Sample records for gamburtsev subglacial mountains

  1. Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Paxman, G. J. G.; Watts, A. B.; Ferraccioli, F.; Jordan, T. A.; Bell, R. E.; Jamieson, S. S. R.; Finn, C. A.

    2016-10-01

    The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to ∼70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of Oligocene-Miocene glaciomarine sediments. Overall, we find that 17-25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2-2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains.

  2. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has

  3. Tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Jordan, Tom; Watts, Tony; Bell, Robin; Jamieson, Stewart; Finn, Carol; Damaske, Detlef

    2014-05-01

    Understanding the mechanisms leading to intraplate mountain building remains a significant challenge in Earth Sciences compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is the Gamburtsev Subglacial Mountains (GSM) located in the middle of the Precambrian East Antarctic Craton. During the International Polar Year, the AGAP project acquired 120,000 line km of new airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica. Models derived from these datasets provide new geophysical perspectives on crustal architecture and possible uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic to Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is partially preserved beneath the range and has been interpreted as formed during the Proterozoic assembly of East Antarctica. Rifting could have triggered phase/density changes at deep crustal levels, perhaps restoring some of the latent root buoyancy, as well as causing rift-flank uplift. Permian rifting is well-established in the adjacent Lambert Rift, and was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up; this phase may have provided a more recent tectonic trigger for the initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to large-scale geodynamic processes that led to the separation of Greater India from East Antarctica. It is also consistent with several geological and geophysical interpretations within the Lambert Rift. However, recent detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3) argue against the requirement for major Cretaceous rift

  4. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    USGS Publications Warehouse

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  5. Upper mantle seismic structure beneath central East Antarctica from body wave tomography: Implications for the origin of the Gamburtsev Subglacial Mountains

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew J.; Nyblade, Andrew A.; Wiens, Douglas A.; Hansen, Samantha E.; Kanao, Masaki; Shore, Patrick J.; Zhao, Dapeng

    2013-04-01

    The Gamburtsev Subglacial Mountains (GSM), located near the center of East Antarctica, are the highest feature within the East Antarctic highlands and have been investigated seismically for the first time during the 2007/2008 International Polar Year by the Gamburtsev Mountains Seismic Experiment. Using data from a network of 26 broadband seismic stations and body wave tomography, the P and S wave velocity structure of the upper mantle beneath the GSM and adjacent regions has been examined. Tomographic images produced from teleseismic P and S phases reveal several large-scale, small amplitude anomalies (δVp = 1.0%, δVs = 2.0%) in the upper 250 km of the mantle. The lateral distributions of these large-scale anomalies are similar in both the P and S wave velocity models and resolution tests show that they are well resolved. Velocity anomalies indicate slower, thinner lithosphere beneath the likely Meso- or Neoproterozoic Polar Subglacial Basin and faster, thicker lithosphere beneath the likely Archean/Paleoproterozoic East Antarctic highlands. Within the region of faster, thicker lithosphere, a lower amplitude (δVp = 0.5%, δVs = 1.0%) slow to fast velocity pattern is observed beneath the western flank of the GSM, suggesting a suture between two lithospheric blocks possibly of similar age. These findings point to a Precambrian origin for the high topography of the GSM, corroborating other studies invoking a long-lived highland landscape in central East Antarctica, as opposed to uplift caused by Permian/Cretaceous rifting or Cenozoic magmatism. The longevity of the GSM makes them geologically unusual; however, plausible analogs exist, such as the 550 Ma Petermann Ranges in central Australia. Additional uplift may have occurred by the reactivation of pre-existing faults, for example, during the Carboniferous-Permian collision of Gondwana and Laurussia.

  6. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet.

    PubMed

    Bo, Sun; Siegert, Martin J; Mudd, Simon M; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li

    2009-06-04

    Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth's orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3 degrees C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.

  7. GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets During IPY

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Finn, C. A.; Bell, R. E.; Gogineni, S.; Hayden, L.; Braaten, D.

    2004-12-01

    Antarctica is a key element in Earth's climatic and geodynamic systems, yet on the eve of the 50th anniversary of the International Geophysical Year, we lack fundamental geologic and geophysical data from the deep interior of this vast continent. Despite the central role that Antarctica has played in shaping the present global environment, fundamental, first-order parameters such as ice volume and stratigraphy, bedrock elevation, lithology, structure, age, and tectonic history remain poorly known over large portions of the continent, including the Gamburtsev Subglacial Mountains. Given the extensive ice cover, airborne geophysical data is the best and most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of Antarctica. Under a program entitled, GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets, we propose to conduct airborne gravity, magnetic and radar surveys over the Gamburtsev Subglacial Mountains, a priority for geophysical and drilling studies by the solid Earth and glaciology communities for many years. This proposal will help develop long-range aerogeophysical capabilities and provide data to the Antarctic community within a year after collection to help answer fundamental science questions of global significance. By integrating these with international efforts during the IPY, we can maximize and broaden the use of all data sets. Specifically, we propose to image the East Antarctic ice sheet and bedrock with airborne geophysical surveys through the GAMBIT project in order to: 1) determine ice volume for mass balance calculations and identify internal layers reflecting the accumulation history of the East Antarctic ice sheet in the Gamburtsev Subglacial Mountains region; 2) characterize the gravity, magnetic, and elevation signatures of the East Antarctic crustal basement of the Gamburtsev Subglacial Mountains; 3) integrate these data with existing and new data collected during IPY over

  8. Tectonic and erosion-driven uplift for the Gamburtsev Mountains: a preliminary combined landscape analyses and flexural modelling approach

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Anderson, Lester; Jamieson, Stewart; Bell, Robin; Rose, Kathryn; Jordan, Tom; Finn, Carol; Damaske, Detlef

    2013-04-01

    Mountain building processes in intraplate settings remain relatively poorly understood when compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is located in the middle of the East Antarctic Craton and is known from geophysical surveys as the Gamburtsev Subglacial Mountains (GSM). During the IPY, the AGAP project acquired 120,000 line km of airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica that provide new perspectives on crustal architecture and uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic-Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is in parts preserved beneath the range and has been interpreted as having formed during Proterozoic assembly of a mosaic of originally separate East Antarctic provinces. Rifting could have triggered phase/density changes at deep crustal levels, effectively restoring some of the latent root buoyancy, as well as causing more classical flexural rift-flank uplift. Permian rifting was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up and this phase may have provided a more recent tectonic trigger for initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to larger-scale geodynamic processes and is consistent with several geological and geophysical interpretations in the adjacent Lambert Rift (Ferraccioli et al., 2011). However, a more recent interpretation predicts that major Cretaceous rift-related exhumation in interior East Antarctica is not required to explain detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3). This raises the question of

  9. New Aerogeophysical exploration of the Gamburtsev Province (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Bell, R. E.; Studinger, M.; Damaske, D.; Jordan, T. A.; Corr, H.; Braaten, D. A.; Gogineni, P. S.; Fahnestock, M. A.; Finn, C.; Rose, K.

    2009-12-01

    The enigmatic Gamburstev Subglacial Mountains (GSM) in the interior of East Antarctica, have remained the least understood mountain range on earth, since their discovery some 50 years ago. An improved knowledge of the GSM region is however essential to underpin reconstructions of the Antarctic cryosphere and climate evolution. The GSM are a key nucleation site for the inception of the East Antarctic Ice Sheet approximately 34 Ma ago, and the adjacent Lambert Glacier played a pivotal role for ice sheet dynamics throughout the Neogene (23-0 Ma). The GSM province may also provide tectonic controls for major subglacial lakes flanking the range. In addition, the ice encasing the GSM province has been inferred to contain the oldest detailed climate record of the planet, a prime target for future deep ice core drilling. With the overarching aim of accomplishing the first systematic study of the cryosphere and lithosphere of the GSM province we launched a new geophysical exploration effort- AGAP (Antarctica’s Gamburtsev Province)-, a flagship programme of the International Polar Year. The aerogeophysical and seismology components of AGAP were accomplished by pooling resources from 7 nations. We deployed 2 Twin Otters, equipped with state-of-the art geophysical instrumentation and operating from two remote field camps on either side of Dome A. Over 120,000 line-km of new airborne radar, laser, aerogravity and aeromagnetic data survey were collected during the 2008/09 field campaign. Our grids of ice surface, ice thickness, subglacial topography, and gravity and magnetic anomalies provide a new geophysical foundation to analyse the GSM province, from the surface of the East Antarctic Ice Sheet down to mantle depths beneath the Precambrian shield. The anomalously high-elevation, alpine-type landscape of the GSM is now mapped with unprecedented detail. Two distinct branches of a subglacial rift system are imaged along the north-western and north-eastern margins of the

  10. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  11. The Cenozoic history of East Antarctic subglacial erosion and sediment flux from the offshore detrital thermochronometric record

    NASA Astrophysics Data System (ADS)

    Thomson, S. N.; Reiners, P. W.; Tochilin, C. J.; Hemming, S. R.; Gehrels, G. E.

    2011-12-01

    To improve and better quantify the record of subglacial erosion and landscape evolution in East Antarctica since the inception of the East Antarctic ice sheet (EAIS) at 34 Ma we have developed a novel technique to triple-date single grains of detrital apatite by U-Pb, fission track, and (U-Th)/He dating. We applied this method to offshore sediments deposited from the Cretaceous through Holocene in Prydz Bay. The modern source region of Prydz Bay incorporates the Lambert Glacier catchment that drains some 20% of the EAIS. In pre-glacial times, landscape reconstructions and sediment analysis imply that Prydz Bay was the site of deposition of fluvial sediments draining large parts of the East Antarctic craton including parts of the now-subglacial Gamburtsev Mountains. Apatite U-Pb ages from samples through the whole stratigraphic section show a dominant Pan-African age signature (ca. 500 Ma) implying much of the Lambert catchment experienced Pan-African metamorphism to temperatures > ca. 500°C. Pre-glacial Late Cretaceous and Eocene fluvial sandstones are characterized by old apatite fission track (AFT) and (U-Th)/He (AHe) ages between about 300 and 220 Ma. AFT and AHe single grain age pairs show two distinct groups, one indicative of fast cooling and erosion during the Permian followed by residence at low near-surface temperatures until the Eocene, and the other indicative of more constant, but very slow erosion rates (<0.02 km/Myr) since the Permian. A few ages between 110-120 Ma are seen in some Late Cretaceous sediments diagnostic of resetting related to local basic magmatism associated with Kerguelen plume activity seen in very localized catchment bedrock exposures. Importantly, our thermochronometric data from pre-glacial (Eocene and older) sediments show no evidence for any enhanced Cretaceous erosion in the Lambert Graben catchment area, despite the almost certain presence of the >2500 m high Gamburtsev mountains. These old ages are indicative of a slowly

  12. The Distribution of Antarctic Subglacial Lake Environments With Implications for Their Origin and Evolution

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Young, D. A.; Carter, S. P.

    2006-12-01

    Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the

  13. Satellite gravity gradient views help reveal the Antarctic lithosphere

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.

    2017-12-01

    Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the

  14. Controls on subglacial patterns and depositional environments in western Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2009-12-01

    In western Ireland, Late Devensian ice flow dynamics and resultant patterns of landforms and sediments reflect the interplay between internal (glaciological) forcing and external forcing by rapid climate changes centred on the adjacent Atlantic Ocean. This interplay can be best demonstrated where ice from climatically-sensitive mountain source regions flowed into surrounding lowlands, such as the Connemara region of west County Galway, western Ireland. Here, a semi-independent ice cap was present over the Twelve Bens mountains, and interacted with ice from the much larger regional ice sheet from central Ireland. Landform and sediment patterns in the flat lowland region (c. 100 km2 below 30 m asl) to the south of the Twelve Bens reflect elements of this ice interaction. In detail, landform and sediment distributions here are highly complex with marked spatial differences in patterns of sediment availability. Across much of the region, sculpted bedrock forms (whaleback and bedrock drumlin ridges, roches mountonnées, striae) reflect subglacial abrasion across the underlying igneous and metamorphic bedrock that forms a relatively flat and lake-dominated landscape. Glacigenic sediments are found only at or around ice-retreat margins, and within isolated bedrock valleys. Here, diamicton drumlins are relatively uncommon but yet must represent depositional conditions that are not reflected elsewhere in this ice sheet sector where subglacial sediments are generally absent. This paper explores the interrelationship between local and regional ice flows through their impact on spatial patterns of glacial landforms and sediments. The paper presents field data on the characteristics of bedrock forms (erosional) and diamicton drumlins (depositional). Subglacial sediments are described from drumlin outcrops at key sites around Connemara, which helps in the understanding of the evolution of the subglacial environment in response to ice interactions from different source regions.

  15. GRACE Gravity Data Target Possible Mega-impact in North Central Wilkes Land, Antarctica

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Wells, Stuart B.; Potts. Laramie V.; Gaya-Pique, Luis R.; Golynsky, Alexander V.; Hernandez, Orlando; Kim, Jeong Woo; Kim, Hyung Rae; Hwang, Jong Sun; Taylor, Patrick T.

    2005-01-01

    A prominent positive GRACE satellite-measured free-air gravity anomaly over regionally depressed subglacial topography may identify a mascon centered on (70 deg S, 120 deg E) between the Gamburtsev and Transantarctic Mountains of East Antarctica. Being more than twice the size of the Chicxulub crater, the inferred Wilkes Land impact crater is a strong candidate for a Gondwana source of the greatest extinction of life at the end of the Permian. Its ring structure intersects the coastline and thus may have strongly influenced the Cenozoic rifting of East Antarctica from Australia that resulted in the enigmatic lack of crustal thinning on the conjugate Australian block.

  16. What can Subglacial Sediment Tell us About the Underlying Geology and the Dynamic of the West-Antarctic Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.

    2003-12-01

    The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to

  17. Air and shipborne magnetic surveys of the Antarctic into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, A.; Bell, R.; Blankenship, D.; Damaske, D.; Ferraccioli, F.; Finn, C.; Golynsky, D.; Ivanov, S.; Jokat, W.; Masolov, V.; Riedel, S.; von Frese, R.; Young, D.

    2013-02-01

    The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million line-km of new air- and shipborne data have been acquired over the past decade by the international community in Antarctica. These new data together with surveys that previously were not in the public domain significantly upgrade the ADMAP compilation. Aeromagnetic flights over East Antarctica have been concentrated in the Transantarctic Mountains, the Prince Charles Mountains - Lambert Glacier area, and western Dronning Maud Land (DML) — Coats Land. Additionally, surveys were conducted over Lake Vostok and the western part of Marie Byrd Land by the US Support Office for Aerogeophysical Research projects and over the Amundsen Sea Embayment during the austral summer of 2004/2005 by a collaborative US/UK aerogeophysical campaign. New aeromagnetic data over the Gamburtsev Subglacial Mountains (120,000 line-km), acquired within the IPY Antarctica's Gamburtsev Province project reveal fundamental geologic features beneath the East Antarctic Ice sheet critical to understanding Precambrian continental growth processes. Roughly 100,000 line-km of magnetic data obtained within the International Collaboration for Exploration of the Cryosphere through Aerogeophysical Profiling promises to shed light on subglacial lithology and identify crustal boundaries for the central Antarctic Plate. Since the 1996/97 season, the Alfred Wegener Institute has collected 90,000 km of aeromagnetic data along a 1200 km long segment of the East Antarctic coast over western DML. Recent cruises by Australian, German, Japanese, Russian, British, and American researchers have contributed to long-standing studies of the Antarctic continental margin. Along the continental margin of East Antarctica west of Maud Rise to the George V Coast of Victoria Land, the Russian Polar Marine Geological Research Expedition and Geoscience Australia obtained 80,000 and 20,000 line-km, respectively, of

  18. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    NASA Astrophysics Data System (ADS)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide

  19. Subglacial Volcanism in West-Antarctica - A Geologic and Ice Dynamical Perspective

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S.; Carter, S.; Renne, P.; Turrin, B. D.; Joughin, I.

    2004-12-01

    Subglacial volcanic eruptions may increase the contribution of the West-Antarctic Ice-Sheet (WAIS) to global sea-level rise in the near-future by enhancing basal melt water production and ice flow lubrication. Geophysical data have led scientists to believe that the ice sheet may be located over an extensive, young volcanic province containing ~1 million cubic kilometers of basalts (Behrendt, 1964; Behrendt et. al., 1991; 1995; 1998). While not all scientists may recognize this theory of widespread subglacial volcanism, so far no scientific paper has challenged its existence. Here we present the first geologic constraints on the presence/absence of widespread Late Cenozoic subglacial volcanism beneath the WAIS and investigate the potential influence of an individual subglacial volcano (Blankenship et. al., 1993) on the flow dynamic of WAIS. Properties of subglacial sediments indicate limited presence of subglacial volcanic rocks. Moreover, the only two basaltic pebbles, recovered from the region, are of Mesozoic-Paleozoic age (~100 to ~500 million years). While these findings reduce the potential for widespread near-future increases in ice discharge from WAIS due to eruptions of subglacial volcanoes, they do not rule out the presence of individual hot spots associated with volcanic centers beneath the WAIS. Fuel for the existence of a proposed volcano (Mt. Casertz) on the Whitmore Mountain Ross Sea Transitional Crust (WRT; Blankenship et. al., 1993), in the southern part of the WAIS, comes from thermo-dynamical modeling in comparison with observed ice velocities. Ice velocities (Joughin et. al., 1999; 2002) downstream of Mt. Casertz indicate significant basal sliding, where thermo-dynamical models suggest that the ice sheet is frozen to its base. Routing of basal melt water, produced in the vicinity of Mt. Casertz, may lubricate the ice base in parts of the WRT, thus enabling basal sliding and enhancing the discharge of ice in this sector of the WAIS. The only

  20. Imprints of a Pan-African transpressional orogen superimposed on an inferred Grenvillian accretionary belt in central East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Seddon, Samuel; Finn, Carol; Bell, Robin; Wu, Guochao; Jordan, Tom

    2017-04-01

    The Gamburtsev Subglacial Mountains in interior East Antarctica are underlain by 50-60 km thick crust imaged by gravity and seismic models (Ferraccioli et al., 2011; An et al., 2015). In contrast, the composite Archean to Mesoproterozoic Mawson craton that occupies the Wilkes and Terre Adelie sector of East Antarctica typically features only 40-45 km thick crust (Aitken et al., 2014). Over 200 km thick and seismically fast lithosphere underlies the Gamburtsev Province, as typically observed over Precambrian lithosphere that has not been substantially reworked during Phanerozoic subduction or collision. Satellite and airborne magnetic data indicate that the Gamburtev Province is sandwiched in between distinct Precambrian lithospheric blocks including the Ruker, Princess Elizabeth Land, Vostok, Nimrod (Goodge and Finn, 2010), South Pole and Recovery provinces. Ferraccioli et al., (2011) proposed that a segment of a stalled orogen (i.e. an orogen where widespread orogenic collapse and root delamination has not occurred) is preserved in the Gamburtsev Province and further hypothesised that its origin relates to widespread accretionary and subsequent collisional events at ca 1 Ga, linked to the assembly of the Rodinia supercontinent. However, recent passive seismic interpretations (An et al., 2015) indicate that crustal thickening may relate instead to Pan-African age assembly of Greater India, East Antarctica and Australia within Gondwana (at ca 550 Ma). Here we interpret a set of enhanced magnetic and gravity images, depth to magnetic and gravity sources and preliminary 2D and 3D forward and inverse models to characterise in detail the crustal architecture of the Gamburtsev Province. Enhanced aeromagnetic images reveal a system of subglacial faults that segment the Gamburtsev Province into three distinct geophysical domains, the northern, central and southern domains. Apparent offsets in high-frequency magnetic anomalies within the central domain are interpreted here

  1. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes.

    PubMed

    Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J

    2011-06-02

    The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

  2. Aerogeophysical evidence for complex subglacial geology below the Rutford drainage basin,WestAntarctica

    NASA Astrophysics Data System (ADS)

    Jones, P.; Ferraccioli, F.; Corr, H.; Smith, A. M.; King, E.; Vaughan, D.

    2003-12-01

    A significant part of the West Antarctic Ice Sheet appears to be imposed upon a complex and still largely unknown continental rift system, perhaps featuring sedimentary basins, thin crust and high heat flow. Subglacial geology has been postulated to strongly modulate the dynamics and stability of the ice sheet itself. Specifically, recent aerogeophysics collected over central West Antarctica at edge of the Whitmore Mountains crustal block show that narrow subglacial rift basins with thick sedimentary infill may control the onsets and lateral margins of ice streams. The British Antarctic Survey flew an aerogeophysical survey during the 2001-02 field season: the main aim was to investigate what factors control the location and dynamics of the onset region of the Rutford Ice stream. Airborne radar, aerogravity and aeromagnetic data were simultaneously collected over the drainage basin of the Rutford Ice Stream. The new bedrock elevation grid for the area shows that the Rutford Ice Stream is constrained by a deep bedrock trough with a N-S to NE-SW trend. The onset region appears however to lie within an E-W bedrock trough at the edge of the Ellsworth Mountains crustal block. Bouguer gravity maps do not reveal typical signatures for a coincident deep rift basin at this location. However, a sharp NE-SW trending gradient, likely separating crustal blocks with contrasting crustal thickness is revealed. Aeromagnetic data image NE-SW trends north of the Rutford Ice Stream. In the onset region, these trends appear to be truncated by a NNW-SSE trend, lying on strike with the Ellsworth Mountains. Hence, the new aerogeophysical data suggests greater complexity in the subglacial geology and structure of an onset region of an ice stream compared to previous investigations.

  3. Aeromagnetic anomaly patterns reveal buried faults along the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    USGS Publications Warehouse

    Armadillo, E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.

    2007-01-01

    The Wilkes Subglacial Basin (WSB) is the major morphological feature recognized in the hinterland of the Transantarctic Mountains. The origin of this basin remains contentious and relatively poorly understood due to the lack of extensive geophysical exploration. We present a new aeromagnetic anomaly map over the transition between the Transantarctic Mountains and the WSB for an area adjacent to northern Victoria Land. The aeromagnetic map reveals the existence of subglacial faults along the eastern margin of the WSB. These inferred faults connect previously proposed fault zones over Oates Land with those mapped along the Ross Sea Coast. Specifically, we suggest a link between the Matusevich Frature Zone and the Priestley Fault during the Cenozoic. The new evidence for structural control on the eastern margin of the WSB implies that a purely flexural origin for the basin is unlikely.

  4. International Planning for Subglacial Lake Exploration

    NASA Astrophysics Data System (ADS)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  5. Subglacial till formation: Microscale processes within the subglacial shear zone

    NASA Astrophysics Data System (ADS)

    Hart, Jane K.

    2017-08-01

    This was a study of subglacial deformation till genesis from a modern temperate glacier, at Skálafellsjökull, Iceland. Detailed microscale properties of till samples (from Scanning Electron Microscope [SEM] and thin section analysis) were examined from a glacial site with in situ subglacial process monitoring and an exposed subglacial surface in the foreland. Two lithofacies were examined, a grey sandy till derived from the ash and basalt, and a silty reddish brown till derived from oxidized paleosols and/or tephra layers. These also represented a clay-content continuum from low (0.3%) to high (22.3%). The evolution from debris to subglacial till was investigated. This included a reduction in grain-size (21% for grey lithology, 13% reddish brown lithology), and reduction in rounding (RA) (32% for the grey lithology, 26% for the reddish brown lithology), and the quantification and analysis of the different grain erosion/comminution processes in the resultant till. It was shown that the microstructures within a till were dependent on shear strain and glaciological conditions (deformation history). The low clay content tills were dominated by linear structures (lineations and boudins, and anisotropic microfabric) whilst the higher clay content tills were dominated by rotational structures (turbates and plaster, and isotropic microfabric). These results are important in our understanding of the formation of both modern and Quaternary tills and informs our reconstruction of past glacial dynamics.

  6. Subglacial Calcites from Northern Victoria Land: archive of Antarctic volcanism in the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Frisia, Silvia; Weirich, Laura; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Barbante, Carlo; Cooper, Alan

    2017-04-01

    Subglacial carbonates bear similarities to stalagmites in their fabrics and the potential to obtain precise chronologies using U-series methods. Their chemical properties also reflect those of their parent waters, which, in contrast to stalagmites, are those of subglacial meltwaters. In analogy to speleothems, stable Carbon isotope ratios and trace elements such as Uranium, Iron and Manganese provide the opportunity to investigate ancient extreme environments without the need to drill through thousands of metres of ice. Sedimentological, geochemical and microbial evidence preserved in LGM subglacial calcites from Northern Victoria Land, close to the East Antarctic Ice Sheet margin, allow us to infer that subglacial volcanism was active in the Trans Antarctic Mountain region and induced basal ice melting. We hypothesize that a meltwater reservoir was drained and injected into interconnected basal pore systems where microbial processes enhanced bedrock weathering and, thus, released micronutrients. Volcanic influence is supported by the presence of fluorine (F) and sulphur in sediment-laden calcite layers containing termophilic species. Notably, calcite δ13C points to dissolved inorganic carbon evolved from subglacial metabolic processes. Once transported to the sea, soluble iron likely contributed to fertilizing the Southern Ocean and CO2 drawdown. This is the first well-dated evidence for LGM volcanism in Antarctica, which complements the record of volcanic eruptions retrieved from Talos Dome ice core, and supports the hypothesis of large-scale volcanism as an important driver of climate change. We conclude that subglacial carbonates are equivalent to speleothems in their palaeoclimate potential and may become a most useful source of information of ecosystems and processes at peak glacials in high altitude/high latitude settings.

  7. Subglacial Antarctic Lake Environment Research in the IPY

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C.; Priscu, J. C.

    2006-12-01

    Subglacial environments are continental-scale phenomena that occur under thick ice sheets. These environments differ in geologic setting, age, evolutionary history, and limnological conditions and may be connected by sub-ice hydrologic systems. Evidence suggests that subglacial lakes are linked to the onset of ice streams influencing the dynamics of overlying ice sheets. Outbursts of fresh water from subglacial environments have been invoked as an agent of landscape change in the past and there is speculation that subglacial freshwater discharges have influenced past climate. Subglacial environments rest at the intersection of continental ice sheets and the underlying lithosphere. The distribution of subglacial lakes is determined by the availability of water and basins for it to collect in. The distribution of water in subglacial environments is related to surface temperature, accumulation rates, ice thickness, ice velocities, and geothermal flux. The interconnectedness of these environments exerts a fundamental influence on subglacial physical, chemical, and ecological environments; the degree of isolation; and the evolution of life. Subglacial hydrology at a continental-scale must be mapped and modeled to evaluate past drainage events, map subglacial water, and quantify subglacial discharges. The geologic records of past hydrologic events will be reveal the impact of hydrological events on sediment distribution and landscape evolution. Subglacial environments are "natural" earth-bound macrocosms. In some instances these environments trace their origins to more than 35 million years before present when Antarctica became encased in ice. As opposed to other habitats on Earth, where solar energy is a primary influence, processes in subglacial environments are mediated by the flow of the overlying ice a glacial boundary condition and the flux of heat and possibly fluids from the underlying basin a tectonic control. Recent findings suggest that a third control on

  8. Insights into subglacial eruptions based on geomorphometry: Broad scale analysis of subglacial edifices in Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro; Grosse, Pablo

    2014-05-01

    The two main types of subglacial volcanic edifices, tuyas and tindars, have classicaly been known for their distinct morphometric characteristics. Tuyas are roughly equidimensional, steep-sided, flat topped mountains, while tindars are elongate, linear, steep sided, serrated ridges. In particular, the passage zone is morphometrically diagnostic, with a break in slope marking the transition from steep scree flanks to a low sloping lava cap [e.g. 1]. The passage zone thereby records the englacial water level coeval with delta formation and thereby provides important paleoenvironmental parameters regarding ice thickness, paleo-ice surface and the eruption environment. This study utilizes these morphometric characteristics to make a broad scale assessment of Icelandic subglacial edifices in the neovolcanic zone based on the TK-50 digital elevation model (20m/pixel) from the company Loftmyndir ehf. The edifice boundaries are delimited by concave breaks in slope around their bases and the passage zones are extracted as convex breaks in slope. This extraction is performed through object-based image analysis of slope and profile curvature maps with the eCognition program [2]. The MORVOLC code [3] is then used to calculate several morphometric parameters for each edifice: volume, edifice height, passage zone height, slope, base area, base width, ellipticity and irregularity. Analysis of the morphometric parameters allows grouping of subglacial edifices by to volume, with a continuum of landforms ranging from small tindars (group 1) to large tuyas (group 3), with an intermediate complex group of edifices (group 2). The plan shape indexes (ellipticity and irregularity) and the strike of main elongation show a first order correlation with the 3 classes and groups. Furthermore, correlations of passage zone heights, volumes and information regarding englacial lake stability allows us to investigate several aspects of tuya formation, including(1) spatial distribution of tuya

  9. Understanding and Observing Subglacial Friction Using Seismology

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  10. Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.

    The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less

  11. Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time

    DOE PAGES

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; ...

    2017-07-31

    The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less

  12. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for

  13. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  14. Exploration of Subglacial Lake Ellsworth

    NASA Astrophysics Data System (ADS)

    Ross, N.

    2012-12-01

    Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history within their lake-floor sediments. To find if this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments is required. Ever since the water depth of Vostok Subglacial Lake in East Antarctica was shown to be >500 m, attention has been given to how these unique, ancient and pristine subglacial environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the US National Academy of Sciences and the Scientific Committee on Antarctic Research. The aims, design and implementation of subglacial lake access experiments have direct relevance for the exploration of extra-terrestrial ice-covered bodies (e.g. Europa) and the search for microbial life elsewhere in the Solar System. This presentation summarizes the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, and provides an up-to-date summary of the status of the project. The proposed exploration, planned for December 2012, involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow in situ measurement and sample collection. Details are presented on how this can be undertaken with minimal environmental impact that maximizes scientific return without compromising the environment for future experiments. The implications of this experiment for the search for extra-terrestrial life will be discussed.

  15. Microbes in subglacial environments: Significant biogeochemical agents?

    NASA Astrophysics Data System (ADS)

    Lanoil, B.; Gaidos, E.; Anderson, S.

    2003-04-01

    Recent studies have demonstrated the presence of abundant microbes in several subglacial environments, including alpine and polar glaciers and the giant Antarctic subglacial lake, Lake Vostok. Some indirect isotopic and geochemical evidence indicate that microbial communities may be active in these cold, dark, extreme environments. We have been using molecular biology, microbiology, and geochemistry tools to correlate the identity of microbes in subglacial systems with important geochemical parameters. Our studies have focused on several sites, including a subglacial volcanic caldera lake in Iceland (Grímsvötn; GI), a temperate alpine valley glacier in Alaska (Bench Glacier; BG), and a polythermal Arctic valley glacier in Nunavut, Canada (John Evans Glacier; JEG). Our preliminary data indicate the presence of some similar microbial groups in BG and JEG, perhaps reflecting a selection for organisms which are capable of growth under extreme physical conditions. However, there is also a large fraction of the communities which differ between the Alaskan and Canadian sites. The predicted physiologies of the variable community components appear to correlate well with the geochemistry of the BG and JEG. We have also detected C-fixation and heterotrophic activities at near in situ conditions in intact samples and/or in bacteria isolated from all three sites. Furthermore, subglacial pelagic and sediment-attached microbial communities at GI are significantly different than snow or ice communities, indicating that the subglacial community may be endemic to the caldera lake. Based on these data, we predict that microbes play important roles in chemical weathering processes, organic carbon turnover, and other (bio)geochemical processes in subglacial environments. Our results may have important implications for biogeochemical cycles, especially during periods in earth history when there was significant ice cover, e.g. the Quaternary and Neoproterozoic “Snowball Earth

  16. A varied subglacial landscape under Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Christianson, K. A.; Holschuh, N.; Paden, J. D.; Sprick, J.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.

    2017-12-01

    Deglaciated landscapes, whether subaerial or submarine, are often host to a rich panoply of subglacial landforms, such as drumlims, crags, megascale glacial lineations, grounding-line wedges, deep meltwater channels, and more. These landforms are formed and shaped by interactions between the ice and underlying substrate, and thus have implications for the flow of the overlying ice. Robust interpretations of the relationship between the ice and its substrate based on subglacial landforms that remain after deglaciation have been inhibited by a dearth of high-resolution observations of currently glaciated subglacial landscapes, where ice flow speed is known and where subglacial conditions can be ascertained using geophysical methods. Past direct observations of landforms under currently fast-flowing ice have been limited to a few ice streams, where relatively homogeneous, thick dilatant till layers may favor formation of specific subglacial features, i.e., megascale glacial lineations and grounding-zone wedges. Here we present two detailed gridded subglacial topographies, obtained from ice-penetrating radar measurements, from Thwaites Glacier, West Antarctica, where ice flows over a highly variable bed (in both topography and model-inferred basal shear stress). One grid is located ˜170 km downstream from the ice divide where ice is moving ˜100 m/yr. Here the ice advects over a broad basin and then flows into a subglacial ridge (of several hundred meters amplitude) oriented orthogonally to flow. A deep canyon ( 400 m) that cuts through this ridge in roughly the ice-flow direction and relatively soft sediments on the downstream side of the basin (immediately upstream of the canyon) suggest that a large subglacial lake may have formed in this location and drained catastrophically, as has been hypothesized as the formation mechanism for the deep canyons observed on the Amundsen Sea continental shelf. Numerous multiscale glacial lineations are also observed in the

  17. The Effect of Firn-Aquifer Drainage on the Greenland Subglacial System or Subglacial Efficiency and Storage Modified by the Temporal Pattern of High-Elevation Meltwater Input

    NASA Technical Reports Server (NTRS)

    Andrews, Lauren C.; Poinar, Kristin; Dow, Christine F.; Nowicki, Sophie M.

    2017-01-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980- 2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial- lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored

  18. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  19. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the

  20. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    PubMed Central

    Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Abstract Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments. PMID:27667869

  1. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    USGS Publications Warehouse

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  2. The lithosphere of the Antarctic continent: new insights from satellite gravity gradient data

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Ebbing, Jorg; Pappa, Folker; Kern, Michael; Forsberg, Rene

    2017-04-01

    gravity data arguably provides one the clearest large-scale views to date of the potential extent of the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding corroborates and also augments recent independent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events (Aitken et al., 2016). Thick crust is clearly imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane (Jacobs et al., 2015). The GIA and GIU components help delineate the edges of several of these lithospheric provinces, both in West and East Antarctica. One of the largest and previously unknown lithospheric-scale features discovered in East Antarctica from the satellite gravity gradient images is a linear feature that appears to cut across East Antarctica, potentially extending from the area of the Lutzow Holm Complex on the Indian side of East Antarctica right across the continent to South Pole. We name this feature the Trans East Antarctic Shear Zone and propose that it represents a major lithospheric scale shear zone and possibly a major suture zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and also appears to form the southern boundary of the composite Recovery Province. We infer based on geological data in the Lutzow Holm Complex region and formerly adjacent segments of India and Madagascar and eastern Africa that it may represent a major hitherto unrecongnised Pan-African age suture zone related to the assembly of the Gondwana supercontinent

  3. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet.

