maneuvering scenarios. On top of the outer-loop is the mission planner

  13. ECUT energy data reference series: high-temperature materials for advanced heat engines

    SciTech Connect

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  14. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    PubMed Central

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined. PMID:21116349

  15. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    SciTech Connect

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  16. Advanced weigh-in-motion system for weighing vehicles at high speed

    SciTech Connect

    Beshears, D.L.; Muhs, J.D.; Scudiere, M.B.

    1998-02-01

    A state-of-the-art, Advanced Weigh-In-Motion (WIM) system has been designed, installed, and tested on the west bound side of Interstate I-75/I-40 near the Knox County Weigh Station. The project is a Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and International Road Dynamics, Inc. (IRD) sponsored by the Office of Uranium Programs, Facility and Technology Management Division of the Department of Energy under CRADA No. ORNL95-0364. ORNL, IRD, the Federal Highway Administration, the Tennessee Department of Safety and the Tennessee Department of Transportation have developed a National High Speed WIM Test Facility for test and evaluation of high-speed WIM systems. The WIM system under evaluation includes a Single Load Cell WIM scale system supplied and installed by IRD. ORNL developed a stand-alone, custom data acquisition system, which acquires the raw signals from IRD`s in-ground single load cell transducers. Under a separate contract with the Federal Highway Administration, ORNL designed and constructed a laboratory scale house for data collection, analysis and algorithm development. An initial advanced weight-determining algorithm has been developed. The new advanced WIM system provides improved accuracy and can reduce overall system variability by up to 30% over the existing high accuracy commercial WIM system.

  17. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.

    PubMed

    Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E

    Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers. © PDA, Inc. 2016.

  18. Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing

    NASA Astrophysics Data System (ADS)

    Berry, Benjamin

    The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a

  19. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  20. Advanced life simulation: High-fidelity simulation without the high technology.

    PubMed

    Dwyer, Trudy; Reid Searl, Kerry; McAllister, Margaret; Guerin, Michael; Friel, Deborah

    2015-11-01

    Simulation-based resuscitation education has emerged as a key to improving patient safety and numerous healthcare organisations have invested in high-fidelity simulation training centres. However, the high purchasing cost, limited portability, technical expertise and organisational skills required to coordinate these high-fidelity simulation centres are factors that limit their use as a wide-spread teaching and learning method. Creative innovation is required. The aim of this study was to pilot an inexpensive, portable, novel high fidelity humanistic simulation modality, for educating nurses and doctors in recognising and responding to the deteriorating patient. Analysis of five focus group discussions revealed the main theme of engagement in the simulation experience with three main subthemes of realism of the character, believability of the experience and being more connected. In conclusion, this innovative simulation modality offers a viable alternative for resuscitation training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials

    DTIC Science & Technology

    1991-03-01

    Improved Quantum PE 61153N Device Properties Using Highly Strained Materials PE 1401N~R&T 414s 001-02 IN G. AUTHOR(S) (William J. Schaff , S.D. Offsey and...DECEMBER 15, 1989 CORNELL UNIVERSITY.......................... ITHACA, NY 14853-5401 PREPARED BY: WJ. Schaff ........ S.D. Offsey I - L.F. Eastman D ’’. i...Mandeville, R. Saito, P.J. Tasker, W.J. Schaff and L.F. Eastman, 12th IEEE/Comell Conference on’Advanced Concepts in High Speed Semiconductor Devices

  2. High-speed image transmission via the Advanced Communication Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Thoma, George R.; Long, L. Rodney; Gill, Michael J.

    1996-05-01

    We are developing a wide area test bed network using the Advanced Communication Technology Satellite (ACTS) from NASA for high speed medical image transmission. The two test sites are the University of California, San Francisco, and the National Library of Medicine. The first phase of the test bed runs over a T1 link (1.544 Mbits/sec) using a Very Small Aperture Terminal. The second phase involves the High Data Rate Terminal via an ATM OC 3C (155 Mbits/sec) connection. This paper describes the experimental set up and some preliminary results from phase 1.

  3. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    PubMed

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-07

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  4. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Blomberg, Ben; Mihalcea, Daniel; Panuganti, Harsha; Piot, Philippe; Brau, Charles; Choi, Bo; Gabella, William; Ivanov, Borislav; Mendenhall, Marcus; Lynn, Christopher; Sen, Tanaji; Wagner, Wolfgang

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  5. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  6. Recent advances in phosphate laser glasses for high power applications. Revision 1

    SciTech Connect

    Campbell, J.H.

    1996-05-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  7. Hispanic Academic Advancement Theory: An Ethnographic Study of Urban Students Participating In A High School Advanced Diploma Program

    ERIC Educational Resources Information Center

    Jodry, Liz; Robles-Pina, Rebecca A.; Nichter, Mary

    2005-01-01

    This emergent theory describes the relationships and factors within the context of home, school, and community that enabled six Hispanic students to participate in an advanced diploma program. The research is in keeping with the mandates from several federal initiatives to develop "asset-based" paradigms for educating Hispanic youth.…

  8. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    ERIC Educational Resources Information Center

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  9. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  10. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  11. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  12. Understanding advanced theory of mind and empathy in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-01

    It has been argued that higher functioning individuals with autism spectrum disorders (ASDs) have specific deficits in advanced but not simple theory of mind (ToM), yet the questionable ecological validity of some tasks reduces the strength of this assumption. The present study employed The Awareness of Social Inference Test (TASIT), which uses video vignettes to assess comprehension of subtle conversational inferences (sarcasm, lies/deception). Given the proposed relationships between advanced ToM and cognitive and affective empathy, these associations were also investigated. As expected, the high-functioning adults with ASDs demonstrated specific deficits in comprehending the beliefs, intentions, and meaning of nonliteral expressions. They also had significantly lower cognitive and affective empathy. Cognitive empathy was related to ToM and group membership whereas affective empathy was only related to group membership.

  13. High-grade glioma management and response assessment—recent advances and current challenges

    PubMed Central

    Khan, M.N.; Sharma, A.M.; Pitz, M.; Loewen, S.K.; Quon, H.; Poulin, A.; Essig, M.

    2016-01-01

    The management of high-grade gliomas (hggs) is complex and ever-evolving. The standard of care for the treatment of hggs consists of surgery, chemotherapy, and radiotherapy. However, treatment options are influenced by multiple factors such as patient age and performance status, extent of tumour resection, biomarker profile, and tumour histology and grade. Follow-up cranial magnetic resonance imaging (mri) to differentiate treatment response from treatment effect can be challenging and affects clinical decision-making. An assortment of advanced radiologic techniques—including perfusion imaging with dynamic susceptibility contrast mri, dynamic contrast-enhanced mri, diffusion-weighted imaging, proton spectroscopy, mri subtraction imaging, and amino acid radiotracer imaging—can now incorporate novel physiologic data, providing new methods to help characterize tumour progression, pseudoprogression, and pseudoresponse. In the present review, we provide an overview of current treatment options for hgg and summarize recent advances and challenges in imaging technology. PMID:27536188

  14. High anabolic potential of essential amino acid mixtures in advanced nonsmall cell lung cancer.

    PubMed

    Engelen, M P K J; Safar, A M; Bartter, T; Koeman, F; Deutz, N E P

    2015-09-01

    Conventional nutritional supplements are not or only partly successful in inducing protein accretion in advanced cancer, suggesting an attenuated anabolic response. To prevent muscle wasting and its deleterious consequences, generating an anabolic response is crucial. Dietary essential amino acids (EAA) have anabolic properties in other wasting diseases; however, data in advanced cancer are lacking. In 13 patients with advanced nonsmall-cell lung cancer (NSCLC) (stage III and IV) and 11 healthy age-matched subjects, we measured protein synthesis and breakdown of the whole body, and net protein anabolism (difference between protein synthesis and breakdown) after intake of 14 g of free EAA with high leucine levels (EAA/leucine) versus a balanced amino acid mixture containing both EAA and non-EAA as present in whey protein, according to a randomized, double-blind, crossover design. Protein synthesis and net protein anabolism were higher after intake of the EAA/leucine than the balanced amino acid mixture (P < 0.001), independent of presence of cancer. A highly significant linear relationship between net protein anabolism and the amount of EAA available in the systemic circulation (R(2): 0.85, P < 0.001) was found in both groups. The presence of muscle or recent weight loss, systemic inflammatory response, or length of survival did not influence this relationship. High leucine levels in the EAA/leucine mixture was of no anabolic benefit. There is no anabolic resistance or attenuated anabolic potential to intake of 14 g of EAA/leucine or balanced amino acid mixture in advanced (mainly stage III) NSCLC. The high anabolic potential of dietary EAA in cancer patients is independent of their nutritional status, systemic inflammatory response or disease trajectory, suggesting a key role of EAA in new nutritional approaches to prevent muscle loss, thereby improving outcome of patients with advanced cancer. NCT01172314. © The Author 2015. Published by Oxford University Press

  15. Patterns of service utilisation within Australian hepatology clinics: high prevalence of advanced liver disease.

    PubMed

    El-Atem, N A; Wojcik, K; Horsfall, L; Irvine, K M; Johnson, T; McPhail, S M; Powell, E E

    2016-04-01

    Liver diseases in Australia are estimated to affect 6 million people with a societal cost of $51 billion annually. Information about utilisation of specialist hepatology care is critical in informing policy makers about the requirements for delivery of hepatology-related healthcare. This study examined the aetiology and severity of liver disease seen in a tertiary hospital hepatology clinic, as well as the resource utilisation patterns. A longitudinal cohort study included consecutive patients booked in hepatology outpatient clinics during a 3-month period. Subsequent outpatient appointments for these patients over the following 12 months were then recorded. During the initial 3-month period, 1471 appointments were scheduled with a hepatologist, 1136 of which were attended. Twenty-one per cent of patients were 'new cases'. Hepatitis B virus (HBV) was the most common disease aetiology for new cases (37%). Advanced disease at presentation varied between aetiology; only 5% of HBV cases had advanced liver disease at presentation, in contrast with HCV, NAFLD and ALD, in which advanced disease was identified at presentation in 31%, 46% and 72% of cases, respectively. Most patients (83%) attended multiple hepatology appointments, and a range of referral patterns for procedures, investigations and other specialty assessments were observed. There is a high prevalence of HBV in new case referrals. Patients with HCV infection, NAFLD and ALD have a high prevalence of advanced liver disease at referral, requiring ongoing surveillance for development of decompensated liver disease and liver cancer. These findings that describe the patterns of health service utilisation among patients with liver disease provide useful information for planning sustainable health service provision for this clinical population. © 2016 Royal Australasian College of Physicians.