    PubMed

    Pattyn, Frank; Carter, Sasha P; Thoma, Malte

    2016-01-28

    Subglacial lakes have long been considered hydraulically isolated water bodies underneath ice sheets. This view changed radically with the advent of repeat-pass satellite altimetry and the discovery of multiple lake discharges and water infill, associated with water transfer over distances of more than 200 km. The presence of subglacial lakes also influences ice dynamics, leading to glacier acceleration. Furthermore, subglacial melting under the Antarctic ice sheet is more widespread than previously thought, and subglacial melt rates may explain the availability for water storage in subglacial lakes and water transport. Modelling of subglacial water discharge in subglacial lakes essentially follows hydraulics of subglacial channels on a hard bed, where ice sheet surface slope is a major control on triggering subglacial lake discharge. Recent evidence also points to the development of channels in deformable sediment in West Antarctica, with significant water exchanges between till and ice. Most active lakes drain over short time scales and respond rapidly to upstream variations. Several Antarctic subglacial lakes exhibit complex interactions with the ice sheet due to water circulation. Subglacial lakes can therefore-from a modelling point of view-be seen as confined small oceans underneath an imbedded ice shelf. © 2015 The Author(s).

  4. Subglacial environments and the search for life beyond the Earth

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Bagshaw, Elizabeth; Balme, Matt; Doran, Peter; McKay, Christopher P.; Miljkovic, Katarina; Pearce, David; Siegert, Martin J.; Tranter, Martyn; Voytek, Mary; Wadham, Jemma

    One of the most remarkable discoveries resulting from the robotic and remote sensing exploration of space is the inferred presence of bodies of liquid water under ice deposits on other planetary bodies: extraterrestrial subglacial environments. Most prominent among these are the ice-covered ocean of the Jovian moon, Europa, and the Saturnian moon, Enceladus. On Mars, although there is no current evidence for subglacial liquid water today, conditions may have been more favorable for liquid water during periods of higher obliquity. Data on these extraterrestrial environments show that while they share similarities with some subglacial environments on the Earth, they are very different in their combined physicochemical conditions. Extraterrestrial environments may provide three new types of subglacial settings for study: (1) uninhabitable environments that are more extreme and life-limiting than terrestrial subglacial environments, (2) environments that are habitable but are uninhabited, which can be compared to similar biotically influenced subglacial environments on the Earth, and (3) environments with examples of life, which will provide new opportunities to investigate the interactions between a biota and glacial environments.

  5. Diversity of culturable bacteria recovered from Pico Bolívar's glacial and subglacial environments, at 4950 m, in Venezuelan tropical Andes.

    PubMed

    Rondón, Johnma; Gómez, Wileidy; Ball, María M; Melfo, Alejandra; Rengifo, Marcos; Balcázar, Wilvis; Dávila-Vera, Delsy; Balza-Quintero, Alirio; Mendoza-Briceño, Rosa Virginia; Yarzábal, Luis Andrés

    2016-11-01

    Even though tropical glaciers are retreating rapidly and many will disappear in the next few years, their microbial diversity remains to be studied in depth. In this paper we report on the biodiversity of the culturable fraction of bacteria colonizing Pico Bolívar's glacier ice and subglacial meltwaters, at ∼4950 m in the Venezuelan Andean Mountains. Microbial cells of diverse morphologies and exhibiting uncompromised membranes were present at densities ranging from 1.5 × 10 4 to 4.7 × 10 4 cells/mL in glacier ice and from 4.1 × 10 5 to 9.6 × 10 5 cells/mL in subglacial meltwater. Of 89 pure isolates recovered from the samples, the majority were eurypsychrophilic or stenopsychrophilic, according to their temperature range of growth. Following analysis of their 16S rDNA nucleotidic sequence, 54 pure isolates were assigned to 23 phylotypes distributed within 4 different phyla or classes: Beta- and Gammaproteobacteria, Actinobacteria, and Bacteroidetes. Actinobacteria dominated the culturable fraction of glacier ice samples, whereas Proteobacteria were dominant in subglacial meltwater samples. Chloramphenicol and ampicillin resistance was exhibited by 73.07% and 65.38%, respectively, of the subglacial isolates, and nearly 35% of them were multiresistant. Considering the fast rate at which tropical glaciers are melting, this study confirms the urgent need to study the microbial communities immured in such environments.

  6. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    NASA Technical Reports Server (NTRS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  7. Properties of the subglacial till inferred from supraglacial lake drainage

    NASA Astrophysics Data System (ADS)

    Neufeld, J. A.; Hewitt, D.

    2017-12-01

    The buildup and drainage of supraglacial lakes along the margins of the Greenland ice sheet has been previously observed using detailed GPS campaigns which show that rapid drainage events are often preceded by localised, transient uplift followed by rapid, and much broader scale, uplift and flexure associated with the main drainage event [1,2]. Previous models of these events have focused on fracturing during rapid lake drainage from an impermeable bedrock [3] or a thin subglacial film [4]. We present a new model of supraglacial drainage that couples the water flux from rapid lake drainage events to a simplified model of the pore-pressure in a porous, subglacial till along with a simplified model of the flexure of glacial ice. Using a hybrid mathematical model we explore the internal transitions between turbulent and laminar flow throughout the evolving subglacial cavity and porous till. The model predicts that an initially small water flux may locally increase pore-pressure in the till leading to uplift and a local divergence in the ice velocity that may ultimately be responsible for large hydro-fracturing and full-scale drainage events. Furthermore, we find that during rapid drainage while the presence of a porous, subglacial till is crucial for propagation, the manner of spreading is remarkably insensitive to the properties of the subglacial till. This is in stark contrast to the post-drainage relaxation of the pore pressure, and hence sliding velocity, which is highly sensitive to the permeability, compressibility and thickness of subglacial till. We use our model, and the inferred sensitivity to the properties of the subglacial till after the main drainage event, to infer the properties of the subglacial till. The results suggest that a detailed interpretation of supraglacial lake drainage may provide important insights into the hydrology of the subglacial till along the margins of the Greenland ice sheet, and the coupling of pore pressure in subglacial till

  8. Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments

    NASA Astrophysics Data System (ADS)

    Siegert, Martin J.; Clarke, Rachel J.; Mowlem, Matt; Ross, Neil; Hill, Christopher S.; Tait, Andrew; Hodgson, Dominic; Parnell, John; Tranter, Martyn; Pearce, David; Bentley, Michael J.; Cockell, Charles; Tsaloglou, Maria-Nefeli; Smith, Andy; Woodward, John; Brito, Mario P.; Waugh, Ed

    2012-01-01

    Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history and climate change within their lake floor sediments. To find whether or not this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments are required. Ever since the water depth of Vostok Subglacial Lake was shown to be >500 m, attention has been given to how these unique, ancient, and pristine environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the U.S. National Academy of Sciences and the Scientific Committee on Antarctic Research. Here we summarize the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, planned for 2012-2013, which we offer as a guide to future subglacial environment research missions. The proposed exploration involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow sample collection. We focus here on how this can be undertaken with minimal environmental impact while maximizing scientific return without compromising the environment for future experiments.

  9. Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially ice-covered lake

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Kojima, Hisaya; Takeda, Eriko; Yokoyama, Yusuke; Fukui, Manabu

    2015-12-01

    We report a 6,000 years record of subglacial weathering and biogeochemical processes in two perennially ice-covered glacial lakes at Rundvågshetta, on the Soya Coast of Lützow-Holm Bay, East Antarctica. The two lakes, Lake Maruwan Oike and Lake Maruwan-minami, are located in a channel that drains subglacial water from the base of the East Antarctic ice sheet. Greenish-grayish organic-rich laminations in sediment cores from the lakes indicate continuous primary production affected by the inflow of subglacial meltwater containing relict carbon, nitrogen, sulfur, and other essential nutrients. Biogenic silica, amorphous hydrated silica, and DNA-based molecular signatures of sedimentary facies indicate that diatom assemblages are the dominant primary producers, supported by the input of inorganic silicon (Si) from the subglacial inflow. This study highlights the significance of subglacial water-rock interactions during physical and chemical weathering processes and the importance of such interactions for the supply of bioavailable nutrients.

  10. Antarctic subglacial lake exploration: first results and future plans

    PubMed Central

    Siegert, Martin J.; Priscu, John C.; Wadham, Jemma L.; Lyons, W. Berry

    2016-01-01

    After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. PMID:26667917

  11. Antarctic subglacial lake exploration: first results and future plans.

    PubMed

    Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry

    2016-01-28

    After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. © 2015 The Author(s).

  12. Triangular-shaped landforms reveal subglacial drainage routes in SW Finland

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Kajuutti, K.; Palmu, J.-P.; Ojala, A.; Ahokangas, E.

    2017-05-01

    The aim of this study is to present the first evidence of triangular-shaped till landforms and related erosional features indicative of subglacial drainage within the ice stream bed of the Scandinavian ice sheet in Finland. Previously unidentified grouped patterns of Quaternary deposits with triangular landforms can be recognized from LiDAR-based DEMs. The triangular landforms occur as segments within geomorphologically distinguishable routes that are associated with eskers. The morphological and sedimentological characteristics as well as the distribution of the triangular landforms are interpreted to involve the creep of saturated deforming till, flow and pressure fluctuations of subglacial meltwater associated with meltwater erosion. There are no existing models for the formation of this kind of large-scale drainage systems, but we claim that they represent an efficient drainage system for subglacial meltwater transfer under high pressure conditions. Our hypothesis is that the routed, large-scale subglacial drainage systems described herein form a continuum between channelized (eskers) and more widely spread small-scale distributed subglacial drainage. Moreover, the transition from the conduit dominated drainage to triangular-shaped subglacial landforms takes place about 50-60 km from the ice margin. We provide an important contribution towards a more realistic representation of ice sheet hydrological drainage systems that could be used to improve paleoglaciological models and to simulate likely responses of ice sheets to increased meltwater production.

  13. Subglacial Hydrology Model Intercomparison Project (SHMIP)

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; de Fleurian, Basile; Creyts, Timothy T.; Damsgaard, Anders; Delaney, Ian; Dow, Christine F.; Gagliardini, Olivier; Hoffman, Matthew J.; Seguinot, Julien; Sommers, Aleah; Irarrazaval Bustos, Inigo; Downs, Jakob

    2017-04-01

    The SHMIP project is the first intercomparison project of subglacial drainage models (http://shmip.bitbucket.org). Its synthetic test suites and evaluation were designed such that any subglacial hydrology model producing effective pressure can participate. In contrast to ice deformation, the physical processes of subglacial hydrology (which in turn impacts basal sliding of glaciers) are poorly known. A further complication is that different glacial and geological settings can lead to different drainage physics. The aim of the project is therefore to qualitatively compare the outputs of the participating models for a wide range of water forcings and glacier geometries. This will allow to put existing studies, which use different drainage models, into context and will allow new studies to select the most suitable model for the problem at hand. We present the results from the just completed intercomparison exercise. Twelve models participated: eight 2D and four 1D models; nine include both an efficient and inefficient system, the other three one of the systems; all but two models use R-channels as efficient system, and/or a linked-cavity like inefficient system, one exception uses porous layers with different characteristic for each of the systems, the other exception is based on canals. The main variable used for the comparison is effective pressure, as that is a direct proxy for basal sliding of glaciers. The models produce large differences in the effective pressure fields, in particular for higher water input scenarios. This shows that the selection of a subglacial drainage model will likely impact the conclusions of a study significantly.

  14. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    PubMed

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  15. Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Dow, C. F.; Poinar, K.; Nowicki, S.

    2017-12-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially

  16. Subglacial efficiency and storage modified by the temporal pattern of high-elevation meltwater input

    NASA Astrophysics Data System (ADS)

    Ackley, S. F.; Maksym, T.; Stammerjohn, S. E.; Gao, Y.; Weissling, B.

    2016-12-01

    Ice flow in marginal region of the Greenland Ice Sheet dynamically responds to summer melting as surface meltwater is routed through the supraglacial hydrologic system to the bed of the ice sheet via crevasses and moulins. Given the expected increases in surface melt production and extent, and the potential for high elevation surface-to-bed connections, it is imperative to understand how meltwater delivered to the bed from different high-elevation supraglacial storage features affects the evolution of the subglacial hydrologic system and associated ice dynamics. Here, we use the two-dimensional subglacial hydrologic model, GLaDS, which includes distributed and channelized water flow, to test how the subglacial system of an idealized outlet glacier responds to cases of high-elevation firn-aquifer-type and supraglacial-lake-type englacial drainage over the course of 5 years. Model outputs driven by these high elevation drainage types are compared to steady-state model results, where the subglacial system only receives the 1980-2016 mean MERRA-2 runoff via low-elevation moulins. Across all experiments, the subglacial hydrologic system displays inter-annual memory, resulting in multiyear declines in subglacial pressure during the onset of seasonal melting and growth of subglacial channels. The gradual addition of water in firn-aquifer-type drainage scenarios resulted in small increases in subglacial water storage but limited changes in subglacial efficiency and channelization. Rapid, supraglacial-lake-type drainage resulted in short-term local increases in subglacial water pressure and storage, which gave way to spatially extensive decreases in subglacial pressure and downstream channelization. These preliminary results suggest that the character of high-elevation englacial drainage can have a strong, and possibly outsized, control on subglacial efficiency throughout the ablation zone. Therefore, understanding both how high elevation meltwater is stored supraglacially

  17. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  18. The Influence of Subglacial Hydrology on Arctic Tidewater Glaciers and Fjords

    NASA Astrophysics Data System (ADS)

    Schild, Kristin M.

    Mass loss from the Greenland Ice Sheet has accelerated throughout the last decade, predominantly due to a quadrupling of ice discharge by iceberg calving, submarine melting, and meltwater runoff at marine-terminating outlet glaciers. The recent acceleration has been linked to the transport of increasing amounts of meltwater, fuelled by warming temperatures. These processes include enhanced basal sliding, inefficient subglacial drainage networks, and a warming of ocean waters in contact with the glacier terminus. Understanding the impact of meltwater on tidewater glacier dynamics, both subglacially and proglacially, is a key component in predicting glacier health and future sea level rise. However, the spatial and temporal magnitude of this meltwater impact is poorly understood. The goals of this dissertation are to identify how meltwater travels subglacially through a tidewater glacier system, establish a method to monitor tidewater glacier discharge remotely, and calculate the impact of subglacial discharge on terminus stability.. The inaccessibility of subglacial and terminus environments prohibits direct hydrological observations. We use combinations of remote sensing, reanalysis models, and in situ fjord data to accomplish these research goals by measuring indicators of subglacial meltwater discharge and fjord circulation (sediment plumes exiting the terminus and the movement of small icebergs in the fjord). By monitoring the timing and duration of plumes exiting a fast-flowing Greenland tidewater glacier, we found short-term variability in meltwater discharge, persistent subglacial pathways, and evidence of over-winter subglacial storage. Using glaciers in Svalbard, we established a new method to determine sediment concentration from Landsat-8 spectral reflectance, and used this sediment concentration to quantify relative seasonal meltwater discharge at tidewater glaciers. Finally, we used the movement of icebergs and ocean temperatures to establish a terminus

  19. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    PubMed

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  20. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  1. Discovery of relict subglacial lakes and their geometry and mechanism of drainage

    PubMed Central

    Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C.

    2016-01-01

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049

  2. Efficacy of bedrock erosion by subglacial water flow

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.; Venditti, J. G.

    2015-09-01

    Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.

  3. Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Behrendt, John C.

    1993-01-01

    Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.

  4. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    NASA Astrophysics Data System (ADS)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  5. Insight into the geology of the East Antarctic hinterland: a study of sediment inclusions from ice cores of the Lake Vostok borehole

    USGS Publications Warehouse

    Leitchenkov, G.L.; Belyatsky, B.V.; Rodionov, N.V.; Sergeev, S.A.

    2007-01-01

    refrozen from the lake water. This ice layer contains random sediment inclusions, eight of which have been studied using state-of the-art analytical techniques. Six inclusions comprise soft aggregates consisting mainly of clay-mica minerals and micron-sized quartz grains while two others are solid clasts of fine-grained cemented rocks. The largest rock clast consists of poorly-rounded quartz and minor amounts of accessory minerals and is classified as quartzose siltstone. More than twenty grains of zircon and monazite have been identified in this siltstone and dated by SIMS SHRIMP-II. Two age clusters have been recognized for these detrital grains, in the ranges 0.8−1.2 Ga and 1.6−1.8 Ga. The compositions of the rock clasts suggest that the bedrock situated to the west of Lake Vostok is sedimentary. The age data on the detrital accessory minerals suggest that the provenance of these sedimentary rocks − the Gamburtsev Mountains and Vostok Subglacial Highlands, is mainly represented by Paleoproterozoic and MesoproterozoicNeoproterozoic crustal provinces

  6. Antarctic subglacial groundwater: measurement concept and potential influence on ice flow

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Siegert, Martin; Bougamont, Marion; Christoffersen, Poul; Key, Kerry; Andersen, Kristoffer; Booth, Adam; Smith, Andrew

    2017-04-01

    Is groundwater abundant in Antarctica and does it modulate ice flow? Answering this question matters because ice streams flow by gliding over a wet substrate of till. Water fed to ice-stream beds thus influences ice-sheet dynamics and, potentially, sea-level rise. It is recognised that both till and the sedimentary basins from which it originates are porous and could host a reservoir of mobile groundwater that interacts with the subglacial interfacial system. According to recent numerical modelling up to half of all water available for basal lubrication, and time lags between hydrological forcing and ice-sheet response as long as millennia, may have been overlooked in models of ice flow. Here, we review evidence in support of Antarctic groundwater and propose how it can be measured to ascertain the extent to which it modulates ice flow. We present new seismoelectric soundings of subglacial till, and new magnetotelluric and transient electromagnetic forward models of subglacial groundwater reservoirs. We demonstrate that multi-facetted and integrated geophysical datasets can detect, delineate and quantify the groundwater contents of subglacial sedimentary basins and, potentially, monitor groundwater exchange rates between subglacial till layers. We thus describe a new area of glaciological investigation and how it should progress in future.

  7. A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew J.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishnan, Sridhar; Aster, Richard C.; Huerta, Audrey D.; Wilson, Terry J.; Dalziel, Ian W. D.; Shore, Patrick J.; Zhao, Dapeng

    2015-12-01

    West Antarctica consists of several tectonically diverse terranes, including the West Antarctic Rift System, a topographic low region of extended continental crust. In contrast, the adjacent Marie Byrd Land and Ellsworth-Whitmore mountains crustal blocks are on average over 1 km higher, with the former dominated by polygenetic shield and stratovolcanoes protruding through the West Antarctic ice sheet and the latter having a Precambrian basement. The upper mantle structure of these regions is important for inferring the geologic history and tectonic processes, as well as the influence of the solid earth on ice sheet dynamics. Yet this structure is poorly constrained due to a lack of seismological data. As part of the Polar Earth Observing Network, 13 temporary broadband seismic stations were deployed from January 2010 to January 2012 that extended from the Whitmore Mountains, across the West Antarctic Rift System, and into Marie Byrd Land with a mean station spacing of ~90 km. Relative P and S wave travel time residuals were obtained from these stations as well as five other nearby stations by cross correlation. The relative residuals, corrected for both ice and crustal structure using previously published receiver function models of crustal velocity, were inverted to image the relative P and S wave velocity structure of the West Antarctic upper mantle. Some of the fastest relative P and S wave velocities are observed beneath the Ellsworth-Whitmore mountains crustal block and extend to the southern flank of the Bentley Subglacial Trench. However, the velocities in this region are not fast enough to be compatible with a Precambrian lithospheric root, suggesting some combination of thermal, chemical, and structural modification of the lithosphere. The West Antarctic Rift System consists largely of relative fast uppermost mantle seismic velocities consistent with Late Cretaceous/early Cenozoic extension that at present likely has negligible rift related heat flow. In

  8. Subglacial meltwater channels on the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Kirkham, J. D.; Hogan, K.; Dowdeswell, J. A.; Larter, R. D.; Arnold, N. S.; Nitsche, F. O.; Golledge, N. R.

    2017-12-01

    Extensive submarine channel networks exist on the Antarctic continental shelf. The genesis of the channels has been attributed to the flow of subglacial meltwater beneath a formerly more expansive Antarctic Ice Sheet (AIS), implying that there was an active subglacial hydrological system beneath the past AIS which influenced its ice flow dynamics and mass-loss behaviour. However, the dimensions of the channels are inconsistent with the minimal quantities of meltwater produced under the AIS at present; consequently, their formative mechanism, and its implications for past ice-sheet dynamics, remain unresolved. Here, analysis of >100,000 km2 of multibeam bathymetric data is used to produce the most comprehensive inventory of Antarctic submarine channelised landforms to date. Over 2700 bedrock channels are mapped across four locations on the inner continental shelves of the Bellingshausen and Amundsen Seas. Morphometric analysis reveals highly similar distributions of channel widths, depths, cross-sectional areas and geometric properties, with subtle differences present between channels located in the Bellingshausen Sea compared to those situated in the Amundsen Sea region. The channels are 75-3400 m wide, 3-280 m deep, 160-290,000 m2 in cross-sectional area, and exhibit V-shaped cross-sectional geometries that are typically eight times as wide as they are deep. The features are comparable, but substantially larger, than the system of channels known as the Labyrinth in the McMurdo Dry Valleys whose genesis has been attributed to catastrophic outburst floods, sourced from subglacial lakes, during the middle Miocene. A similar process origin is proposed for the channels observed on the Antarctic continental shelf, formed through the drainage of relict subglacial lake basins, including some 59 identified using submarine geomorphological evidence and numerical modelling calculations. Water is predicted to accumulate in the subglacial lakes over centuries to millennia and

  9. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland

    PubMed Central

    Thór Marteinsson, Viggó; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric

    2013-01-01

    Subglacial lakes beneath the Vatnajökull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3–v5 and v4–v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4–v6 libraries are 3–8 times higher than in corresponding v3–v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. PMID:22975882

  10. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area

  11. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  12. Recent advances in understanding Antarctic subglacial lakes and hydrology

    PubMed Central

    Siegert, Martin J.; Ross, Neil; Le Brocq, Anne M.

    2016-01-01

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from ‘active’ lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further ‘active’ subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many ‘active’ lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  13. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). © 2015 The Authors.

  14. Subglacial bedrock topography of an active mountain glacier in a high Alpine setting - insights from high resolution 3D cosmic-muon radiography of the Eiger glacier (Bern, Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Mair, David; Lechmann, Alessandro; Nishiyama, Ryuichi; Schlunegger, Fritz; Ariga, Akitaka; Ariga, Tomoko; Scampoli, Paola; Vladymyrov, Mykhailo; Ereditato, Antonio

    2016-04-01

    Bedrock topography and therefore the spatial-altitudinal distribution of ice thickness constrain the ice flow as well as the erosional mechanisms of glaciers. Although the processes by which glaciers have shaped modern and past landscapes have been well investigated, little information is still available about the shape of the bedrock beneath active glaciers in steep Alpine cirques. Here, we we apply the cosmic-muon radiography technology, which uses nuclear emulsion detectors for imaging the bedrock surface. This method should provide information on the bedrock topography beneath a glacier and related ice thicknesses and subglacial meltwater pathways. We apply this technology to the cirque of the Eiger glacier, situated on the western flank of Eiger mountain, Central Swiss Alps. The Eiger glacier originates on the western flank of the Eiger at 3700 m a.s.l., from where it stretches along 2.6 km to the current elevation at 2300 m a.s.l.. The glacier consists of a concave cirque bordered by >40° steep flanks, thereby utilizing weaknesses within the fabric of the bedrock such as folds, joints and foliations. The middle reach hosts a bedrock ridge where glacier diffluence occurs. The lower reaches of the glacier are characterized by several transverse crevasses, while the terminal lobe hosts multiple longitudinal crevasses. A basal till and lateral margins border the ice flow along the lowermost reach. While subglacial erosion in the cirque has probably been accomplished by plucking and abrasion where the glacier might be cold-based, sub glacial melt water might have contributed to bedrock sculpting farther downslope where the ice flow is constrained by bedrock. Overdeepening of some tens of meters is expected in the upper reach of the glacier, which is quite common in cirques (Cook & Swift, 2012). Contrariwise, we expect several tens of meters-deep bedrock excavations (characterized by concave curvatures of bedrock surface) at the site of ice diffluence. The next

  15. Greenland Subglacial Drainage Evolution Regulated by Weakly Connected Regions of the Bed

    NASA Technical Reports Server (NTRS)

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen F.; Catania, Ginny A.; Neumann, Thomas A.; Luthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine

    2016-01-01

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

  16. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed

    PubMed Central

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; Catania, Ginny A.; Neumann, Thomas A.; Lüthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine

    2016-01-01

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology. PMID:27991518

  17. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed.

    PubMed

    Hoffman, Matthew J; Andrews, Lauren C; Price, Stephen A; Catania, Ginny A; Neumann, Thomas A; Lüthi, Martin P; Gulley, Jason; Ryser, Claudia; Hawley, Robert L; Morriss, Blaine

    2016-12-19

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

  18. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; Catania, Ginny A.; Neumann, Thomas A.; Lüthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine

    2016-12-01

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

  19. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  20. The subglacial roughness of Antarctica: Analogs, interpretation and implications for ice thickness uncertainities

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Grima, C.; Greenbaum, J. S.; Beem, L.; Cavitte, M. G.; Quartini, E.; Kempf, S. D.; Roberts, J. L.; Siegert, M. J.; Ritz, C.; Blankenship, D. D.

    2017-12-01

    Over the last twenty five years, extensive ice penetrating radar (IPR) coverage of Antarctica has been obtained, at lines spacings down to 1 km in some cases. However, many glacial processes occur at finer scales, so infering likely landscape parameters is required for a useful interpolation between lines. Profile roughness is also important for understanding the uncertainties inherent in IPR observations. Subglacial roughness has also been used to infer large scale bed rock properties and history. Similar work has been conducted on a regional basis with complilations of data from the 1970's and more recent local studies. Here we present a compilation of IPR-derived profile roughness data covering three great basins of Antarctica: the Byrd Subglacial Basin in West Antarctica, and the Wilkes Subglacial Basin and Aurora Subglacial Basins in East Antarctica; and treat these data using root mean squared deviation (RMSD). Coverage is provied by a range of IPR systems with varying vintages with differing instrument and processing parameters; we present approaches to account for the differences between these systems. We use RMSD, a tool commonly used in planetary investigations, to investigate the self-affine behaviour of the bed at kilometer scales and extract fractal parameters from the data to predict roughness and uncertainties in ice thickness measurement. Lastly, we apply a sensor model to a range of bare-earth terrestrial digital elevation models to futher understand the impact of the sensor model on the inference of subglacial topography and roughness, and to the first order analogies for the lithology of the substrate. This map of roughness, at scales between the pulse limited radar footprint and typical line spacings, provides an understanding of the distribution of Paleogene subglacial sediments, insight in to the distribution of uncertainties and a potential basal properties mask for ice sheet models. A particular goal of this map is to provide insight into

  1. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  2. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  3. Antarctica and Its Ice Sheet: Knowledge Gained During the IGY/IGC

    NASA Astrophysics Data System (ADS)

    Bentley, C. R.

    2006-12-01

    At the end of World War II, the interior of Antarctica, with the exception of the mountains south of the Ross Ice Shelf, was still terra incognita. It was described simply as a nearly continuous high plateau. Even less was known about the ice thickness; the eminent glacial geologist, Richard Foster Flint, believed it "unlikely that the ice thickness exceeds 2000 feet except very locally; probably its average thickness is considerably less." Then in the late 1940's and early 1950's, seismic sounding in Greenland by the Expéditions Polaires Françaises and in Queen Maud Land by the Norwegian-British-Swedish Antarctic Expedition, 1949-52, revealed that, inland of the coastal mountains, the beds in both regions lie close to sea level. This led to a reappraisal of the Antarctic ice sheet, such that the prescient glaciologist, Robert P. Sharp, could predict, on the eve of the IGY, that "between 3000 and 4000 meters of ice will be found" in East Antarctica and that "work during IGY will establish an average thickness for Antarctic inland ice in excess of 1600 m." Seismic and gravity soundings on oversnow traverses conducted by eight countries during the IGY and the succeeding IGC showed Sharp to be basically correct, but there were major surprises, such as the vast Gamburtsev Subglacial Mountains, completely hidden by the ice in central East Antarctica, and the equally vast Byrd Subglacial Basin beneath much of the West Antarctic ice sheet, so deep that roughly half the ice in the region lies below sea level. There were major discoveries on and above the surface too, such as the huge size of the Filchner/Ronne Ice Shelf, and the very existence of the Ellsworth and Pensacola Mountains, the former including the highest peak on the continent. Further, the fundamental difference between the crustal structures of East and West Antarctica became clear. A summary paper published in 1960, looking primarily at West Antarctica where the main U.S. activity lay, could conclude that

  4. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  5. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.

    2013-11-01

    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.

  6. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage ofmore » water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. Finally, these results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.« less

  7. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed

    DOE PAGES

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen A.; ...

    2016-12-19

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage ofmore » water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. Finally, these results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.« less

  8. The identification, examination and exploration of Antarctic subglacial lakes.

    PubMed

    Siegert, M J

    2000-01-01

    At the floor of the Antarctic ice sheet, 4 km below the Russian research base Vostok Station, lies a 2,000 km3 body of water, comparable in size to Lake Ontario. This remote water mass, named Lake Vostok, is the world's largest subglacial lake by an order of magnitude (Figure 1). Despite ice-surface temperatures regularly around -60 degrees C, the ice-sheet base is kept at the melting temperature by geothermal heating from the Earth's interior. The ice sheet above the lake has been in existence for at least several million years and possibly as long as 20 million years. The origins of Lake Vostok may therefore data back across geological time to the Miocene (7-26 Ma). The hydrology of Lake Vostok can be characterised by subglacial melting across its northern side, and refreezing over the southern section. A deep ice core, located over the southern end of the lake has sampled the refrozen ice. Geochemical analysis of this ice has found that it comprises virtually pure water. However, normal glacier ice contains impurities such as debris and gas hydrates. Subglacial melting and freezing over Lake Vostok may, therefore, leave the lake enriched in potential nutrients issued from the melted glacier ice. Many scientists expect microbial life to exist within the lake, adapted to the extreme conditions of low nutrient and energy levels. Indeed microbes have been found in the basal refrozen layers of the ice sheet. If Lake Vostok has been isolated from the atmosphere for several million years by the ice sheet that lays above it, the microbes within the lake must also date back several million years and may have undergone evolution over this time, yielding life that may be unique to Lake Vostok. Plans are currently being arranged to explore Lake Vostok and other Antarctic subglacial lakes, and identify life in these extraordinary places. Before this happens, however, much more needs to be known about the ice-sheet above subglacial lakes, and the rocks and sediment below them.

  9. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  10. Combined Gravimetric-Seismic Crustal Model for Antarctica

    NASA Astrophysics Data System (ADS)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  11. Unveiling the Antarctic subglacial landscape.

    NASA Astrophysics Data System (ADS)

    Warner, Roland; Roberts, Jason

    2010-05-01

    Better knowledge of the subglacial landscape of Antarctica is vital to reducing uncertainties regarding prediction of the evolution of the ice sheet. These uncertainties are associated with bedrock geometry for ice sheet dynamics, including possible marine ice sheet instabilities and subglacial hydrological pathways (e.g. Wright et al., 2008). Major collaborative aerogeophysics surveys motivated by the International Polar Year (e.g. ICECAP and AGAP), and continuing large scale radar echo sounding campaigns (ICECAP and NASA Ice Bridge) are significantly improving the coverage. However, the vast size of Antarctica and logistic difficulties mean that data gaps persist, and ice thickness data remains spatially inhomogeneous. The physics governing large scale ice sheet flow enables ice thickness, and hence bedrock topography, to be inferred from knowledge of ice sheet surface topography and considerations of ice sheet mass balance, even in areas with sparse ice thickness measurements (Warner and Budd, 2000). We have developed a robust physically motivated interpolation scheme, based on these methods, and used it to generate a comprehensive map of Antarctic bedrock topography, using along-track ice thickness data assembled for the BEDMAP project (Lythe et al., 2001). This approach reduces ice thickness biases, compared to traditional inverse distance interpolation schemes which ignore the information available from considerations of ice sheet flow. In addition, the use of improved balance fluxes, calculated using a Lagrangian scheme, eliminates the grid orientation biases in ice fluxes associated with finite difference methods (Budd and Warner, 1996, Le Brocq et al., 2006). The present map was generated using a recent surface DEM (Bamber et al., 2009, Griggs and Bamber, 2009) and accumulation distribution (van de Berg et al., 2006). Comparing our results with recent high resolution regional surveys gives confidence that all major subglacial topographic features are

  12. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf

    PubMed Central

    Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Kasten, Sabine; Smith, James A.; Nitsche, Frank O.; Frederichs, Thomas; Wiers, Steffen; Ehrmann, Werner; Klages, Johann P.; Mogollón, José M.

    2017-01-01

    Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments. PMID:28569750

  13. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  14. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  15. Geophysical Tracking of a Subglacial Flood in Near Real-Time

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Jóhannesson, Tómas; Ofeigsson, Benedikt G.; Roberts, Matthew J.; Bean, Christopher J.; Vogfjörd, Kristin S.; Jones, Morgan T.; Pfeffer, Melissa A.; Bergsson, Baldur; Pálsson, Finnur

    2017-04-01

    Subglacial lakes and volcanoes in Iceland pose a risk to people, livestock and infrastructure when water drains in subglacial floods. Many of these floods occur every year and efforts are made to forecast them and evacuate in time. The two Skaftá cauldrons are located at the southwestern part of Vatnajökull glacier and usually drain once every two years. However, following drainage in 2010, the eastern cauldron did not drain before October 2015. While water accumulated over these five years, scientists - within the EU-funded project FutureVolc - improved the monitoring network around southwest Vatnajökull in order to record the flood in great detail. The network finally comprised two seismic arrays, a GPS instrument on top of the cauldron, two GPS instruments above the flood path, gas measurements at the glaciers' edge, hydrological measurements at river gauges and osmotic sampler data. We present how the GPS, gas and hydrological instruments allow us to detect the start of and subglacial propagation of the flood. The derived timing is consistent with the approximate time of rupturing of the ice close to the glacier edge and the source movement observed in the seismic signals. The subglacial flow of water is accompanied by seismic tremor, whose source location moves downslope with the flood front. This tremor is followed by about 24 hours of stronger tremor bursts from the direction of the empty cauldron.

  16. Lasting Effects of Glacial Lake Outburst Floods on Subglacial Drainage Networks

    NASA Astrophysics Data System (ADS)

    Robbins, M.; Hendy, I. L.; Bassis, J. N.; Aciego, S.; Stevenson, E. I.