  16. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  17. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Porter, G. D.; Rognlien, T. D.; Rensink, M. E.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; JT-60 Team

    2005-12-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high βp H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operating regime is extended to high density above the Greenwald density (nGW) with high confinement (HHy2 > 1) and high radiation loss fraction (frad > 0.9) by tailoring the internal transport barriers (ITBs). With a small plasma-wall gap, the radiation loss in the main plasma (inside the magnetic separatrix) reaches 80% of the heating power due to metal impurity accumulation. However, high confinement of HHy2 = 1.2 is sustained even with such a large radiation loss in the main plasma. By neon seeding, the divertor radiation loss is enhanced from 20% to 40% of the total radiation loss. In the high βp H-mode plasmas, high confinement (HHy2 = 0.96) is maintained at high density ( \\bar{n}_{\\rme}/n_GW=0.92 ) with high radiation loss fraction (frad ~ 1) by utilizing high-field-side pellets and argon (Ar) injection. The high \\bar{n}_{\\rme}/n_GW is attributed to the formation of strong density ITB. Strong core-edge parameter linkage for confinement improvement is observed, where the pedestal pressure and the core plasma confinement increase together. The measured radiation profile including contributions from all impurities in the main plasma is peaked, and the central radiation is ascribed to the contribution from Ar accumulated inside the ITB. Impurity transport analyses indicate that the Ar density profile, twice as peaked as the electron density profile, which is the same level as that observed in the high βp H-mode plasma, can yield an acceptable radiation profile even with a peaked density profile in a fusion reactor.

  18. Application technologies for effective utilization of advanced high strength steel sheets

    SciTech Connect

    Suehiro, Masayoshi

    2013-12-16

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  19. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  20. Interstitial high-dose-rate brachytherapy in locally advanced and recurrent vulvar cancer

    PubMed Central

    Białas, Brygida; Fijałkowski, Marek; Wojcieszek, Piotr; Szlag, Marta; Cholewka, Agnieszka; Ślęczka, Maciej; Kołosza, Zofia

    2016-01-01

    Purpose The aim of the study was to report our experience with high-dose-rate interstitial brachytherapy (HDR-ISBT) in locally advanced and recurrent vulvar cancer. Material and methods Between 2004 and 2014, fourteen women with locally advanced or recurrent vulvar cancer were treated using HDR-ISBT in our Centre. High-dose-rate interstitial brachytherapy was performed as a separate treatment or in combination with external beam radiotherapy (EBRT) (given prior to brachytherapy). Results Patients were divided into: group I (n = 6) with locally advanced tumors, stages III-IVA after an incisional biopsy only, and group II (n = 8) with recurrent vulvar cancer after previous radical surgery. In group I, median follow up was 12 months (range 7-18 months); 1-year overall survival (OS) was 83%. Transient arrest of cancer growth or tumor regression was noticed in all patients but 4/6 developed relapse. Median time to failure was 6.3 months (range 3-11 months). The 1-year progression-free survival (PFS) was 33%. In group II, median follow up was 28 months (range 13-90 months). The 1-year and 3-year OS was 100% and 80%, respectively. The arrest of cancer growth or tumor regression was achieved in all patients. In 4/8 patients neither clinical nor histological symptoms of relapse were observed but 4/8 women experienced relapse. Median time to failure was 31 months (range 13-76 months). The 1-year and 3-year PFS was 100% and 62.5%, respectively. Two patients (14.3%) in group II had severe late toxicity (G3). Conclusions High-dose-rate interstitial brachytherapy is a well-tolerated treatment option in selected patients with advanced or recurrent vulvar cancer. It is a safe and effective treatment modality for advanced and recurrent vulvar cancer, yielding good local control with acceptable late treatment related side effects. In our study, patients with recurrent vulvar cancer had better results in HDR-ISBT treatment, probably because of the smaller tumor volume. This

  1. Advanced high-performance liquid chromatography method for highly polar nitroaromatic compounds in ground water samples from ammunition waste sites.

    PubMed

    Preiss, A; Bauer, A; Berstermann, H-M; Gerling, S; Haas, R; Joos, A; Lehmann, A; Schmalz, L; Steinbach, K

    2009-06-19

    An advanced HPLC-photodiode array detection method for the determination of 12 selected highly polar nitroaromatic compounds in ground water samples of ammunition waste sites has been developed and validated. After solid-phase extraction the limits of detection were in the range 0.1-0.5 microg/l. To prove the applicability of the method to other polar nitroaromatic compounds the retention time of another 32 polar compounds under the specified chromatographic conditions were determined and their UV spectra recorded. To review the method, interlaboratory comparisons were performed with a spiked and a real ground water sample.

  2. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    SciTech Connect

    Kramer, Andrew Kramer

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  3. Optimization of Process Parameters for High Efficiency Laser Forming of Advanced High Strength Steels within Metallurgical Constraints

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Ghazal; Griffiths, Jonathan; Dearden, Geoff; Edwardson, Stuart P.

    Laser forming (LF) has been shown to be a viable alternative to form automotive grade advanced high strength steels (AHSS). Due to their high strength, heat sensitivity and low conventional formability show early fractures, larger springback, batch-to-batch inconsistency and high tool wear. In this paper, optimisation of the LF process parameters has been conducted to further understand the impact of a surface heat treatment on DP1000. A FE numerical simulation has been developed to analyse the dynamic thermo-mechanical effects. This has been verified against empirical data. The goal of the optimisation has been to develop a usable process window for the LF of AHSS within strict metallurgical constraints. Results indicate it is possible to LF this material, however a complex relationship has been found between the generation and maintenance of hardness values in the heated zone. A laser surface hardening effect has been observed that could be beneficial to the efficiency of the process.

  4. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program

    NASA Technical Reports Server (NTRS)

    Jenks, Mark; Haslim, Leonard

    1988-01-01

    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  5. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In

  6. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  7. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    SciTech Connect

    Lopez, Alejandro; Freese, Katherine E-mail: ktfreese@umich.edu

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10{sup 7} GeV∼< ε{sup 1/4} ∼< 10{sup 10} GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  8. High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing

    PubMed Central

    Mohammadi, Siawoosh; Tabelow, Karsten; Ruthotto, Lars; Feiweier, Thorsten; Polzehl, Jörg; Weiskopf, Nikolaus

    2015-01-01

    Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2–3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution. PMID:25620906

  9. High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing.

    PubMed

    Mohammadi, Siawoosh; Tabelow, Karsten; Ruthotto, Lars; Feiweier, Thorsten; Polzehl, Jörg; Weiskopf, Nikolaus

    2014-01-01

    Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2-3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.

  10. The Influence of Advanced Placement Enrollment on High School GPA and Class Rank: Implications for School Administrators

    ERIC Educational Resources Information Center

    Wehde-Roddiger, Christina, Trevino, Rolando; Anderson, Pamela; Arrambide, Teresa; O'Conor, Juana; Onwuegbuzie, Anthony J.

    2012-01-01

    As high schools offer more pre-Advanced Placement (pre-AP) and Advanced Placement (AP) courses to prepare students for college academics, students often are given quality grade point average (GPA) points to help compensate for the rigorous curriculum. In states where class ranking determines automatic university admission, fluctuations of class…

  11. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  12. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    PubMed Central

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  13. On Simulation of Edge Stretchability of an 800MPa Advanced High Strength Steel

    NASA Astrophysics Data System (ADS)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael

    2016-08-01

    In the present work, the edge stretchability of advanced high strength steel (AHSS) was investigated experimentally and numerically using both a hole expansion test and a tensile specimen with a central hole. The experimental fracture strains obtained using the hole expansion and hole tension test in both reamed and sheared edge conditions were in very good agreement, suggesting the tests are equivalent for fracture characterization. Isotropic finite-element simulations of both tests were performed to compare the stress-state near the hole edge.

  14. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Alter, W. S.; Johnston, M. H.; Strizak, J. P.

    1985-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  15. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.

    1984-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  16. High Frequency Circuit Simulator: An Advanced Electromagnetic Simulation Tool for Microwave Sources

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Fang; Yang, Zhong Hai; Li, Bin; Li, Jian Qing; Xu, Li

    2009-08-01

    High Frequency Circuit Simulator (HFCS) is developed as an advanced electromagnetic simulation tool for microwave sources, which is based on Finite Integration Technique (FIT). In this paper, the detail of the design and realization of HFCS is provided and for validation one actual Helical Slow-Wave Structure (HSWS) is fully analyzed. Convergent process is studied and the cold-test characteristics (including dispersion, coupling impedance and attenuation constant) are calculated and compared with those from MAFIA. The consistency of the results of these two simulation tools has proved the reliability and validity of HFCS.

  17. Innovative and Efficient Manufacturing Technologies for Highly Advanced Composite Pressure Vessels

    NASA Astrophysics Data System (ADS)

    Hock, Birte; Regnet, Martin; Bickelaier, Stefan; Henne, Florian; Sause, Markus G. R.; Schmidt, Thomas; Geiss, Gunter

    2014-06-01

    The currently ongoing development project at MT Aerospace (MTA) deals with a cost efficient manufacturing process for space structures. Thermoplastic fibre placement, which was identified as one of the most forward-looking technologies, promises advantages such as shorter cycle times and a high level of automation. In addition to the manufacturing method, research activities on non-destructive inspection methods and on acoustic emission analysis are performed. The analysis of the components will also be improved using advanced modelling approaches. The capability of the processes and methods will be shown on the basis of a scaled solid rocket motor casing.

  18. Evaluation of NOAA-AVHRR data for crop assessment. [Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Duggin, M. J.; Piwinski, D.; Whitehead, V.; Ryland, G.

    1982-01-01

    A study has been carried out in order to determine the angular limits which should be imposed upon NOAA06 and -7 satellite advanced very high-resolution radiometer (AVHRR) data used in vegetation assessment. The study involved simulations of anticipated sensor output over a wheat crop and empirical investigation of sensor data over vegetated areas. The conclusion drawn from both approaches is that less than 10% variation in the simulated vegetative index may be anticipated across the swath of imagery used if only the central 512 pixels are utilized.

  19. Optimization and modeling studies for obtaining high injection efficiency at the Advanced Photon Source.

    SciTech Connect

    Emery, L.; APS Operations Division

    2005-01-01

    In recent years, the optics of the Advanced Photon Source storage ring has evolved to a lower equilibrium emittance (2.5 nm-rad) at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from the virtual 100% of the high emittance mode. Over the years we have developed a series of optimizations, measurements, and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. The above will be described along with the injection configuration.

  20. Engineering for high heat loads on ALS (Advanced Light Source) beamlines

    SciTech Connect

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs.

  1. Life test results for the advanced very high resolution radiometer scanner

    NASA Technical Reports Server (NTRS)

    Lenz, James

    1996-01-01

    The following paper reports the results obtained during a 3.33-year life test on the TIROS Advanced Very High Resolution Radiometer/3 (AVHRR/3) Scanner. The bearing drag torque and lubricant loss over life will be compared to predicted values developed through modeling. The condition of the lubricant at the end of the test will be described and a theory presented to explain the results obtained. The differences (if any) in the predicted and measured values of drag torque and lubricant loss will be discussed and possible reasons for these examined.

  2. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    SciTech Connect

    DiMauro, L.F.

    1991-12-31

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates {ge}1kHz. 23 refs., 4 figs.

  3. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    SciTech Connect

    DiMauro, L.F.

    1991-01-01

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates {ge}1kHz. 23 refs., 4 figs.

  4. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  5. Microstructural effects on the springback of advanced high-strength steel

    NASA Astrophysics Data System (ADS)

    Gan, Wei; Babu, S. S.; Kapustka, Nick; Wagoner, Robert H.

    2006-11-01

    The application of advanced high-strength steels (AHSS) has been growing rapidly in the automotive industry. Because of their high-strength, thinner sheet metals can be used for body components to achieve both weight savings and increased safety. However, this will lead to greater springback deviation from design after the forming operation. Fundamental understanding and prediction of springback are required for springback compensation and tooling design. While various types of continuum mechanics based models have been proposed to simulate the mechanical behavior of advanced high-strength steels, few of them consider microstructural effects such as material heterogeneity. In this study, through sheet thickness strength variation has been observed in DP 780 and TRIP 780 steels. Finite-element simulation indicates that the through thickness effect (TTE) can have a significant impact on the springback behavior of these sheet metals. This is verified through our experimental work using draw-bend testing. The results suggest that microstructural effects should be considered to accurately simulate springback of AHSS. Based on these results, implications of different microstructural designs will be discussed.

  6. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  7. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  8. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    SciTech Connect

    Lai, B.; Kemner, K. M.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.

  9. AN ADVANCED LIQUID WASTE TREATMENT SYSTEM USING A HIGH EFFICIENCY SOLIDIFICATION TECHNIQUE

    SciTech Connect

    Kikuchi, M.; Hirayama, S.; Noshita, K.; Yatou, Y.; Huang, C.T.

    2003-02-27

    An advanced system using High Efficiency Solidification Technology (HEST) was developed to treat PWR liquid waste and the first unit is operating in Taiwan (1) and a detailed design is being carried out for the second unit in Japan. The HEST system consists of two subsystems, a super-concentration subsystem and a solidification subsystem. The super-concentration subsystem is able to concentrate the waste solution to a total boron content as high as 130,000 ppm prior to solidification. The higher boron content will result in greater volume reduction efficiency of solidification. The solidification subsystem consists of an in-drum mixing and a conveyor units. Representative features of this advanced system are as follows. (1) Simple system: The system consists of the super-concentration and cement solidification subsystems; it is as simple as the conventional cement solidification system. (2) High volume reduction efficiency: The number of solidified waste drums is about 1/2.5 that of bitumen solidification. (3) Stable Package: Essentially no organic material is used, and the final package will be stable under the final disposal conditions. (4) Zero secondary waste: Washing water used in the in-drum mixer is recycled. This paper describes the outline of HEST technology, treatment system and pilot plant tests.

  10. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  11. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  12. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    SciTech Connect

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs.

  13. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  14. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  15. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  16. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  17. Advances in 808nm high power diode laser bars and single emitters

    NASA Astrophysics Data System (ADS)

    Morales, J.; Lehkonen, S.; Liu, G.; Schleuning, D.; Acklin, B.

    2016-03-01

    Key applications for 780-830nm high power diode lasers include the pumping of various gas, solid state, and fiber laser media; medical and aesthetic applications including hair removal; direct diode materials processing; and computer-to-plate (CtP) printing. Many of these applications require high brightness fiber coupled beam delivery, in turn requiring high brightness optical output at the bar and chip level. Many require multiple bars per system, with aggregate powers on the order of kWs, placing a premium on high power and high power conversion efficiency. This paper presents Coherent's recent advances in the production of high power, high brightness, high efficiency bars and chips at 780-830nm. Results are presented for bars and single emitters of various geometries. Performance data is presented demonstrating peak power conversion efficiencies of 63% in CW mode. Reliability data is presented demonstrating <50k hours lifetime for products including 60W 18% fill factor and 80W 28% fill factor conduction cooled bars, and <1e9 shots lifetime for 500W QCW bars.

  18. A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms

    PubMed Central

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S.

    2011-01-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors. PMID:22046118

  19. A first attempt to bring computational biology into advanced high school biology classrooms.

    PubMed

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  20. Physics Design of the National High-power Advanced Torus Experiment

    SciTech Connect

    Menard, J E; Fu, G -Y; Gorelenkov, N; Kaye, S M; Kramer, G; Maingi, R; Neumeyer, C L; Sabbagh, S A; Soukhanovskii, V A; Wooley, R

    2007-07-18

    Moving beyond ITER toward a demonstration power reactor (Demo) will require the integration of stable high fusion gain in steady-state, advanced methods for dissipating very high divertor heat-fluxes, and adherence to strict limits on in-vessel tritium retention. While ITER will clearly address the issue of high fusion gain, and new and planned long-pulse experiments (EAST, JT60-SA, KSTAR, SST-1) will collectively address stable steady-state highperformance operation, none of these devices will adequately address the integrated heat-flux, tritium retention, and plasma performance requirements needed for extrapolation to Demo. Expressing power exhaust requirements in terms of Pheat/R, future ARIES reactors are projected to operate with 60-200MW/m, a Component Test Facility (CTF) or Fusion Development Facility (FDF) for nuclear component testing (NCT) with 40-50MW/m, and ITER 20-25MW/m. However, new and planned long-pulse experiments are currently projected to operate at values of Pheat/R no more than 16MW/m. Furthermore, none of the existing or planned experiments are capable of operating with very high temperature first-wall (Twall = 600-1000C) which may be critical for understanding and ultimately minimizing tritium retention with a reactor-relevant metallic first-wall. The considerable gap between present and near-term experiments and the performance needed for NCT and Demo motivates the development of the concept for a new experiment — the National High-power advanced-Torus eXperiment (NHTX) — whose mission is to study the integration of a fusion-relevant plasma-material interface with stable steady-state high-performance plasma operation.

  1. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.

    2014-07-01

    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  2. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  3. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  4. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography.

    PubMed

    Gordic, Sonja; Desbiolles, Lotus; Sedlmair, Martin; Manka, Robert; Plass, André; Schmidt, Bernhard; Husarik, Daniela B; Maisano, Francesco; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian

    2016-02-01

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84%, 21/25) as preferred data set; at this level noise reduction was 40% compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. • Advanced modeled IR (ADMIRE) reduces image noise up to 50% as compared to FBP. • Coronary artery vessel borders show an increasing sharpness at higher ADMIRE levels. • High-pitch CCTA with ADMIRE is possible at a radiation dose of 0.3 mSv.

  5. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  6. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  7. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    NASA Astrophysics Data System (ADS)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  8. Uncovering the role of nuclear Lysyl oxidase (LOX) in advanced high grade serous ovarian cancer.

    PubMed

    De Donato, Marta; Petrillo, Marco; Martinelli, Enrica; Filippetti, Flavia; Zannoni, Gian Franco; Scambia, Giovanni; Gallo, Daniela

    2017-07-01

    Lysyl oxidase (LOX) is an enzyme that catalyzes the cross-linking of collagen and elastin in the extracellular matrix, thus controlling the tensile strength of tissues. Along with this primary function, there are evidences supporting a role for LOX in many critical biological functions, including gene expression regulation, cell growth, adhesion and migration. Accordingly, recent studies have supported a pivotal role for LOX in cancer progression and metastasis. The current study aimed at investigating the prognostic significance and the functional role of intracellular LOX in ovarian cancer. To this end, we analyzed LOX expression by immunohistochemistry in archived tumor material from advanced high grade serous ovarian cancer (HGSOC) patients (n=70) and correlated data with clinicopathological parameters and with response to chemotherapy. In vitro experiments were also used to investigate the functional consequences of LOX expression on behavioral aspects of HGSOC cells. Our results showed that nuclear LOX expression is associated with unfavorable outcome in advanced HGSOC, being an independent prognostic factor for disease recurrence. Besides, high nuclear levels were seen to be associated with resistance to first-line chemotherapy. Through gene expression modulation experiments in HGSOC cell lines, we demonstrate that LOX positively regulates cell proliferation, migration and anchorage-independent growth. Collectively, our data suggest that LOX functions as a tumor promoter in HGSOC and positively regulates several aspects of the metastatic cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Long-term High-quality Survival with Single-agent Mifepristone Treatment Despite Advanced Cancer.

    PubMed

    Check, Jerome H; Check, Diane; Wilson, Carrie; Lofberg, Patrice

    2016-12-01

    We show long-term high-quality survival following single-agent treatment with a progesterone receptor antagonist in two cases of advanced metastatic cancer. Because no biopsy was performed (patient refused) the exact type of lung cancer was not determined but the majority of oncologists who evaluated the patient thought that the rapid onset and syndrome of inappropriate anti-diuretic hormone was more consistent with small-cell lung cancer. The US Food and Drug Association granted a compassionate-use investigational new drug approval for use of single-agent 200 mg mifepristone orally/day to a moribund woman with never-treated metastatic lung cancer and a male with bilateral renal cell carcinoma who had undergone only a unilateral hemi-nephrectomy. Both had long-term high-quality survival (5 years for the patient with lung cancer with complete remission of all lung lesions, and 12 years for the male patient with kidney cancer). Neither patient had any side-effects from mifepristone therapy. These cases helped influence the US Food and Drug Association in granting an investigator-initiated investigational new drug study on advanced non-small cell lung cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    SciTech Connect

    Sampath, Sanjay

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  11. Advances in high-throughput speed, low-latency communication for embedded instrumentation ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Jordan, Scott [Physik Instrumente

    2016-07-12

    Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  12. Vegetation classification based on Advanced Very High Resolution Radiometer /AVHRR/ satellite imagery

    NASA Technical Reports Server (NTRS)

    Norwine, J.; Greegor, D. H.