    2017-12-01

    Supraglacial lakes forming in the ablation zone around the Greenland Ice Sheet will likely migrate toward higher elevations as polar temperatures rise through the 21st century. Present understanding of lake drainage shows it can temporarily enhance ice sheet motion, but other possible effects and interactions - especially with older pre-existing subglacial reservoirs - remain unexamined. Here we investigate possible enduring effects of the record high 2012 melt year on the en/subglacial hydrologic network, how this network responds to immediate high fluxes of water from floods, and how these phenomena might connect to previously isolated subglacial pools. Lake Hullet is a large ice dammed lake situated in south Greenland 22km up-ice from where Kiattuut Sermiat (KS) branches from a larger outlet glacier. Lake Hullet rests on bedrock and is contained by a bedrock ridge. It drains roughly annually through Lake Hullet's hydrologic network in a glacial lake outburst flood (GLOF) when water level rises such that it can flow over the obstructive ridge. Subglacial water samples collected from the toe of KS in July 2013 pre-flood were dated using U isotopes with 222Rn concentrations as well as noble gas ratios. These two independent methods reveal an exceedingly old water age of > 1000 years, indicating existence of isolated enduring subglacial meltwater pool(s). A comparison field study at the KS toe in August and September 2015 re-examined glacial hydrochemistry in a time series. 2015 222Rn concentrations are lower than 2013 values, suggesting less water-rock interaction, a reduction in residence time, and a proximal meltwater source. Increased water volume from the record high 2012 melt year may have enlarged the existing en/subglacial drainage network further into the ice sheet releasing meltwater with longer residence times beneath the ice, with effects lasting into subsequent melt seasons due to the stability of channels maintained from recurrent floods. These

  17. Distinct Subglacial Drainage Patterns Revealed in High-Resolution Mapping of Basal Radar Reflectivity across Greenland

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Palmer, S. J.; Bell, R. E.

    2016-12-01

    Subglacial water beneath the Greenland Ice Sheet is linked to changes in sliding rate in both theoretical and field-based studies. These can lead to massive, widespread speed-ups or, conversely, very little response from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine how shifts in drainage occur and what controls them. By combining NASA IceBridge radar-sounding and ice-sheet modeling, we identified distinct subglacial drainage patterns across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and the Petermann-Humboldt glacier system as a northern example. In southern Greenland at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply and is strongly controlled by bed topography and properties. In the winter, water is stored on bedrock ridges but is absent in deep sediment-filled troughs. In the summer, water drains to the deep troughs that focus this water, flooding the bed to intensify sliding. Conversely, the subglacial drainage systems in northern Greenland are distinctly different. Beneath Petermann and Humboldt, subglacial water is present throughout the year and primarily fed by basal melt in the upstream reaches. In Petermann, this basal water is focused by the deep topography along the main ice trunk. These drainage networks are continuous up to 180 km from the glacier terminus, and likely facilitate the onset of fast flow. In contrast, in Humboldt the flat topography and the lack of water focusing produce more broadly distributed networks rather than locally focused systems. In Humboldt, onset of fast flow develops much closer to the ice edge where surface meltwater may contribute to the subglacial water budget. Our results provide insights into the relationship between surface melt, basal topography and properties over

  18. Volatiles in basaltic glasses from a subglacial volcano in northern British Columbia (Canada): Implications for ice sheet thickness and mantle volatiles

    USGS Publications Warehouse

    Dixon, J.E.; Filiberto, J.R.; Moore, J.G.; Hickson, C.J.

    2002-01-01

    Dissolved H2O, CO2, S and Cl concentrations were measured in glasses from Tanzilla Mountain, a 500 m-high, exposed subglacial volcano from the Tuya-Teslin region, north central British Columbia, Canada. The absence of a flat-topped subaerial lava cap and the dominance of pillows and pillow breccias imply that the Tanzilla Mountain volcanic edifice did not reach a subaerial eruptive phase. Lavas are dominantly tholeiitic basalt with minor amounts of alkalic basalt erupted at the summit and near the base. Tholeiites have roughly constant H2O (c.0.56 ?? 0.07 wt%), CO2 (<30 ppm), S (980 ?? 30 ppm) and Cl (200 ?? 20 ppm) concentrations. Alkalic basalts have higher and more variable volatile concentrations that decrease with increasing elevation (0.62-0.92 wt% H2O, <30 ppm CO2, 870-1110 ppm S and 280-410 ppm Cl) consistent with eruptive degassing. Calculated vapour saturation pressures for the alkalic basalts are 36 to 81 bars corresponding to ice thicknesses of 400 to 900 m. Maximum calculated ice thickness (c. 1 km) is at the lower end of the range of predicted maximum Fraser glaciation (c. 1-2 km), and may indicate initiation of volcanism during the waning stages of glaciation. Temporal evolution from tholeiitic to alkalic compositions may reflect compositional gradients within a melting column, instead of convective processes within a stratified magma chamber. The mantle source region for the subglacial volcanoes is enriched in incompatible elements similar to that for enriched mid-oceanic ridge basalt (e.g. Endeavour Ridge) and does not contain residual amphibole. Thus, metasomatic enrichment most likely reflects small degree partial melts rather than hydrous fluids.

  19. Pliocene East Antarctic Ice Sheet Retreat in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Cook, C.; van de Flierdt, T.; Williams, T.; Hemming, S. R.; Pierce, E. L.; Iwai, M.; Kobayashi, M.; Jimenez-Espejo, F.; Escutia, C.; González, J.; Patterson, M. O; Mckay, R. M.; Passchier, S.; Tauxe, L.; Sugisaki, S.; Bohaty, S. M.; Riesselman, C. R.; Sangiorgi, F.; Brinkhuis, H.

    2012-12-01

    Polar ice sheets are an important component of the climate system, affecting global sea level, ocean circulation and heat transport, marine productivity, and albedo. However, there is considerable uncertainty in the response of the polar ice caps to predicted future warming. Warm intervals during the Pliocene Epoch (5.33-2.58 Ma) may provide insight on the sensitivity of ice sheets when atmospheric carbon dioxide levels were similar to today and temperatures were elevated by a few degrees Celsius. Global sea level during this time has been estimated to lie about 20m above modern, requiring not only Greenland and West Antarctica, but also the large East Antarctic ice sheet (EAIS) to have lost mass. Direct evidence for ice retreat around East Antarctica is, however, sparse. Here we present results of neodymium (Nd) and strontium (Sr) isotope analyses of detrital clay and silt-sized sediments from Integrated Ocean Drilling Program Leg 318 Site U1361 (64°24.57'S, 143°53.19'E), drilled offshore of the Wilkes Subglacial Basin, where large areas of the EAIS lie below sea level. Early Pliocene (5.33 to 3.3 Ma) detrital sediments from this location reveal two distinct endmembers. The first endmember is defined by epsilon Nd values of -11 to -14.5 and Sr isotopic compositions of 0.720 to 0.730, and the second endmember is characterized by more radiogenic values of -5.9 to -9.5 and 0.713 to 0.719, respectively. While the first endmember is consistent with siliciclastic material sourced from Early Paleozoic bedrocks exposed in Oates Land and the western region of Northern Victoria Land to the east of the study site, the second endmember requires a significant contribution (95-70%) from the Jurassic-Triassic Ferrar Large Igneous Province (FLIP), which today is only regionally exposed in volumetrically significant quantities in the Transantarctic Mountains. For this area to be an important source to IODP Site U1361 sediments, significant retreat of outlet glaciers and collapse

  20. Surface expression of subglacial meltwater movement, Bering Glacier, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, D.H.; Fleisher, P.J.; Bailey, P.K.

    1993-03-01

    Longitudinal topographic profiles (1988--1992) across the thermokarst terminus of the Grindle Hills Ice-tongue and interlobate moraine of the Bering Piedmont Glacier document annual changes in crevasse patterns and fluctuations in surface elevation related to subglacial water movement. A semi-continuous record of aerial photos (1978--1990), plus field observations (1988--1992), reveal the progressive enlargement of two lateral collapse basin on both sides of the thermokarst, connected by a transverse collapse trough. Seasonally generated meltwater at depth rises within the glacier, fills the basins and other depressions and lifts the thermokarst terminus of the ice-tongue a few meters by buoyancy and hydrostatic pressure.more » The resulting surface tension creates a chaotic crevasse pattern unrelated to normal glacier movement. The crevasses open (2 m wide, 8--10 m deep) in response to increased water accumulation at depth and close during subsidence as the ice-tongue settles following evacuation of subglacier water. A network of open conduits (>10 m diameter), exposed by surface ablation, provides evidence for the scale of englacial passageways beneath the thermokarst and represents a form of subglacial ablation that leads to removal of support and collapse in stagnant glacier masses.« less

  1. Subglacial carbonate precipitates on central Baffin Island, Arctic Canada may constrain basal conditions for the Foxe sector of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Refsnider, K. A.

    2009-12-01

    Extensive, widespread carbonate deposits on gneissic bedrock have recently been discovered around the Barnes Ice Cap, central Baffin Island. Deposits range from conglomeratic crack-fillings ≤5 cm thick to laminated, striated films plastered on bedrock surfaces, often in the lee of obstacles. A single outcrop of these carbonates was first described by Andrews et al. (1972, Canadian Journal of Earth Sciences, 9, 233-238) and was interpreted as an early Tertiary limestone based on the presence of warm-climate palynomorphs including Liriodendron (tulip tree), Ulmus (elm), and Taxodium (cypress). However, recent fieldwork in the region has demonstrated that these carbonates are far more ubiquitous than previously thought and found on both glacially-polished bedrock surfaces and till boulders that melted out in recent decades from Laurentide ice at the base of the Barnes Ice Cap. In many cases, these carbonates exhibit the characteristic morphologies of subglacial carbonates (flutes, furrows, and striations parallel to the direction of ice flow, columnar spicules, and tufa-dam-like forms). A few deposits include angular sands, gravels, and pebbles. The nearest carbonate bedrock is Paleozoic limestone flooring Foxe Basin 130 km west of the Barnes Ice Cap summit. While subglacial carbonate deposits have been documented adjacent to retreating mountain and outlet glaciers and in areas previously covered by Pleistocene ice sheets, few localities are distant from carbonate bedrock. Thus, the carbon required for carbonate deposition in the Barnes region was either (1) derived from Paleozoic limestone and dissolved in subglacial water that was subject to long-distance transport, or (2) there was sufficient trapped atmospheric CO2 in the ice to yield alkaline basal meltwater which hydrolyzed calcium-bearing silicates in the local bedrock. Given the volume of carbonate deposited at some sites, we find the latter model unlikely. If the former model is applicable, these carbonates

  2. Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.

    2011-12-01

    Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more

  3. Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.

    2013-12-01

    Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more

  4. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    PubMed

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  5. Physiological Ecology of Microorganisms in Subglacial Lake Whillans

    PubMed Central

    Vick-Majors, Trista J.; Mitchell, Andrew C.; Achberger, Amanda M.; Christner, Brent C.; Dore, John E.; Michaud, Alexander B.; Mikucki, Jill A.; Purcell, Alicia M.; Skidmore, Mark L.; Priscu, John C.

    2016-01-01

    Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d−1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW

  6. Subglacial conditions under the Weichselian Ice Sheet (Central-WesternPoland)

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela

    2010-05-01

    The bed underlying the last Scandinavian Ice Sheet in Poland consisted of an unlithified material susceptible under appropriate subglacial conditions to active deformations under the normal and the driving stress. The thermodynamics at the ice-sediment contact zone had a significant influence for the ice movement character, especially velocity and the ice cap longitudinal profile. Clues of those paleoglaciological processes are recorded in structures and textures of subglacial sediments and the deformation structures are one of the most useful indicator for processes interpretation in basal environment The research area is placed in the Great Poland Lowland in the central-western part of Poland. Detailed investigations were carried out in several outcrops situated within the range of maximal Leszno (Brandenburger) phase extent and recessional Poznan phase (Frankfurter) of the Weichselian Ice Sheet. Those glacial events are not sufficiently dated however, it is known, that they probably took place between 20 000 and 16 000 BP in this region. The purpose of this study is to propose a model of subglacial conditions during till deposition under advancing Weichselian Ice Sheet using the lithofacies analysis as a main tool. Sedimentological analysis in each of the places of investigation was carried out by the means of a macroscopic evidence of deposits texture and structure together with the detailed identification of contact boundaries between individual lithofacies, till fabric measurements on the basis of at least 30 elongated clasts, the calculation of eigenvectors and eigenvalues and laboratory analysis of grain-size distribution using wet and dry (mechanical) sieving techniques. Results show that the fabric characteristics of subglacial tills and underlying sediments are significantly diversified. In general three types of subglacial tills were recognized - lodgement, deformation and melt-out till. Some of vertical profiles showed complexes of lithofacies, and the

  7. Landscape evolution by subglacial quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.

    2014-05-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a

  8. What sediment plumes at tide water glaciers can tell us about fjord circulation and subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.

    2013-12-01

    Marine-terminating outlet glaciers discharge most of Greenland's mass, but the subglacial transport of meltwater is not well understood. The coincident rise in both ice velocity and surface melt during the last decade points to a possible link between the amount of surface melt, glacier velocities, and discharge rates through processes including basal lubrication and/or an increase in melt at the terminus due to discharge plume enhanced entrainment of warm ocean waters. Characterizing the response of the Greenland Ice Sheet to increasing melt is limited in part by the lack of direct observation of the subglacial system. We use ground-based observations (time lapse cameras, DMI weather stations) and satellite remote sensing (MODIS) to infer the subglacial hydrological evolution of a tidewater glacier by identifying the lag between meltwater availability, inferred from warm temperatures and supraglacial lake drainage, and the appearance of a sediment plume at the terminus. The detection of sediment plumes is constrained by melange presence in the spring and decreasing solar illumination in the fall. At Rink Isbræ, West Greenland, we find the appearance of sediment plumes lagging the onset of positive temperatures from 2007-2011 by approximately 44 days, but the plumes are present as the melange clears suggesting this lag may be much shorter but is undetectable. We also observe an abundance of sediment plumes each season (11-25 individual events), which indicates supraglacial drainage events are not the sole source for all sediment plumes. These findings suggest multiple passageways exist from the surface to the subglacial system and the presence of a well-established drainage network early in the melt season. In this poster, we will discuss potential mechanisms for the episodic nature of the recorded plume events; whether they are the product of variable subglacial water supply (suggesting the presence of pulse drainages from subglacial storage basins), highly

  9. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  10. Subglacial sedimentary basin characterization of Wilkes Land, East Antarctica via applied aerogeophysical inverse methods

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gooch, B. T.; Richter, T.; Young, D. A.; Blankenship, D. D.; Aitken, A.; Siegert, M. J.

    2013-12-01

    Topography, sediment distribution and heat flux are all key boundary conditions governing the stability of the East Antarctic ice sheet (EAIS). Recent scientific scrutiny has been focused on several large, deep, interior EAIS basins including the submarine basal topography characterizing the Aurora Subglacial Basin (ASB). Numerical ice sheet models require accurate deformable sediment distribution and lithologic character constraints to estimate overall flow velocities and potential instability. To date, such estimates across the ASB have been derived from low-resolution satellite data or historic aerogeophysical surveys conducted prior to the advent of GPS. These rough basal condition estimates have led to poorly-constrained ice sheet stability models for this remote 200,000 sq km expanse of the ASB. Here we present a significantly improved quantitative model characterizing the subglacial lithology and sediment in the ASB region. The product of comprehensive ICECAP (2008-2013) aerogeophysical data processing, this sedimentary basin model details the expanse and thickness of probable Wilkes Land subglacial sedimentary deposits and density contrast boundaries indicative of distinct subglacial lithologic units. As part of the process, BEDMAP2 subglacial topographic results were improved through the additional incorporation of ice-penetrating radar data collected during ICECAP field seasons 2010-2013. Detailed potential field data pre-processing was completed as well as a comprehensive evaluation of crustal density contrasts based on the gravity power spectrum, a subsequent high pass data filter was also applied to remove longer crustal wavelengths from the gravity dataset prior to inversion. Gridded BEDMAP2+ ice and bed radar surfaces were then utilized to establish bounding density models for the 3D gravity inversion process to yield probable sedimentary basin anomalies. Gravity inversion results were iteratively evaluated against radar along-track RMS deviation and

  11. Geomicrobiology of subglacial meltwater samples from Store Landgletscher and Russell Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Cameron, K. A.; Dieser, M.; Choquette, K.; Christner, B. C.; Hagedorn, B.; Harrold, Z.; Liu, L.; Sletten, R. S.; Junge, K.

    2012-12-01

    The melting of the Greenland Ice Sheet provides direct connections between atmospheric, supraglacial and subglacial environments. The intraglacial hydrological pathways that result are believed to accommodate the microbial colonization of subglacial environments; however, little is known about the abundance, diversity and activity of microorganisms within these niches. The Greenland Ice Sheet (1.7 million square kilometers) and its associated surpaglacial and subglacial ecosystems may contribute significantly to biogeochemical cycling processes. We analyzed subglacial microbial assemblages in subglacial outflows, near Thule and Kangerlussuaq, West Greenland. The investigative approach included correlating microbial diversity, inferred function, abundance, melt water chemistry, O-18 water isotope ratios, alkalinity and sediment load. Using Illumina sequencing, bacterial small subunit ribosomal RNA hypervariable regions have been targeted and amplified from both extracted DNA and reverse transcribed rRNA. Over 3 billion sequence reads have been generated to create a comprehensive diversity profile. Total abundances ranged from 2.24E+04 to 1.58E+06 cells mL-1. In comparison, the total abundance of supraglacial early season snow samples ranged from 3.35E+02 to 2.8E+04 cells mL-1. 65 % of samples incubated with cyano ditoyl tetrazolium chloride (CTC), used to identify actively respiring cells, contained CTC-positive cells. On average, these cells represented 1.9 % of the estimated total abundance (1.86E+02 to 2.19E+03 CTC positive cells mL-1; 1.39E+03 cells mL-1 standard deviation); comparative to those measured in temperate freshwater lakes. The overarching objective of our research is to provide data that indicates the role of microbial communities, associated with ice sheets, in elemental cycling and in the release of biomass and nutrients to the surrounding marine biome.

  12. Subglacial Lake CECs: Discovery and in situ survey of a privileged research site in West Antarctica

    NASA Astrophysics Data System (ADS)

    Rivera, Andrés.; Uribe, José; Zamora, Rodrigo; Oberreuter, Jonathan

    2015-05-01

    We report the discovery and on-the-ground radar mapping of a subglacial lake in Antarctica, that we have named Lake CECs (Centro de Estudios Científicos) in honor of the institute we belong to. It is located in the central part of the West Antarctic Ice Sheet, right underneath the Institute Ice Stream and Minnesota Glacier ice divide, and has not experienced surface elevation changes during the last 10 years. The ratio between the area of the subglacial lake and that of its feeding basin is larger than those for either subglacial lakes Ellsworth or Whillans, and it has a depth comparable to that of Ellsworth and greater than that of Whillans. Its ice thickness is ˜600 m less than that over Ellsworth. The lake is very likely a system with long water residence time. The recent finding of microbial life in Lake Whillans emphasizes the potential of Subglacial Lake CECs for biological exploration.

  13. Enigmatic mounds in 'Subglacial Meltwater Corridors' on the Canadian Shield: a record of channelised, subglacial meltwater drainage during Laurentide deglaciation

    NASA Astrophysics Data System (ADS)

    Haiblen, Anna; Ward, Brent; Normandeau, Philippe; Campbell, Janet

    2017-04-01

    Esker networks have traditionally been invoked to represent the channelised subglacial drainage system in shield terrains. However, eskers are only one landform found within 'subglacial meltwater corridors' (SMCs) on the Canadian Shield. SMCs are tracts where till has been eroded, bedrock is exposed, and glaciofluvial sediments have been deposited. SMCs are regularly spaced, parallel deglacial ice-flow directions, have undulating longitudinal profiles, and cross modern drainage divides. Our lidar- and field-based mapping near Lac de Gras, Northwest Territories, west of the Keewatin Ice Divide (KID), reveals that eskers are not present in the majority of SMCs. Instead, enigmatic mounds are commonly the dominant landform type. Enigmatic mounds typically occur in groups of 20 to 200. They are commonly composed of sandy diamicton that is coarser grained and better sorted than regional till. This diamicton is occasionally draped with well-sorted, stratified glaciofluvial sediments. Some enigmatic mounds have a single highpoint (individual mounds) while others have a complex, irregular form (complex mounds). Individual mounds have an average long-axis length of 43 m and an average height of < 2 m, however, their size is highly variable: the largest mounds are 170 m long and 15 m high. Complex mounds are typically larger than individual mounds. Our morphometric analysis shows that individual mounds have a mean length-to-width ratio of 1.8. The average mound elongation direction parallels the final ice flow that affected the area. However, where meltwater- and ice-flow directions differ, mound long-axis orientations typically cluster about meltwater flow directions. We have also observed SMCs and enigmatic mounds in the South Rae region of Northwest Territories, 450 km SE of Lac de Gras. Multiple types of enigmatic mounds are present in this area: some are similar to those near Lac de Gras, some are composed of till, and some are composed of sorted and stratified sediments

  14. The role of subglacial microbes in carbon cycling and methane release in the past and present

    NASA Astrophysics Data System (ADS)

    Stibal, M.; Bech Mikkelsen, A.; Wadham, J. L.; Telling, J.; Hawkings, J.; Lis, G. P.; Lawson, E. C.; Hasan, F.; Dubnick, A.; Elberling, B.; Jacobsen, C. S.

    2012-12-01

    Subglacial environments are largely anoxic, contain organic carbon (OC) overridden by glacier ice during periods of advance, and harbour active microbial communities. This creates favourable conditions for a variety of microbial metabolisms, including methanogenesis. Yet little is known of the past and present potentials of subglacial microbes to take part in carbon cycling including methane production. Here we present data on the abundance and diversity of prokaryotic microbes, the activity of methanogenic archaea and the amount and character of OC in subglacial sediment and runoff from the Greenland Ice Sheet and compare them to those from other Arctic glaciers. The investigated Greenland subglacial sediment was of Holocene-aged soil origin and contained less bioavailable OC compared to subglacial sediments of lacustrine origin. The total microbial abundance and diversity was relatively low and the community was dominated by Proteobacteria. The identified clones were related to bacteria with both aerobic and anaerobic metabolisms, indicating the presence of both oxic and anoxic conditions in the sediments. Significant numbers of methanogens (up to 7×104 cells g-1) were detected and clones of Methanomicrobiales were identified in the clone library. Long lag periods (up to >200 days) were observed before significant methane concentrations (~0.2 pmol g-1 day-1 at 1C) were measured in long-term incubation experiments. These rates were lower than those measured in subglacial sediments containing more bioavailable OC. We use the measured rates of methanogenesis to estimate the potential for methane production beneath the Laurentide/Inuitian/Cordilleran and Fennoscandian Ice Sheets during a typical 85 ka Quaternary glacial/interglacial cycle. We predict that contrasting rates of methane production are likely to occur beneath glaciers that overran different types of substrate. Methane production from overridden soils such as those in Greenland is likely to be lower than

  15. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    NASA Astrophysics Data System (ADS)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial

  16. Dissolution of calcite in glacial water; evidence of inhibition and consequences for subglacial speleogenesis.

    NASA Astrophysics Data System (ADS)

    Lauritzen, S.-E.

    2012-04-01

    Subglacial speleogenesis (i.e. formation of caves by ice-contact underneath or along glaciers) is an important speleogenetic modus that have taken place in many previously glaciated areas. It is however controversial how efficient this process is when compared to speleogenesis under non-glacial conditions: Can caves be formed from 'scratch' - from a pristine, microscopic fracture (speleogenesis sensu stricto) - or is this process more intensive under non-glacial conditions, so that ice-contact water can only widen pre-existing conduits (speleogenesis sensu lato)? Subglacial waters are low in CO2 and close to zero degrees. A critical parameter for transforming a fracture into a cave is the breakthrough time, tB, which is the time from commencement of flow until undersaturated water can flow freely through the full length of the flowpath. The breathrough effect (i.e. when radial widening accelerates) is dependent on the switching concentration, Cs, which drops dramatically with low CO2 in the system. Apart from the initial aperture and length of the percolation paths through the rock mass, two additional factors are important for tB: 1) the concentration of glacial rock flour and 2) its ability to interfer with the carbonate chemistry. A series of thermostated dissolution experiments using marble and various additions of authentic glacier silt and crushed metamorphic rocks demonstrate and support theoretical considerations that subglacial speleogenesis in low CO2 waters is slower than first anticipated. The sensu stricto mechanism is also severely hampered by the clogging effect of glacial silt, whilst the sensu lato mechanism is sluggish because corrosion of the large specific area of silt particles consumes aggressiveness thus slowing first-order rates when the water comes in contact with the karst surface. Also, for the same reason, Cs may be exceeded before the water enters karst, so that breakthrough may be totally suppressed. Interglacial waters seem > 50 times

  17. Crushing of Subglacial Lake Sediment as a Source of Bio-utilisable Gases.

    NASA Astrophysics Data System (ADS)

    Gill Olivas, B.; Telling, J.; Michaud, A. B.; Skidmore, M. L.; Priscu, J. C.; Tranter, M.

    2017-12-01

    Recent research has shown microbial ecosystems exist under glaciers and ice sheets. The sources of energy to support these ecosystems are still not fully understood, particularly beneath the Antarctic Ice Sheet, where direct access to the atmosphere and in-washed organic matter and oxidising agents does not occur. Hence, sub-ice sheet energy sources are restricted to those in subglacial environments, except for ice-margin environments. This study focuses on sediments from Subglacial Lake Whillans (SLW), the first subglacial lake to be directly and cleanly sampled. Sediment from three depths in a shallow core extracted from SLW were used to assess the possible energy contributions from mechanochemical reactions to this subglacial ecosystem. To do this, the samples were crushed under an anoxic atmosphere using a ball mill. The sediments were then transferred into serum bottles under anoxic conditions. They were wetted and the headspace gas was subsequently sampled and analysed during a 40 day incubation. Results show the release of substantial amounts of hydrogen, which could potentially serve as an abiotic source of energy to microbes, in particular, methanogenic archaea. Significant amounts of short chain hydrocarbons (including methane and ethylene), possibly from the reactivation of ancient organic carbon, were also observed. Crushed samples showed a significant concentration of hydrogen peroxide produced on contact with water, as well as significant amounts of Si radicals, showing comminution of these sediments unlocks the potential for a wide range of redox conditions and reactions to develop within glacially eroded sediment under ice. This in turn provides a previously overlooked source of nutrients and energy for microbes to utilise.

  18. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays.

    PubMed

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-03-07

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots.

  19. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays

    PubMed Central

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-01-01

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots. PMID:28266602

  20. Geochemical processes leading to the precipitation of subglacial carbonate crusts at Bossons glacier, Mont Blanc Massif (French Alps)

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Buoncristiani, Jean-Francois; Vennin, Emmanuelle; Pellenard, Pierre; Cocquerez, Theophile; Mugnier, Jean L.; Gérard, Emmanuelle

    2017-09-01

    Cold climate carbonates can be used as paleoclimatic proxies. The mineralogy and isotopic composition of subglacially precipitated carbonate crusts provide insights into the subglacial conditions and processes occurring at the meltwater-basement rock interface of glaciers. This study documents such crusts discovered on the lee side of a gneissic roche moutonnée at the terminus of the Bossons glacier in the Mont Blanc Massif area (France). The geological context and mineralogical investigations suggest that the Ca used for the precipitation of large crystals of radial fibrous sparite observed in these crusts originated from subglacial chemical weathering of Ca-bearing minerals of the local bedrock (plagioclase and amphibole). Measurements of the carbon and oxygen isotope compositions in the crusts indicate precipitation at, or near to, equilibrium with the basal meltwater under open system conditions during refreezing processes. The homogeneous and low carbonate δ13C values (ca. -11.3‰) imply a large contribution of soil organic carbon to the Bossons subglacial meltwater carbon reservoir at the time of deposition. In addition, organic remains trapped within the subglacially precipitated carbonate crusts give an age of deposition around 6500 years cal BP suggesting that the Mid-Holocene climatic and pedological optima are archived in the Bossons glacier carbonate crusts.

  1. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models

    PubMed Central

    Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921

  2. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.

    PubMed

    Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.

  3. Observations and modelling of subglacial discharge and heat transport in Godthåbsfjord (Greenland, 64 °N)

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2017-04-01

    Subglacial discharge from tidewater outlet glaciers forms convective bouyant freshwater plumes ascending close the glacier face, and entrainment of ambient bottom water increases the salinity of the water until the plume reaches its level of neutral buoyancy at sub-surface levels or reaches the surface. Relatively warm bottom water masses characterize many fjords around Greenland and therefore entrainment would also increase the temperature in the plumes and, thereby, impact the heat transport in the fjords. However, relatively few oceanographic measurements have been made in or near plumes from subglacial discharge and, therefore, the potential for subglacial discharge for increasing heat transport towards the tidewater outlet glaciers are poorly understood. We present the first direct hydrographic measurements in a plume from subglacial discharge in Godthåbsfjord (located on the western coast of Greenland) where a XCTD was launched from a helicopter directly into the plume. Measurements of the surface salinity showed that the plume only contained 7% of freshwater at the surface, implying a large entrainment with a mixing ratio of 1:13 between outflowing meltwater and saline fjord water. These observations are analyzed together with seasonal observations of ocean heat transport towards the tidewater outlet glaciers in Godthåbsfjord and we show that subglacial discharge only had modest effects on the overall heat budget in front of the glacier. These results were supported from a high-resolution three-dimensional model of Godthåbsfjord. The model explicitly considered subglacial freshwater discharge from three tidewater outlet glaciers where entrainment of bottom water was taken into account. Model results showed that subglacial discharge only affected the fjord circulation relatively close ( 10 km) to the glaciers. Thus, the main effect on heat transport was due to the freshwater discharge itself whereas the subsurface discharge and associated entrainment only

  4. Modeling subglacial sediment discharge in 1-dimension: comparison with measurments and implications for glacial retreat

    NASA Astrophysics Data System (ADS)

    Delaney, I. A.; Werder, M.; Farinotti, D.

    2017-12-01

    In recent decades increased sedimentation rates have been observed in reservoirs downstream of some retreating glaciers. This material either originates from slopes recently exposed by glacier retreat and no longer stabilized by ice, or subglacially, where pressurized melt water transports sediments from the glacier bed. Some evidence suggests that recently exposed periglacial areas can stablize relatively quickly and in some catchments provides a smaller precentage of the total sediment compared to the subglacial environment. As a result, in order predict and forecast sediment yield from glaciated catchments as glaciers thin and thier hydrology evolves, a subglacial sediment transport model must be implemented. Here a simple 1-dimensional glacio-hydraulic model uses the Darcy-Weissbach relationship to determine shear-stress of presurized water on the glacier bed. This is coupled with a sediment transport relationship to determine quantity of discharged material from the glacier snout. Several tuning factors allow calibration and the model to reproduces processes known to occur subglacially, including seasonal evolution of sediment expulsion and deposition of sediment on adverse slopes of overdeepenings. To asses the model's application to real glaciers, sediment flux data has been collected from Gornergletscher, Aletschgletscher and Griesgletscher in the Swiss Alps over time-scales of up to decades. By calibrating to these data, the skill of the model in recreating sediment trends and volumes is assesed. The outputs capture annual erosion quanities relatively well, however, challenges exist in capturing inter-annual variations in sediment discharge. Many of the model's short comings relate to caputuring the spatial distribution of sediment throughout the glacier bed, which is particularing difficult in 1-dimension. However, this work suggests that a simple models can be used to predict subglacial sediment transport with reasonable ability. Additionally, further

  5. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data

  6. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities

    NASA Astrophysics Data System (ADS)

    How, Penelope; Benn, Douglas I.; Hulton, Nicholas R. J.; Hubbard, Bryn; Luckman, Adrian; Sevestre, Heïdi; van Pelt, Ward J. J.; Lindbäck, Katrin; Kohler, Jack; Boot, Wim

    2017-11-01

    Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.

  7. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line.

    PubMed

    Drews, R; Pattyn, F; Hewitt, I J; Ng, F S L; Berger, S; Matsuoka, K; Helm, V; Bergeot, N; Favier, L; Neckel, N

    2017-05-09

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.

  8. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line

    PubMed Central

    Drews, R.; Pattyn, F.; Hewitt, I. J.; Ng, F. S. L.; Berger, S.; Matsuoka, K.; Helm, V.; Bergeot, N.; Favier, L.; Neckel, N.

    2017-01-01

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability. PMID:28485400

  9. The Subglacial Drainage Patterns of Devon Island, Canada

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.; Osinski, G. R.

    2016-12-01

    Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.

  10. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  11. Investigating the hydrological origins of Blood Falls - geomicrobiological insights into a briny subglacial Antarctic aquifer

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Tulaczyk, S. M.; Purcell, A. M.; Dachwald, B.; Lyons, W. B.; Welch, K. A.; Auken, E.; Dugan, H. A.; Walter, J. I.; Pettit, E. C.; Doran, P. T.; Virginia, R. A.; Schamper, C.; Foley, N.; Feldmann, M.; Espe, C.; Ghosh, D.; Francke, G.

    2015-12-01

    Subglacial waters tend to accumulate solutes from extensive rock-water interactions, which, when released to the surface, can provide nutrients to surface ecosystems providing a 'hot spot' for microbial communities. Blood Falls, an iron-rich, saline feature at the terminus of Taylor Glacier in the McMurdo Dry Valleys, Antarctica is a well-studied subglacial discharge. Here we present an overview of geophysical surveys, thermomechanical drilling exploration and geomicrobiological analyses of the Blood Falls system. A helicopter-borne transient electromagnetic system (SkyTEM) flown over the Taylor Glacier revealed a surprisingly extensive subglacial aquifer and indicates that Blood Falls may be the only surface manifestation of this extensive briny groundwater. Ground-based temperature sensing and GPR data combined with the helicopter-borne TEM data enabled targeted drilling into the englacial conduit that delivers brine to the surface. During the 2014-15 austral summer field season, we used a novel ice-melting drill (the IceMole) to collect englacial brine for geomicrobiological analyses. Results from previously collected outflow and more recent samples indicate that the brine harbors a metabolically active microbial community that persists, despite cold, dark isolation. Isotope geochemistry and molecular analysis of functional genes from BF suggested that a catalytic or 'cryptic' sulfur cycle was linked to iron reduction. Recent metagenomic analysis confirms the presence of numerous genes involved in oxidative and reductive sulfur transformations. Metagenomic and metabolic activity data also indicate that subglacial dark CO2 fixation occurs via various pathways. Genes encoding key steps in CO2 fixation pathways including the Calvin Benson Basham and Wood Ljungdahl pathway were present and brine samples showed measureable uptake of 14C-labeled bicarbonate. These results support the notion that, like the deep subsurface, subglacial environments are chemosynthetic

  12. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major

  13. Problems and advances in the use of magmatic degassing during subglacial eruptions to reconstruct palaeo-ice thicknesses

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Owen, Jacqueline; Denton, Joanna S.