    1983-01-01

    Data from the NOAA-6 spacecraft Advanced Very High Resolution Radiometer (AVHRR) were tested for effectiveness for vegetation classification. Vegetation, climatological, and meteorological data were gathered for three days over 12 locations, and the normalized differences between the AVHRR bands 1 and 2 were determined. A vegetative greenness index was compared with a hydrologic factor and vegetation characteristics as measured by ground truth. A multivariate vegetation gradient model was formulated, incorporating AVHRR and climatological data. The hydrologic factor was calculated in terms of the precipitation, evaporation, maximum and minimum temperatures, and the hydrologic capacity. The observations were taken over Texas, which has a wide range of climates. A high correlation was found in the vegetation-HF index. The AVHRR data are concluded to be an effective tool for analysis of vegetation/climate relationships.

  13. A study of engine variable geometry systems for an advanced high subsonic long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Compagnon, M. A.

    1973-01-01

    Several variable geometry high Mach inlet concepts, aimed at meeting a system noise objective of 15 EPNdB below FAR part 36, for a long range, Mach 0.9 advanced commercial transport are assessed and compared to a fixed geometry inlet with multiple splitters. The effects of a variable exhaust nozzle (mixed exhaust engine) on noise, inlet geometry requirements, and economics are also presented. The best variable geometry inlet configuration identified is a variable cowl design which relies on a high throat Mach number for additional inlet noise suppression only at takeoff, and depends entirely on inlet wall treatment for noise suppression at approach power. Relative economic penalties as a function of noise level are also presented.

  14. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-10-15

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.

  15. Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David

    1994-01-01

    An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.

  16. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    PubMed Central

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  17. The Physics of Advanced High-Gain Targets for Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Perkins, L. John

    2010-11-01

    In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.

  18. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode.

    PubMed

    Lim, Eunho; Kim, Haegyeom; Jo, Changshin; Chun, Jinyoung; Ku, Kyojin; Kim, Seongseop; Lee, Hyung Ik; Nam, In-Sik; Yoon, Songhun; Kang, Kisuk; Lee, Jinwoo

    2014-09-23

    Recently, hybrid supercapacitors (HSCs), which combine the use of battery and supercapacitor, have been extensively studied in order to satisfy increasing demands for large energy density and high power capability in energy-storage devices. For this purpose, the requirement for anode materials that provide enhanced charge storage sites (high capacity) and accommodate fast charge transport (high rate capability) has increased. Herein, therefore, a preparation of nanocomposite as anode material is presented and an advanced HSC using it is thoroughly analyzed. The HSC comprises a mesoporous Nb2O5/carbon (m-Nb2O5-C) nanocomposite anode synthesized by a simple one-pot method using a block copolymer assisted self-assembly and commercial activated carbon (MSP-20) cathode under organic electrolyte. The m-Nb2O5-C anode provides high specific capacity with outstanding rate performance and cyclability, mainly stemming from its enhanced pseudocapacitive behavior through introduction of a carbon-coated mesostructure within a voltage range from 3.0 to 1.1 V (vs Li/Li(+)). The HSC using the m-Nb2O5-C anode and MSP-20 cathode exhibits excellent energy and power densities (74 W h kg(-1) and 18,510 W kg(-1)), with advanced cycle life (capacity retention: ∼90% at 1000 mA g(-1) after 1000 cycles) within potential range from 1.0 to 3.5 V. In particular, we note that the highest power density (18,510 W kg(-1)) of HSC is achieved at 15 W h kg(-1), which is the highest level among similar HSC systems previously reported. With further study, the HSCs developed in this work could be a next-generation energy-storage device, bridging the performance gap between conventional batteries and supercapacitors.

  19. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  20. Modulation of high sensitivity C-reactive protein by soluble receptor for advanced glycation end products.

    PubMed

    McNair, Erick D; Wells, Calvin R; Mabood Qureshi, A; Basran, Rashpal; Pearce, Colin; Orvold, Jason; Devilliers, Jacobus; Prasad, Kailash

    2010-08-01

    High sensitivity C-reactive protein (hs-CRP) is synthesized mainly by hepatocytes in response to tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and interleukin-6 (IL-6). The interaction of advanced glycation end products (AGEs) with the receptor for advanced glycation end products (RAGE) increases the expression of the cytokines TNF-alpha, IL-1, and IL-6. Soluble receptor for advanced glycation end products (sRAGE) competes with RAGE for binding with AGEs. Hence, low sRAGE levels may increase interaction of AGEs with RAGE resulting in the increased production of cytokines. It is hypothesized that serum levels of sRAGE modulate serum levels of hs-CRP. The objectives are to determine if (i) serum levels of sRAGE are lower and those of TNF-alpha and hs-CRP are higher in non-ST-segment elevation myocardial infarction (NSTEMI) patients compared to control subjects; (ii) serum levels of TNF-alpha and hs-CRP are positively correlated; and (iii) sRAGE is negatively correlated with hs-CRP and TNF-alpha. The study consisted of 36 patients with NSTEMI and 30 age-matched healthy male subjects. Serum levels of sRAGE and TNF-alpha were determined by enzyme-linked immunoassay and hs-CRP was measured using near infrared immunoassay. Serum levels of sRAGE were lower, while those of TNF-alpha and hs-CRP were higher in patients with NSTEMI compared to controls. The levels of sRAGE were negatively correlated with those of TNF-alpha and hs-CRP, while TNF-alpha was positively correlated with hs-CRP in both the control subjects and NSTEMI patients. The data suggest that sRAGE modulates the synthesis of hs-CRP through TNF-alpha.

  1. Can the american high school become an avenue of advancement for all?

    PubMed

    Balfanz, Robert

    2009-01-01

    -performing high schools can better serve their students. Still, the American high school has a considerable way to go to be able to prepare all students for further schooling or training. To advance all its students, it must find a way to bring to scale the methods and mechanisms, conditions, and know-how that have enabled a few low-performing high schools to achieve this transformation.

  2. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  3. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function.

    PubMed

    Dumoulin, Serge O; Fracasso, Alessio; van der Zwaag, Wietske; Siero, Jeroen C W; Petridou, Natalia

    2017-01-16

    Human MRI scanners at ultra-high magnetic field strengths of 7 T and higher are increasingly available to the neuroscience community. A key advantage brought by ultra-high field MRI is the possibility to increase the spatial resolution at which data is acquired, with little reduction in image quality. This opens a new set of opportunities for neuroscience, allowing investigators to map the human cortex at an unprecedented level of detail. In this review, we present recent work that capitalizes on the increased signal-to-noise ratio available at ultra-high field and discuss the theoretical advances with a focus on sensory and motor systems neuroscience. Further, we review research performed at sub-millimeter spatial resolution and discuss the limits and the potential of ultra-high field imaging for structural and functional imaging in human cortex. The increased spatial resolution achievable at ultra-high field has the potential to unveil the fundamental computations performed within a given cortical area, ultimately allowing the visualization of the mesoscopic organization of human cortex at the functional and structural level.

  4. Performance of the VUV high resolution and high flux beamline for chemical dynamics studies at the Advanced Light Source

    SciTech Connect

    Heimann, P.A.; Koike, M. Hsu, C.W.

    1996-07-01

    At the Advanced Light Source an undulator beamline, with an energy range from 6 to 30 eV, has been constructed for chemical dynamics experiments. The higher harmonics of the undulator are suppressed by a novel, windowless gas filter. In one branchline high flux, 2 % bandwidth radiation is directed toward an end station for photodissociation and crossed molecular beam experiments. A photon flux of photon/sec has been measured at this end station. In a second branchline a 6.65 m off- plane Eagle monochromator delivers narrow bandwidth radiation to an end station for photoionization studies. At this second end station a peak flux of 3 x 10{sup 11} was observed for 25,000 resolving power. This monochromator has achieved a resolving power of 70,000 using a 4800 grooves/mm grating, one of the highest resolving powers obtained by a VUV monochromator.

  5. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  6. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  7. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    SciTech Connect

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  8. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.

    PubMed

    Rubert, Josep; Zachariasova, Milena; Hajslova, Jana

    2015-01-01

    Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics.

  9. Advancing Toxicology Research Using In Vivo High Throughput Toxicology with Small Fish Models

    PubMed Central

    Planchart, Antonio; Mattingly, Carolyn J.; Allen, David; Ceger, Patricia; Casey, Warren; Hinton, David; Kanungo, Jyotshna; Kullman, Seth W.; Tal, Tamara; Bondesson, Maria; Burgess, Shawn M.; Sullivan, Con; Kim, Carol; Behl, Mamta; Padilla, Stephanie; Reif, David M.; Tanguay, Robert L.; Hamm, Jon

    2017-01-01

    Summary Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We also review many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health. PMID:27328013

  10. Second Generation Advanced Reburning for High Eficiency NO(x) Control

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.; Sheldon, M.S.; Moyeda, D.; Gardiner, W.C., Jr.; Lissianski, V.V.

    1997-04-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The sixth reporting period (January I - March 31, 1997) included both experimental and modeling activities. New kinetic experimental data for high-temperature decomposition of sodium carbonate were obtained in a flow reactor at the University of Texas in Austin. Pilot scale combustion tests in a 1.0 MMBtu/hr Boiler Simulator Facility were continued with firing coal and using natural gas as reburn fuel. The results demonstrate that over 90% NO control is achievable by injecting one or two N-agents with sodium promoters into the reburning zone and with the overfire air. Advanced reburning technologies does not cause significant byproduct emissions. The AR kinetic model was updated to include chemical reactions of sodium carbonate decomposition. Modeling was conducted on evaluation of the effect of sodium on process kinetics in the rebuming zone. This study revealed that increasing or decreasing radical concentrations in the presence of sodium can significantly affect the reactions responsible for NO reduction under fuel-rich conditions. The effect of mixing time on performance with sodium was also evaluated. Initial activities on engineering design methodology for second generation AR improvements are described.

  11. Biaxial experiments supporting the development of constitutive theories for advanced high-temperature materials

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.

    1988-01-01

    Complex states of stress and strain are introduced into components during service in engineering applications. It follows that analysis of such components requires material descriptions, or constitutive theories, which reflect the tensorial nature of stress and strain. For applications involving stress levels above yield, the situation is more complex in that material response is both nonlinear and history dependent. This has led to the development of viscoplastic constitutive theories which introduce time by expressing the flow and evolutionary equation in the form of time derivatives. Models were developed here which can be used to analyze high temperature components manufactured from advanced composite materials. In parallel with these studies, effort was directed at developing multiaxial testing techniques to verify the various theories. Recent progress in the development of constitutive theories from both the theoretical and experimental viewpoints are outlined. One important aspect is that material descriptions for advanced composite materials which can be implemented in general purpose finite element codes and used for practical design are verified.

  12. A highly reliable, autonomous data communication subsystem for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Masotto, Thomas; Alger, Linda

    1990-01-01

    The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.

  13. A highly reliable, autonomous data communication subsystem for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Masotto, Thomas; Alger, Linda

    1990-01-01

    The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.

  14. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria.

    PubMed

    Kanaly, Robert A; Harayama, Shigeaki

    2010-03-01

    Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.

  15. Advancing toxicology research using in vivo high throughput toxicology with small fish models.

    PubMed

    Planchart, Antonio; Mattingly, Carolyn J; Allen, David; Ceger, Patricia; Casey, Warren; Hinton, David; Kanungo, Jyotshna; Kullman, Seth W; Tal, Tamara; Bondesson, Maria; Burgess, Shawn M; Sullivan, Con; Kim, Carol; Behl, Mamta; Padilla, Stephanie; Reif, David M; Tanguay, Robert L; Hamm, Jon

    2016-01-01

    Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We alsoreview many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.

  16. High rates of advance care planning in New York City's elderly population.

    PubMed

    Morrison, R Sean; Meier, Diane E

    Previous studies have demonstrated low rates of advance care planning (ACP), particularly among nonwhite populations, raising questions about the generalizability of this decision-making process. To explore factors that may influence patients' willingness to engage in ACP. Survey. Thirty-four randomly selected New York City senior centers. A total of 700 African American (n = 239), Hispanic (n = 237), and white (n = 224) adults 60 years and older. Participants were administered a 51-item survey that assessed attitudes, beliefs, and practices regarding ACP. Attitudes and beliefs about physicians' trustworthiness, fatalism, beliefs about surrogate decision making, and comfort discussing end-of-life medical care; factors associated with health care proxy completion; and health care proxy completion rates. More than one third of the participants had completed a health care proxy. There were no significant differences in completion rates across the 3 ethnic groups. Respondents who had a primary care physician (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.3-3.2), were more knowledgeable about advance directives (OR, 2.0; 95% CI, 1.4-2.9), or had seen a friend or family member use a mechanical ventilator (OR, 1.5; 95% CI, 1.02-2.1) were significantly more likely to have designated a health care proxy. Respondents who were only comfortable discussing ACP if the discussion was initiated by the physician (OR, 0.6; 95% CI, 0.0-0.8) were significantly less likely to have completed a health care proxy. African American, Hispanic, and white community-dwelling, older adults had similarly high rates of advance directive completion. The primary predictors of advance directive completion involved modifiable factors such as established primary care physicians, personal experience with mechanical ventilation, knowledge about the process of ACP, and physicians' willingness to effectively initiate such discussions. Some of the racial/ethnic differences in desire for collective

  17. Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team

    2016-10-01

    For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.

  18. The Interactive Impact of Race and Gender on High School Advanced Course Enrollment

    ERIC Educational Resources Information Center

    Corra, Mamadi; Carter, J. Scott; Carter, Shannon K.

    2011-01-01

    Data from the North Carolina Department of Public Instruction archive are used to assess the joint effect of race and gender on advanced academic (advanced placement and honors) course enrollment within a school district with an open enrollment policy. Using student SAT scores; the authors compare expected levels of advanced course enrollment for…

  19. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  20. Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems

    NASA Astrophysics Data System (ADS)

    Makita, Kikuo; Shiba, Kazuhiro; Nakata, Takeshi; Mizuki, Emiko; Watanabe, Sawaki

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) — an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550nm, and a wide bandwidth of more than 40GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5GHz and a gain-bandwidth product of 170GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6dBm at 40Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40GHz and external quantum efficiency of 70% at 1550nm.

  1. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  2. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  3. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  4. Advances in high-rate anaerobic treatment: staging of reactor systems.

    PubMed

    van Lier, J B; van der Zee, F P; Tan, N C; Rebac, S; Kleerebezem, R

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptance of AnWT. In the last decade up to the present, the application potentials of AnWT are further explored. Research shows the feasibility of anaerobic reactors under extreme conditions, such as low and high temperatures. Also toxic and/or recalcitrant wastewaters, that were previously believed not to be suitable for anaerobic processes, are now effectively treated. The recent advances are made possible by adapting the conventional anaerobic high-rate concept to the more extreme conditions. Staged anaerobic reactor concepts show advantages under non-optimal temperature conditions as well as during the treatment of chemical wastewater. In other situations, a staged anaerobic-aerobic approach is required for biodegradation of specific pollutants, e.g. the removal of dyes from textile processing wastewaters. The current paper illustrates the benefits of reactor staging and the yet un-exploited potentials of high-rate AnWT.

  5. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  6. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  7. Advanced Multi-Junction Photovoltaic Device Optimization For High Temperature Space Applications

    NASA Astrophysics Data System (ADS)

    Sherif, Michael

    2011-10-01

    Almost all solar cells available today for space or terrestrial applications are optimized for low temperature or "room temperature" operations, where cell performances demonstrate favourable efficiency figures. The fact is in many space applications, as well as when using solar concentrators, operating cell temperature are typically highly elevated, where cells outputs are severely depreciated. In this paper, a novel approach for the optimization of multi-junction photovoltaic devices at such high expected operating temperature is presented. The device optimization is carried out on the novel cell physical model previously developed at the Naval Postgraduate School using the SILVACO software tools [1]. Taking into account the high cost of research and experimentation involved with the development of advanced cells, this successful modelling technique was introduced and detailed results were previously presented by the author [2]. The flexibility of the proposed methodology is demonstrated and example results are shown throughout the whole process. The research demonstrated the capability of developing a realistic model of any type of solar cell, as well as thermo-photovoltaic devices. Details of an example model of an InGaP/GaAs/Ge multi-junction cell was prepared and fully simulated. The major stages of the process are explained and the simulation results are compared to published experimental data. An example of cell parameters optimization for high operating temperature is also presented. Individual junction layer optimization was accomplished through the use of a genetic search algorithm implemented in Matlab.

  8. Quantitative high-throughput screening data analysis: challenges and recent advances

    PubMed Central

    Shockley, Keith R.

    2014-01-01

    In vitro HTS holds much potential to advance drug discovery and provide cell-based alternatives for toxicity testing. In quantitative HTS, concentration–response data can be generated simultaneously for thousands of different compounds and mixtures. However, nonlinear modeling in these multiple-concentration assays presents important statistical challenges that are not problematic for linear models. Importantly, parameter estimation with the widely used Hill equation model is highly variable when using standard designs. Failure to consider parameter estimate uncertainty properly would greatly hinder chemical genomics and toxicity testing efforts. In this light, optimal study designs should be developed to improve nonlinear parameter estimation; or alternative approaches with reliable performance characteristics should be used to describe concentration–response profiles. PMID:25449657

  9. Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing.

    PubMed

    Otsuki, Akira; Bryant, Gary

    2015-12-01

    This paper aims to summarize recent investigations into the dispersion of fine particles, and the characterization of their interactions, in concentrated suspensions. This summary will provide a better understanding of the current status of this research, and will provide useful feedback for advanced particle processing. Such processes include the fabrication of functional nanostructures and the sustainable beneficiation of complex ores. For example, there has been increasing demand for complex ore utilization due to the noticeable decrease in the accessibility of high grade and easily extractable ores. In order to maintain the sustainable use of mineral resources, the effective beneficiation of complex ores is urgently required. It can be successfully achieved only with selective particle/mineral dispersion/liberation and the assistance of mineralogical and particle characterization.

  10. MANIFOLD DAMPING OF WAKEFIELDS IN HIGH PHASE ADVANCE LINACS FOR THE NLC

    SciTech Connect

    Jones, Roger M

    2002-06-20

    Earlier RDDS (Rounded Damped Detuned Structures) [1,2], designed, fabricated and tested at SLAC, in collaboration with KEK, have been shown to damp wakefields successfully. However, electrical breakdown has been found to occur in these structures and this makes them inoperable at the desired gradient. Recent results [3] indicate that lowering the group velocity of the accelerating mode reduces electrical breakdown events. In order to preserve the filling time of each structure a high synchronous phase advance (150 degrees as opposed to 120 used in previous NLC designs) has been chosen. Here, damping of the wakefield is analyzed. Manifold damping and interleaving of structure cell frequencies is discussed. These wakefields impose alignment tolerances on the cells and on the structure as a whole. Tolerance calculations are performed and these are compared with analytic estimations.

  11. Application of advanced high speed turboprop technology to future civil short-haul transport aircraft design

    NASA Technical Reports Server (NTRS)

    Conlon, J. A.; Bowles, J. V.

    1978-01-01

    With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.

  12. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    SciTech Connect

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  13. Advancing Replicable Solutions for High-Performance Homes in the Southeast

    SciTech Connect

    Roberts, S. G.; M. L. Sweet; Francisco, A.

    2016-03-01

    The work presented in this report advances the goals of the U.S. Department of Energy Building America program by improving the energy performance of affordable and market-rate housing. Southface Energy Institute (Southface), part of the U.S. Department of Energy Building America research team Partnership for Home Innovation, worked with owners and builders with various market constraints and ultimate goals for three projects in three climate zones (CZs): Savannah Gardens in Savannah, Georgia (CZ 2); JMC Patrick Square in Clemson, South Carolina (CZ 3); and LaFayette in LaFayette, Georgia (CZ 4). This report documents the design process, computational energy modeling, construction, envelope performance metrics, long-term monitoring results, and successes and failures of the design and execution of these high-performance homes.

  14. Advances in Pneumatic-Controlled High-Lift Systems Through Pulsed Blowing

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Englar, Robet J.