    2010-05-01

    The degassing of magmatic volatiles during eruptions beneath ice sheets and glaciers, as recorded by the dissolved volatile content quenched in volcanic rocks, could provide powerful new constraints on former ice thicknesses in volcanic areas. As volcanic rocks are readily dateable using radiometric methods, subglacial volcanoes may therefore provide crucial information on Quaternary palaeo-environmental fluctuations. The use of a degassing-based reconstruction technique would be particularly valuable when studying deposits that were erupted entirely subglacially and therefore lack other diagnostic indicators of ice thickness such as subglacial-subaerial transitions. In order for magma degassing to potentially record palaeo-ice thicknesses a number of factors need to be considered[1,2], which include whether non-equilibrium degassing may have occurred, whether samples have undergone post-eruption hydration, are strongly compositionally heterogeneous, or have moved post-quenching, whether the quenching pressure reflected loading by rock, ice or meltwater, and whether pressure may have deviated significantly from glaciostatic due to meltwater drainage. Degassing during individual eruptions may be considerably more complex than anticipated[2], making interpretation of results challenging. Examples from both rhyolitic and basaltic eruptions in Iceland and elsewhere will be used to illustrate these important factors. The analytical techniques used to measure volatile concentrations need to improve on the common practise of using infra-red spectroscopy alone to determine H2O contents in one part of a sample. Multiple analyses are required to quantify the degree of heterogeneity within samples and techniques such as manometry, ion microprobe or electron microprobe are required to analyse other species (CO2, S, F, Cl). CO2 is particularly important as only trace amounts, beneath the detection limits of commonly-used analytical techniques (30 ppm), strongly affect the

  14. Hydraulic Roughness and Flow Resistance in a Subglacial Conduit

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liu, X.; Mankoff, K. D.

    2017-12-01

    The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.

  15. Microscale evidence of liquefaction and its potential triggers during soft-bed deformation within subglacial traction tills

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys R.; Evans, David J. A.; van der Meer, Jaap J. M.; Lee, Jonathan R.

    2018-02-01

    Published conceptual models argue that much of the forward motion of modern and ancient glaciers is accommodated by deformation of soft-sediments within the underlying bed. At a microscale this deformation results in the development of a range of ductile and brittle structures in water-saturated sediments as they accommodate the stresses being applied by the overriding glacier. Detailed micromorphological studies of subglacial traction tills reveal that these polydeformed sediments may also contain evidence of having undergone repeated phases of liquefaction followed by solid-state shear deformation. This spatially and temporally restricted liquefaction of subglacial traction tills lowers the shear strength of the sediment and promotes the formation of "transient mobile zones" within the bed, which accommodate the shear imposed by the overriding ice. This process of soft-bed sliding, alternating with bed deformation, facilitates glacier movement by way of 'stick-slip' events. The various controls on the slip events have previously been identified as: (i) the introduction of pressurised meltwater into the bed, a process limited by the porosity and permeability of the till; and (ii) pressurisation of porewater as a result of subglacial deformation; to which we include (iii) episodic liquefaction of water-saturated subglacial traction tills in response to glacier seismic activity (icequakes), which are increasingly being recognized as significant processes in modern glaciers and ice sheets. As liquefaction operates only in materials already at very low values of effective stress, its process-form signatures are likely indicative of glacier sub-marginal tills.

  16. Large basal crevasses as a proxy for historic subglacial flooding events on Byrd Glacier

    NASA Astrophysics Data System (ADS)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Hamilton, G. S.

    2016-12-01

    Active networks of subglacial lakes have recently been found beneath the Antarctic Ice Sheet. On Byrd Glacier, East Antarctica, a subglacial lake outburst event in 2005/07 led to a short-lived glacier acceleration. Due to the sparse record of historical observations, it is unclear how frequently these outburst events occur, and the role they play in the dynamics of Antarctic outlet glaciers. Crevasses form when the tensile stress is greater than the fracture strength of ice. High extensional strain rates often exist at the grounding line where grounded ice begins to float. We hypothesize that the formation of anomalously large basal crevasses coincides with the higher strain rates observed during flooding events. In this study, we use the location of large basal crevasses ( 330 m tall), located along the floating portion of the Byrd Glacier flowline, to create a timeline of past flooding events. We first model crevasse formation to demonstrate that basal crevasses likely form at the grounding line. To do this, we use linear elastic fracture mechanics (LEFM) to estimate crevasse heights based on strain rates during known flood (300-350 m) and non-flood (100-150 m) time periods at Byrd Glacier's grounding line. Basal crevasse locations and heights are determined directly from radar echograms (2011/12 CReSIS radar data and 1974/75 SPRI NSF TUD radar data) along the Byrd Glacier flowline. We also use the locations of large surface depressions to infer the presence of basal crevasses. When crevasses penetrate a threshold proportion of the ice column, the overlying ice is no longer supported and a surface depression forms. We identify 22 large basal crevasses through these combined methods; the oldest crevasse likely formed 600 years ago. This research provides a framework of Antarctic subglacial flooding frequency and the effects that subglacial water drainage events have on outlet glacier dynamics.

  17. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Key, K.

    2017-12-01

    Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here we study the feasibility of passive and active source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. Specifically, we look at the passive magnetotelluric method and active-source EM methods that use a large loop transmitter and receivers that measure either frequency-domain or transient soundings. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques such as ground-penetrating radar and active seismic techniques, EM data have the potential to provide new insights on the interaction between ice, rock, and water at critical ice-sheet boundaries.

  18. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate.

    PubMed

    Hotaling, Scott; Hood, Eran; Hamilton, Trinity L

    2017-08-01

    Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2004-12-01

    The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.

  20. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  1. A sediment budget from a glaciated catchment: reconciling subglacial and periglacial erosion on short timescales

    NASA Astrophysics Data System (ADS)

    Delaney, Ian; Gindraux, Saskia; Weidmann, Yvo; Bauder, Andreas

    2017-04-01

    Glaciated catchments are known to expel great amounts of sediment, particularly during periods of climatic perturbation. Sediment in these catchments either originates subglacially, where it is eroded by pressurized water below the glacier, or from periglacial areas, which are commonly comprised of easily erodible, unconsolidated material no longer buttressed and held in place by ice. To better forecast sediment dynamics and erosion rates in to the future, contributions of subglacial and periglacial sediment must be quantified, and the processes controlling erosion in these respective sources described. To determine the relative contributions of these sources, we examine the Griesgletscher catchment in the Swiss Alps. Its rather simplistic geometry, as well as, the presence of a proglacial reservoir that serves as a sediment trap, provides an unusually constrained environment to directly measure sediment sources and sinks in the catchment. Subtraction of three digital elevation models created from structure-from-motion and photogrammetric techniques over a one year period, from October 2015 to October 2016, were used to measured sediment flux from the proglacial area. Furthermore, comparison of bathymetries collected from the proglacial reservoir in fall of 2015 and 2016 determined total sediment flux from the entire catchment over this 10 km2time period. Data from a turbidity meter, installed below the reservoir outflow, suggest that negligible amounts of sediment leave the reservoir. Thus comparison of reservoir bathymetry and sediment fluxes from the proglacial area give estimates of the relative contribution of proglacial and subglacial sediment erosion to total catchment sedimentation. Analysis of this data suggest that while the proglacial area experiences a greater erosion rate, it is likely more sediment originates subglacially. As proglacial areas are expected to grow in area and partially stabilize, and glacial areas are predicted to shrink and possibly

  2. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    NASA Astrophysics Data System (ADS)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  3. Exploration of Antarctic Subglacial environments: a challenge for analytical chemistry

    NASA Astrophysics Data System (ADS)

    Traversi, R.; Becagli, S.; Castellano, E.; Ghedini, C.; Marino, F.; Rugi, F.; Severi, M.; Udisti, R.

    2009-12-01

    The large number of subglacial lakes detected in the Dome C area in East Antarctica suggests that this region may be a valuable source of paleo-records essential for understanding the evolution of the Antarctic ice cap and climate changes in the last several millions years. In the framework of the Project on “Exploration and characterization of Concordia Lake, Antarctica”, supported by Italian Program for Antarctic Research (PNRA), a glaciological investigation of the Dome C “Lake District” are planned. Indeed, the glacio-chemical characterisation of the ice column over subglacial lakes will allow to evaluate the fluxes of major and trace chemical species along the ice column and in the accreted ice and, consequently, the availability of nutrients and oligo-elements for possible biological activity in the lake water and sediments. Melting and freezing at the base of the ice sheet should be able to deliver carbon and salts to the lake, as observed for the Vostok subglacial lake, which are thought to be able to support a low concentration of micro-organisms for extended periods of time. Thus, this investigation represents the first step for exploring the subglacial environments including sampling and analysis of accreted ice, lake water and sediments. In order to perform reliable analytical measurements, especially of trace chemical species, clean sub-sampling and analytical techniques are required. For this purpose, the techniques already used by the CHIMPAC laboratory (Florence University) in the framework of international Antarctic drilling Projects (EPICA - European Project for Ice Coring in Antarctica, TALDICE - TALos Dome ICE core, ANDRILL MIS - ANTarctic DRILLing McMurdo Ice Shelf) were optimised and new techniques were developed to ensure a safe sample handling. CHIMPAC laboratory has been involved since several years in the study of Antarctic continent, primarily focused on understanding the bio-geo-chemical cycles of chemical markers and the

  4. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Subglacial hydrology is considered a key control of ice sheet dynamics. Here we show that basal freeze-on is a process that can terminate basal hydrologic networks both in the interior of East Antarctica and at the margins of the Greenland Ice Sheet. Basal freeze-on modifies the ice thickness, ice structure, and ice rheology and therefore must be considered in developing accurate understanding of how hydrology interacts with ice dynamics. In East Antarctica, the freeze-on process follows well-defined hydrologic networks within Gamburtsev Mountain valleys. The steep mountain topography strongly controls the routing of the subglacial water. Ice surface slope drives the water up the mountain valleys and freeze-on occurs at the valley heads. Freeze-on ice is characterized by distinct basal radar reflectors that emerge from the hydrologic network. Evidence that these spatially coherent reflectors demark accreted ice is the upward deflection of the overlying internal layers accompanied by thickening of base of the ice sheet. Individual accretion bodies can be 25 km wide across flow, 100 km along flow with average thicknesses of ~500m although the maximum thickness is 1100m. Regional accumulation rates near the accretion sites average 4cm/yr with low ice velocity (1.5 m/yr). The volume of the ice enclosed by the accretion ice reflectors is 45-1064 km3. The accretion occurs beneath 2200-3000m thick ice and has been persistent for at least 50,000yr. Other basal reflectors in northern Greenland appear in radar from NASA's Icebridge mission and CRESIS. To identify freeze-on ice, we use specific criteria: reflectors must originate from the bed, must be spatially continuous from line to line and the meteoric stratigraphy is deflected upward. The absence of coincident gravity anomalies indicates these reflectors define distinct packages of ice rather than frozen sediment or off-nadir subglacial topography. In the Petermann Glacier Catchment, one of the largest in northern

  5. Photogrammetric recognition of subglacial drainage channels during glacier lake outburst events

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Koschitzki, Robert

    2016-04-01

    In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs): Lakes that have been dammed by a glacier spontaneously start to drain through a subglacial channel underneath the glacier due to their outweighing hydrostatic pressure. In a short period of time, the lake water drains under the glacier and causes floods in downstream valleys. In many cases the latter become hazardous for people and their property. Due to glacier movement, the tunnel will soon collapse, and the glacier lake refills, thus starting a new GLOF cycle. The mechanisms ruling GLOF events are yet still not fully understood by glaciologists. Thus, there is a demand for data and measurement values that can help to understand and model the phenomena. In view of the above, we will show how photogrammetric image sequence analysis can be used to collect data which allows for drawing conclusions about the location and development of a subglacial channel. The work is a follow-up on earlier work on a photogrammetric GLOF early warning system (Mulsow et. al., 2013). For the purpose of detecting the subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia glacier (Northern Patagonian ice field) where it dams the lake Lago Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying LSM-based tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network

  6. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  7. Volcanic rocks and subglacial volcanism beneath the West Antarctic Ice Sheet in the West Antarctic Rift System, (WAIS) from aeromagnetic and radar ice sounding - Thiel Subglacial Volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2012-12-01

    Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the

  8. Grounding Zones, Subglacial Lakes, and Dynamics of an Antarctic Ice Stream: The WISSARD Glaciological Experiment

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Schwartz, S. Y.; Fisher, A. T.; Powell, R. D.; Fricker, H. A.; Anandakrishnan, S.; Horgan, H. J.; Scherer, R. P.; Walter, J. I.; Siegfried, M. R.; Mikucki, J.; Christianson, K.; Beem, L.; Mankoff, K. D.; Carter, S. P.; Hodson, T. O.; Marsh, O.; Barcheck, C. G.; Branecky, C.; Neuhaus, S.; Jacobel, R. W.

    2015-12-01

    Interactions of West Antarctic ice streams with meltwater at their beds, and with seawater at their grounding lines, are widely considered to be the primary drivers of ice stream flow variability on different timescales. Understanding of processes controlling ice flow variability is needed to build quantitative models of the Antarctic Ice Sheet that can be used to help predict its future behavior and to reconstruct its past evolution. The ice plain of Whillans Ice Stream provides a natural glaciological laboratory for investigations of Antarctic ice flow dynamics because of its highly variable flow rate modulated by tidal processes and fill-drain cycles of subglacial lakes. Moreover, this part of Antarctica has one of the longest time series of glaciological observations, which can be used to put recently acquired datasets in a multi-decadal context. Since 2007 Whillans Ice Stream has been the focus of a regional glaciological experiment, which included surface GPS and passive-source seismic sensors, radar and seismic imaging of subglacial properties, as well as deep borehole geophysical sensors. This experiment was possible thanks to the NSF-funded multidisciplinary WISSARD project (Whillans Ice Stream Subglacial Access Research Drilling). Here we will review the datasets collected during the WISSARD glaciological experiment and report on selected results pertaining to interactions of this ice stream with water at its bed and its grounding line.

  9. Geological controls on bedrock topography and ice sheet dynamics in the Wilkes Subglacial Basin sector of East Antarctica

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; Armadillo, Egidio; Young, Duncan; Blankenship, Donald; Jordan, Tom; Siegert, Martin

    2017-04-01

    The Wilkes Subglacial Basin extends for 1,400 km into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet. The deep northern Wilkes Subglacial Basin underlies the catchments of the Matusevich, Cook, Ninnis and Mertz Glaciers, which are largely marine-based and hence potentially particularly sensitive to past and also predicted future ocean and climate warming. Sediment provenance studies suggest that the glaciers flowing in this region may have retreated significantly compared to their modern configuration, as recently as the warm mid-Pliocene interval, potentially contributing several m to global sea level rise (Cook et al.,Nature Geosci., 2013). Here we combine airborne radar, aeromagnetic and airborne gravity observations collected during the international WISE-ISODYN and ICECAP aerogeophysical campaigns with vintage datasets to help unveil subglacial geology and deeper crustal architecture and to assess its influence on bedrock topography and ice sheet dynamics in the northern Wilkes Subglacial Basin. Aeromagnetic images reveal that the Matusevich Glacier is underlain by a ca 480 Ma thrust fault system (the Exiles Thrust), which has also been inferred to have been reactivated in response to intraplate Cenozoic strike-slip faulting. Further to the west, the linear Eastern Basins are controlled by the Prince Albert Fault System. The fault system continues to the south, where it provides structural controls for both the Priestley and Reeves Glaciers. The inland Central Basins continue in the coastal area underlying the fast flowing Cook ice streams, implying that potential ocean-induced changes could propagate further into the interior of the ice sheet. We propose based on an analogy with the Rennick Graben that these deep subglacial basins are controlled by the underlying horst and graben crustal architecture. Given the interpreted subglacial distribution of Beacon sediments and Ferrar

  10. Intraplate Earthquakes and Deformation within the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Wiens, D.; Nyblade, A.

    2017-12-01

    The apparent lack of tectonic seismicity within Antarctica has long been discussed. Explanations have ranged from a lack of intraplate stress due to the surrounding spreading ridges and low absolute plate velocity (Sykes, 1978), to the weight of ice sheets increasing the vertical normal stress (Johnston, 1987). The 26 station GAMSEIS/AGAP array deployed in East Antarctica from late 2008 to early 2010 provides the first opportunity to study the intraplate seismicity of the Antarctic interior using regional data. Here we report 27 intraplate tectonic earthquakes that occurred during 2009. Depth determination together with their corresponding uncertainty estimates, show that most events originate in the shallow to middle crust, indicating a tectonic and not a cryoseismic origin. The earthquakes are primarily located beneath linear alignments of basins adjacent to the Gamburtsev Subglacial Mountains (GSM) that have been denoted as the East Antarctic rift system (Ferraccioli et al, 2011). The geophysical properties of the `rift' system contrast sharply with those of the GSM and Vostok Subglacial Highlands on either side. Crustal thickness, seismic velocity, and gravity anomalies all indicate large lateral variation in lithospheric properties. We propose the events outline an ancient continental rift, a terrain boundary feature, or a combination of the two where rifting exploited pre-existing weakness. It is natural to draw parallels between East Antarctica and the St. Lawrence depression where rifting and a collisional suture focus intraplate earthquakes within a craton (Schulte and Mooney, 2005). We quantify the East Antarctic seismicity by developing a frequency-magnitude relation, constraining the lower magnitudes with the 2009 results and the larger magnitudes with 1982-2012 teleseismic seismicity. East Antarctica and the Canadian Shield show statistically indistinguishable b-values (near 1) and seismicity rates as expressed as the number of events with mb > 4 per

  11. Life detection strategy for Jovian's icy moons: Lessons from subglacial Lake Vostok exploration

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey; Alekhina, Irina; Marie, Dominique; Petit, Jean-Robert

    2010-05-01

    The objective was to estimate the microbial content of accretion ice originating from the subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment. The DNA study constrained by Ancient DNA research criteria was used as a main approach. The flow cytometry was implemented in cell enumerating. As a result, both approaches showed that the accretion ice contains the very low unevenly distributed biomass indicating that the water body should also be hosting a highly sparse life. Up to now, the only accretion ice featured by mica-clay sediments presence allowed the recovery a pair of bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and one more unclassified phylotype both passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice with no sediments presence and near detection limit gas content gave no reliable signals. Thus, the results obtained testify that the search for life in the Lake Vostok is constrained by a high chance of forward-contamination. The subglacial Lake Vostok seems to represent the only extremely clean giant aquatic system on the Earth providing a unique test area for searching for life on icy worlds. The life detection strategy for (sub)glacial environments elsewhere (e.g., Jovian's Europa) should be based on stringent decontamination procedures in clean-room facilities, establishment of on-site contaminant library, implementation of appropriate methods to reach detection level for signal as low as possible, verification of findings through ecological settings of a given environment and repetition at an independent laboratory within the specialized laboratory network.

  12. Development and Antarctic Testing of a Maneuverable Probe for Clean In-Situ Analysis and Sampling of Subsurface Ice and Subglacial Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Francke, G.; Dachwald, B.; Kowalski, J.; Digel, I.; Tulaczyk, S. M.; Mikucki, J.; Feldmann, M.; Espe, C.; Schöngarth, S.; Hiecker, S.; Blandfort, D.; Schüller, K.; Plescher, E.

    2016-12-01

    There is significant interest in sampling subglacial environments for geochemical and microbiological studies, but those environments are difficult to access. Such environments exist not only on Earth but are also expected beneath the icy crusts of some outer solar system bodies, like the Jovian moon Europa and the Saturnian moon Enceladus. Existing ice drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The "IceMole" is a maneuverable subsurface ice probe for clean in-situ analysis and sampling of glacial ice and subglacial materials. The design is based on combining melting and mechanical propulsion, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. It can change melting direction by differential heating of the melting head and optional side wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland, where they demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. Hence, the IceMole allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion. In December 2014, it was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where a subglacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular

  13. Seismic Structure of the Antarctic Upper Mantle and Transition Zone Unearthed by Full Waveform Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending

  14. In-Situ Observations of a Subglacial Outflow Plume in a Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Mankoff, K. D.; Straneo, F.; Singh, H.; Das, S. B.

    2014-12-01

    We present oceanographic observations collected in and immediately outside of a buoyant, fresh, sediment-laden subglacial outflow plume rising up the marine-terminating front of Sarqardleq Glacier, Greenland (68.9 N, 50.4 W). Subglacial outflow plumes, associated with the discharge at depth of upstream glacial surface melt, entrain the relatively warm fjord waters and are correlated with enhanced submarine melt and increased calving. Few in-situ observations exist due to the challenges of making measurements at the calving front of glaciers. Our data were collected using a small boat, a helicopter, and a JetYak (a remote-controlled jet-ski-powered kayak). Temperature and salinity profiles in, around, and far from the plume are used to described its oceanographic properties, spatial extent, and temporal variability. This plume rises vertically up the ice front expanding laterally and away from the ice, over-shoots its stable isopycnal and reaches the surface. Its surface expression is identified by colder, saltier, sediment-laden water flowing at ~5 m/s away from the ice face. Within ~300 m from the ice it submerges as it seeks buoyant stability.

  15. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  16. Thermo-Mechanical Modeling of a Glacier-Permafrost System in Spitsbergen, Implications for Subglacial Hydrology

    NASA Astrophysics Data System (ADS)

    Roux, N.; Grenier, C.; Marlin, C.; Delangle, E.; Saintenoy, A.; Friedt, J.-M.; Griselin, M.

    2012-04-01

    To study the hydro-glaciological response of glaciers impacted by recent climate change, the Austre Lovenbreen polar glacierized watershed (10 km2 located in West Spitsbergen, 79°N) was monitored. Field surveys show winter water discharges causing large icings. A 2D modeling approach along the main axis of the system is developed to study the thermal evolution of the glacier-bed system. Two codes are chained (cf. Pimentel et al. (2010) for the Thermo-Mechanical evolution of the glacier and Cast3M for the Thermal evolution of the substrate - www-cast3m.cea.fr). Transient reconstructions confirm radar study conclusions showing that the glacier is polythermal with a cold based terminus. Moreover, its rapid retreat (ca. 18 m.a-1) should lead to a cold glacier within decades to a century. Simulations further show that permafrost development in the substrate precedes glacier retreat (thin glacier tongue with -5°C MAAT at Ny Alesund) while in the mountainous part, a somewhat stable glacier position allowed permafrost to develop deeper over longer times. Prospective simulations of permafrost development show that the unfrozen soil extension below the glacier will progressively reduce probably causing the disappearance or a strong reduction of winter discharges within the next century. Further experimental and modeling studies are contemplated to understand the major processes controlling subglacial permafrost development, winter flows as well as their future evolution.

  17. Clast-fabric development in a shearing granular material: Implications for subglacial till and fault gouge

    USGS Publications Warehouse

    Hooyer, T.S.; Iverson, N.R.

    2000-01-01

    Elongate clasts in subglacial till and in fault gouge align during shearing, but the relation between clast-fabric strength and cumulative shear strain for such materials is effectively unknown. This relation was explored in experiments with a large ring-shear device in which a till and a viscous putty that contained isolated clasts were sheared to high strains. As expected, rotation of clasts in the putty is closely approximated by the theory of G.B. Jeffrey, who derived the orbits of rigid ellipsoids in a slowly shearing fluid. Clast rotation in the till, however, is strikingly different. Rather than orbiting through the shear plane as predicted by Jeffery, most clasts rotate into the shear plane and remain there, resulting in strong fabrics regardless of the aspect ratios and initial orientations of clasts. This divergent behavior is likely due to slip of the till matrix along the surfaces of clasts, which is a natural expectation in a granular material but violates the no-slip condition of Jeffery's model. These results do not support the widespread belief that subglacial till deformation results in weak clast fabrics. Thus, many tills with weak fabrics thought to have been sheared subglacially to high strains, like many basal tills of the Laurentide Ice Sheet, may have been sheared only slightly with little effect on either ice-sheet dynamics or sediment transport. In addition, these results indicate that in simple shear the rotation of clasts in till and in fault gouge is best analyzed with the model of A. March, who treated inclusions as passive markers.

  18. Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.

    2018-07-01

    In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.

  19. Isolation and preliminary characterization of aerobic heterotrophic bacteria isolated from sub-glacial Antarctic water samples

    NASA Astrophysics Data System (ADS)

    Palma-Alvarez, R.; Lanoil, B. D.

    2002-05-01

    Recently, evidence has been accumulating supporting the presence of biogeochemically active microbial communities in cold, dark, and isolated subglacial environments. These environments are important sites of rock weathering, provide insight into global biogeochemistry during glacial periods, and are potential analogues for ancient Snowball Earth events and the ice-covered oceans of the Jovian moon, Europa. However, the extent of microbial influence on subglacial geochemistry is unclear. As part of an ongoing project to address the extent of that influence, we isolated aerobic heterotrophic bacteria from sediment-laden water from beneath Ice Stream C, a fast moving region of the Western Antarctic Ice Sheet (WAIS). Plates of a standard environmental media (R2A) were prepared at three dilutions (1x, 0.1x, 0.01x) and inoculated in duplicate in a HEPA-filtered environment. One replicate was incubated at 4oC, the other at room temperature in the dark. All plates showed abundant growth, although colony size was positively correlated with media concentration. One-hundred eighty-one colonies total were picked, grown in liquid R2A (1x concentration) at the same initial temperature, and characterized for Gram character, cell shape, cell size, and production of a diffusible yellow pigment with similar chemical characteristics to the siderophore, pyoverdine. Based on these characters, a moderate level of diversity was observed in these isolates. A few types dominated the samples, with several others found only rarely. Further characterization of these isolates is ongoing, and results of these studies and their possible implications for sub-glacial biogeochemistry are discussed.

  20. Can Subglacial Meltwater Films Carve Into the till Beneath? Insights from a Coupled Till-Water Model

    NASA Astrophysics Data System (ADS)

    Kasmalkar, I.; Mantelli, E.; Suckale, J.

    2017-12-01

    Networks of water channels are known to exist beneath regions of the continental ice sheets such as Antarctica and Greenland. These channels are fed by meltwater and form along the interface between the ice and the underlying till layer. Their presence localizes basal strength by reducing pore pressure and hence alters the resistance to ice slip provided by the till. Subglacial channels thus play a major role in determining the rate of ice flow for glaciers and ice streams. It is unclear whether subglacial meltwater can evolve from a thin film into a network of distributed channels by erosion of the sediment bed. Models that involve hard-rock beds can only account for water channels that carve into the ice and not the till. Alternative approaches that include erodible sediment mostly assume viscous behavior in the till layer, which is not well supported by laboratory experiments of till failure. To better understand the physical processes that govern channelization, we couple water flow in a thin film with sediment transport to capture the dynamic interactions between water and till. We present a two-dimensional model which consists of a thin subglacial water film that is in the laminar regime and an erodible till layer that obeys the Shield's criterion. We use analytic techniques to study the long-term behavior of perturbations of the water-till interface. We discuss the stability of the system under such perturbations in the context of channel formation.

  1. Seasonal Subglacial Hydrological Evolution of a Greenland Tidewater Glacier

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.; Morriss, B. F.; Hoffman, M. J.; Catania, G. A.; Neumann, T.

    2012-12-01

    The contribution to sea level rise from melting ice sheets has doubled in the last decade. The rapid acceleration of Greenland's outlet glaciers has been one of the dominant factors in this contribution. Also in this last decade, Greenland has experienced an increase in average summer atmospheric temperature and associated increases in summer surface melt duration and extent. These increases in surface melt have been strongly linked with increased glacier sliding at the base through changes in the sublgacial hydrological system. Previous research has looked at conduit evolution of land-terminating and alpine glaciers, but marine-terminating glaciers, although more sensitive to environmental change, have not been thoroughly studied. The goal of this project is to investigate the timing between rapid supra-glacial lake drainages (delivering a pulse of water to the base) and the appearance of a meltwater sediment plume at the terminus. We constructed a high-temporal resolution (sub-daily) time series of lake evolution, drainage and sediment plume appearance at Rink Isbræ (west Greenland) using MODIS satellite imagery from 2000-2012. We compare the time of year and the rate of travel of the pulse to establish a better understanding of seasonal conduit development for tidewater outlet glaciers. Additionally, in comparing these variables between years, we plan to examine how the subglacial system changes when melt season duration and intensity increase. With a clearer understanding of the mechanisms controlling fluctuations in ice flow, specifically those acting in the subglacial environment, scientists can more accurately predict the future of the Greenland Ice Sheet and its effect on global sea level rise.

  2. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  3. The Biggest Tuya or Table Mountain in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Helgadottir, G.; Reynisson, P.

    2012-12-01

    Multibeam mapping in cruise A201206 of the Marine Research Institute in June 2012 revealed a huge submarine mountain with a striking look of a tuya. Tuya is by defenition a subrectangular or circular, constructional, flat-topped mountain, made up of hyaloclastites and/or pillow lava, usually with cap lava (Mathews 1947). The mountain lies at 950-1.400 waterdepth some 120 nautical miles west of the Snaefellsnes peninsula and the mapped part of it is around 300 km2. For comparison, the largest tuya in Iceland is Eiriksjokull with a basal area of 77 km2 (Jakobsson and Gudmundsson 2008). Above the mountains edge at 1.100 m waterdepth the hight increases gradually towards the top of the mountain were some craters are exposed. The mountain has a a youthful apperance. Analysing of rock samples are needed to find out if that is the case or if it is connected with an old rifting zone. The goal of the survey was to map fishing areas (f. ex. of the Greenland halibut); to explore the environment of the strong ocean currents coming from north through the Greenland Strait (also called Denmark Strait) but also to gain additional bathymetrical data in the vicinity of what we believe are mud volcanoes, discovered in a fairly recent MRI's mapping cruise. Now, like erlier on, several mud volcanoes appeared, some of them up to 350 m high. If this proves to be right, this is the first finding of these features in Icelandic waters. The research area coincides largely with sediments of the Snorri drift. Seismic lines through this sediment show possible diapir formation (Egloff and Johnson 1978) which strengthens the idea of those features beeing mud volcanoes. The current 9.000 km2 mapping with EM 300 has added significantly to our knowledge of the morphology of the seafloor around Iceland. References: Mathews, W. H. 1947: "Tuyas": Flat-topped volcanoes in northern Brithish Columbia. Amer. J. Sci. 245, 560-570. Jakobsson, S. P. and Gudmundsson, M. T. 2008: Subglacial and intraglacial

  4. Observed Spatial and Temporal Variability of Subglacial Discharge-Driven Plumes in Greenland's Outlet Glacial Fjords

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.

    2015-12-01

    Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.

  5. Measuring (subglacial) bedform orientation, length, and longitudinal asymmetry - Method assessment.

    PubMed

    Jorge, Marco G; Brennand, Tracy A

    2017-01-01

    Geospatial analysis software provides a range of tools that can be used to measure landform morphometry. Often, a metric can be computed with different techniques that may give different results. This study is an assessment of 5 different methods for measuring longitudinal, or streamlined, subglacial bedform morphometry: orientation, length and longitudinal asymmetry, all of which require defining a longitudinal axis. The methods use the standard deviational ellipse (not previously applied in this context), the longest straight line fitting inside the bedform footprint (2 approaches), the minimum-size footprint-bounding rectangle, and Euler's approximation. We assess how well these methods replicate morphometric data derived from a manually mapped (visually interpreted) longitudinal axis, which, though subjective, is the most typically used reference. A dataset of 100 subglacial bedforms covering the size and shape range of those in the Puget Lowland, Washington, USA is used. For bedforms with elongation > 5, deviations from the reference values are negligible for all methods but Euler's approximation (length). For bedforms with elongation < 5, most methods had small mean absolute error (MAE) and median absolute deviation (MAD) for all morphometrics and thus can be confidently used to characterize the central tendencies of their distributions. However, some methods are better than others. The least precise methods are the ones based on the longest straight line and Euler's approximation; using these for statistical dispersion analysis is discouraged. Because the standard deviational ellipse method is relatively shape invariant and closely replicates the reference values, it is the recommended method. Speculatively, this study may also apply to negative-relief, and fluvial and aeolian bedforms.

  6. Volcano-ice interactions on Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.

  7. Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; de Santa Ana, Héctor; Veroslavsky, Gerardo; Vesely, Fernando F.

    2018-07-01

    A well-exposed glacial surface sculpted on Precambrian crystalline basement rocks occurs below the glacial succession of the San Gregorio Formation on the eastern border of the Chaco-Parana Basin in Uruguay and was formed in the context of the late Paleozoic Gondwana Ice Age. On the glacial surface are asymmetric parallel streamlined bedrock landforms interpreted as whalebacks. The downglacier (lee-side) faces of the whalebacks have gentle slopes dipping NNW with striated and sometimes polished surfaces on crystalline rocks. These landforms are covered by 10-100-cm-thick layers of tillites and shear-laminated siltstones, suggesting glacial abrasion produced mainly by subglacial till sliding. The subglacial facies are ice-molded, and exhibit meso-scale glacial lineations such as ridges and grooves up to 30 m long and 30 cm deep. The subglacial association is directly overlain by proglacial fine-grained facies (rhythmites) with dropstones indicating a subaqueous depositional environment following ice-margin retreat. The fine-grained facies are erosively cut by a succession of sandstones with wave-generated stratification resting on a basal conglomerate. Intraformational striated surfaces, NNE-oriented, were found on four distinct bedding planes within the sandstone package and interpreted as ice keel scour marks produced by floating ice. The San Gregorio deposits are partially confined in a wide and shallow subglacial trough and the stratigraphic succession is interpreted as the record of a glacial advance-retreat cycle comparable to deglacial sequences from other late Paleozoic localities. The paleo-ice flow to the NNW indicated by subglacial lineations is parallel to that verified in the southernmost Paraná Basin located north of the study area, suggesting a paleogeographic scenario in which glaciers advanced northward into a glaciomarine environment. The proposed palaeogeography does not confirm the previous hypothesis of an ice center on the Sul

  8. Investigating the crustal elements of the central Antarctic Plate (ICECAP): How long-range aerogeophysics is critical to understanding the evolution of the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Brozena, J. M.; Siegert, M. J.; Morse, D. L.; Dalziel, I. W.; Lawver, L. A.; Holt, J. W.; Childers, V. A.; Bamber, J. L.; Payne, A. J.

    2004-12-01

    The highlands of the central Antarctic Plate have been the nursery for East Antarctic ice sheets since at least the early Oligocene separation of Antarctica and Australia. Significant strides have been made in deciphering the marine geological, geophysical, and geochemical record of the deposits left by these sheets and the Pleistocene paleoclimate record from ice cores taken from the central reaches of the contemporary ice sheet. Most recently, the scientific community has realized the importance of the isolated biome represented by the subglacial lakes that characterize the domes of the central East Antarctic ice sheet and evolve in concert with them. Understanding the evolution of the East Antarctic ice sheet and its sub-glacial environment would be a major contribution to the IPY 2007-2008 international effort. Critical to understanding offshore and ice core records of paleoclimate, as well as the distribution/isolation of any subglacial lake systems, is developing a comprehensive understanding of the crustal elements of the central Antarctic Plate. A complete understanding of the evolution of East Antarctic ice sheets throughout the Cenozoic requires knowledge of the boundaries, elevation and paleolatitude of these crustal elements through time as well as evidence of their morphological, sedimentological and tectono-thermal history. The basic impediments to gaining this understanding are the subcontinental scale of the central Antarctic Plate and the one to four kilometers of ice cover that inhibits direct access. It is possible however to provide a substantial framework for understanding these crustal elements through a comprehensive program of long-range airborne geophysical observations. We have proposed a plan to measure gravity, magnetics, ice-penetrating radar, and laser/radar altimetry over the Gamburtsev, Vostok and Belgica subglacial highlands beneath Domes A - C of the contemporary East Antarctic ice sheet using a Navy P-3 aircraft based in Mc

  9. Petrographic Analyses of Lonestones from ODP Drill Sites Leg 188 Prydz Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Detterman, K.; Warnke, D. A.; Richter, C.

    2006-12-01

    ODP Leg 188 was drilled in 2000 to sample the first advances of the Antarctic ice sheet and to document further cryospheric development. Continental shelf Site 1166 documented the earliest stages of glaciation during the Eocene-Oligocene and continental slope Site 1167 documented rapid deposition by debris flows during the Pliocene-Pleistocene and a subtle change in onshore erosion areas. Site 1165, located on the continental rise, documented long-term transition from wet-based lower Miocene glaciers to dry-based upper Miocene glaciers, including short-term fluctuations starting in the early Miocene. Source areas for all drill sites are the Lambert Glacier-Amery Ice Shelf drainage area, encompassing the Northern and Southern Prince Charles Mountains, the Gamburtsev Sub-glacial Mountains, and the Grove Mountains. Lonestones occur in most of the cores from all sites of Leg 188 prompting research for potential source areas and transportation modes of the lonestones. One-hundred and seventeen thin sections of lonestones were prepared from Sites 1166, 1167, and 1165 for petrographic analyses. Metamorphic lonestones outnumber igneous and sedimentary lonestones at all three sites. Sedimentary lonestones were not found in the thin sections of Site 1166. Extrusive igneous lonestones were found only at Site 1165 and comprised 5.1 percent of Leg 188's lithology. The anorthite content of igneous and metamorphic lonestones represented at all three sites was albite-oligoclase plagioclase. Albite oligoclase plagioclase has been documented in the Southern Prince Charles Mountains. The results of this study of a selection of lonestones from Site 1167 supports a hypothesis first proposed by the Shipboard Scientific Party in 2001 that as time elapsed, the source area for Site 1167 lonestones shifted slightly from a largely sandstone source to a largely granitic source within the drainage area. One potential source area for the Site 1167 sandstone lonestones is the Permian to Triassic

  10. Guidelines to Avoid Biocontamination of Antarctic Subglacial Aquatic Environments: Forward Contamination Concerns, Environmental Management and Scientific Stewardship of Icy analogue environments

    NASA Astrophysics Data System (ADS)

    Race, M. S.; Hobbie, J.; et al.

    2007-12-01

    For more than a decade, scientists and space mission planners have recognized the importance of collaborative information exchange with the Antarctic research community to address their many shared exploration challenges, from drilling methods, remote sample collection, and data interpretation, to concerns about cross contamination that could adversely impact both the environment and interpretation of scientific data. Another shared concern exists in the regulatory realm; both the Antarctic and outer space environments are subject to separate international treaties that impose regulatory controls and oversight with serious implications for exploration planning. In recent years, both communities have faced the need to adjust their regulatory controls in light of fast-paced advances in scientific understanding of extreme environments, particularly related to potential microbial life. Both communities have sought and received advice from the National Research Council (NRC) through studies that suggested ways to update their respective oversight and regulatory systems while allowing for continued scientific exploration. A recently completed NRC study "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship" provided a suite of recommendations to address1) 'cleanliness' levels necessary for equipment and devices used in exploration of subglacial aquatic environments, as well as 2) the scientific basis for contamination standards, and 3) the steps for defining an overall exploration strategy conducive to sound environmental management and scientific stewardship. This talk will present the findings of the recent multinational NRC study, which is likely to translate into useful information for analogue studies that proceed to test techniques and capabilities for exploring an Europan ocean, other icy celestial locations, and related science targets on Earth. As the science and exploration of subglacial environments grows beyond its

  11. Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment.

    NASA Astrophysics Data System (ADS)

    Fretwell, Peter; Pritchard, Hamish

    2013-04-01

    Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment. The Bedmap2 project has been a large cooperative effort to compile, model, map and visualize the ice-rock interface beneath the Antarctic ice sheet. Here we present the final output of that project; the Bedmap2 printed map. The map is an A1, double sided print, showing 2d and 3d visualizations of the dataset. It includes scientific interpretations, cross sections and comparisons with other areas. Paper copies of the colour double sided map will be freely distributed at this session.

  12. The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

    PubMed Central

    Frisia, Silvia; Weyrich, Laura S.; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Rivard, Camille; Cooper, Alan

    2017-01-01

    Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions. PMID:28598412

  13. A multi-parametric assessment of decontamination protocols for the subglacial Lake Ellsworth probe.

    PubMed

    Magiopoulos, I; McQuillan, J S; Burd, C L; Mowlem, M; Tsaloglou, M-N

    2016-04-01

    Direct measurement and sampling of pristine environments, such as subglacial lakes, without introducing contaminating microorganisms and biomolecules from the surface, represents a significant engineering and microbiological challenge. In this study, we compare methods for decontamination of titanium grade 5 surfaces, the material extensively used to construct a custom-made probe for reaching, measuring and sampling subglacial Lake Ellsworth in West Antarctica. Coupons of titanium were artificially contaminated with Pseudomonas fluorescens bacteria and then exposed to a number of decontamination procedures. The most effective sterilants were (i) hydrogen peroxide vapour, and (ii) Biocleanse™, a commercially available, detergent-based biocidal solution. After each decontamination procedure the bacteria were incapable of proliferation, and showed no evidence of metabolic activity based on the generation of adenosine triphosphate (ATP). The use of ultraviolet irradiation or ethyl alcohol solution was comparatively ineffective for sterilisation. Hydrogen peroxide vapour and ultraviolet irradiation, which directly damage nucleic acids, were the most effective methods for removing detectable DNA, which was measured using 16S rRNA gene copy number and fluorescence-based total DNA quantification. Our results have not only been used to tailor the Ellsworth probe decontamination process, but also hold value for subsequent engineering projects, where high standards of decontamination are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits

    NASA Astrophysics Data System (ADS)

    Scanlon, Kathleen E.; Head, James W.; Wilson, Lionel; Marchant, David R.

    2014-07-01

    Fan-shaped deposits (FSD) superposed on the sides of the Tharsis Montes volcanic edifices are widely interpreted to have been formed by cold-based glaciation during the Late Amazonian, a period when the Tharsis Montes were volcanically active. We survey the ∼166,000 km2 Arsia Mons FSD using new, high-resolution image and topography data and describe numerous landforms indicative of volcano-ice interactions. These include (1) steep-sided mounds, morphologically similar to terrestrial tindar that form by subglacial eruptions under low confining pressure; (2) steep-sided, leveed flow-like landforms with depressed centers, interpreted to be subglacial lava flows with chilled margins; (3) digitate flows that we interpret as having resulted from lava flow interaction with glacial ice at the upslope margin of the glacier; (4) a plateau with the steep sides and smooth capping flow of a basaltic tuya, a class of feature formed when subglacial eruptions persist long enough to melt through the overlying ice; and (5) low, areally extensive mounds that we interpret as effusions of pillow lava, formed by subglacial eruptions under high confining pressure. Together, these eruptions involved hundreds of cubic kilometers of subglacially erupted lava; thermodynamic relationships indicate that this amount of lava would have produced a similar volume of subglacial liquid meltwater, some of which carved fluvial features in the FSD. Landforms in the FSD also suggest that glaciovolcanic heat transfer induced local wet-based flow in some parts of the glacier. Glaciovolcanic environments are important microbial habitats on Earth, and the evidence for widespread liquid water in the Amazonian-aged Arsia Mons FSD makes it one of the most recent potentially habitable environments on Mars. Such environments could have provided refugia for any life that developed on Mars and survived on its surface until the Amazonian.

  15. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  16. Sedimentological and GPR studies of subglacial deposits in the Joux Valley (Vaud, Switzerland): backset accretion in an esker followed by an erosive jokulhlaup

    USGS Publications Warehouse

    Fiore, J.; Pugin, A.; Beres, N.

    2002-01-01

    During the Wu??rmian glaciation, the Jura ice sheet covered the Joux Valley (Vaud, Switzerland). A geomorphological study reveals many drumlins in this valley. Some are composed of gravels and sand, others of till. Outcrops show that the surface of the sandy-gravel drumlins is a major and sharp erosion surface. Given the lack of shearing structures in sediments below this erosion level, its origin cannot be linked to ice action of the glacier. Very high-energy subglacial meltwater floods (jo??kulhlaups), probably due to the drainage of subglacial or supraglacial lakes, are the more likely cause of the erosion. Results of a ground penetrating radar (GPR) survey show the internal structure of one of these sandy-gravel drumlins to depth of 15 m. These GPR data, together with sedimentological observations, indicate that prior to erosion, subglacial sedimentation occurred in closed conduits (eskers) with strong and rapid flow variations. The sediments contain large chute-and-pool structures (high flow energy backset accretion) with dimensions comparable to the conduit width. Therefore, we interpret these sandy-gravel drumlins as portions of eskers, their present drumlin shape being the result of erosion by one or many jo??kulhlaups. The good preservation of the subglacial meltwater deposits is the result of the closed-basin geometry of the Joux Valley, which limited movement at the base of the glacier. This new contribution to the interpretation of the Joux Valley glacial features underlines the importance of meltwater in sedimentological processes under the Jura ice sheet.

  17. Subglacial drainage effects on surface motion on a small surge type alpine glacier on the St. Elias range, Yukon Territory, Canada.

    NASA Astrophysics Data System (ADS)

    Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.

    2017-12-01

    Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.

  18. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    PubMed Central

    Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  19. BABOC: A new project aimed at analysing geological boundary conditions for the East Antarctic Ice Sheet in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Ferraccioli, Fausto; Balbi, Pietro; Jordan, Tom; Young, Duncan; Blankenship, Don; Bozzo, Emanuele; Siegert, Martin

    2013-04-01

    The Wilkes Subglacial Basin extends for ca 1,400 km from George V Land into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet (EAIS). The region is of major significance for assessing the long-term stability of the EAIS, as it lies well below sea level and its bedrock deepens inland. This makes it potentially prone to marine ice sheet instability, much like areas of the West Antarctic Ice Sheet (WAIS) that are presently experiencing significant mass loss. This sector of the EAIS has also recently become a major focus of research within IODP Leg 318 that aims to better comprehend the initial stages of glaciation in East Antarctica and the subsequent history and stability of the ice sheet in response to major paleoclimatic changes (Escutia et al., 2010 IODP Rep.). Understanding geological boundary conditions in this region is therefore important to assess their influence on ice sheet dynamics and stability. Early geophysical models inferred the existence of a major extensional sedimentary basin beneath the region, which if true, could be similar to some areas of the WAIS, There thick subglacial sediments deposited within deep rift basins or forming thin marine sedimentary drapes have been inferred to exert a key influence on the onset and maintenance of fast-glacial flow. However, later geophysical models indicated that the Wilkes Basin contains little or no sediment, is not rift-related and formed in response to Cenozoic flexural uplift of the Transantarctic Mountains (TAM). A major joint Italian-UK aerogeophysical exploration campaign over parts of the Wilkes Basin is super-seeding these earlier geophysical views of the basin: i) Precambrian and Paleozoic basement faults can now be recognised as exerting fundamental controls on the location of the topographic margins of the basin; ii) the crust underlying the basin is thinner compared to the TAM, but is unlikely to be Cretaceous or Cenozoic

  20. Channelized subglacial drainage over a deformable bed

    USGS Publications Warehouse

    Walder, J.S.; Fowler, A.

    1994-01-01

    We develop theoretically a description of a possible subglacial drainage mechanism for glaciers and ice sheets moving over saturated, deformable till. The model is based on the plausible assumption that flow of water in a thin film at the ice-till interface is unstable to the formation of a channelized drainage system, and is restricted to the case in which meltwater cannot escape through the till to an underlying aquifer. In describing the physics of such channelized drainage, we have generalized and extended Rothlisberger's model of channels cut into basal ice to include "canals' cut into the till, paying particular attention to the role of sediment properties and the mechanics of sediment transport. We show that sediment-floored Rothlisberger (R) channels can exist for high effective pressures, and wide, shallow, ice-roofed canals cut into the till for low effective pressures. Canals should form a distributed, non-arborescent system, unlike R channels. Geologic evidence derived from land forms and deposits left by the Pleistocene ice sheets in North America and Europe is consistent with predictions of the model. -from Authors

  1. Sensitivity analysis for the coupling of a subglacial hydrology model with a 3D ice-sheet model.

    NASA Astrophysics Data System (ADS)

    Bertagna, L.; Perego, M.; Gunzburger, M.; Hoffman, M. J.; Price, S. F.

    2017-12-01

    When studying the movement of ice sheets, one of the most important factors that influence the velocity of the ice is the amount of friction against the bedrock. Usually, this is modeled by a friction coefficient that may depend on the bed geometry and other quantities, such as the temperature and/or water pressure at the ice-bedrock interface. These quantities are often assumed to be known (either by indirect measurements or by means of parameter estimation) and constant in time. Here, we present a 3D computational model for the simulation of the ice dynamics which incorporates a 2D model proposed by Hewitt (2011) for the subglacial water pressure. The hydrology model is fully coupled with the Blatter-Pattyn model for the ice sheet flow, as the subglacial water pressure appears in the expression for the ice friction coefficient, and the ice velocity appears as a source term in the hydrology model. We will present results on real geometries, and perform a sensitivity analysis with respect to the hydrology model parameters.

  2. Microbiological and Biogeochemical Investigations of the Accreted Ice Above Subglacial Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Christner, B. C.; Foreman, C. F.; Arnold, B. R.; Welch, K. A.; Lyons, W. B.; Priscu, J. C.

    2004-12-01

    Subglacial Lake Vostok is located ~4 km beneath the surface of the East Antarctic ice sheet and has been isolated from the atmosphere for at least 15 million years. The lake has a surface area near 14,000 km2 and a depth exceeding 1000 m. While the nature of the environment within Subglacial Lake Vostok remains uncertain, if a sustained microbial ecosystem is present, life in this subsurface environment operates under arguably the most extreme conditions in the biosphere (i.e., high pressure, constant cold, high oxygen concentrations, and no light). The lake represents an analogue for ecosystems that may exist in Europa's ice-covered ocean and also provides an Earthly-based model for the evaluation of technology to search for life in icy extraterrestrial subsurface environments. Concerns for environmental protection have prevented direct sampling of the lake water thus far, as a prudent sampling plan that will not contaminate this pristine environment has yet to be developed and tested. However, an ice core has been retrieved at Vostok Station in which the bottom ~85 meters consists of lake water that has accreted to the bottom of the ice sheet, providing frozen samples of water from the lakes' surface. The ice from 3539 to 3609 mbs (accretion ice I) contains visible inclusions due to accretion in the shallow embayment or western grounding line, whereas ice from 3610-3623 mbs (accretion ice II) is very clean, forming above the deep eastern basin of the main lake. Using a multifaceted protocol to monitor cellular and molecular decontamination of ice cores, we show that the microbiology and geochemistry (i.e., dissolve organic carbon, nutrients, and ions) of accretion ice is very different from the overlying glacial ice. The numbers of cells are 2- to 7-fold higher in accretion ice I than in the overlying glacial ice, and decrease with increasing depth in accretion ice II. Cell viability in accretion ice samples has been confirmed by the measurable respiration of 14C

  3. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  4. Present-day subglacial erosion efficiency inferred from sources and transport of glacial clasts in the North face of Mont Blanc

    NASA Astrophysics Data System (ADS)

    Mugnier, J. L.; Godon, C.; Buoncristiani, J. F.; Paquette, J. L.; Trouvé, E.

    2012-04-01

    The efficiency of erosional processes is classically considered from detrital composition at the outlet of a shed that reflects the rocks eroded within the shed. We adapt fluvial detrital thermochronology (DeCelles et al., 2004) and lithology (Attal and Lavé, 2006) methods to the subglacial streams of the north face of the Mont Blanc. The lithology of this area is composed by a ~303 Ma old granite intruded within an older poly metamorphic complex (orthogneisses). In this study,we use macroscopic criteria (~10 000 clasts) and Ur/Pb dating of zircons (~500 datings of sand grains) to determine the provenance of the sediment transported by the glacier and by the sub-glacial streams. Samples come from sediments collected around the glacier (above, below or laterally), from different bedrocks sources according to the surface flow lines and glacier characteristics (above or below the ELA; temperate or cold), and from different subglacial streams. A comparison between the proportion of granite and orthogneisses in these samples indicates that: 1) the supra load follows the flow lines of the glacier deduced from SAR images correlation and the displacement pattern excludes supra load mixing of the different sources; 2) the transport by the glacier does not mix the clasts issued from the sub-glacial erosion with the clasts issued from supraglacial deposition, except in the lower tongue where supraglacial streams and moulins move the supraglacial load from top to bottom; 3) the erosion rate beneath the glacier is very small: null beneath the cold ice but also very weak beneath the greatest part of the temperate glacier; the erosion increases significantly beneath the tongue, where supraglacial load incorporated at the base favors abrasion; 4) the glacial erosion rate beneath the tongue remains at least five time smaller than the erosion rate coming from non-glacial area. According to our results, we demonstrate that the glaciers of the Mont-Blanc north face protect the top of

  5. Modeling of subglacial water pressure on Russell glacier, toward a better understanding of the relation between meltwater availability and ice dynamics.

    NASA Astrophysics Data System (ADS)

    de Fleurian, Basile; Morlighem, Mathieu; Seroussi, Helene; Rignot, Eric

    2016-04-01

    Basal sliding is the main control on outlet glaciers velocity. This sliding is mainly driven by the water pressure at the base of the glaciers. The ongoing increase in surface melt of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here, we examine the case of Russell glacier, West Greenland, where a remarkably extensive set of observations have been gathered. These observations suggest that the increase in runoff has no impact on the annual velocity on the lower part of the drainage basin, but yield an acceleration of ice flow above the Equilibrium Line Altitude (ELA). It is believed that this two distinct behaviours are due to different evolutions of the subglacial draining system during and after the melt season. We use here a high-resolution new generation subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the possible causes of these distinct behaviours. The model results confirm the existence of two distinct behaviours of the subglacial water pressure, an increase in the mean annual water pressure at high elevation and a stagnation of these same mean annual pressures below the ELA. The increase in meltwater at the lower elevation leads to a more developed efficient drainage system and the overall steadiness of the annual velocities, but, at higher elevation the drainage system remains mainly inefficient and is therefore strongly sensitive to the increase in meltwater availability.

  6. Identification and analysis of low molecular weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    NASA Astrophysics Data System (ADS)

    Lawson, E. C.; Wadham, J. L.; Lis, G. P.; Tranter, M.; Pickard, A. E.; Stibal, M.; Dewsbury, P.; Fitzsimons, S.

    2015-08-01

    Glacial runoff is an important source of dissolved organic carbon (DOC) for downstream heterotrophic activity, despite the low overall DOC concentrations. This is because of the abundance of bioavailable, low molecular weight (LMW) DOC species. However, the provenance and character of LMW-DOC is not fully understood. We investigated the abundance and composition of DOC in subglacial environments via a molecular level DOC analysis of basal ice, which forms by water/sediment freeze-on to the glacier sole. Spectrofluorometry and a novel ion chromatographic method, which has been little utilised in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates and carboxylic acids) in basal ice from four glaciers, each with a different basal debris type. Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse FAA pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn, was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard) and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden paleosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (>17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet sediments in current subglacial

  7. The Holocene Minimum of the West Antarctic Ice Sheet: Radiocarbon Model Ages for Subglacial Sediments

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Stansell, N.; Scherer, R. P.; Powell, R. D.

    2017-12-01

    It is commonly assumed that the West Antarctic Ice Sheet (WAIS) is at the present time as small as it has been since at least the last interglacial period about 125,000 years ago. Yet, our recent analyses of subglacial sediments recovered from beneath the ice sheet indicate regionally widespread presence of radiocarbon. This unstable isotope with half life of 5,730 years should decay to nil if the analyzed subglacial sediment samples have been isolated beneath the ice sheet from the atmosphere and the ocean for 125,000 years (over 20 half lives). However, the apparent radiocarbon ages for these samples are in the range of about 20,000-30,000 years BP, based on radiocarbon Fraction Modern (FM) of a few to several percent. The apparent sediment ages cannot be taken at face value because: (1) they overlap with the Last Glacial Maximum (LGM) when WAIS is known to have extended over 1,000 km past the sediment sampling locations, and (2) Antarctic glacigenic sediments commonly contain significant admixture of old, radiocarbon-dead organic matter. The latter biases apparent radiocarbon ages because it violates the assumption that the initial radiocarbon fraction in a sample was equal to FM. To mitigate the problem with apparent ages, we assume that initial radiocarbon fraction in subglacial sediments was equal to that determined by us independently in J-9 sediments from beneath the Ross Ice Shelf (RIS) and calculate radiocarbon 'model ages' between 1,000 and 6,000 years BP. This period of time overlaps with a regional climatic optimum and with late phases of post-LGM glacioisostatic adjustment in the region (e.g., Kingslake et al., this session). We propose that the grounding line of WAIS, at least on the RIS side, retreated in mid/late Holocene more than 300 km beyond its current position and then re-advanced to reach its modern geometry. This implies that the main body of WAIS was significantly smaller than today in mid/late Holocene and that the ice sheet is capable of

  8. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars.

    PubMed

    Warner, Nicholas H; Farmer, Jack D

    2010-06-01

    Jökulhlaups are terrestrial catastrophic outfloods, often triggered by subglacial volcanic eruptions. Similar volcano-ice interactions were likely important on Mars where magma/lava may have interacted with the planet's cryosphere to produce catastrophic floods. As a potential analogue to sediments deposited during martian floods, the Holocene sandurs of Iceland are dominated by basaltic clasts derived from the subglacial environment and deposited during jökulhlaups. Palagonite tuffs and breccias, present within the deposits, represent the primary alteration lithology. The surface abundance of palagonite on the sandurs is 1-20%. X-ray diffraction (XRD) analysis of palagonite breccias confirms a mineral assemblage of zeolites, smectites, low-quartz, and kaolinite. Oriented powder X-ray diffractograms (< 2 microm fraction) for palagonite breccia clasts and coatings reveal randomly ordered smectite, mixed layer smectite/illite, zeolites, and quartz. Visible light-near infrared (VNIR) and shortwave infrared (SWIR) lab spectroscopic data of the same palagonite samples show H2O/OH(-) absorptions associated with clays and zeolites. SWIR spectra derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of the sandurs reveal Al-OH(-) and Si-OH(-) absorption features. The identified alteration mineral assemblage is consistent with low temperature (100-140 degrees C) hydrothermal alteration of basaltic material within the subglacial environment. These results suggest that potential martian analog sites that contain a similar suite of hydrated minerals may be indicative of past hydrothermal activity and locations where past habitable environments for microbial life may be found.

  9. Seismic evidence for the erosion of subglacial sediments by rapidly draining supraglacial lakes on the West Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Booth, Adam; Hubbard, Alun; Dow, Christine; Doyle, Samuel; Clark, Roger; Gusmeroli, Alessio; Lindbäck, Katrin; Pettersson, Rickard; Jones, Glenn; Murray, Tavi

    2013-04-01

    As part of a multi-disciplinary, multi-national project investigating the ice-dynamic implications of rapidly draining supraglacial lakes on the West Greenland Ice Sheet, we have conducted a series of seismic reflection experiments immediately following the rapid drainage of Lake F in the land-terminating Russell Glacier catchment to [1] isolate the principal mode of basal motion, and [2] identify and characterise the modification of that mode as forced by ingress of surface-derived meltwaters. Lake F had a surface area of ~3.84 km2 and drained entirely in less than two hours at a maximum rate of ~ 3300 m3 s-1, marked by local ice extension and uplift of up to 1 m. Two seismic profiles (A and B) were acquired and optimised for amplitude versus angle (AVA) characterisation of the substrate. All seismic data were recorded with a Geometrics GEODE system, using 48 vertically-orientated 100-Hz geophones installed at 10 m intervals. 250 g pentalite charges were fired in shallow auger holes at 80 m intervals along each line, providing six-fold coverage. Profile A targets the subglacial hydrological basin into which the Lake-F waters drained, and reveals a uniform, flat glacier bed beneath ~1.3 km of ice, characterised by the presence of a very stiff till with an acoustic impedance of 4.17 ± 0.11 x 106 kg m-2 s1 and a Poisson's ratio of 0.06 ± 0.05. In profile B, to the southeast of Lake F in an isolated subglacial hydrological basin, ice thickness is 1.0-1.1 km and a discrete sedimentary basin is evident; within this feature, we interpret a stratified subglacial till deposit, having lodged till (acoustic impedance = 4.26 ± 0.59×106 kgm-2 s-1) underlying a water-saturated dilatant till layer (thickness

  10. A Unified Constitutive Model for Subglacial Till, Part I: The Disturbed State Concept

    NASA Astrophysics Data System (ADS)

    Jenson, J. W.; Desai, C. S.; Clark, P. U.; Contractor, D. N.; Sane, S. M.; Carlson, A. E.

    2006-12-01

    Classical plasticity models such as Mohr-Coulomb may not adequately represent the full range of possible motion and failure in tills underlying ice sheets. Such models assume that deformations are initially elastic, and that when a peak or failure stress level is reached the system experiences sudden failure, after which the stress remains constant and the deformations can tend to infinite magnitudes. However, theory suggests that the actual behavior of deforming materials, including granular materials such as glacial till, can involve plastic or irreversible strains almost from the beginning, in which localized zones of microcracking and "failure" can be distributed over the material element. As the loading increases, and with associated plastic and creep deformations, the distributed failure zones coalesce. When the extent of such coalesced zones reaches critical values of stresses and strains, the critical condition (failure) can occur in the till, which would cause associated movements of the ice sheet. Failure or collapse then may occur at much larger strain levels. Classical models (e.g., Mohr-Coulomb) may therefore not be able to fully and realistically characterize deformation behavior and the gradual developments of localized failures tending to the global failure and movements. We present and propose the application of the Disturbed State Concept (DSC), a unified model that incorporates the actual pre- and post-failure behavior, for characterizing the behavior of subglacial tills. In this presentation (Part I), we describe the DSC and propose its application to subglacial till. Part II (Desai et al.) describes our application of the DSC with laboratory testing, model calibration, and validations to evaluate the mechanical properties of two regionally significant Pleistocene tills.

  11. Vostok Subglacial Lake: A Review of Geophysical Data Regarding Its Discovery and Topographic Setting

    NASA Technical Reports Server (NTRS)

    Siegert, Martin J.; Popov, Sergey; Studinger, Michael

    2011-01-01

    Vostok Subglacial Lake is the largest and best known sub-ice lake in Antarctica. The establishment of its water depth (>500 m) led to an appreciation that such environments may be habitats for life and could contain ancient records of ice sheet change, which catalyzed plans for exploration and research. Here we discuss geophysical data used to identify the lake and the likely physical, chemical, and biological processes that occur in it. The lake is more than 250 km long and around 80 km wide in one place. It lies beneath 4.2 to 3.7 km of ice and exists because background levels of geothermal heating are sufficient to warm the ice base to the pressure melting value. Seismic and gravity measurements show the lake has two distinct basins. The Vostok ice core extracted >200 m of ice accreted from the lake to the ice sheet base. Analysis of this ice has given valuable insights into the lake s biological and chemical setting. The inclination of the ice-water interface leads to differential basal melting in the north versus freezing in the south, which excites circulation and potential mixing of the water. The exact nature of circulation depends on hydrochemical properties, which are not known at this stage. The age of the subglacial lake is likely to be as old as the ice sheet (approx.14 Ma). The age of the water within the lake will be related to the age of the ice melting into it and the level of mixing. Rough estimates put that combined age as approx.1 Ma.

  12. Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    NASA Astrophysics Data System (ADS)

    O'Donnell, Emily C.; Wadham, Jemma L.; Lis, Grzegorz P.; Tranter, Martyn; Pickard, Amy E.; Stibal, Marek; Dewsbury, Paul; Fitzsimons, Sean

    2016-07-01

    Determining the concentration and composition of dissolved organic carbon (DOC) in glacial ecosystems is important for assessments of in situ microbial activity and contributions to wider biogeochemical cycles. Nonetheless, there is limited knowledge of the abundance and character of DOC in basal ice and the subglacial environment and a lack of quantitative data on low-molecular-weight (LMW) DOC components, which are believed to be highly bioavailable to microorganisms. We investigated the abundance and composition of DOC in basal ice via a molecular-level DOC analysis. Spectrofluorometry and a novel ion chromatographic method, which has been little utilized in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates, and carboxylic acids) in basal ice from four glaciers, each with a different type of overridden material (i.e. the pre-entrainment sedimentary type such as lacustrine material or palaeosols). Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse free amino acid (FAA) pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard), and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden palaeosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (> 17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via

  13. Modelling of Subglacial Volcanic and Geothermal Activity, during the 2014-15 Bárdarbunga-Holuhraun Eruption and Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Reynolds, H. I.; Gudmundsson, M. T.; Hognadottir, T.

    2015-12-01

    Seismic unrest was observed within the subglacial caldera of Bárdarbunga on 16 August 2014, followed by seismicity tracing the path of a lateral dyke extending underneath the Vatnajökull glacier out to 45 km to the north east of the volcano. A short subaerial fissure eruption occurred at the site of the Holuhraun lavas, just north of the glacier edge on 29 August, before recommencing in earnest on 31 August with a large effusive eruption and accompanying slow caldera collapse, which lasted for approximately 6 months. The glacier surface around Bárdarbunga was monitored using aerial altimeter profiling. Several shallow depressions, known as ice cauldrons, formed around the caldera rim and on Dyngjujökull glacier above the dyke propagation path. The cauldrons range in volume from approximately 0.0003 km3 to 0.02 km3. Two types of melting were observed: high initial heat flux over a period of days which gradually disappears; and slower but more sustained melting rates. We present time series data of the development and evolution of these cauldrons, with estimates of the heat flux magnitudes involved.The nature of the heat source required to generate these cauldrons is not obvious. Two scenarios are explored: 1) small subglacial eruptions; or 2) increased geothermal activity induced by the dyke intrusion. We investigate these scenarios using numerical modelling, considering the surface heat flux produced, and timescales and spatial extent of associated surface anomalies. It is found that a magmatic intrusion into rocks where the groundwater is near the boiling point curve can cause rapid increase in geothermal activity, but even a shallow intrusion into a cold groundwater reservoir will have a muted thermal response. Thus, our results indicate that minor subglacial eruptions are the most plausible explanation for the observed rapid melting far from known geothermal areas. These results have implications for the interpretation of thermal signals observed at ice

  14. Extent and architecture of major fault systems between northern Victoria Land and the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Ferraccioli, F.; Balbi, P.; Bozzo, E.

    2013-12-01

    Terrane bounding and intra-terrane faults of the Ross Orogen in East Antarctica are linked to several phases of Cambrian to Ordovician age subduction and accretion along the active paleo-Pacific margin of Gondwana. Here we compile and analyse new enhanced aeromagnetic anomaly images over the Northern Victoria Land (NVL) segment of the Ross Orogen and the eastern margin of the Wilkes Subglacial Basin (WSB) that help constrain the extent and structural architecture of these fault systems and enable us re-assess their tectonic evolution. Long-wavelength magnetic lows and residual Bouguer gravity highs are modelled as several-km thick inverted sedimentary basins of early Cambrian(?) age. Tectonic inversion occurred along major thrust faults during the late stages of the Ross Orogen, forming a major high-grade pop-up structure within the central Wilson Terrane, flanked by lower grade rocks. The Prince Albert Fault System can now be recongnised as being located to the west of the Exiles Thrust fault system rather than representing its southern continuation. Relatively thin sheets of mylonitic sheared granitoids and possible ultramafic lenses are associated with the late-Ross (ca 480 Ma) Exiles Thrust fault system, while significantly larger and thicker batholiths were emplaced along the Prince Albert Fault System. Recent zircon U-Pb dating over small exposures of gabbro-diorites within the Prince Albert Mountains to the south lead us to propose that this part of the magmatic arc was emplaced during an earlier phase of subduction (~520 Ma or older?), compared to the late-Ross intrusions to the east. Whether the Prince Albert Fault System was indeed a major cryptic suture in early Cambrian times (Ferraccioli et al., 2002, GRL) remains speculative, but possible. Our aeromagnetic interpretation leads us to conclude that these inherited terrane bounding and intra-terrane fault systems of the Ross Orogen exerted a key influence on Cenozoic tectonic blocks and faults of the

  15. Tomographic evidence for recent extension in the Bentley Subglacial Trench and a hotspot beneath Marie Byrd Land

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D. A.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.