    2003-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike. Yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements for Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  15. Advancing the High Throughput Identification of Liver Fibrosis Protein Signatures Using Multiplexed Ion Mobility Spectrometry*

    PubMed Central

    Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Jacobs, Jon M.; Diamond, Deborah L.; Brown, Roslyn N.; Ibrahim, Yehia M.; Orton, Daniel J.; Piehowski, Paul D.; Purdy, David E.; Moore, Ronald J.; Danielson, William F.; Monroe, Matthew E.; Crowell, Kevin L.; Slysz, Gordon W.; Gritsenko, Marina A.; Sandoval, John D.; LaMarche, Brian L.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Simons, Brenna C.; McMahon, Brian J.; Bhattacharya, Renuka; Perkins, James D.; Carithers, Robert L.; Strom, Susan; Self, Steven G.; Katze, Michael G.; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is a crucial direction for the field of medicine. While MS-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new instrumental platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry separations with liquid chromatography and MS to dramatically increase measurement sensitivity and throughput, further enabling future high throughput MS-based clinical applications. An initial application of the liquid chromatography - ion mobility spectrometry-MS platform analyzing blood serum samples from 60 postliver transplant patients with recurrent fibrosis progression and 60 nontransplant patients illustrates its potential utility for disease characterization. PMID:24403597

  16. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  17. Second Generation Advanced Reburning for High Efficiency NO(x) Control.

    SciTech Connect

    Zamansky, V.M.; Folsom, B.A.

    1997-10-27

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The eighth reporting period (July 1 - September 30, 1997) included experimental and final report preparation activities. Experiments on high-temperature reactions of sodium carbonate were completed at the University of Texas in Austin. This study revealed that sodium can affect NO{sub x} concentrations under both fuel-rich and fuel-lean conditions. The engineering design conducted during the previous reporting period was converted into retrofit hardware for the AR-Lean system and initial test results are presented and discussed. All information presented in this report is in summary form since a Draft Final project report was submitted to DOE FETC by July 31, 1997.

  18. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  19. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  20. Therapy for advanced thyroid cancer: treatment of a high risk case.

    PubMed

    Ceriati, F; Cavicchioni, C; Logroscino, C; Pastore, G; Montemaggi, P; Fabiano, A; Mantovani, M; Marino, I R; Ardito, G; De Luca, G

    1987-01-01

    The treatment of a high risk case of an advanced thyroid cancer is reported. The patient had a thyroid cancer with metastatic lesions of the frontal bone, left temporal bone, left sacroiliac joint, lytic destruction of C6 and lytic lesion of C7. A pre-operative immobilization of the cervical spine was performed by a halo cast set on a corset of gypsum. After this, the patient underwent a thyroidectomy and, at the same time, a metallic plate was applied to immobilize C5-C7. A month after he underwent reoperative surgery to stabilize definitively the cervical spine. Subsequently he was treated by TCT and 131I subdivided in several cycles. The latest total body scan demonstrated a complete regression of secondary lesions.

  1. Advanced waste form and melter development for treatment of troublesome high-level wastes

    SciTech Connect

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  2. Nanocrystalline Advanced High Strength Steel Produced by Cold Rolling and Annealing

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2016-05-01

    An advanced high strength steel of composition Fe-0.11C-2.46Si-11.5Mn-0.38Al-0.029N (wt pct) was produced with a yield strength of 790 MPa, an ultimate tensile strength of 1300 MPa, and a total elongation of 28 pct. Conventional processing of hot-band steel by cold rolling and annealing at 873 K (600 °C) was used to produce a nanocrystalline structure with an average grain diameter 112 ± 25 nm (68 pct confidence level). Electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were utilized to characterize the nanocrystalline steel, which consisted of γ-austenite, ɛ-martensite, and α-ferrite.

  3. Generation of high-quality electron beams from a laser-based advanced accelerator

    NASA Astrophysics Data System (ADS)

    Ahmed, M. M. Elsied; Nasr, A. M. Hafz; Li, Song; Mohammad, Mirzaie; Thomas, Sokollik; Zhang, Jie

    2015-06-01

    At Shanghai Jiao Tong University (SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams of reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared. Supported by 973 National Basic Research Program of China (2013CBA01504) and Natural Science Foundation of China NSFC (11121504, 11334013, 11175119, 11374209)

  4. Experimental and Numerical Determination of Hot Forming Limit Curve of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Ma, B. L.; Wan, M.; Liu, Z. G.; Li, X. J.; Wu, X. D.; Diao, K. S.

    2017-07-01

    This paper studied the hot formability of the advanced high-strength steel B1500HS. The hot Nakazima tests were conducted to obtain the forming limit curve (FLC), and the sheet temperatures were recorded to analyze temperature distributions during deformation. Meanwhile, the numerical simulations of hot Nakazima tests were performed to compare with the experimental ones. By utilizing the commercial software, Abaqus, the punch force-displacement curve, sheet temperature distribution at the time of the maximum punch load and temperature path of the necked element were investigated from both of experiments and numerical simulations. The FLCs from experiment and numerical simulation showed a good agreement. The temperature path of the necked element on each FLC specimen was different due to the numerical stretching time and stress state. This study demonstrated the predictive capability of finite element simulation on hot stamping.

  5. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  6. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  7. Development of advanced high strength tantalum base alloys. Part 2: Scale-up investigation

    NASA Technical Reports Server (NTRS)

    Ammon, R. L.; Buckman, R. W., Jr.

    1970-01-01

    Three experimental tantalum alloy compositions containing 14-16% W, 1% Re, 0.7% Hf, 0.025% C or 0.015% C and 0.015% N were prepared as two inch diameter ingots by consumable electrode vacuum arc melting. The as-cast ingots were processed by extrusion and swaging to one inch and 0.4 inch diameter rod and evaluated. Excellent high temperature forging behavior was exhibited by all three compositions. Creep strength at 2000 F to 2400 F was enhanced by higher tungsten additions as well as substitution of nitrogen for carbon. Weldability of all three compositions was determined to be adequate. Room temperature ductility was retained in the advanced tantalum alloy compositions as well as a notched/unnotched strength ratio of 1.4 for a notched bar having a K sub t = 2.9.

  8. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-04-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

  9. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson's disease

    PubMed Central

    Devos, D; Krystkowiak, P; Clement, F; Dujardin, K; Cottencin, O; Waucquier, N; Ajebbar, K; Thielemans, B; Kroumova, M; Duhamel, A; Destée, A; Bordet, R; Defebvre, L

    2007-01-01

    Background Therapeutic management of gait disorders in patients with advanced Parkinson's disease (PD) can sometimes be disappointing, since dopaminergic drug treatments and subthalamic nucleus (STN) stimulation are more effective for limb‐related parkinsonian signs than for gait disorders. Gait disorders could also be partly related to norepinephrine system impairment, and the pharmacological modulation of both dopamine and norepinephrine pathways could potentially improve the symptomatology. Aim To assess the clinical value of chronic, high doses of methylphenidate (MPD) in patients with PD having gait disorders, despite their use of optimal dopaminergic doses and STN stimulation parameters. Methods Efficacy was blindly assessed on video for 17 patients in the absence of l‐dopa and again after acute administration of the drug, both before and after a 3‐month course of MPD, using a Stand–Walk–Sit (SWS) Test, the Tinetti Scale, the Unified Parkinson's Disease Rating Scale (UPDRS) part III score and the Dyskinesia Rating Scale. Results An improvement was observed in the number of steps and time in the SWS Test, the number of freezing episodes, the Tinetti Scale score and the UPDRS part III score in the absence of l‐dopa after 3 months of taking MPD. The l‐dopa‐induced improvement in these various scores was also stronger after the 3‐month course of MPD than before. The Epworth Sleepiness Scale score fell dramatically in all patients. No significant induction of adverse effects was found. Interpretation Chronic, high doses of MPD improved gait and motor symptoms in the absence of l‐dopa and increased the intensity of response of these symptoms to l‐dopa in a population with advanced PD. PMID:17098845

  10. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson's disease.

    PubMed

    Devos, D; Krystkowiak, P; Clement, F; Dujardin, K; Cottencin, O; Waucquier, N; Ajebbar, K; Thielemans, B; Kroumova, M; Duhamel, A; Destée, A; Bordet, R; Defebvre, L

    2007-05-01

    Therapeutic management of gait disorders in patients with advanced Parkinson's disease (PD) can sometimes be disappointing, since dopaminergic drug treatments and subthalamic nucleus (STN) stimulation are more effective for limb-related parkinsonian signs than for gait disorders. Gait disorders could also be partly related to norepinephrine system impairment, and the pharmacological modulation of both dopamine and norepinephrine pathways could potentially improve the symptomatology. To assess the clinical value of chronic, high doses of methylphenidate (MPD) in patients with PD having gait disorders, despite their use of optimal dopaminergic doses and STN stimulation parameters. Efficacy was blindly assessed on video for 17 patients in the absence of L-dopa and again after acute administration of the drug, both before and after a 3-month course of MPD, using a Stand-Walk-Sit (SWS) Test, the Tinetti Scale, the Unified Parkinson's Disease Rating Scale (UPDRS) part III score and the Dyskinesia Rating Scale. An improvement was observed in the number of steps and time in the SWS Test, the number of freezing episodes, the Tinetti Scale score and the UPDRS part III score in the absence of L-dopa after 3 months of taking MPD. The L-dopa-induced improvement in these various scores was also stronger after the 3-month course of MPD than before. The Epworth Sleepiness Scale score fell dramatically in all patients. No significant induction of adverse effects was found. Chronic, high doses of MPD improved gait and motor symptoms in the absence of L-dopa and increased the intensity of response of these symptoms to L-dopa in a population with advanced PD.