    2013-12-01

    Here we present the first regional P and S wave relative velocity models of the upper mantle beneath much of West Antarctica using P and S wave relative travel time residuals from teleseismic events recorded by seismographs from the POLENET/ANET project. 21 of the seismographs form a sparse backbone network co-located with continuously recording GPS stations at rock sites throughout West Antarctica, and 17 stations formed a seismic transect extending from the Whitmore Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land (MBL) with a station spacing of 90-100 km. Corrections for heterogeneities above the Moho, including the ice sheet, are applied to the relative travel time residuals using the receiver function models of Chaput et al., [submitted, 2013]. Both P and S wave velocity models indicate velocities faster than the mean of the model beneath the Whitmore Mountains that may be interpreted as thicker, colder lithosphere relative to the rest of West Antarctica. Slow velocity anomalies are observed beneath the Bentley Subglacial Trench (BST) and MBL. Slow velocities extending from the Moho to the transition zone beneath MBL are centered beneath the Mt Sidley volcano and coincide with high topography that is not isostatically supported by the crust [Chaput et al., submitted, 2013]. The slowest velocities occur at 200-300 km depth and are consistent with warm, low viscosity mantle that provides topographic support for the elevated MBL volcanic dome. Poor vertical resolution, typical of body wave tomography, hampers the models ability to resolve whether the anomaly beneath MBL is strictly an upper mantle hotspot or a classic mantle plume that extends into the lower mantle. The shallow (≤ 100 km depth) slow anomaly beneath the BST coincides with a region of thin crust and likely reflects a localized region of Cenozoic extension in the WARS that may have undergone a last phase of extension in the Neogene [Garnot et al., 2013]. Anomalously

  16. Searching for life in extreme environments relevant to Jovian's Europa: Lessons from subglacial ice studies at Lake Vostok (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey A.; Alekhina, Irina A.; Marie, Dominique; Martins, Jean; Petit, Jean Robert

    2011-08-01

    The objective was to estimate the genuine microbial content of ice samples from refrozen water (accretion ice) from the subglacial Lake Vostok (Antarctica) buried beneath the 4-km thick East Antarctic ice sheet. The samples were extracted by heavy deep ice drilling from 3659 m below the surface. High pressure, a low carbon and chemical content, isolation, complete darkness and the probable excess of oxygen in water for millions of years characterize this extreme environment. A decontamination protocol was first applied to samples selected for the absence of cracks to remove the outer part contaminated by handling and drilling fluid. Preliminary indications showed the accretion ice samples to be almost gas free with a low impurity content. Flow cytometry showed the very low unevenly distributed biomass while repeated microscopic observations were unsuccessful.We used strategies of Ancient DNA research that include establishing contaminant databases and criteria to validate the amplification results. To date, positive results that passed the artifacts and contaminant databases have been obtained for a pair of bacterial phylotypes only in accretion ice samples featured by some bedrock sediments. The phylotypes included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and one unclassified phylotype. Combined with geochemical and geophysical considerations, our results suggest the presence of a deep biosphere, possibly thriving within some active faults of the bedrock encircling the subglacial lake, where the temperature is as high as 50 °C and in situ hydrogen is probably present.Our approach indicates that the search for life in the subglacial Lake Vostok is constrained by a high probability of forward-contamination. Our strategy includes strict decontamination procedures, thorough tracking of contaminants at each step of the analysis and validation of the results along with geophysical and ecological considerations for the lake setting. This may

  17. Analysing aeromagnetic, airborne gravity and radar data to unveil variable basal boundary conditions for the East Antarctic Ice Sheet in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Ferraccioli, Fausto; Young, Duncan; Balbi, Pietro; Blankenship, Don; Jordan, Tom; Bozzo, Emanuele; Siegert, Martin

    2014-05-01

    The Wilkes Subglacial Basin (WSB) extends for ca 1,400 km from George V Land into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet (EAIS). The region is of major significance for assessing the long-term stability of the EAIS, as it lies well below sea level and its bedrock deepens inland. This makes it potentially more prone to marine ice sheet instability, much like areas of the West Antarctic Ice Sheet (WAIS) that are presently experiencing significant mass loss. This sector of the EAIS has also become a focus of current research within IODP Leg 318 that aims to better comprehend the initial stages of glaciation and the history and stability of the EAIS since the Eocene-Oligocene boundary. Understanding geological boundary conditions onshore is important to assess their influence on ice sheet dynamics and long-term stability and interpret the paleo-ice sheet record. Early geophysical models inferred the existence of a major extensional sedimentary basin beneath the WSB. This could in principle be similar to some areas of the WAIS, where subglacial sediments deposited within rift basins or forming thin marine sedimentary drapes have been inferred to exert a key influence on both the onset and maintenance of fast-glacial flow. However, later geophysical models indicated that the WSB contains little or no sediment, is not rift-related, and formed in response to Cenozoic flexural uplift of the Transantarctic Mountains (TAM). A major joint Italian-UK aerogeophysical exploration campaign over parts of the WSB is super-seeding all these earlier geophysical views of the basin (Ferraccioli et al., 2009, Tectonophysics). Precambrian and Paleozoic basement faults can now be recognised as exerting fundamental controls on the location of both the topographic margins of the basin and it sub-basins; ii) the crust underlying the basin is thinner compared to the TAM (Jordan et al., 2013, Tectonophysics

  18. Analysis of Deep Long-Period Subglacial Seismicity in Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Aster, R. C.; Myers, E. K.; Lough, A. C.

    2017-12-01

    We utilize subspace detection methodology to extend the detection and analysis of deep, long-period seismic activity associated with the subglacial and lower crust magmatic complex beneath the Executive Committee Range volcanoes of Marie Byrd Land (Lough et al., 2013). The Marie Byrd Land (MBL) volcanic province is a remote continental region that is almost completely covered by the West Antarctic Ice Sheet (WAIS). The southern extent of Marie Byrd Land lies within the West Antarctic Rift System (WARS), which includes the volcanic Executive Committee Range. Lough et al. noted that seismic stations in the POLENET/ANET seismic network detected two swarms of seismic activity during 2010 and 2011. These events have been interpreted as deep, long-period (DLP) earthquakes based on their depth (25-40 km), tectonic context, and low frequency spectra. The DLP events in MBL lie beneath an inferred volcanic edifice that is visible in ice penetrating radar images via subglacial topography and intraglacial ash deposits, and have been interpreted as a present location of Moho-proximal magmatic activity. The magmatic swarm activity in MBL provides a promising target for advanced subspace detection, and for the temporal, spatial, and event size analysis of an extensive deep long period earthquake swarm using a remote and sparse seismographic network. We utilized a catalog of 1370 traditionally identified DLP events to construct subspace detectors for the nine nearest stations using two years of data spanning 2010-2011. Via subspace detection we increase the number of observable detections more than 70 times at the highest signal to noise station while decreasing the overall minimum magnitude of completeness. In addition to the two previously identified swarms during early 2010 and early 2011, we find sustained activity throughout the two years of study that includes several previously unidentified periods of heightened activity. These events have a very high Gutenberg-Richter b

  19. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  20. Quantifying Suspended Sediment Concentration from Subglacial Sediment Plumes Discharging from Two Svalbard Tidewater Glaciers using Landsat 8 and In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.; Chipman, J. W.; Benn, D.

    2016-12-01

    Marine-terminating outlet glaciers discharge most of an ice sheet's mass loss through iceberg calving, submarine melting, and meltwater runoff. While calving can be quantified by in situ and remote sensing observations, meltwater runoff, submarine melting, and the subglacial transport of meltwater are not well constrained due to inherent difficulties measuring the subglacial and proglacial environments. Previous studies have used sediment plumes and suspended sediment concentration (SSC) as a proxy for glacier meltwater runoff at land-terminating glaciers. However, the relationship between satellite reflectacne and SSC, established predominantly from land-terminating glacier data, does not relate well for tidewater glaciers. Additionally, the difficulties in sampling the near terminus region of large tidewater glaciers makes it challenging to accurately constrain or identify the relationship between sediment plumes and satellite reflectance. In this study we use simultaneous Landsat 8 imagery and in situ fjord measurements at two Svalbard tidewater glaciers to establish a relationship between SSC and Landsat 8 surface reflectacne in a tidewater glacier Setting. Results from fieldwork conducted during low and peak meltwater runoff periods at Kronebreen and Tunabreen glaciers will be presented.

  1. An In-Situ Deep-UV Optical Probe for Examining Biochemical Presence in Deep Glaciers and Sub-Glacial Lakes

    NASA Astrophysics Data System (ADS)

    Lane, A. L.; Behar, A.; Bhartia, R.; Conrad, P. G.; Hug, W. F.

    2007-12-01

    The quest to study and understand extremophiles has led to many quite different research paths in the past 30 years. One of the more difficult directions has been the study of biochemical material in deep glacial ice and in subglacial lakes. Lake Vostok in Eastern Antarctica has been perhaps the most discussed subglacial lake because of its large size (~14,000 sq km), deep location under >3700 m of overlying ice, and thick sediment bed (~200m). Once the physical conditions of the Lake were assessed, questions immediately arose about the potential existence of biological material - either extinct or possibly extant under conditions of extremely limited energy and nutrients [1-2]. To investigate the biology of Vostok, via in-situ methods, is a major issue that awaits proven techniques that will not contaminate the Lake beyond what may have occurred to date. Lake Ellsworth, in West Antarctica, also discovered by ice penetrating radar, is of significantly smaller size, but is also >3500 m below the overlying ice. It represents a wonderful opportunity to design, engineer and build in-situ delivery systems that consider bio-cleanliness approaches to enable examination of its water, sediment bed and the "roof" area accretion ice for biochemicals [3]. Our laboratory has been developing deep UV fluorescence and UV Raman instrumentation to locate and classify organic material at a variety of extremophile locations. The confluence of the measurement techniques and the engineering for high external pressure instrument shells has enabled us to design and begin prototype fabrication of a biochemical sensing probe that can be inserted into a hot-water drilled ice borehole, functioning as a local area mapper in water environments as deep as 6000 m. Real-time command and control is conducted from a surface science station. We have been using the deep Vostok ice cores at the U.S. National Ice Core Lab to validate our science and data analysis approaches with an "inverted" system

  2. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    USGS Publications Warehouse

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  3. A Unified Constitutive Model for Subglacial Till, Part II: Laboratory Tests, Disturbed State Modeling, and Validation for Two Subglacial Tills

    NASA Astrophysics Data System (ADS)

    Desai, C. S.; Sane, S. M.; Jenson, J. W.; Contractor, D. N.; Carlson, A. E.; Clark, P. U.

    2006-12-01

    This presentation, which is complementary to Part I (Jenson et al.), describes the application of the Disturbed State Concept (DSC) constitutive model to define the behavior of the deforming sediment (till) underlying glaciers and ice sheets. The DSC includes elastic, plastic, and creep strains, and microstructural changes leading to degradation, failure, and sometimes strengthening or healing. Here, we describe comprehensive laboratory experiments conducted on samples of two regionally significant tills deposited by the Laurentide Ice Sheet: the Tiskilwa Till and Sky Pilot Till. The tests are used to determine the parameters to calibrate the DSC model, which is validated with respect to the laboratory tests by comparing the predictions with test data used to find the parameters, and also comparing them with independent tests not used to find the parameters. Discussion of the results also includes comparison of the DSC model with the classical Mohr-Coulomb model, which has been commonly used for glacial tills. A numerical procedure based on finite element implementation of the DSC is used to simulate an idealized field problem, and its predictions are discussed. Based on these analyses, the unified DSC model is proposed to provide an improved model for subglacial tills compared to other models used commonly, and thus to provide the potential for improved predictions of ice sheet movements.

  4. Evidence Builds for Old Under-Ice Volcanoes on Mars

    NASA Image and Video Library

    2016-05-03

    These mountains are in a region called Sisyphi Montes. The base image from NASA 2001 Mars Odyssey shows a portion of the region about 130 miles. Red outlines indicate possible subglacial volcanic structures. MRO CRISM data are at upper right.

  5. Modeling the Impact of Fjord-glacier Geometry on Subglacial Plume, Wind, and Tidally-forced Circulation in Outlet Glacier Fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.

    2016-12-01

    The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.

  6. Western Greenland Subglacial Hydrologic Modeling and Observables: Seismicity and GPS

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Joughin, I. R.

    2010-12-01

    I present a hydro-mechanical model of the Western Greenland ice sheet with surface observables for two modes of meltwater input. Using input prescribed from distributed surface data, First, I bound the subglacial carrying capacity for both a distributed and localized system, in a typical summer. I provide observations of the ambient seismic response and its support for an established surface-to-bed connection. Second, I show the ice sheet response to large impulsive hydraulic inputs (lake drainage events) should produce distinct seismic observables that depend upon the localization of the drainage systems. In the former case, the signal propagates as a diffusive wave, while the channelized case, the response is localized. I provide a discussion of how these results are consistent with previous reports (Das et al, 2008, Joughin et al, 2008) of melt-induced speedup along Greenland's Western Flank. Late summer seismicity for a four-receiver array deployed near a supraglacial lake, 68 44.379N, 49 30.064W. Clusters of seismic activity are characterized by dominant shear-wave energy, consistent with basal sliding events.

  7. Joint Geodetic and Seismic Analysis of the effects of Englacial and Subglacial Hydraulics on Surface Crevassing near a Seasonal, Glacier-Dammed Lake on Gornergletscher, Switzerland

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Luttrell, K. M.; Kilb, D. L.; Walter, F.

    2017-12-01

    Glacial outburst floods are difficult to predict and threaten human life and property near glaciated regions. These events are characterized by rapid draining of glacier-dammed lakes via the sub/englacial hydraulic network to the proglacial stream. The glacier-dammed lake on Gornergletscher in Switzerland, which fills and drains each summer, provides an opportunity to study this hazard. For three drainages (2004, 2006, and 2007), we track icequakes (IQ) and on-ice GPS movement. Our seasonal seismic networks had 8 - 24 three component stations and apertures of about 300 - 400 m on the glacier surface. The seasonal GPS arrays contained 4 - 8 GPS antennae on the glacier surface. Using Rayleigh wave coherence surface IQ location, we located 2924, 7822 and 3782 IQs, in 2004, 2006 and 2007, respectively. The GPS data were smoothed using a nonparametric protocol, with average station velocities of 10 - 90 mm/day. In 2006, strains were calculated using five stations within 500 m of the lake, co-located with the seismic network. IQ productivity increased substantially during lake drainage only in 2004, which was the only year when the lake drainage was rapid ( 6 days) and primarily subglacial. In 2006, there was no obvious increase in GPS speeds with slow ( 21 days), supraglacial lake drainage. However, when drainage was subglacial as in 2004 and 2007 (sub/englacial over 11 days), GPS speed increased up to 160%. This speed increase is evidence for basal sliding induced by subglacial drainage. In general, we find that when the strain increase on the principle extension axis aligns with the crevasse opening direction, IQ are more prolific. We also observe a diurnal signal in both IQ occurrence and surface strain, with peak strain occurring in the mid- to late-afternoon (15:00 - 19:00 local) across the study area in 2006. We interpret this time-shift in strain and spatiotemporal dependence of IQs to be caused by diurnal variations in melt-induced sliding. Our analysis sheds

  8. Unrest at Bárdarbunga: Preparations for possible flooding due to subglacial volcanism

    NASA Astrophysics Data System (ADS)

    Hardardottir, Jorunn; Roberts, Matthew; Pagneux, Emmanuel; Einarsson, Bergur; Thorarinsdottir, Tinna; Johannesson, Tomas; Sigurdsson, Oddur; Egilson, David; Sigurdsson, Gunnar; Imo hydrological-monitoring-team

    2015-04-01

    Located partly beneath northwest Vatnajökull, Iceland, the Bárdarbunga volcanic system comprises an ice-capped central volcano and a fissure swarm extending beyond the ice margin. During the last 1100 years the volcano has erupted on at least 26 occasions. Outburst floods (jökulhlaups) on a scale of >100,000 m3 s-1 are known to have occurred during major explosive eruptions. Repeated jökulhlaups from Bárdarbunga have inundated the Jökulsá á Fjöllum River, which drains over 200 km northwards from the Dyngjujökull outlet glacier to the north coast of Iceland. Depending on the location of the eruption within the 80 km2 caldera, jökulhlaups could also flow northwards along Skjálfandafljót River and towards west and southwest into present-day tributaries of the extensively hydropower-harnessed Thjórsá River. On 16 August 2014, an intense earthquake swarm began within the Bárdarbunga caldera. Seismicity propagated from the caldera, extending ~10 km northwards of the ice margin where a fissure eruption developed in late August and remains ongoing in early January 2015. In connection with the lateral migration of magma from the caldera, the ice surface of Bárdarbunga has lowered by over 60 m; also associated with increased geothermal heat on the caldera rim, as manifested by the development of ice-surface depressions. In preparation for a subglacial eruption in the Bárdarbunga volcanic system, the Icelandic Meteorological Office (IMO) has made several assessments of likely hydrological hazards. Assessments were undertaken on Jökulsá á Fjöllum and Skjálfandafljót at key locations where preliminary evacuation plans for populated areas were made in cooperation with the local police. Floodwater extent was estimated for key infrastructures, such as bridges, telecommunication and power lines for maximum discharge levels ranging from 3,000 to 20,000 m3 s-1. The estimations were made using either simple Manning's calculations or HEC-RAS modelling

  9. Fast flow of Jakobshavn Isbræ and its subglacial drainage system

    NASA Astrophysics Data System (ADS)

    Werder, M. A.; Joughin, I. R.

    2013-12-01

    Jakobshavn Isbræ and many other outlet glaciers of present and past ice sheets lie in deep troughs which often have several overdeepened sections. The subglacial drainage system of such glaciers is heavily influenced by two effects caused by the pressure dependence of the melting point of water. The melting point decreases with increasing water pressure, this enhances wall-melt in downward sloping channels and diminishes wall-melt in upward sloping channels. Thus the first effect is the well known shutdown of channels on steep adverse bed slopes of overdeepenings and the associated high water pressure/low effective pressure. The second effect is a 2D effect and has not received much/any attention so far: the orientation of a channel will be deflected from the direction of the (negative) hydraulic potential gradient (which drives the water flow) towards the steepest slope of the bed. This leads to the enhanced formation of side channels dipping into the trough at about a 45° angle. This efficient connection between the margin and the trough equalizes the hydraulic potential, again leading to higher water pressure in the trough. We investigate these two effects with the 2D subglacial drainage system model GlaDS using Jakobshavn Isbræ as an example. We compare model runs with the pressure melt term disabled and enabled. With the term disabled the main channel situated in the trough is continuous and produces a large depression in the hydraulic potential and consequently high effective pressure in the trough (1-2MPa). Conversely, with the term enabled the main channel becomes discontinuous on steep adverse bed slopes and many side channels form on the margins of the trough. This leads to a hydraulic potential in the trough which is higher than in the surrounding area and consequently the effective pressure is low (0-1MPa). Low effective pressure leads to reduced basal drag and thus to more basal sliding. The modeled large decrease of effective pressure in the trough

  10. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    NASA Astrophysics Data System (ADS)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  11. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromagnetic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results

  12. The geomorphic impact of catastrophic glacier ice loss in mountain regions

    NASA Astrophysics Data System (ADS)

    Evans, S. G.

    2006-12-01

    Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of

  13. Digital mountains: toward development and environment protection in mountain regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo

    2007-06-01

    Former studies on mountain system are focused on the department or subject characters, i.e. different department and branches of learning carry out researches only for their individual purposes and with individual characters of the subject of interests. As a whole, their investigation is lacking of comprehensive study in combination with global environment. Ecological environment in mountain regions is vulnerable to the disturbance of human activities. Therefore, it is a key issue to coordinate economic development and environment protection in mountain regions. On the other hand, a lot of work is ongoing on mountain sciences, especially depending on the application of RS and GIS. Moreover, the development of the Digital Earth (DE) provides a clue to re-understand mountains. These are the background of the emergence of the Digital Mountains (DM). One of the purposes of the DM is integrating spatial related data and information about mountains. Moreover, the DM is a viewpoint and methodology of understanding and quantifying mountains holistically. The concept of the DM is that, the spatial and temporal data related to mountain regions are stored and managed in computers; moreover, manipulating, analyzing, modeling, simulating and sharing of the mountain information are implemented by utilizing technologies of RS, GIS, GPS, Geo-informatic Tupu, computer, virtual reality (VR), 3D simulation, massive storage, mutual operation and network communication. The DM aims at advancing mountain sciences and sustainable mountain development. The DM is used to providing information and method for coordinating the mountain regions development and environment protection. The fundamental work of the DM is the design of the scientific architecture. Furthermore, construct and develop massive databases of mountains are the important steps these days.

  14. Subglacial conditions at a sticky spot along Kamb Ice Stream, West Antarctica

    USGS Publications Warehouse

    Peters, L.E.; Anandakrishnan, S.

    2007-01-01

    We present the results of a seismic reflection experiment performed transverse to flow a few tens of kilometers above the main trunk of Kamb Ice Stream, West Antarctica, where we image a basal high surrounded by variable subglacial conditions. This high rises as much as 200 m above the surrounding bed, acting as a major sticking point that resists fast flow. Application of the amplitude variation with offset (AVO) seismic technique has highlighted regions of frozen sediments along our profile, suggesting that the ice stream is experiencing basal freeze-on in the region. The bedrock high appears to be at least partially draped in sediment cover, with a concentrated area of weak, dilatant till flanking one edge. This dilatant till is further dispersed along our profile, though it does not possess enough continuity to maintain streaming ice conditions. These results support the hypothesis that the ongoing shutdown of Kamb Ice Stream is due to a loss in continuous basal lubrication.

  15. Degassing and differentiation in subglacial volcanoes, Iceland

    USGS Publications Warehouse

    Moore, J.G.; Calk, L.C.

    1991-01-01

    Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60??C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to < 0.02 wt.% in the subaerially erupted lava at the top, and is a measure of the depth of water (or ice) above the eruptive vent. The extensive subsurface crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation. ?? 1991.

  16. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  17. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  18. Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution

    NASA Astrophysics Data System (ADS)

    Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry

    2013-04-01

    Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic

  19. Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography

    NASA Astrophysics Data System (ADS)

    Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.

    2012-12-01

    We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most

  20. Subglacial volcanic activity above a lateral dyke path during the 2014-2015 Bárdarbunga-Holuhraun rifting episode, Iceland

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Pálsson, Finnur

    2017-06-01

    The rifting episode associated with the Bárdarbunga-Holuhraun eruption in 2014-2015 included the first observations of major dyke propagation under ice. Three shallow ice depressions (ice cauldrons) with volumes ranging from 1 to 18 million m3 formed in Dyngjujökull glacier above the 48-km-long lateral path of the magma, at 4, 7 and 12 km from the northern glacier edge. Aircraft-based radar altimetry profiling was used to map the evolution of the cauldrons and construct a time series of the heat transfer rates. Out of the three scenarios explored: (1) onset or increase of hydrothermal activity, (2) convection within vertical fissures filled with water overlying intruded magma and (3) subglacial eruptions, the last option emerges as the only plausible mechanism to explain the rapid heat transfer observed in a location far from known geothermal areas. The thermal signals at two of the cauldrons are consistent with effusive subglacial eruptions. The formation of the northernmost cauldron was more rapid, indicating faster heat transfer rates. Radio-echo sounding data indicate that in contrast to the other two cauldrons, an intrusion of eruptive products occurred into the glacier, reaching 50-60 m above bedrock with the increased magma-ice contact explaining the more rapid heat transfer. We propose that the 2-m widening associated with graben formation increased the groundwater storage capacity of the bedrock, creating space for the meltwater to be stored, explaining the absence of meltwater pulses draining from Dyngjujökull.

  1. ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

  2. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    USGS Publications Warehouse

    ten Brink, Uri S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  3. The use of multi-channel ground penetrating radar and stream monitoring to investigate the seasonal evolution of englacial and subglacial drainage systems at the terminus of Exit Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Kilgore, Susan Marlena

    Concerns regarding the issue of climate change and, in particular, the rapid retreat of glaciers around the world, have placed great importance on glacial monitoring. Some of the methods most commonly used to observe glacial change---direct mass balance measurements and remote sensing---provide valuable information about glacier change. However, these methods do not address the englacial and subglacial environments. Surface meltwater that enters englacial and subglacial hydrological networks can contribute to acceleration of ice flow, increased calving on marine-terminating glaciers, surges or outburst floods, and greater overall ablation rates. Because subsurface drainage systems often freeze during the winter and re-form each summer, examining the seasonal evolution of these networks is crucial for assessing the impact that internal drainage may have on the behavior of a glacier each year. The goal of this study is to determine the role englacial and subglacial drainage system evolution plays in influencing summer ablation and discharge at the terminus of Exit Glacier, a small valley glacier located in South-central Alaska. During the summers of 2010 and 2011, we used ground-penetrating radar (GPR) to locate internal drainage features on the lower 100 meters of the glacier. GPR surveys were conducted in June and August of each year in an effort to observe the evolution of the drainage systems over the course of an ablation season. Three antenna frequencies---250, 500, and 800 MHz---were used on a dual frequency GPR so that various resolutions and depths in the ice could be viewed simultaneously. Stream monitoring was conducted to document discharge in the proglacial stream throughout the 2011 season. These data were compared with weather records to differentiate noticeable meltwater releases from precipitation events. Additionally, morphological changes in the glacier were observed through photographic documentation. Throughout the observation period, significant

  4. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  5. Mountains: An Overview.

    ERIC Educational Resources Information Center

    Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

    1999-01-01

    Introduces the lessons from "Mountain: A Global Resource" that were developed by the National Council for the Social Studies (NCSS) and The Mountain Institute for use by NCSS members and their students. Provides an overview that introduces the mountains, mountain cultures, historical perceptions, and the geographical importance of…

  6. Comparison of Antarctic Crustal Thickness from Gravity Inversion and Seismology: Evidence for Mantle Dynamic Uplift under Marie Byrd Land

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Kusznir, N. J.; Jordan, T. A.

    2017-12-01

    Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Antarctic crustal thicknesses derived from gravity inversion are compared with seismic estimates from Baranov (2011) and An et al. (2015). We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift (LR) to the South Pole region, a distance of 2500 km. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new crustal thickness map produced by this gravity inversion study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts (DG) and Peter I Island (PI) in the Bellingshausen Sea

  7. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  8. Mountains

    Treesearch

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  9. Dynamics of a vertical turbulent plume in a stratification typical of Greenland fjords: an idealized model of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2017-04-01

    We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure

  10. Mountain research

    NASA Astrophysics Data System (ADS)

    The newly incorporated International Mountain Society (IMS) will in May begin publication of an interdisciplinary scientific journal, Mountain Research and Development. The quarterly will be copublished with the United National University; additional support will come from UNESCO.A primary objective of IMS is to ‘help solve mountain land-use problems by developing a foundation of scientific and technical knowledge on which to base management decisions,’ according to Jack D. Ives, president of the Boulder-based organization. ‘The Society is strongly committed to the belief that a rational worldwide approach to mountain problems must involve a wide range of disciplines in the natural and human sciences, medicine, architecture, engineering, and technology.’

  11. Recent population trends of mountain goats in the Olympic Mountains, Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  12. ADMAP-2: The next-generation Antarctic magnetic anomaly map

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Ferraccioli, Fausto; Jordan, Tom; Damaske, Detlef; Blankenship, Don; Holt, Jack; Young, Duncan; Ivanov, Sergey; Kiselev, Alexander; Jokat, Wilfried; Gohl, Karsten; Eagles, Graeme; Bell, Robin; Armadillo, Egidio; Bozzo, Emanuelle; Caneva, Giorgio; Finn, Carol; Forsberg, Rene; Aitken, Alan

    2017-04-01

    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60°S (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014¸ Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field

  13. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  14. Geology and environments of subglacial Lake Vostok.

    PubMed

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  15. Advances in global mountain geomorphology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  16. Geological and paleontological results from the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) Project

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.

    2015-12-01

    The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca

  17. Geology of the Okanogan Lobe Does Not Support Subglacial Catastrophic Flooding from Beneath the Cordilleran Ice Sheet

    NASA Astrophysics Data System (ADS)

    Dawes, Ralph

    2017-04-01

    The Okanogan lobe (OL) of the Cordilleran ice sheet (CIS) extended south from interior British Columbia in Canada to the subaerial, megaflood-scoured channeled scablands of Bretz (1923) in eastern Washington state. The drumlins and large, overdeepened valleys of the OL have been attributed to glaciofluvial processes that include at least one catastrophic megaflood, or underburst (e.g. Shaw et al., 1999; Lesemann and Brennand, 2009). If correct, the underburst hypothesis would have the OL provide another source, besides glacial Lake Missoula (GLM), for channeled scablands megaflooding. However, the geomorphology and sedimentology of the OL and the channeled scablands to its south appear to rule out megaflood-scale (≥106 m^3/s) underbursts. Underburst theory posits large subglacial lakes in the deepest valleys of the OL, overlain by relatively thin ice shelves. The largest, the Okanogan Valley, runs north-south 250 km across the US-Canada border, has bedrock-floored basins eroded to up to 650 m below sea level (Eyles et al., 1991), and sediment fill to terrace surfaces 380-420 m above sea level. Advance outwash overlain by till is exposed locally in valley walls, marking the arrival of the ice sheet. Glacial striations on bedrock at or near lowest current exposure elevations show thick glacial ice in the valleys. The last stage of the OL consisted of thick ice in the main valleys. A set of kame terraces deposited between ice and valley walls forms a composite "Great Terrace" 200 km along the sides of the Okanogan and Columbia River valleys, pocked by kettles, with local ice-contact-disturbed bedding. Ice-marginal, side-stream channels were eroded into bedrock adjacent to the Okanogan, Methow, and Columbia River valleys while the main valleys remained choked with last-stage glacial ice. Lacustrine beds in the Great Terrace, deposited in short-lived proglacial lakes, are interbedded with outwash and alluvial fans. A particularly thick, extensive sequence of

  18. Airborne geophysical surveys of unexplored regions of Antarctica - results of the ESA PolarGap campaign

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Ferraccioli, F.; Jordan, T. A.; Matsuoka, K.

    2016-12-01

    Major airborne geophysical surveys have recently mapped large unexplored regions in the interior of East Antarctica, in a Danish-UK-Norwegian cooperation. Long-range aerogeophysics data have been collected both over the Recovery Lakes region (2012/13), as well as around the Pole (2015/16). The primary purpose of these campaigns was to map gravity to fill-in data voids in global gravity field models and augment results from the European Space Agency GOCE gravity field satellite mission. Additionally magnetic, ice-penetrating radar and lidar data are used to explore and understand the subglacial topography and geological setting, providing an improved foundation for ice sheet modeling. The most recent ESA-sponsored Polar Gap project used a BAS Twin-Otter aircraft equipped with both spring gravimeter and IMU gravity sensors, magnetometers, ice penetrating radar over the essentially unmapped regions of the GOCE polar gap. Additional detailed flights over the subglacial Recovery Lakes region, followed up earlier 2013 flights over this region. The operations took place from two field camps (near Recovery Lakes and Thiel Mountains), as well as from the Amundsen-Scott South Pole station, thanks to a special arrangement with NSF. In addition to the airborne geophysics program, data with an ESA Ku-band radar were also acquired, in support of the CryoSat-2 mission, and scanning lidar collected across the polar gap, beyond the coverage of IceSat. In the talk we outline the Antarctic field operations, and show first results of the campaign, including performance of the gravity sensors, with comparison to limited existing data in the region (e.g., AGAP, IceBridge), as well as examples of lidar, magnetics and radar data. Significant new features detected from the geophysical data includes an extensive subglacial valley system between the Pole and the Filchner-Ronne ice shelf region, as well as extensive subglacial mountains, both consistent with observed ice stream patterns in

  19. Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica

    USGS Publications Warehouse

    Finn, Carol A.; Goodge, John W.

    2010-01-01

    Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.

  20. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    USGS Publications Warehouse

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  1. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Stephen F.

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  2. Long-term Glacial History of the West Antarctic Ice Sheet from Cosmogenic Nuclides in a Subglacial Bedrock Core

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.

    2017-12-01

    To investigate the response of the West Antarctic Ice Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock core from beneath 150 m of ice at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the ice sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the ice-sheet surface lies at 1300 m, approximately halfway from the ice-sheet divide to the grounding line. We expect ice thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. Ice flow speeds are moderate and ice above the core site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two cores from different depths to compare exposure histories, hydrofracture of the basal ice prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous ice core above 8 m of bedrock core. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the core will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.

  3. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  4. Lesson 1: Mountains Matter.

    ERIC Educational Resources Information Center

    Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

    1999-01-01

    Provides a lesson that enables students to explain the global importance of mountains by applying the five themes of geography (location, place, relationships within places, movement, and regions) to a particular mountain range. Explains that students work in teams to prepare a brochure about their mountain range. (CMK)

  5. Western Mountain Initiative

    Science.gov Websites

    Home About WMI People Publications News Media Research Links Western Mountain Initiative The Western Mountain Initiative is a team of USGS, US Forest Service, and university scientists working to

  6. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  7. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Simmons

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work donemore » at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.« less

  9. Evidence for heterogeneous (and possibly transient) geothermal flux beneath the Ross-Amundsen ice divide of the West Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Danque, H. A.; Quartini, E.; Young, D. A.

    2012-12-01

    It is well established that the geological framework for the evolution of the marine-based West Antarctic ice sheet (WAIS) is the Cretaceous through Cenozoic rifting of the underlying lithosphere. The southern flank of this rift along the Whitmore Mountains underlies the upper reaches of the Ross Sea catchment of the WAIS and has been identified as a site of active subglacial volcanism. Interestingly, the northern flank of this rift represented by the upward doming of the Marie Byrd Land volcanic province has not yet been associated with active subglacial volcanism. Similarly, it is not known whether the heterogeneity of geothermal flux associated with these existing and potential rift flank volcanic provinces extends across the floor of the rift between the rift flanks. Here we present geophysical evidence for heterogeneous geothermal flux associated with active subglacial volcanism along the northern rift flank adjacent to Marie Byrd Land where it intersects the ice divide for the Ross and Amundsen Sea sectors for the WAIS. We further evaluate the evidence for the continuity of heterogeneous geothermal flux along this ice divide and across the rift floor between the two flanks of the West Antarctic rift system.

  10. The crustal thickness of West Antarctica

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Aster, R. C.; Huerta, A.; Sun, X.; Lloyd, A.; Wiens, D.; Nyblade, A.; Anandakrishnan, S.; Winberry, J. P.; Wilson, T.

    2014-01-01

    P-to-S receiver functions (PRFs) from the Polar Earth Observing Network (POLENET) GPS and seismic leg of POLENET spanning West Antarctica and the Transantarctic Mountains deployment of seismographic stations provide new estimates of crustal thickness across West Antarctica, including the West Antarctic Rift System (WARS), Marie Byrd Land (MBL) dome, and the Transantarctic Mountains (TAM) margin. We show that complications arising from ice sheet multiples can be effectively managed and further information concerning low-velocity subglacial sediment thickness may be determined, via top-down utilization of synthetic receiver function models. We combine shallow structure constraints with the response of deeper layers using a regularized Markov chain Monte Carlo methodology to constrain bulk crustal properties. Crustal thickness estimates range from 17.0±4 km at Fishtail Point in the western WARS to 45±5 km at Lonewolf Nunataks in the TAM. Symmetric regions of crustal thinning observed in a transect deployment across the West Antarctic Ice Sheet correlate with deep subice basins, consistent with pure shear crustal necking under past localized extension. Subglacial sediment deposit thicknesses generally correlate with trough/dome expectations, with the thickest inferred subice low-velocity sediment estimated as ˜0.4 km within the Bentley Subglacial Trench. Inverted PRFs from this study and other published crustal estimates are combined with ambient noise surface wave constraints to generate a crustal thickness map for West Antarctica south of 75°S. Observations are consistent with isostatic crustal compensation across the central WARS but indicate significant mantle compensation across the TAM, Ellsworth Block, MBL dome, and eastern and western sectors of thinnest WARS crust, consistent with low density and likely dynamic, low-viscosity high-temperature mantle.

  11. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica.

    PubMed

    Obbels, Dagmar; Verleyen, Elie; Mano, Marie-José; Namsaraev, Zorigto; Sweetlove, Maxime; Tytgat, Bjorn; Fernandez-Carazo, Rafael; De Wever, Aaike; D'hondt, Sofie; Ertz, Damien; Elster, Josef; Sabbe, Koen; Willems, Anne; Wilmotte, Annick; Vyverman, Wim

    2016-06-01

    The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Antarctic Lithosphere Studies: Progress, Problems and Promise

    NASA Astrophysics Data System (ADS)

    Dalziel, I. W. D.; Wilson, T. J.

    2017-12-01

    In the sixty years since the International Geophysical Year, studies of the Antarctic lithosphere have progressed from basic geological observations and sparse geophysical measurements to continental-scale datasets of radiometric dates, ice thickness, bedrock topography and characteristics, seismic imaging and potential fields. These have been augmented by data from increasingly dense broadband seismic and geodetic networks. The Antarctic lithosphere is known to have been an integral part, indeed a "keystone" of the Pangea ( 250-185Ma) and Gondwanaland ( 540-180 Ma) supercontinents. It is widely believed to have been part of hypothetical earlier supercontinents Rodinia ( 1.0-0.75 Ga) and Columbia (Nuna) ( 2.0-1.5 Ga). Despite the paucity of exposure in East Antarctica, the new potential field datasets have emboldened workers to extrapolate Precambrian geological provinces and structures from neighboring continents into Antarctica. Hence models of the configuration of Columbia and its evolution into Rodinia and Gondwana have been proposed, and rift-flank uplift superimposed on a Proterozoic orogenic root has been hypothesized to explain the Gamburtsev Subglacial Mountains. Mesozoic-Cenozoic rifting has imparted a strong imprint on the West Antarctic lithosphere. Seismic tomographic evidence reveals lateral variation in lithospheric thickness, with the thinnest zones within the West Antarctic rift system and underlying the Amundsen Sea Embayment. Upper mantle low velocity zones are extensive, with a deeper mantle velocity anomaly underlying Marie Byrd Land marking a possible mantle plume. Misfits between crustal motions measured by GPS and GIA model predictions can, in part, be linked with the changes in lithosphere thickness and mantle rheology. Unusually high uplift rates measured by GPS in the Amundsen region can be interpreted as the response of regions with thin lithosphere and weak mantle to late Holocene ice mass loss. Horizontal displacements across the TAM

  13. A viable microbial community in a subglacial volcanic crater lake, Iceland.

    PubMed

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-01-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L(-1)). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 x 10(4) ml(-1) and 4 x 10(7) g(-1), respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Grímsvötn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  14. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  15. Mountain Weather and Climate, Third Edition

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  16. Sedimentary record of sub-glacial outburst floods at Laurentian Fan

    NASA Astrophysics Data System (ADS)

    Leng, Wei; von Dobeneck, Tilo

    2016-04-01

    Large-scale glacial meltwater discharge could be widely recognized off the eastern Canadian continental margin. At Laurentian Fan, sub-glacial outburst floods eroded Permian-Carboniferous redbeds at Gulf of St. Lawrence and then delivered the reddish sediments by Laurentian Channel. Sedimentary record from four gravity cores (GeoB18514-2, 18515-1, 18516-2 and 18517-1) at the SW slope of the Grand Banks of Newfoundland revealed the major depositional processes since Heinrich event 2 (ca. 22 ka). In the cores, the upper thick Holocene olive-grey silty mud units overly IRD-rich Heinrich 1 layer, five reddish units are distinguished in the lower part. Reddish units get proportionally thinner along the SW slope at higher and more distal positions; instead, separating olive-grey layers get thicker with height and distance. Reddish and olive grey units have sharp boundaries and no signs of erosion. Mean grain size changes abruptly from coarse in grey layers to fine in reddish layers, terrigenous elements (as Al, K, Ti, Fe) and clays (Al/Si) are highly elevated in reddish layers and low in Heinrich layers, which are instead enriched in detrital continental carbonates. Both Heinrich layers and reddish layers have enhanced magnetic susceptibility, but Heinrich layer have higher ferromagnetic (SIRM) content (mafic rocks), while reddish layers have more hematite (HIRM). These five reddish layers differ from event to event, which seems to reflect different mixing ratios of event-related and background sedimentation. This mixing will allow estimating event-specific sedimentation rates. Using mixing ratio combined with 14C dating data could contribute to estimate the sedimentation rate and duration of outburst floods, which could help to build ice sheet retreat history and find the connection with paleoclimate changes.

  17. Ural Mountains, Russia

    NASA Image and Video Library

    2015-10-06

    This image from NASA Terra spacecraft shows the Ural Mountains, which run 2500 km north-south through western Russia, and form the boundary between Europe and Asia. Since the 17th century, the mountains were exploited for their deposits of iron, copper, gold, coal, oil, mica and gemstones. The Urals are among the world's oldest existing mountain ranges, having been formed about 275 million years ago due to the collision of the Laurussia supercontinent with the continent of Kazakhstania. The image was acquired July 13, 2011, covers an area of 39 by 62 km, and is located near 65.5 degrees north, 59.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19795

  18. Recreational mountain biking injuries.

    PubMed

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  19. Mountain Pine Beetle

    Treesearch

    Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph

    1989-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...

  20. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  1. Rocky Mountain spotted fever

    MedlinePlus

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  2. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    NASA Astrophysics Data System (ADS)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  3. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  4. Tephra productivity and eruption flux of the subglacial Katla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Óladóttir, Bergrún Arna; Sigmarsson, Olgeir; Larsen, Guðrún

    2018-07-01

    The influence of the mode of magma ascent on eruption fluxes is uncertain beneath active volcanoes. To study this, the subglacial volcano Katla, Iceland, whichhas produced abundant tephra through the Holocene, has been investigated through volume estimations of the largest eruptions from the last 3500 years. Tephra volume measurements allow tephra productivity and their variation through time to be estimated. By adding the volume of lava from effusive eruptions, the total eruption flux is obtained. Tephra productivity shows variations with time, ranging from 2.0 km3/century, during the prehistoric period examined, to 0.7 km3/century, during historical time (after 939 CE). However, the average eruption flux remained unchanged ( 2.2 km3/century) during the studied 3500 years due to the large lava produced during the Eldgjá flood basalt eruption (939 CE). Following the Eldgjá event, tephra production declined and also eruption frequency, decreasing from 5.6-2.0 eruptions/century. Magma ascending vertically to the glacier -covered volcano results in explosive phreatomagmatic eruptions and tephra formation, whereas magma transferred in a laterally extended dyke leads to predominant fissural eruptions outside the glacier (e.g., Eldgjá). The mode of magma ascent thus exerts control on the eruption frequency and the volcanic style at Katla volcano without affecting the long-term eruption flux. A uniform increase in cumulative magma volume from Katla suggests a time-integrated steady-state behavior over the last 3500 years. Finally, although the large fissural eruption of Eldgjá lowered the following eruption frequency, it only temporarily affected the time averaged eruption flux of Katla.

  5. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  6. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  7. A sightability model for mountain goats

    USGS Publications Warehouse

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  8. Global Measurements of Stratospheric Mountain Waves from Space

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)

    1999-01-01

    Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.

  9. Mountain pine beetle in southwestern white pine in the Pinaleno Mountains

    Treesearch

    Ann M. Lynch; Christopher D. O' Connor

    2013-01-01

    Mountain pine beetle has rarely been found in the Madrean Sky Island Archipelago and has not been reported from the Pinaleño Mountains until recently. This insect began killing southwestern white pine in 1996 or earlier, with additional mortality each year since. Activity has increased in the last 2 years. The life cycle in the Pinaleños during this time has been...

  10. P and S Body Wave Tomography of the West Antarctic Rift System: Evidence for Recent Cenozoic Rifting

    NASA Astrophysics Data System (ADS)

    Soto, D. R.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Wiens, D.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.

    2017-12-01

    Imaging the upper mantle of West Antarctica can provide valuable information about its deep structure, the source of subglacial volcanism, and the age of rifting in the West Antarctic Rift System (WARS). The WARS extends across West Antarctica and is characterized by low sub-ice sheet topography, with the deepest area being the Bentley Subglacial Trench. Seismic data from POLENET/ANET broadband seismic stations were used to obtain improved body wave images of the upper mantle. The data comes from 34 backbone stations, 13 temporary broadband stations deployed across the WARS from the Whitmore Mountains to Marie Byrd Land from January 2010 to January 2012, 10 stations deployed above the Byrd Subglacial Basin from January 2015 to January 2017, and 5 stations from the UKANET network deployed January 2016 to the present. Using multi-channel cross correlation of P and S body waves from teleseismic earthquakes, travel time residuals have been obtained from 360 events for the P-wave model and 263 events for the S-wave model. The VanDecar's method of linear inversion method has been used to develop a model of relative P and S wave velocity variations in the upper mantle. Preliminary P and S wave models show a low velocity anomaly 150 km beneath Marie Byrd Land and faster wave speeds across much of the WARS, except for beneath the Bentley Subglacial Trench, where a modest low wave speed region is imaged. These results are consistent with previously published tomographic models of West Antarctica.

  11. Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry

    NASA Astrophysics Data System (ADS)

    De Angelis, M.; Petit, J.-R.; Savarino, J.; Souchez, R.; Thiemens, M. H.

    2004-06-01

    We present here the first comprehensive study of the chemical composition of accretion ice from Lake Vostok. Ion chromatographic analyses were performed on samples obtained along the deeper part of the Vostok ice core. Samples were taken from 3350 down to 3611 m depth, both in glacier ice and subglacial lake ice. The total ionic contents of two accretion ice layers—a few meters thick and centered around 3540 and 3590 m depth—are several times lower than those of glacier ice. Very low concentrations were also observed in the deeper part of accretion ice, below 3609 m depth. Elsewhere, the total ionic content is variable but remains 5 to 50 times higher than in glacier ice. Whatever its total ionic content, the ionic composition of accretion ice is significantly different from what is observed in glacier ice. It is dominated by sodium chloride, homogeneously distributed throughout the ice lattice, as well as calcium and magnesium sulfate, likely located in solid inclusions, or to a lesser extent at grain boundaries. Chemical considerations combined with additional studies of sulfur and oxygen isotopes in sulfate, and iron measurements strongly suggest that glacier water recycling and bedrock hydrolysis do not play a prominent role in providing impurities to accretion ice. It is more likely that NaCl rich water carrying fine sulfate salt particles is sporadically incorporated in the ice accreting in a shallow bay upstream from Vostok. The origin of such salty water, which should also contribute to Lake salinity, is discussed.

  12. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  13. Western Mountain Initiative - Background

    Science.gov Websites

    , and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon

  14. Management of Multi-Casualty Incidents in Mountain Rescue: Evidence-Based Guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM).

    PubMed

    Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter

    2018-06-01

    Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue: Evidence-based guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). High Alt Med Biol. 19:131-140, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.

  15. Protection of the Mountain Ridgelines Utilizing GIS

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, M.

    2013-12-01

    Korean peninsula is characterized by numerous hills and mountains. The longest mountain ridgeline starting from Mt. Baekdusan to Mt. Jirisan is called Baekdudaegan which is similar to the continental divide or topographical watershed. In this study, GIS data, such as remotesensing images, national digital map, and watershed map, are used to analyze Korean mountain ridgelines structure and one Baekdudaegan data and nine Ridgelines are extracted. When extracted Baekdudaegan and other Ridgelines are overlaid on geologic maps, granite and gneiss are main components on the mountain ridgelines. The main mountain ridgelines are considered as the spiritual heritage overlapped in the land in Korea. As the environmental state is relatively better than those of other region in Korea, so many mountain ridgelines are legally protected by national legislation. The mountain ridgelines has hierarchical system; Baekdudaegan, Jeongmaek, Gimaek and Jimaek etc. according to their scale and total lengths of ridgelines. As only part of mountain ridgelines are currently protected by law or managed in environmental impact assessment (EIA) procedure, we think that most part of them should be under protection. Considering the environmental state of the ridgelines, we think that some protective measures should be set up nearby 1 km on both sides of them. If there goes a development plan or project near the main mountain ridgelines, topographical change index (TCI) and topographical scale index (TSI) etc. are to be applied in EIA. This study intends: firstly, to analyze the topological characteristics of the Korean mountain ridgelines using GIS, secondly, to analyze the geological characteristics of nearby mountain ridgelines, and lastly, to find a way to utilize the results on EIA.

  16. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology

  17. Mountain goat abundance and population trends in the Olympic Mountains, northwestern Washington, 2016

    USGS Publications Warehouse

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Baccus, William T.

    2016-11-30

    Executive SummaryWe estimated abundance and trends of non-native mountain goats (Oreamnos americanus) in the Olympic Mountains of northwestern Washington, based on aerial surveys conducted during July 13–24, 2016. The surveys produced the seventh population estimate since the first formal aerial surveys were conducted in 1983. This was the second population estimate since we adjusted survey area boundaries and adopted new estimation procedures in 2011. Before 2011, surveys encompassed all areas free of glacial ice at elevations above 1,520 meters (m), but in 2011 we expanded survey unit boundaries to include suitable mountain goat habitats at elevations between 1,425 and 1,520 m. In 2011, we also began applying a sightability correction model allowing us to estimate undercounting bias associated with aerial surveys and to adjust survey results accordingly. The 2016 surveys were carried out by National Park Service (NPS) personnel in Olympic National Park and by Washington Department of Fish and Wildlife (WDFW) biologists in Olympic National Forest and in the southeastern part of Olympic National Park. We surveyed a total of 59 survey units, comprising 55 percent of the 60,218-hectare survey area. We estimated a mountain goat population of 623 ±43 (standard error, SE). Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 561 to 741 mountain goats at the time of the survey.We examined the rate of increase of the mountain goat population by comparing the current population estimate to previous estimates from 2004 and 2011. Because aerial survey boundaries changed between 2004 and 2016, we recomputed population estimates for 2011 and 2016 surveys based on the revised survey boundaries as well as the previously defined boundaries so that estimates were directly comparable across years. Additionally, because the Mount Washington survey unit was not surveyed in 2011, we used results from an independent survey of the Mount

  18. Mountain Child: Systematic Literature Review.

    PubMed

    Audsley, Annie; Wallace, Rebecca M M; Price, Martin F

    2016-12-01

    Objectives This systematic review identifies and reviews both peer-reviewed and 'grey' literature, across a range of disciplines and from diverse sources, relating to the condition of children living in mountain communities in low- and middle-income countries. Findings The literature on poverty in these communities does not generally focus on the particular vulnerabilities of children or the impact of intersecting vulnerabilities on the most marginalised members of communities. However, this literature does contribute analyses of the broader context and variety of factors impacting on human development in mountainous areas. The literature on other areas of children's lives-health, nutrition, child mortality, education, and child labour-focuses more specifically on children's particular vulnerabilities or experiences. However, it sometimes lacks the broader analysis of the many interrelated characteristics of a mountainous environment which impact on children's situations. Themes Nevertheless, certain themes recur across many disciplines and types of literature, and point to some general conclusions: mountain poverty is influenced by the very local specificities of the physical environment; mountain communities are often politically and economically marginalised, particularly for the most vulnerable within these communities, including children; and mountain communities themselves are an important locus for challenging and interrupting cycles of increasing inequality and disadvantage. While this broad-scale review represents a modest first step, its findings provide the basis for further investigation.

  19. Mountain cartography: revival of a classic domain

    NASA Astrophysics Data System (ADS)

    Häberling, Christian; Hurni, Lorenz

    The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.

  20. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of the boundary line between the central and mountain standard time zones described in § 71.7 and east of the...

  1. Storymakers: Hopa Mountain's Early Literacy Program

    ERIC Educational Resources Information Center

    Templin, Patricia A.

    2013-01-01

    Hopa Mountain's StoryMakers program is an innovative, research-based program for donating high quality young children's books to parents. Hopa Mountain is a nonprofit organization based in Bozeman, Montana. Hopa Mountain works with groups of rural and tribal citizen leaders who form StoryMakers Community Teams to talk one-on-one with local parents…

  2. Using prescribed fire to regenerate Table Mountain pine in the Southern Appalachian Mountains

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2000-01-01

    Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Appalachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe...

  3. Mountain Biking Injuries.

    PubMed

    Ansari, Majid; Nourian, Ruhollah; Khodaee, Morteza

    With the increasing popularity of mountain biking, also known as off-road cycling, and the riders pushing the sport into extremes, there has been a corresponding increase in injury. Almost two thirds of acute injuries involve the upper extremities, and a similar proportion of overuse injuries affect the lower extremities. Mountain biking appears to be a high-risk sport for severe spine injuries. New trends of injury patterns are observed with popularity of mountain bike trail parks and freeride cycling. Using protective gear, improving technical proficiency, and physical fitness may somewhat decrease the risk of injuries. Simple modifications in bicycle-rider interface areas and with the bicycle (bike fit) also may decrease some overuse injuries. Bike fit provides the clinician with postural correction during the sport. In this review, we also discuss the importance of race-day management strategies and monitoring the injury trends.

  4. Cercocarpus Kunth: mountain-mahogany

    Treesearch

    Stanley G. Kitchen

    2008-01-01

    The mountain mahoganies - genus Cercocarpus - are 8 to 10 species of moderately to intricately branched shrubs or small trees that are endemic to dry coastal and interior mountains of the western United States and Mexico (Stutz 1990). Leaves are generally persistent and stems are unarmed. Two of the most widely distributed and utilized species are described here.

  5. Himalayan Mountain Range, India/Tibet

    NASA Image and Video Library

    1973-06-22

    SL2-102-900 (22 June 1973) --- The Great Himalayan Mountain Range, India/Tibet (30.5N, 81.5E) is literally the top of the world where mountains soar to over 20,000 ft. effectively isolating Tibet from the rest of the world. The two lakes seen in the center of the image are the Laga Co and the Kunggyu Co located just inside the Tibet border. Although clouds and rainfall are rare in this region, snow is always present on the mountain peaks. Photo credit: NASA

  6. Mountain big sagebrush communities on the Bishop Conglomerate in the eastern Uinta Mountains

    Treesearch

    Sherel Goodrich; Allen Huber

    2001-01-01

    The Bishop Conglomerate forms broad, gently sloping pediments that include a mantle or veneer of coarse gravel and some cobble over underlying formations. These pediments cover large areas at the margins of the Uinta Mountains. Mountain big sagebrush (Artemisia tridentata var. pauciflora) communities cover rather large areas at the outer edge or lower end of these...

  7. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  8. Mountains as early warning indicators of climate change

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  9. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, Dennis W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  10. Injuries in mountain biking.

    PubMed

    Gaulrapp, H; Weber, A; Rosemeyer, B

    2001-01-01

    Despite still growing attraction mountain biking as a matter of sports traumatology still lacks relevant data based on large cross-sectional surveys. To obtain an overview of risk factors, types, and main body sites of injuries occurring in mountain biking we assessed the results of a questionnaire answered by 3873 athletes. A total of 8133 single lesions were reported by 3474 athletes, 36% of whom regularly participated in competitions. The incidence of injuries in mountain biking is comparable to that in other outdoor sports, the majority of injuries being minor. Mountain biking athletes were found to have an overall injury risk rate of 0.6% per year and 1 injury per 1000 h of biking. The main risk factors included slippery road surface, cyclist's poor judgement of the situation, and excessive speed, representing personal factors that could be altered by preventive measures. Of all injuries 14% were due to collision with some part of the bike, especially the pedals and the handlebar. While 75% of the injuries were minor, such as skin wounds and simple contusions, 10% were so severe that hospitalization was required. A breakdown of the injuries according to body site and frequency of occurrence is presented.

  11. Extinction of Harrington's mountain goat

    PubMed Central

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters. Images PMID:16593655

  12. Late glacial aridity in southern Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, O K; Pitblado, B L

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lakemore » (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.« less

  13. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  14. A new network on mountain geomorphosites

    NASA Astrophysics Data System (ADS)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  15. [Prokaryotic community of subglacial bottom sediments of Antarctic Lake Untersee: detection by cultural and direct microscopic techniques].

    PubMed

    Muliukin, A L; Demkina, E V; Manucharova, N A; Akimov, V N; Andersen, D; McKay, C; Gal'chenko, V F

    2014-01-01

    The heterotrophic mesophilic component was studied in microbial communities of the samples of frozen regolith collected from the glacier near Lake Untersee collected in 2011 during the joint Russian-American expedition to central Dronning Maud Land (Eastern Antarctica). Cultural techniques revealed high bacterial numbers in the samples. For enumeration of viable cells, the most probable numbers (MPN) method proved more efficient than plating on agar media. Fluorescent in situ hybridization with the relevant oligonucleotide probes revealed members of the groups Eubacteria (Actinobacteria, Firmicutes) and Archaea. Application of the methods of cell resuscitation, such as the use of diluted media and prevention of oxidative stress, did not result in a significant increase in the numbers of viable cells retrieved form subglacial sediment samples. Our previous investigations demonstrated the necessity for special procedures for efficient reactivation of the cells from microbial communities of preserved fossil soil and permafrost samples collected in the Arctic zone. The differences in response to the special resuscitation procedures may reflect the differences in the physiological and morphological state of bacterial cells in microbial communities subject to continuous or periodic low temperatures and dehydration.

  16. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  17. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  18. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  19. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  20. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  1. The Bossons glacier protects Europe's summit from erosion

    NASA Astrophysics Data System (ADS)

    Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.

    2013-08-01

    The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.

  2. Mountain-Scale Coupled Processes (TH/THC/THM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal

  3. Personal and professional profile of mountain medicine physicians.

    PubMed

    Peters, Patrick

    2003-01-01

    The purpose of this study was to define and describe the personal and professional profile of mountain medicine physicians including general physical training information and to include a detailed overview of the practice of mountain sports. A group of physicians participating in a specialized mountain medicine education program filled out a standardized questionnaire. The data obtained from this questionnaire were first analyzed in a descriptive way and then by statistical methods (chi2 test, t test, and analysis of variance). Detailed results have been provided for gender, age, marital status, general training frequency and methods, professional status, additional medical qualifications, memberships in professional societies and alpine clubs, mountain sports practice, and injuries sustained during the practice of mountain sports. This study has provided a detailed overview concerning the personal and professional profile of mountain medicine physicians. Course organizers as well as official commissions regulating the education in mountain medicine will be able to use this information to adapt and optimize the courses and the recommendations/requirements as detailed by the UIAA-ICAR-ISMM (Union Internationale des Associations Alpinistes, International Commission for Alpine Rescue, International Society for Mountain Medicine).

  4. Tectonic and neotectonic framework of the Yucca Mountain Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweickert, R.A.

    1992-09-30

    Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.

  5. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    PubMed

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  6. Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrod, D.R.; Griscom, A.; Turner, R.L.

    1988-01-01

    The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.

  7. State Park Directors' Perceptions of Mountain Biking

    PubMed

    SCHUETT

    1997-03-01

    / This study intended to explore the perceptions of mountain bikingmanagement through a mail survey of state park directors in all 50 states.With a 100% response rate, it was found that 47 states permit mountainbiking in their state parks, however, few state parks have formalized plansto manage this outdoor activity. The management policies that do exist arenot followed on a statewide basis but vary within each state and at eachstate park. Many states have worked cooperatively with local mountain bikingclubs to develop and maintain mountain bike trails, promote rider education,and provide volunteer patrols on trails. The issue of user conflict surfacedwith almost three-fourths of the managers responding that conflict existedbetween mountain bikers and other trail users. This preliminary study shouldprompt further research with on-site managers focusing on the use ofmanagement plans for mountain biking, cooperation between managers and usergroups, and user conflict. It is recommended that an Internet-basedinformation clearinghouse or discussion group be made available to landmanagers by a national bicycling organization.KEY WORDS: Mountain biking; State parks; State park directors;Recreation resource management

  8. Rocky Mountains

    NASA Image and Video Library

    2015-05-06

    On April 29, 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured a true-color image of a typical spring scene in the western United State: snow-crowned Rocky Mountains rising above the faintly greening plains. The Rocky Mountains stretch from British Columbia, Canada to the Rio Grande in New Mexico, a span of roughly 3,000 miles, and contains many of the highest peaks in the continental United States. The tallest, Mount Elbert, rises 14,400 ft. (4,401 m) above sea level, and is located in the San Isabel National Forest, near Leadville, Colorado. This image covers seven Rocky Mountain states. From north to south they are: Montana and Idaho, Wyoming; Utah (with the Great Salt Lake visible) and Colorado; Arizona and New Mexico. To the east, the Great Plain states captured are, from north to south: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma and northwestern Texas. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  10. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  11. Mineral resources of the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas, San Bernardino County, California

    USGS Publications Warehouse

    Marsh, Sherman P.; Raines, Gary L.; Diggles, Michael F.; Howard, Keith A.; Simpson, Robert W.; Hoover, Donald B.; Ridenour, James; Moyle, Phillip R.; Willett, Spencee L.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 85,100 acres of the Whipple Mountains Wilderness Study Area (CDCA-312) and 1,380 acres of the Whipple Mountains Addition Wilderness Study Area (AZ-050-010) were evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas are referred to as simply "the study area." Most of the mines and prospects with identified resources in the Whipple Mountains Wilderness Study Area are within areas designated as having mineral resource potential. The area in and around the Turk Silver mine and the Lucky Green group and the area near the northwest boundary of the study area have high mineral resource potential for copper, lead, zinc, gold, and silver. An area along the west boundary of the study area has moderate resource potential for copper lead, zinc, gold, and silver. An area in the east adjacent to the Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources. One area on the north boundary and one on the southeast boundary of the study area have low mineral resource potential for copper, lead, zinc, gold, and silver. Two areas, one on the north boundary and one inside the east boundary of the study area, have moderate resource potential for manganese. A small area inside the south boundary of the study area has high resource potential for decorative building stone, and the entire study area has low resource potential for sand and gravel and other rock products suitable for construction. Two areas in the eastern part of the study area have low resource potential for uranium. There is no resource potential for oil and gas or geothermal resources in the Whipple Mountains Wilderness Study Area. Sites within the Whipple Mountains Wilderness Study Area with identified resources of copper, gold, silver, manganese and (or

  12. Landscape, Mountain Worship and Astronomy in Socaire

    NASA Astrophysics Data System (ADS)

    Moyano, Ricardo

    The spatiotemporal analysis of mountain worship in the indigenous community of Socaire, Atacama, northern Chile, relates to cultural, geographical, climatic, psychological, and astronomical information gathered from ethno archaeological studies. We identify a system of offerings to the mountains that incorporates concepts such as ceque (straight line), mayllku (mountain lord or ancestor), and pacha (space and time). Here, the mountains on the visible horizon (Tumisa, Lausa, Chiliques, Ipira, and Miñiques) feature as the fingers on the left hand (PAH Triad). This structure regulates annual activities and rituals and sets the basis for the Socaireños' worldview raised on a humanized landscape.

  13. Response of western mountain ecosystems to climatic variability and change: The Western Mountain Initiative

    USGS Publications Warehouse

    Stephenson, Nathan L.; Peterson, Dave; Fagre, Daniel B.; Allen, Craig D.; McKenzie, Donald; Baron, Jill S.; O'Brian, Kelly

    2007-01-01

    Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program (http://www.climatescience.gov/). All WMI scientists are active participants in CIRMOUNT, and seek to further its goals.

  14. Review of paleomagnetic data from the Klamath Mountains, Blue Mountains, and Sierra Nevada; Implications for paleogeographic reconstructions

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.

    1990-01-01

    Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.

  15. Estimates of cloud water deposition at Mountain Acid Deposition Program sites in the Appalachian Mountains.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A

    2003-03-01

    Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.

  16. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . ... Center Atmospheric Science Data Center in Hampton, VA. Photo credit: NASA/GSFC/LaRC/JPL, MISR Science Team Other formats ...

  17. Kennesaw Mountain National Battlefield Park : Assessment of Management of Kennesaw Mountain Drive and Bus Shuttle Service.

    DOT National Transportation Integrated Search

    2010-07-06

    The purpose of this study is to assess the management of the Kennesaw Mountain Drive, which runs from the Visitor Center to the : summit of Kennesaw Mountain, and assess the future of the shuttle service that operates on the road during weekends, inc...

  18. Timber Mountain Precipitation Monitoring Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Milemore » Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data

  19. Western Mountain Initiative - Research Links

    Science.gov Websites

    Parks programS Forest Service Climate Change Resource Center (CCRC) North American Nitrogen Center to be told." US Global Change Research Program (GlobalChange.gov) USGS Climate and Land Use Rocky Mountain Science Center Global Change Research Program -- A Focus on Mountain Ecosystems Western

  20. Mountain biking injuries: a review.

    PubMed

    Carmont, Michael R

    2008-01-01

    Mountain biking is a fast, exciting adventure sport with increasing numbers of participants and competitions. A search of PubMed, Medline, CINAHL, DH data, and Embase databases was performed using the following keywords: mountain, biking and injuries. This revealed 2 review articles, 17 case controlled studies, 4 case series and 5 case reports. This review summarises the published literature on mountain biking injuries, discusses injury frequency and common injury mechanisms. Riders are quick to adopt safety measures. Helmet usage is now increasingly common and handlebar adaptations have been discontinued. Although the sport has a reputation for speed and risk with research and awareness, injury prevention measures are being adopted making the sport as safe as possible.

  1. Geology of the Southern Appalachian Mountains

    USGS Publications Warehouse

    Clark, Sandra H.B.

    2008-01-01

    The Southern Appalachian Mountains includes the Blue Ridge province and parts of four other physiographic provinces. The Blue Ridge physiographic province is a high, mountainous area bounded by several named mountain ranges (including the Unaka Mountains and the Great Smoky Mountains) to the northwest, and the Blue Ridge Mountains to the southeast. Metamorphic rocks of the mountains include (1) fragments of a billion-year-old supercontinent, (2) thick sequences of sedimentary rock that were deposited in subsiding (sinking) basins on the continent, (3) sedimentary and volcanic rocks that were deposited on the sea floor, and (4) fragments of oceanic crust. Most of the rocks formed as sediments or volcanic rocks on ocean floors, islands, and continental plates; igneous rocks formed when crustal plates collided, beginning about 450 million years ago. The collision between the ancestral North American and African continental plates ended about 270 million years ago. Then, the continents began to be stretched, which caused fractures to open in places throughout the crust; these fractures were later filled with sediment. This product (U.S. Geological Survey Scientific Investigations Map 2830) consists of a geologic map of the Southern Appalachian Mountains overlain on a shaded-relief background. The map area includes parts of southern Virginia, eastern West Virginia and Tennessee, western North and South Carolina, northern Georgia and northeastern Alabama. Photographs of localities where geologic features of interest can be seen accompany the map. Diagrams show how the movement of continental plates over many millions of years affected the landscapes seen today, show how folds and faults form, describe important mineral resources of the region, and illustrate geologic time. This two-sided map is folded into a convenient size (5x9.4 inches) for use in the field. The target audience is high school to college earth science and geology teachers and students; staffs of

  2. Mountains, Climate Change and North American Water Security

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Rasouli, K.; Harder, P.; Siemens, E.; Pradhananga, D.

    2016-12-01

    The juxtaposition of cold high precipitation catchments in mountains and low precipitation in downstream lowlands means that mountain water supplies support over half the world's population and sustain most irrigation agriculture. How secure is this mountain water in northern North America? Irrigation and other consumptive downstream uses have put immense pressure on water supplied from the Canadian Rockies. Excess water from these rivers also carries risk. Downstream communities are often located in the flood plains of mountain rivers, making them subject to the extreme hydrometeorology of the headwaters as was evident in the BC/Alberta/Saskatchewan floods of 2013 and droughts of 2015/2016. Climate change is disproportionately warming high mountain areas and the impacts of warming on water are magnified in high mountains because seasonal snowpacks, perennial snowfields and glaciers form important stores of water and control the timing of release of water and the seasonal and annual discharge of major mountain rivers. Changes in mountain snow and glacial regimes are rapidly occurring in Western Canada and this is already impacting downstream water security by changing flood risk, streamflow timing and volume. Hydrological process modelling is diagnosing the causes of intensification of hydrological cycling and coupled to climate models suggesting that the timing and quantity of mountain waters will shift under certain climate, glacier cover and forest cover scenarios and so impact the water security of downstream food production. So far, changes in precipitation are matched by evapotranspiration and sublimation providing some resilience to change in streamflow due to intensification of hydrological cycling. Faster glacier melt in drought periods has buffered low flows but this capacity id dwindling as glaciers ablate. The International Network for Alpine Research Catchment Hydrology (INARCH) project of GEWEX is quantifying water resiliency and risk in mountain

  3. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  4. Asia High Mountain Glacier Mass Balance

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Su, X.; Shang, K.; Cogley, J. G.; Zhang, G.; Howat, I. M.; Braun, A.; Kuo, C. Y.

    2015-12-01

    The Asian High Mountain encompassing the Qinghai-Tibetan Plateau has the largest glaciated regions in the world outside of Greenland and Antarctica. The Tibetan Plateau is the source or headwater of many major river systems, which provide water resources to more than a billion people downstream. The impact of climate change on the Tibetan Plateau physical processes, including mountain glacier wastage, permafrost active layer thickening, the timing and the quantity of the perennial snowpack melt affecting upstream catchments, river runoffs, land-use, have significant effects on downstream water resources. Exact quantification of the Asian High Mountain glacier wastage or its mass balance on how much of the melt water contributes to early 21st century global sea-level rise, remain illusive or the published results are arguably controversial. The recent observed significant increase of freshwater storage within the Tibetan Plateaus remains a limitation to exactly quantify mountain glacier wastage. Here, we provide an updated estimate of Asia high mountain glacier mass balance using satellite geodetic observations during the last decade, accounting for the hydrologic and other processes, and validated against available in situ mass balance data.

  5. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains

    Treesearch

    Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron

    2016-01-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...

  6. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  7. Numerical modeling of mountain formation on Io

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.

    2000-10-01

    Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.

  8. Forest ecology and biogeography of the Uinta Mountains, USA

    Treesearch

    John D. Shaw; James N. Long

    2007-01-01

    The Uinta Mountains form a crossroads of forests and woodlands in the central Rocky Mountains. Although no tree species is endemic to the area, all species characteristic of the central Rocky Mountains are found there, and the ranges of several other species terminate in the Uinta Mountains and the surrounding area. The peninsula-like shape, east-west orientation, and...

  9. [Diversity of soil archaea in Tibetan Mila Mountains].

    PubMed

    Meng, Xiangwei; Mao, Zhenchuan; Chen, Guohua; Yang, Yuhong; Xie, Bingyan

    2009-08-01

    In order to study the diversity of archaea and ammonia-oxidizing archaea (AOA) of the alp prairie soil in Mila Mountain of Tibet. Total microbial DNA was directly extracted from the alp prairie of Mila Mountain. The clone library of 16S rRNA genes and amoA genes were amplified by PCR with universal primer sets. The sequences of archaea and AOA were defined into operational taxonomic units (OTUs) according to the 97% similarity threshold for OTU assignment was performed using the software program DOTUR. Phylogenetic analysis revealed archaea in the soil of Mila Mountain including the Crenarchaeota (71.7%) and unclassified-Archaea (28.3%) phyla. All the Crenarchaeota belong to the Thermoprotei. Phylogenetic analysis revealed AOA in the alp prairie soil of Mila Mountain belonged to the kingdom Crenarchaeota. Archaea and AOA species composition from Mila Mountain included 64 OTUs and 75 OTUs. These findings show prolific archaeal diversity in the alp prairie soil of Mila Mountain, where they may be actively involved in nitrification.

  10. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  11. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  12. Kansas Students Enjoy Summertime "Mountain Ventures"

    ERIC Educational Resources Information Center

    Highfill, Kenneth M.

    1974-01-01

    Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)

  13. Climate change and the Rocky Mountains: Chapter 20

    USGS Publications Warehouse

    Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.