  11. Facial Soft Tissue Changes after Maxillary Impaction and Mandibular Advancement in High Angle Class II Cases

    PubMed Central

    Aydil, Barış; Özer, Nedim; Marşan, Gülnaz

    2012-01-01

    The aim of this study was to determine the vertical and anteroposterior alterations in the soft, the dental and the skeletal tissues associated with the facial profile after Le Fort I maxillary impaction in conjunction with sagittal split osteotomy for mandibular advancement performed in patients with a high angle Class II skeletal deformity. The study population consists of 21 patients (11 females and 10 males, mean age 24.5±1.6 years) who underwent Le Fort I maxillary impaction in conjunction with sagittal split osteotomy for mandibular advancement. Lateral cephalograms were obtained prior to the surgery and 1.3±0.2 years postoperatively. Wilcoxon test was performed to compare the pre- and postsurgical cephalometric measurements. Pearson correlation test was carried out to determine the relative changes in skeletal, dental and the facial soft tissues. The insignificant decrease in the nasolabial angle was correlated with the significant decrease in the vertical position of the nose due to the nasal protraction noticed after bimaxillary surgery. The retraction of both the upper lip and the upper incisors was correlated with the insignificant decrease in the columella-lobular angle. The insignificant decrease in both the vertical height of the mandibular B point and the lower incisors was correlated with the insignificant decrease in vertical height of the soft tissue pogonion, attributable to the resulting superior movement of the soft tissues of the chin and the counter clockwise rotation of the mandible after maxillary impaction and bilateral sagittal split osteotomy, respectively. Le Fort I maxillary impaction in conjunction with mandibular sagittal split osteotomy for mandibular advancement significantly affected the vertical and anteroposterior positions of the maxilla and the mandible, respectively. When performed in combination, these surgical techniques may efficiently alter the position of upper incisor and the nasal position in both vertical and

  12. Short-term outcomes of CyberKnife therapy for advanced high-risk tumors: A report of 160 cases.

    PubMed

    Wang, Yi-Shan; Wang, Yuan-Yuan; Jiang, Peng; Ma, Jian-Jun; Qu, Zhen; Wang, Xi-Lin; Li, Jun-Ti; Jia, Xi-Feng

    2012-04-01

    The objective of the present study was to evaluate short-term outcomes of CyberKnife therapy in patients with advanced high-risk tumors. A total of 201 target areas from 341 advanced high-risk tumor lesions in 160 patients were treated with CyberKnife. A prescribed dose of 18-60 Gy to the gross tumor volume was delivered in 1-6 fractions to complete the entire treatment in 1 week. Radiographic studies and clinical examinations were performed at 1- to 3-month follow-up intervals, and the results were compared to outcomes of 160 similar advanced high-risk tumor patients who were treated by conformal radiotherapy (CRT). After CyberKnife therapy, the short-term improvement in the quality of life was significant according to radiographic study, radioimmunoassay and ZPS scores of these patients. The total rates of objective efficacy and alleviation of ascities were as high as 66.88 and 67.90%. The short-term outcomes in our series of patients with advanced high-risk tumors treated with CyberKnife appeared to be better compared to conventional CRT. CyberKnife may be an option for patients with incurable advanced high-risk tumors, although further studies of the long-term outcomes are required to confirm the validity.

  13. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  14. The plane strain shear fracture of the advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  15. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  16. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  17. Recent advances in modeling the propagation noise in high-rise cities

    NASA Astrophysics Data System (ADS)

    Li, Kai Ming

    2005-04-01

    In the past few decades, we have witnessed a rapid growth in mechanized transport and transportation systems. We live in a transport-dominated society which has led to a marked improvement in dispersal of land use and to the increased opportunity for the separate development of residential, commercial, and industrial areas. In dense and high-rise cities, various modes of land transportation are the primary source of noise. The problem of transportation noise is not confined by political or social frontiers. It affects the rich who may live in a quiet residential area but who must make full use of transport to maintain their affluent existence, as well as the less fortunate who must live close to a highway, a major road, or an elevated railway line. A systematic development of the capability for accurate predictions of the propagation of land transportation noise in dense high-rise cities is highly desirable. This paper summarizes the current models for predicting sound fields in urban environments and gives an overview of the recent advances of various numerical models to predict the sound field in urban environments. [Work supported by the Research Grants Council of the Hong Kong SAR Government and the Hong Kong Polytechnic University.

  18. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  19. New high temperature matrix resin systems for use in advanced composites

    SciTech Connect

    Eibl, R.; Hawthorne, G.; Hodgkin, J.; Jackson, M.; Morton, T.

    1993-12-31

    Polyimides are well known as some of the best high-temperature-stable organic polymers currently available. However, their general intractability and insolubility has meant that many different modifications have been attempted to improve their practical application as composite matrix resins. The bismaleimide and PMR type materials are two of the best known modifications used in advanced composites. One of the vital components used in making polyimide resins is usually the aromatic diamine monomer, and this has often been an oxidatively unstable and toxic compound in standard systems. This paper describes the use of a series of new stable diaminobisimide monomers in place of the above diamines. Such monomers have been prepared in a simple, one-step reaction from low-cost starting materials. The new diaminobisimides have been used to prepare thermoset matrix resin systems of both the bismaleimide and the PMR type as well as some new alternating copolyimides. Resin chemistry will be described including the detailed characterization of these materials by spectroscopic and physical testing. The polymers have been incorporated into both neat resin systems and carbon fiber composites with high thermal stability and surprising toughness. While the new matrix resin systems have been designed for use in future supersonic aircraft as both structural and near-engine components, a long term goal is lower cost materials for high temperature application in standard engine and mining components.

  20. Materials support for the development of a high temperature advanced furnace

    SciTech Connect

    Breder, K.; Lin, H.T.

    1995-12-01

    The purpose of this project is to compare a limited number of candidate ceramics proposed for use in the air heater of a coal fired high temperature advanced furnace (HITAF) for power generation. This work will provide necessary initial structural ceramic parameters for design of a prototype system. Phase 1 of the work consisted of evaluation of the mechanical properties of three structural ceramics at high temperatures in air and a preliminary evaluation of mechanical properties of these structural ceramics after exposure to coal ash. This work was described in a final report, and the results will serve as baseline data for further work. An initial screening of candidate structural ceramics with respect to their creep properties in air at selected temperatures will be performed as Phase 2, and temperatures above which creep may become a design problem will be identified. Tubes and tube sections of the candidate ceramics will then be exposed to a combination of mechanical loads, coal ash exposure and high temperature, and corrosion behavior, mechanisms and post exposure mechanical properties will be evaluated.

  1. Building highly available control system applications with Advanced Telecom Computing Architecture and open standards

    NASA Astrophysics Data System (ADS)

    Kazakov, Artem; Furukawa, Kazuro

    2010-11-01

    Requirements for modern and future control systems for large projects like International Linear Collider demand high availability for control system components. Recently telecom industry came up with a great open hardware specification - Advanced Telecom Computing Architecture (ATCA). This specification is aimed for better reliability, availability and serviceability. Since its first market appearance in 2004, ATCA platform has shown tremendous growth and proved to be stable and well represented by a number of vendors. ATCA is an industry standard for highly available systems. On the other hand Service Availability Forum, a consortium of leading communications and computing companies, describes interaction between hardware and software. SAF defines a set of specifications such as Hardware Platform Interface, Application Interface Specification. SAF specifications provide extensive description of highly available systems, services and their interfaces. Originally aimed for telecom applications, these specifications can be used for accelerator controls software as well. This study describes benefits of using these specifications and their possible adoption to accelerator control systems. It is demonstrated how EPICS Redundant IOC was extended using Hardware Platform Interface specification, which made it possible to utilize benefits of the ATCA platform.

  2. Improved Confinement in Highly Powered Advanced Tokamak Scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Leonard, A.; Luce, T.; Osborne, T.; Solomon, W.; Turco, F.; Fenstermacher, M. E.; Holcomb, C.; Lasnier, C.; Makowski, M.

    2016-10-01

    DIII-D has recently demonstrated improved energy confinement by injecting neutral gas into high performance Advanced Tokamak (AT) plasmas during high power operation. Representative parameters are: q95 = 6, PIN up to 15 MW, H98 = 1.4-1.8, and βN = 2.8-4.2. Unlike in lower and moderate powered AT plasmas, τE and βN increased (and νELM decreased) as density was increased by deuterium gas puffing. We discuss how the interplay between pedestal density and temperature with fueling can lead to higher ballooning stability and a peeling/kink current limit that increasers as the pressure gradient increases. Comparison of neon, nitrogen, and argon as ``seed'' impurities in high PIN ATs in terms of their effects on core dilution, τE, and heat flux (q⊥) reduction favors argon. In general, the puff-and-pump radiating divertor was not as effective in reducing q⊥ while maintaining density control at highest PIN than it was at lower PIN. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-FG02-07ER54917.

  3. [Research advances in mechanism of high phosphorus use efficiency of plants].

    PubMed

    Ma, Xiangqing; Liang, Xia

    2004-04-01

    Phosphorus deficiency is one of the main factors influencing agricultural and forestry productions. Fertilization and soil improvement are the major measures to meet the demand of phosphorus for crops in traditional agriculture and forestry management. Recently, the plants with high phosphorus use efficiency have been discovered to replace the traditional measures to improve phosphorus use efficiency of crops. This paper reviewed the research advances in the morphological, physiological and genetics mechanisms of plants with high phosphorus use efficiency. There were three mechanisms for the plants with high phosphorus use efficiency to grow under phosphorus stress: (1) under low phosphorus stress, the root morphology would change (root system grew fast, root axes became small, the number and density of lateral root increased) and more photosynthesis products would transport from the crown to the root, (2) under low phosphorus stress, plant root exudation increased, mycorrhizae invaded into root system, the feature of root absorption kinetics changed, and the internal phosphorus cycling of plant reinforced to tolerate phosphorus deficiency, and (3) under long selection stress of low phosphorus, some plants would form the genetic properties of phosphorus nutrition that could exploit the hardly soluble phosphorus in the soil.

  4. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    NASA Astrophysics Data System (ADS)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  5. New technology for the design of advanced ultrasonic transducers for high-power applications.

    PubMed

    Parrini, Lorenzo

    2003-06-01

    A new high-frequency ultrasonic transducer for wire bonding has been conceived, designed, prototyped and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed to its elementary components. For each component an initial design is obtained with finite elements method (FEM) simulations. The simulated ultrasonic modules are then built and characterized experimentally through laser-interferometry measurements and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be iteratively adjusted and optimized. The achieved FEM simulations exhibit a remarkably high-predictive potential and allow full control on the vibration behavior of the ultrasonic modules and of the whole transducer. The new transducer is fixed on the wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the converter to be attached on the wire bonder not only in longitudinal nodes but also in radial nodes of the ultrasonic field excited in the horn. This leads to a nearly complete decoupling of the transducer to the wire bonder, which has not been previously obtained. The new approach to mount ultrasonic transducers on a welding-device is of major importance not only for wire bonding but also for all high-power ultrasound applications and has been patented.

  6. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed.

  7. Material Science for High-Efficiency Photovoltaics: From Advanced Optical Coatings to Cell Design for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Perl, Emmett Edward

    Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as

  8. Defining Advancement Career Paths and Succession Plans: Critical Human Capital Retention Strategies for High-Performing Advancement Divisions

    ERIC Educational Resources Information Center

    Croteau, Jon Derek; Wolk, Holly Gordon

    2010-01-01

    There are many factors that can influence whether a highly talented staff member will build a career within an institution or use it as a stepping stone. This article defines and explores the notions of developing career paths and succession planning and why they are critical human capital investment strategies in retaining the highest performers…

  9. Defining Advancement Career Paths and Succession Plans: Critical Human Capital Retention Strategies for High-Performing Advancement Divisions

    ERIC Educational Resources Information Center

    Croteau, Jon Derek; Wolk, Holly Gordon

    2010-01-01

    There are many factors that can influence whether a highly talented staff member will build a career within an institution or use it as a stepping stone. This article defines and explores the notions of developing career paths and succession planning and why they are critical human capital investment strategies in retaining the highest performers…

  10. High-performance and high-reliability SOT-6 packaged diplexer based on advanced IPD fabrication techniques

    NASA Astrophysics Data System (ADS)

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-08-01

    A diplexer offering the advantages of compact size, high performance, and high reliability is proposed on the basis of advanced integrated passive device (IPD) fabrication techniques. The proposed diplexer is developed by combining a third-order low-pass filter (LPF) and a third-order high-pass filter (HPF), which are designed on the basis of the elliptic function prototype low-pass filter. Primary components, such as inductors and capacitors, are designed and fabricated with high Q-factor and appropriate values, and they are subsequently used to construct a compact diplexer having a chip area of 900 μm × 1100 μm (0.009 λ0 × 0.011 λ0, where λ0 is the guided wavelength). In addition, a small-outline transistor (SOT-6) packaging method is adopted, and reliability tests (including temperature, humidity, vibration, and pressure) are conducted to guarantee long-term stability and commercial success. The packaged measurement results indicate excellent RF performance with insertion losses of 1.39 dB and 0.75 dB at operation bands of 0.9 GHz and 1.8 GHz, respectively. The return loss is lower than 10 dB from 0.5 GHz to 4.0 GHz, while the isolation is higher than 15 dB from 0.5 GHz to 3.0 GHz. Thus, it can be concluded that the proposed SOT-6 packaged diplexer is a promising candidate for GSM/CDMA applications. Synthetic solution of diplexer design, RF performance optimization, fabrication process, packaging, RF response measurement, and reliability test is particularly explained and analyzed in this work.

  11. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

  12. Concomitant cervical and transperineal parametrial high-dose-rate brachytherapy boost for locally advanced cervical cancer

    PubMed Central

    Bailleux, Caroline; Falk, Alexander Tuan; Chand-Fouche, Marie-Eve; Gautier, Mathieu; Barranger, Emmanuel

    2016-01-01

    Purpose There is no consensus for parametrial boost technic while both transvaginal and transperineal approaches are discussed. A prototype was developed consisting of a perineal template, allowing transperineal needle insertion. This study analyzed acute toxicity of concomitant cervical and transperineal parametrial high-dose-rate brachytherapy (HDRB) boost for locally advanced cervical cancer. Material and methods From 01.2011 to 12.2014, 33 patients (pts) presenting a locally advanced cervical cancer with parametrial invasion were treated. After the first course of external beam radiation therapy with cisplatinum, HDRB was performed combining endocavitary and interstitial technique for cervical and parametrial disease. Post-operative delineation (CTV, bladder, rectum, sigmoid) and planification were based on CT-scan/MRI. HDRB was delivered in 3-5 fractions over 2-3 consecutive days. Acute toxicities occurring within 6 months after HDRB were retrospectively reviewed. Results Median age was 56.4 years (27-79). Clinical stages were: T2b = 23 pts (69.7%), T3a = 1 pt (3%), T3b = 6 pts (18.2%), and T4a = 3 pts (9.1%). Median HDRB prescribed dose was 21 Gy (21-27). Median CTVCT (16 pts) and HR-CTVMRI (17 pts) were 52.6 cc (28.5-74.3), 31.9 cc (17.1-58), respectively. Median EQD2αβ10 for D90CTV and D90HR-CTV were 82.9 Gy (78.2-96.5), 84.8 Gy (80.6-91.4), respectively. Median EQD2αβ3 (CT/MRI) for D2cc bladder, rectum and sigmoid were 75.5 Gy (66.6-90.9), 64.4 Gy (51.9-77.4), and 60.4 Gy (50.9-81.1), respectively. Median follow-up was 14 months (ranged 6-51). Among the 24 pts with MFU = 24 months, 2-year LRFS rate, RRFS, and OS were 86.8%, 88.8%, and 94.1%, respectively. The rates of acute genitourinary and gastrointestinal toxicities were 36% (G1 dysuria = 8 pts, G2 infection = 2 pts, G3 infection = 2 pts), and 27% (G1 diarrhea = 9 pts), respectively. One patient presented vaginal bleeding at the time of applicator withdrawal (G3-blood transfusion); no bleeding was

  13. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  14. High-Pressure Combustion Testing Reveals Promise of Low-Emission Combustors for Advanced Subsonic Gas Turbines

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    1997-01-01

    NASA Lewis Research Center's new, world-class, 60-atm combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. At operating pressures to 800 psia, emissions of nitrogen oxides were reduced by greater than 70 percent with an advanced fuel injector designed at NASA Lewis. Data, including exhaust emissions and pressure and temperature distributions, were acquired at high pressures and temperatures representative of future subsonic engines. Results to date represent an improved understanding of the formation of nitrogen oxides at these high pressures (twice the pressure of previous combustor tests) and temperatures.

  15. Perioperative high dose rate (HDR) brachytherapy in unresectable locally advanced pancreatic tumors

    PubMed Central

    Waniczek, Dariusz; Piecuch, Jerzy; Mikusek, Wojciech; Arendt, Jerzy; Białas, Brygida

    2011-01-01

    Purpose The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy) with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer. PMID:27895674

  16. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  17. The High Incidence of Vascular Thromboembolic Events in Advanced Urothelial Cancer Treated with Platinum Chemotherapy Agents

    PubMed Central

    Tully, Christopher M.; Apolo, Andrea B.; Zabor, Emily C.; Regazzi, Ashley M.; Ostrovnaya, Irina; Rosenberg, Jonathan E.; Bajorin, Dean F.

    2016-01-01

    Background This study compared the incidence of vascular thromboembolic events (VTEs) in advanced urothelial carcinoma (UC) patients treated with either gemcitabine/carboplatin (GCb), gemcitabine/carboplatin/bevacizumab (GCbBev) or gemcitabine/cisplatin (GCis). Patients and Methods Patients with advanced UC treated with GCbBev on protocol were analyzed prospectively and two contemporary control cohorts receiving GCb or GCis were obtained retrospectively. VTE was defined as either venous or arterial (myocardial infarctions or cerebral vascular accidents) thrombosis. VTEs were treatment-related if they occurred between the start of treatment and 4 weeks after completion of chemotherapy. Associations with chemotherapy regimen were tested using either the Fisher’s exact test or Kruskal-Wallis test. Clinical factors associated with VTEs were analyzed using conditional logistic regression stratified by treatment regimen. Results Among 198 patients, VTEs occurred in 13/51 (26%) GCbBev patients, 22/92 (24%) GCb patients and 8/55 (15%) GCis patients. Patient characteristics were significantly different between treatment cohorts in terms of age, prior cystectomy, tumor near pelvic vessels, Khorana risk group and anti-platelet therapy. The type of chemotherapy was not associated with any VTEs or type of VTEs (arterial vs. venous). Prior cystectomy was associated with increased risk of VTEs (OR 2.2, 95% CI 1.0–4.9, p=0.047). Conclusions This is the largest series reporting VTEs in UC patients treated with first–line combination platinum-based therapy. The incidence of VTE in cisplatin-treated patients is similar to prior reports. However, the VTE rate in carboplatin-treated patients had not been previously defined and thus represents a new baseline. The addition of bevacizumab does not appear to increase VTE risk. This high incidence of carboplatin-related VTEs warrants further study. PMID:26618338

  18. Perioperative high dose rate (HDR) brachytherapy in unresectable locally advanced pancreatic tumors.

    PubMed

    Waniczek, Dariusz; Piecuch, Jerzy; Rudzki, Marek; Mikusek, Wojciech; Arendt, Jerzy; Białas, Brygida

    2011-06-01

    The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron(®) catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6(th) day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy) with stage III pancreatic cancer according to the TNM scale was taken in consideration. The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed - 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  19. Advanced navigation and guidance for high-precision planetary landing on Mars

    NASA Astrophysics Data System (ADS)

    Levesque, Jean-Francois

    Several international missions scheduled for years 2011--2013 have as objective a Mars surface sample return to Earth. In order to gather samples of high scientific quality, these missions require precise landing at preselected locations on Mars. Since the previous missions on Mars have flown unguided and highly inaccurate atmospheric entry, a new generation of landing systems must be developed. It was demonstrated by Wolf et al., [2004] that the most efficient way to increase the landing accuracy is achieved during the atmospheric entry by steering the vehicle trajectory in order to eliminate the dispersions caused at entry and accumulated during the hypersonic phase. Thus, the research project proposed here will investigate the problem and bring advances on atmospheric entry navigation, guidance and control techniques applied to atmospheric entry on Mars. The state-of-the-art revealed several limitations on the current techniques such as the lack of proper navigation system and the inability to guide the trajectory efficiently in presence of disturbances and entry conditions uncertainties. On the theoretical side, the nonlinear state estimators required for navigation use algorithms that are a heavy computational burden for the onboard processor. Following these limitations, the research presented in this document is conducted along three paths: estimation theory, entry navigation techniques and entry guidance techniques in order to investigate on advances to achieve high precision landing. After an in-depth investigation of the theoretical background required to understand the atmospheric entry dynamics, a number of issues are addressed and the following substantial contributions regarding Mars atmospheric entry navigation and guidance are achieved. (C1) A theoretical improvement of the unscented Kalman Filter by merging two variants in the literature. The resulting technique has the advantages of both former algorithms. (C2) Four navigation concepts using

  20. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of