    2014-01-01

    For at least half of the year, the Rocky Mountains are shrouded in snow that feeds a multitude of glaciers. Snow and ice eventually melt into rivers that have eroded deep valleys that contain rich aquatic and terrestrial ecosystems. Because the Rocky Mountains are the major divide on the continent, rainfall and melt water from glaciers and snowfields feed major river systems that run to the Pacific, Atlantic, and Arctic oceans. The Rockies truly are the water tower for much of North America, and part of the Alpine backbone of North and South America. For purposes of this chapter, we limit our discussion to the Rocky Mountains of the Canadian provinces of Alberta and British Columbia, and the U.S. states of Montana, Idaho, Wyoming, and Colorado. Similar to other mountain systems, the altitude of the Rocky Mountains condenses the weather, climate and ecosystems of thousands of kilometres of latitude into very short vertical distances. In one good day, a strong hiker can journey by foot from the mid-latitude climates of the great plains of North America to an arctic climate near the top of Rocky Mountain peaks. The steep climatic gradients of mountain terrain create some of the most diverse ecosystems in the world, but it is those rapid changes in microclimate and ecology that make mountains sensitive to climate change. The energy budget in mountains varies dramatically not only with elevation but with slope and aspect. A modest change in the slope of the terrain over short distances may radically change the solar radiation available in that location. Shaded or north facing slopes have very different microclimates than the same elevations in a sunlit location, or for a hill slope facing south. The complexities associated with the mountain terrain of the Rockies compound complexities of weather and climate to create diverse, amazing ecosystems. This chapter addresses the impacts of climate change on Rocky Mountain ecosystems in light of their complexities and

  14. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Wu

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used tomore » support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  15. Mountain laurel toxicosis in a dog.

    PubMed

    Manhart, Ingrid O; DeClementi, Camille; Guenther, Christine L

    2013-01-01

    To describe a case of mountain laurel (Kalmia latifolia) toxicosis in a dog, including case management and successful outcome. A dog presented for vomiting, hematochezia, bradycardia, weakness, and ataxia, which did not improve with supportive treatment. Mountain laurel ingestion was identified as cause of clinical signs after gastrotomy was performed to remove stomach contents. Supportive treatment was continued and the dog made a full recovery. This report details a case of mountain laurel toxicosis in a dog, including management strategies and outcome, which has not been previously published in the veterinary literature. © Veterinary Emergency and Critical Care Society 2013.

  16. Mountain biking injuries: an update.

    PubMed

    Kronisch, Robert L; Pfeiffer, Ronald P

    2002-01-01

    This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. Competition in downhill racing has increased, while cross-country racing has decreased somewhat in popularity. Recreational riders comprise the largest segment of participants, but little is known about the demographics and injury epidemiology of noncompetitive mountain cyclists. Most mountain bikers participating in surveys reported a history of previous injuries, but prospective studies conducted at mountain bike races have found injury rates of <1%. The most common mechanism of injury involves a forward fall over the handlebars, usually while riding downhill, which can result in direct trauma to the head, torso and upper extremities. A variety of factors can be associated with this type of fall, including trail surface irregularities, mechanical failures and loss of control. In mountain bike racing the risk of injury may be higher for women than men. Minor injuries such as abrasions and contusions occur frequently, but are usually of little consequence. Fractures usually involve the torso or upper extremities, and shoulder injuries are common. Head and face injuries are not always prevented by current helmet designs. Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport.

  17. An investigation of infrasound propagation over mountain ranges.

    PubMed

    Damiens, Florentin; Millet, Christophe; Lott, François

    2018-01-01

    Linear theory is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mountain gravity wave model. For the infrasound component, this paper solves the wave equation under the effective sound speed approximation using both a finite difference method and a Wentzel-Kramers-Brillouin approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low-level waveguide, which leads to significant acoustic dispersion. To interpret these results, each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, situations that are common during night over land in winter, the mountain waves induce a strong Foehn effect downstream, which shrinks the waveguide significantly. This yields a new form of infrasound absorption that can largely outweigh the direct effect the mountain induces on the low-level waveguide. For the opposite case, when the low-level flow is less statically stable (situations that are more common during day in summer), mountain wave dynamics do not produce dramatic responses downstream. It may even favor the passage of infrasound and mitigate the direct effect of the obstacle.

  18. Patterns of Seed Productions in Table Mountain Pine

    Treesearch

    Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula

    2002-01-01

    The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...

  19. Purple Mountain Majesty

    NASA Image and Video Library

    2015-07-15

    NASA Mars Reconnaissance Orbite observed this image of an isolated mountain in the Southern highlands reveals a large exposure of purplish bedrock. Since HiRISE color is shifted to longer wavelengths than visible color and given relative stretches, this really means that the bedrock is roughly dark in the broad red bandpass image compared to the blue-green and near-infrared bandpass images. In the RGB (red-green-blue) color image, which excludes the near-infrared bandpass image, the bedrock appears bluish in color. This small mountain is located near the northeastern rim of the giant Hellas impact basin, and could be impact ejecta. http://photojournal.jpl.nasa.gov/catalog/PIA19854

  20. A Mountain Range within Pluto Heart

    NASA Image and Video Library

    2015-07-21

    A newly discovered mountain range lies near the southwestern margin of Pluto heart-shaped Tombaugh Regio Tombaugh Region, situated between bright, icy plains and dark, heavily-cratered terrain. This image was acquired by NASA's New Horizons' Long Range Reconnaissance Imager (LORRI) on July 14, 2015, from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible. These frozen peaks are estimated to be one-half mile to one mile (1-1.5 kilometers) high, about the same height as the United States' Appalachian Mountains. The Norgay Montes (Norgay Mountains) discovered by New Horizons on July 15 more closely approximate the height of the taller Rocky Mountains The names of features on Pluto have all been given on an informal basis by the New Horizons team. http://photojournal.jpl.nasa.gov/catalog/PIA19842

  1. Extreme ground motions and Yucca Mountain

    USGS Publications Warehouse

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  2. Managing a Scarce Natural Resource: The High Altitude Mountaineering Setting.

    ERIC Educational Resources Information Center

    Ewert, Alan

    This study identifies some characteristics of mountaineering visitors, climbers' perceptions of the mountain environment, and certain preferred management options affecting both the mountain environment and the mountaineer on Mt. McKinley and adjacent Alaska Range peaks. Approximately 360 registered climbers were asked to complete a 26-item…

  3. Mountains on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  4. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic

  5. Longleaf Pine Forests...in the Mountains?

    Treesearch

    Morgan Varner

    1999-01-01

    While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...

  6. 27 CFR 9.155 - Texas Davis Mountains.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 1600 meter contour line to the west of Friend Mountain; (10) The boundary then follows the 1600 meter contour line in a northeasterly direction until it reaches the northernmost point of Friend Mountain; (11...

  7. 27 CFR 9.155 - Texas Davis Mountains.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 1600 meter contour line to the west of Friend Mountain; (10) The boundary then follows the 1600 meter contour line in a northeasterly direction until it reaches the northernmost point of Friend Mountain; (11...

  8. Utility of 222Rn as a passive tracer of subglacial distributed system drainage

    NASA Astrophysics Data System (ADS)

    Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas

    2017-03-01

    Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.

  9. Geology of the Henry Mountains

    USGS Publications Warehouse

    Gilbert, G.K.

    1877-01-01

    If these pages fail to give a correct account of the structure of the Henry Mountains the fault is mine and I have no excuse. In all the earlier exploration of the Rocky Mountain Region, as well as in much of the more recent survey, the geologist has merely accompanied the geographer and has had no voice in the determination of either the route or the rate of travel. When the structure of a mountain was in doubt he was rarely able to visit the points which should resolve the doubt, but was compelled to turn regretfully away. Not so in the survey of the Henry Mountains. Geological exploration had shown that they were well disposed for examination, and that they promised to give the key to a type of structure which was at best obscurely known; and I was sent by Professor Powell to make a study of them, without restriction as to my order or method. I was limited only in time, the snow stopping my work two months after it was begun. Two months would be far too short a period in which to survey a thousand square miles in Pennsylvania or Illinois, but among the Colorado Plateaus it proved sufficient. A few comprehensive views from mountain tops gave the general distribution of the formations, and the remainder of the time was spent in the examination of the localities which best displayed the peculiar features of the structure. So thorough was the display and so satisfactory the examination, that in preparing my report I have felt less than ever before the desire to revisit the field and prove my conclusions by more extended observation.

  10. The Icy Mountains of Pluto

    NASA Image and Video Library

    2015-07-15

    New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710

  11. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  12. Acute mountain sickness

    MedlinePlus

    High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... If you have fluid in your lungs (pulmonary edema), treatment may include: Oxygen A high blood pressure ...

  13. Camera Geolocation From Mountain Images

    DTIC Science & Technology

    2015-09-17

    be reliably extracted from query images. However, in real-life scenarios the skyline in a query image may be blurred or invisible , due to occlusions...extracted from multiple mountain ridges is critical to reliably geolocating challenging real-world query images with blurred or invisible mountain skylines...Buddemeier, A. Bissacco, F. Brucher, T. Chua, H. Neven, and J. Yagnik, “Tour the world: building a web -scale landmark recognition engine,” in Proc. of

  14. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  15. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  16. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  17. Recreational mountain biking: a management perspective

    Treesearch

    D.J. Chavez; P.L. Winter; J.M. Baas

    1993-01-01

    Mountain biking activity presents a new set of management challenges related to multiple use in recreation areas. To determine the potential issues associated with mountain bike management, a telephone survey of 40 recreation managers from two federal agencies (USDA Forest Service and USDI Bureau of Land Management) was conducted. Exploratory in nature, the study sets...

  18. Risk of cardiovascular events during mountain activities.

    PubMed

    Burtscher, Martin

    2007-01-01

    Sudden cardiac death (SCD) is the major cause of fatalities in males over 34 years of age during hiking or downhill skiing in the mountains. The main goal of the present study was the identification of risk factors and triggers associated with SCDs during these mountain activities. Besides recording individual circumstances associated with SCD, a case-control study was performed comparing the risk factor profiles of 247 males over the age of 34 who suffered SCD during mountain hiking or downhill skiing with those of 741 matched controls. The SCD risk was greatest on the first day at altitude but altitude per se and the duration of activity did not appear to markedly modify this risk. In contrast, the longer the time from the last food and fluid intake during hiking, the higher was the SCD risk. Early cardio-pulmonary resuscitation was started in 33% of skiers and in 14 % of hikers after occurrence of unconsciousness. Hikers who died suddenly during mountain hiking were much more likely to have had a prior myocardial infarction (MI) (17% vs. 0.9%), known coronary artery disease (CAD) without prior MI (17% vs. 4%), diabetes (6% vs. 1%), hypercholesterolemia (54 % vs. 20%), and were also less engaged in regular mountaineering activities (31% vs. 58%) compared with hikers from the control group (all P < 0.001). Skiers who suffered SCD had much more frequently a prior MI (41% vs. 1.5%), hypertension (50% vs. 17%), known CAD without prior MI (9% vs. 3%), and were less engaged in regular strenuous exercise (4% vs. 15%) when compared to controls (all P < 0.05). These findings enable identification of skiers and hikers at increased SCD-risk and recommendation of preventive measures, e.g. pharmacological interventions and adaptation to specific mountain activities. They also underline the need for intensified cardio-pulmonary resuscitation training for all mountaineers.

  19. Atmospheric propagation of infrasound across mountain ranges

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Millet, Christophe; Lott, Francois

    2017-11-01

    Linear theory of acoustic propagation is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mounatin wave model. For the infrasound component, we solve the wave equation under the effective sound speed approximation using both a spectral collocation method and a WKB approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low level waveguide, which leads to significant acoustic dispersion. To interpret these results each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, roughly representative of winter or night situations, the mountain waves induce a Foehn effect downstream which shrinks significantly the waveguide. This yields a new form of infrasound absorption, that can largely outweigh the direct effect the moutain induces on the low-level waveguide. For the opposite case, when the low level flow is less statically stable (summer or day situations), mountain wave dynamics do not produce dramatic responses downstream. Instead, it favors the passage of infrasound, which somehow mitigates the direct effect of the obstacle.

  20. Winter Tourism and mountain wetland management and restoration

    NASA Astrophysics Data System (ADS)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  1. Rocky Mountain spotted fever in children.

    PubMed

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  3. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  4. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  5. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  6. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  7. Summiteers--Moving Mountains with Bereaved Boys

    ERIC Educational Resources Information Center

    Renner, Hans-Georg

    2011-01-01

    Summiteers are people who rush to the top. There is a mountain summit and a metaphorical summit inside us which we can climb. In the area of mountain summits, Reinhold Messner is surely the best known and most successful summiteer. He climbed, among other things, the highest peak on earth without supplemental oxygen. In the language of the country…

  8. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have

  9. Documentation of mountain lions in Marin County, California, 2010–2013

    USGS Publications Warehouse

    Fifield, Virginia L.; Rossi, Aviva J.; Boydston, Erin E.

    2015-01-01

    Prior to 2010, mountain lions (Puma concolor) have rarely been documented in Marin County, California. Although there are reports of sightings of mountain lions or observations of mountain lion sign, most have not been verified by photographs or physical samples. Beginning in 2010, we conducted a pilot study of mountain lions in Marin County using motion-triggered cameras. Our objectives were to obtain additional documentations, confirm the presence of mountain lions outside of Point Reyes National Seashore, and determine if mountain lions had a regular presence in the county. 

  10. The Olympic Mountains Experiment (OLYMPEX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houze, Robert A.; McMurdie, Lynn A.; Petersen, Walter A.

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four researchmore » aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection« less

  11. Evolution of endemism on a young tropical mountain.

    PubMed

    Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno

    2015-08-20

    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.

  12. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  13. Prevalence of acute mountain sickness in the Swiss Alps.

    PubMed Central

    Maggiorini, M; Bühler, B; Walter, M; Oelz, O

    1990-01-01

    OBJECTIVE--To assess the prevalence of symptoms and signs of acute mountain sickness of the Swiss Alps. DESIGN--A study using an interview and clinical examination in a representative population of mountaineers. Positive symptoms and signs were assigned scores to quantify the severity of acute mountain sickness. SETTING--Four huts in the Swiss Alps at 2850 m, 3050 m, 3650 m, and 4559 m. SUBJECTS--466 Climbers, mostly recreational: 47 at 2850 m, 128 at 3050 m, 82 at 3650, and 209 at 4559 m. RESULTS--In all, 117 of the subjects were entirely free of symptoms and clinical signs of acute mountain sickness; 191 had one or two symptoms and signs; and 158 had more than two. Those with more than two symptoms and signs were defined as suffering from acute mountain sickness. At 4559 m 11 climbers presented with high altitude pulmonary oedema or cerebral oedema, or both. Men and women were equally affected. The prevalence of acute mountain sickness correlated with altitude: it was 9% at 2850 m, 13% at 3050 m, 34% at 3650 m, and 53% at 4559 m. The most frequent symptoms and signs were insomnia, headache, peripheral oedema, and scanty pulmonary rales. Severe headache, vomiting, dizziness, tachypnoea, and pronounced pulmonary rales were associated with other symptoms and signs and therefore characteristic of acute mountain sickness. CONCLUSION--Acute mountain sickness is not an uncommon disease at moderately high altitude--that is, above 2800 m. Severe headache, vomiting, dizziness, tachypnoea, and pronounced pulmonary rales indicate severe acute mountain sickness, and subjects who suffer these should immediately descend to lower altitudes. PMID:2282425

  14. Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela

    2018-07-01

    The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial

  15. Local and regional characterisation of the diurnal mountain wind systems in the Guadarrama mountain range (Spain)

    NASA Astrophysics Data System (ADS)

    Arrillaga, Jon A.; Cano, Darío; Sastre, Mariano; Román-Cascón, Carlos; Maqueda, Gregorio; Morales, Gema; Viana, Samuel; Inclán, Rosa M.; Fidel González-Roúco, J.; Santolaria, Edmundo; Durán, Luis; Yagüe, Carlos

    2017-04-01

    Diurnal mountain wind systems that develop in the surroundings of the Guadarrama mountain range (Spain) are studied in this work. This area is highly interesting: the city of Madrid is located at approximately 50 km towards the SE; and on the other hand, unlike in other mountainous regions, the summers are characterised to be significantly dry, providing an interesting case study of energy balance in the context of complex orography. Slope and basin circulations formed play an important role in the development of fog and pollution episodes in the whole region. On top of that, when upslope basin winds strengthened by diurnal convection exceed 10 m s-1, the runway configuration at the airport of Madrid needs to be modified. Continuous meteorological data and turbulent fluxes of carbon dioxide, water vapour, momentum and heat are provided since June 2016 from measurements at a 10 m tower at La Herrería site, which is located at the foot of the Guadarrama mountain range. Besides, a 4 m high portable station is available for complementary measurements. La Herrería is part of the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet/), an atmospheric and subsurface observational facility distributed over the Guadarrama mountain range. As a support for the analysis, data from conventional meteorological stations within the region and a wind profiler at the airport are also employed. The wind roses for the period analysed (summer 2016) show how the diurnal cycle of the flows is influenced by local slopes and by the configuration of the basin. The irruption of the downslope flow in the evening produces a significant increase of the turbulence intensity and the eventual breakdown of the surface-based thermal inversion. However, the severe drying out of the soil throughout the summer, evident from the evolution of the surface latent and sensible heat fluxes, seems to play a role in altering the characteristics of the mountain-breeze system and its impact on turbulence

  16. Oblique view to south OvertheHorizon Backscatter Radar Network, Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view to south - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID

  17. Molecular Characterization of Cryoconite Organic Matter from the Athabasca Glacier, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Simpson, M. J.; Eyles, N.; Simpson, A.; Baer, A. J.

    2009-05-01

    Cryoconite is a dark-colored, dust-like material found on the surfaces of glaciers. Cryoconite holes, which are produced by accelerated ice melt due to more solar radiation absorption by cryoconite than bare ice, act as habitats for microbial life and biologically mediated chemical reactions on otherwise relatively inert glacier surfaces. Cryoconite holes may behave as bacterial shelters during "Snowball Earth" events postulated for the Neoproterozoic Earth. In this study organic matter (OM) biomarkers and a host of one- and two-dimensional NMR techniques were used to characterize cryoconite organic matter (COM) collected from the Athabasca Glacier in the Canadian Rocky Mountains. Solvent extracts contain large quantities of fatty acids, n-alkanols, n- alkanes, wax esters and sterols. A large contribution of C23 and C25 relative to C29 and C31 n-alkanes ([C23/(C23+C29)] = 0.51) suggests that allochthonous COM is derived mainly from lower order plants such as mosses and lichens. This is confirmed by the absence of lignin-derived phenols, a biomarker of terrestrial vascular plants, after copper (II) oxidation in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent peptide/protein structures which are characteristic of microbial inputs, while solid-state 13C CP/MAS NMR analysis shows a very high alkyl/O-alkyl ratio (2.16), suggesting that COM is unique compared to organic matter found in nearby soils which have alkyl/O-alkyl ratio of ~0.39. Our NMR results suggest that COM is dominated by microbial-derived compounds, which is also confirmed by phospholipid fatty acid results (6,950µg/gOC) which show significant microbial contributions to COM primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier. Given that such material is incorporated within the glacier in the accumulation zone or flushed by meltwaters into subglacial environments

  18. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.

    1994-08-01

    Built upon the roots of a compressive orogenic belt of late Proterozoic-early Paleozoic age and once adjacent to North America, the present-day Transantarctic Mountains (TAM) represent a rift flank, resulting from episodic uplift in the Cretaceous and Cenozoic. Fault blocks are discernible in present-day topography and subglacial morphology. Fission track results give information on differential block movement (uplift and denudation) and are important in constraining models for the uplift of the range. Apatite fission track thermochronology on samples collected from the central TAM record a complex thermotectonic history for this region over the past 350 m.y. Apatite ages in the Miller Range vary from ˜250 to ˜350 Ma and are from an exhumed apatite partial annealing zone formed following cooling of Cambro-Ordovician granitoids. A period of Cretaceous denudation (≲2 km), beginning at ˜115 Ma, is recorded at Moody Nunatak on the inland side of the TAM. Near the coast, samples along the Beardmore Glacier record rapid cooling indicative of denudation initiated in the early Cenozoic (˜50 Ma). The amount of uplift ˜70 km inland of the coast in the Queen Alexandra Range since the early Cenozoic is ˜7 km, with the likelihood of an additional ˜3 km at the coast. Eastward facing topographic escarpments in the Queen Alexandra Range mark the likely position of steeply dipping normal faults, which offset the apatite ages. Apatite ages on the east side of the Beardmore Glacier mouth are generally younger (average 27 Ma) than on the west side (average 33 Ma), reflecting greater denudation. Assumptions made regarding the use of an assumed paleogeothermal gradient are tested with available geologic evidence. The fission track data neither conflict with nor confirm paleobotanical evidence from the Sirius Group in the central TAM which suggests significant surface uplift (2-3 km) of the TAM since the Pliocene. Results build upon the available fission track database along the

  19. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  20. Mountain Home Well - Photos

    DOE Data Explorer

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  1. 78 FR 59806 - Establishment of Class E Airspace; White Mountain, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ...-1185; Airspace Docket No. 12-AAL-8] Establishment of Class E Airspace; White Mountain, AK AGENCY... airspace at White Mountain Airport, White Mountain, AK, to accommodate aircraft using new Area Navigation..., Airport, White Mountain, AK (77 FR 75598). Interested parties were invited to participate in this...

  2. The Olympic Mountains Experiment (OLYMPEX)

    DOE PAGES

    Houze, Robert A.; McMurdie, Lynn A.; Petersen, Walter A.; ...

    2017-10-30

    The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed for this study. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snowmore » accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Finally, numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.« less

  3. The Olympic Mountains Experiment (OLYMPEX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houze, Robert A.; McMurdie, Lynn A.; Petersen, Walter A.

    The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed for this study. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snowmore » accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Finally, numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.« less

  4. Earthshots: Satellite images of environmental change – Elburz Mountains, Iran

    USGS Publications Warehouse

    ,

    2013-01-01

    The Elburz Mountains run parallel to the southern coast of the Caspian Sea, and these mountains act as a barrier to rain clouds moving southward; as the clouds rise in altitude to cross the mountains they drop their moisture. This abundant rainfall supports a heavy rainforest (the bright red area) on the northern slopes. The valley to the south receives little precipitation because of this rain-shadow effect of the mountains.

  5. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  6. Magnificent Mountains

    ERIC Educational Resources Information Center

    Anderson, Heather

    2004-01-01

    One way to increase awareness of endangered national heritage is to teach youth the importance of the land through the study of selected works of art. This article describes a lesson, in which students will study the work of Thomas Moran and create a mountain range collage. A short biography of Thomas Moran is included.

  7. A model for spiral flows in basal ice and the formation of subglacial flutes based on a Reiner-Rivlin rheology for glacial ice

    NASA Astrophysics Data System (ADS)

    Schoof, Christian G.; Clarke, Garry K. C.

    2008-05-01

    Flutes are elongated sediment ridges formed at the base of glaciers and ice sheets. In this paper, we show that flutes can be the product of a corkscrew-like spiral flow in basal ice that removes sediment from troughs between flutes and deposits it at their crests, as first suggested by Shaw and Freschauf. In order to generate the type of basal ice flow required for this mechanism, the viscous rheology of ice must allow for the generation of deviatoric normal stresses transverse to the main flow direction. This type of behavior, which is commonly observed in real nonlinearly viscous and viscoelastic fluids, can be described by a Reiner-Rivlin rheology. Here, we develop a mathematical model that describes the role of these transverse stresses in generating spiral flows in basal ice and investigate how these flows lead to the amplification of initially small basal topography and the eventual formation of assemblies of evenly spaced subglacial flutes.

  8. 75 FR 29656 - Amendment of Class E Airspace; Mountain View, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1181; Airspace Docket No. 09-ASW-36] Amendment of Class E Airspace; Mountain View, AR AGENCY: Federal... Mountain View, AR. Decommissioning of the Wilcox non-directional beacon (NDB) at Mountain View Wilcox Memorial Field Airport, Mountain View, AR, has made this action necessary to enhance the safety and...

  9. Home Crafts Days at Mountain Empire Community College Bridge Generation Gap in Mountain Youth's Search for Identity.

    ERIC Educational Resources Information Center

    Turnage, Martha; Moore, Roderick

    Mountain Empire Community College has a commitment to preserve, learn, and teach the heritage of mountain folk. Community participation by those who can teach the heritage of the area is a part of the implementation of this commitment. Some of the older people in the MECC service area either take the course work in folklife or come to the classes…

  10. 78 FR 29366 - Green Mountain Power Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TS04-277-002] Green Mountain Power Corporation Notice of Filing Take notice that on May 2, 2013, Green Mountain Power Corporation filed additional information in support of its request for continued waiver of Standards of Conduct. Any...

  11. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  12. [Mountain biking : Breezy ups and traumatic downs].

    PubMed

    Schueller, G

    2010-05-01

    For more than two decades the popularity of mountain biking as a national pastime as well as a competitive sport has been undiminished. However, its related risks are not monitored as closely as those, for example, of skiing. The injuries caused by mountain biking are specific and cannot be compared with those caused by other cycling sports. This is due not only to the characteristics of the terrain but also to the readiness to assume a higher risk compared to cycle racing.The particular value of radiology is in the acute trauma setting. Most often musculoskeletal lesions must be examined and digital radiography and MRI are the most useful techniques. Severe trauma of the cranium, face, spine, thorax and abdomen are primarily evaluated with CT, particularly in dedicated trauma centers. Therefore, radiology can play a role in the rapid diagnosis and optimal treatment of the trauma-related injuries of mountain biking. Thus, the unnecessarily high economical damage associated with mountain biking can be avoided.

  13. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of

  14. Ouachita Mountains, Oklahoma as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-91-058 (18 Oct-1 Nov 1993) --- In this unusually clear view, the Ouachita Mountains of southeastern Oklahoma are framed on the north by Lake Eufaula on the South Canadian River, and on the south by the Red River. Sandstone, shale and chert (similar to flint) deposited in a sea several thousand feet deep were squeezed up to form the mountains about 250 million years ago. During the ensuing time, erosion of the western end of the Ouachita Mountains has emphasized linear ridges of resistant rock in the plunging anticlines and synclines, causing relief of 800 meters (2,600 feet) or more. Clouds formed by upslope winds border both the north and south sides of one of the most dramatic plunging synclines (in a syncline the rock layers dip toward the center of the structure). Toward the west, densely forested mountains give way to gently rolling, less rocky terrain and a drier climate which is better suited to farming. The mountains centered on Broken Bow, in the lower right corner of the scene, display abundant timber clearcuts that are being regenerated.

  15. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  16. Biogeographical and evolutionary importance of the European high mountain systems

    PubMed Central

    Schmitt, Thomas

    2009-01-01

    Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe. PMID:19480666

  17. Connecting streamlined subglacial bedforms with the geological/geographical environment in which they are located.

    NASA Astrophysics Data System (ADS)

    Dowling, Tom; Möller, Per; Greenwood, Sarah; Spagnolo, Matteo; Åkesson, Maria; Fraser, Stephen; Hughs, Anna; Clark, Chris

    2016-04-01

    Much work has qualitatively shown that there appears to be a relationship between the morphology of streamlined subglacial bedforms (drumlinoids) and the geological/geographical environment in which said bedforms are located upon, particularly in terms of bedrock influence. However, the one quantitative study that has been carried out on this connectivity (Greenwood and Clark, 2010) found that there appears to be a connection between bedrock type and morphology only at a local scale. At a regional scale the most important geological factor seemed to be the properties of the substrate, usually till. In order to investigate these connections further, self-organising maps (SOM) are used to investigate the role of contextual geology/geography in drumlinoid morphology. The SOM method allows the statistical exploration of data that cannot normally be evaluated by traditional means; categorical data (e.g. bedrock type) can be used in the same analysis as continuous/vector data (e.g. drift depth). Here, three large morphological data sets from Sweden (20 041), Britain (36 104) and Ireland (13 454) are combined with bedrock type, drift depth, basal elevation and distance to esker to see if there are any relationships to be found between them. The results indicate that there are pervasive, statistically significant, and weak to very weak correlations between contextual geological/geographical factors and drumlinoid morphology. The most important contextual factor appears to be 'drift depth', followed by 'distance to esker'. Therefore, models of drumlinoid formation and any efforts to use such features for palaeo-ice reconstruction must take into account the geological and geographical environment in which they are situated. The logical extension of this is that models of ice-sheet growth and retreat must also take into account and be sensitive to the type of substratum present beneath the ice. Further research into the effect of drift properties on the flow of ice is needed.

  18. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  19. The Altai Mountains environmental disaster (Eastern Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Akhmadiyeva, Z. K.

    2009-12-01

    The space centre "Baikoniyr" (Kazakhstan) has had substantial affects on the environment. During the past several decades as a result of the launching of carrier rockets, such as "Proton" that use as fuel the asymmetrical dimethylhydrazine (ASDH), more well-known as "heptyl", the unique mountain landscapes in Eastern Kazakhstan have been subjected to pollution. In 2004, RSE "Kazakh research Institute of Ecology and Climate" carried out the complex geochemical and radiation researches in East Kazakhstan that is an impact area of second stages of carrier rockets. Such detailed examinations of this area were conducted for the first time because the Eastern Kazakhstan Mountains are difficult for human access. The landscape-geochemical research over the natural landscapes covered the ridge, low, and middle mountains with fir forests. The research results have shown the presence of heptyl in the samples of the soil, plants, and rivers’ bottom sediments. The findings of the influence of space activity on environment of the Kazakhstan part of the Altai Mountains confirm and complement the Russian scientific research results over the territory of the neighbouring Altai Krai. Though the heptyl pollution in the investigated region is of a local nature and highly spatially inhomogeneous, nevertheless, this anthropogenic effect intensifying from year to year increases the load on the natural ecosystems. In particular, it strengthens the desertification process of mountain regions of East Kazakhstan.

  20. WNDCOM: estimating surface winds in mountainous terrain

    Treesearch

    Bill C. Ryan

    1983-01-01

    WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...

  1. Centerline pavement markings on two-lane mountain highways.

    DOT National Transportation Integrated Search

    1983-01-01

    The Virginia Department of Highways and Transportation uses a lane marking designated mountain pavement marking (MPM) on two-lane highways in mountainous areas. This special marking consists of a single broken yellow line supplemented with "PASS WITH...

  2. 27 CFR 9.143 - Spring Mountain District.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...

  3. 27 CFR 9.143 - Spring Mountain District.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...

  4. 27 CFR 9.143 - Spring Mountain District.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...

  5. 27 CFR 9.143 - Spring Mountain District.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...

  6. 27 CFR 9.143 - Spring Mountain District.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spring Mountain District. 9.143 Section 9.143 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.143 Spring Mountain District. (a) Name. The...

  7. Rocky Mountain Research Station: 2002 Research Accomplishments

    Treesearch

    Rick Fletcher

    2003-01-01

    The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...

  8. Rocky Mountain Research Station: 2004 Research Accomplishments

    Treesearch

    Rick Fletcher

    2005-01-01

    The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great...

  9. Determining Learning Styles of the Professional Mountaineers

    ERIC Educational Resources Information Center

    Bektas, Fatih

    2013-01-01

    This study aimed to explore learning styles of the professional mountaineers. The research was carried out according to the survey model. The research group composed of 61 professional mountaineers (n[subscript (men)] = 45, n[subscript (women)] = 16) who attended Advanced Snow Ice Education Camp in Rize on September 1-7, 2012, the last camp of…

  10. Equipment of medical backpacks in mountain rescue.

    PubMed

    Elsensohn, Fidel; Soteras, Inigo; Resiten, Oliver; Ellerton, John; Brugger, Hermann; Paal, Peter

    2011-01-01

    We conducted a survey of equipment in medical backpacks for mountain rescuers and mountain emergency physicians. The aim was to investigate whether there are standards for medical equipment in mountain rescue organizations associated with the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). A questionnaire was completed by 18 member organizations from 14 countries. Backpacks for first responders are well equipped to manage trauma, but deficiencies in equipment to treat medical emergencies were found. Paramedic and physicians' backpacks were well equipped to provide advanced life support and contained suitable drugs. We recommend that medical backpacks should be equipped in accordance with national laws, the medical emergencies in a given region, and take into account the climate, geography, medical training of rescuers, and funding of the organization. Automated external defibrillator provision should be improved. The effects of temperature on the drugs and equipment should be considered. Standards for training in the use and maintenance of medical tools should be enforced. First responders and physicians should only use familiar tools and drugs.

  11. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  12. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael; McCracken, Robert; Herrera, Troy

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening withmore » the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)« less

  13. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Newmann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2012-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting approximately 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approximately 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to 1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and 2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  14. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Neumann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2011-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approx 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to (1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and (2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  15. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    PubMed

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    NASA Astrophysics Data System (ADS)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging

  17. Folk Culture History of the Blue Ridge Mountains

    ERIC Educational Resources Information Center

    Wilhelm, Gene, Jr.

    1975-01-01

    The article covers the historic period between 1730 (the earliest proof of initial European settlement in the district) and 1800 (the closing of the pioneer stage of mountain development) of the Blue Ridge Mountains from Front Royal to Waynesboro, Virginia. (NQ)

  18. Attractions in Layers of Mountain Inside Gale Crater

    NASA Image and Video Library

    2011-07-22

    The lower portion of a mountain inside Gale crater on Mars contains layers that may be examined by NASA Mars Science Laboratory. A landing site in Gale, close to the foot of the mountain, has been selected for the mission.

  19. The Mountains of Io: Global and Geological Perspectives from Voyager and Galileo

    NASA Technical Reports Server (NTRS)

    Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter; Bredekamp, Joe (Technical Monitor)

    2001-01-01

    To search for local and global scale geologic associations that may be related to the internal dynamics of Io, we have completed a global catalog of all mountains and volcanic centers. We have identified 115 mountain structures (covering approx. 3% of the surface) and 541 volcanic centers, including paterae (calderas and dark spots) and shield volcanoes. The average length of an Ionian mountain is 157 km, with the longest being 570 km. The mean height of Ionian mountains is 6.3 km, and the highest known mountain is Boosaule Montes (17.5 +/- 3 km). Five basic morphologic types of mountains have been identified; mesa, plateau peak, ridge, and massif. Very few mountains bear any physical similarity. to classic volcanic landforms, but many resemble flatiron mountains on Earth and are interpreted as tilted crustal blocks. This would be consistent with the hypothesis that most mountains are thrust blocks formed as a result of compressive stresses built up in the lower crust due to the global subsidence of volcanic layers as they are buried over time. More than one mechanism may be responsible for all Ionian mountains, however. The proximity of some mountains to paterae may indicate a direct link between some mountains and volcanism, although it is not always clear which came first. In contrast to earlier studies, a pronounced bimodal pattern is observed in the global distribution of both mountains and volcanic centers. The regions of highest areal densities of volcanic centers are near the sub- and anti-Jovian regions, but are offset roughly 90deg in longitude from the two, regions of greatest concentration of mountains. This anticorrelation may indicate the overprinting of a second stress field on the global compressive stresses due to subsidence. The bimodal distribution of volcanic centers and mountains is consistent with models of asthenospheric tidal heating and internal convection developed by Tackley et al.Over regions of mantle upwelling, compressive stresses in

  20. Mountain Bicycling in the Urban-Wildland Interface

    Treesearch

    Arthur W. Magill

    1992-01-01

    Mountain bicycling is a rapidly growing sport exerting substantial pressure on recreation areas in the urban-wildland interface. In 1983 there were under a million mountain bike users, today there are 15 million. Little is known about the bicyclists, but hikers and equestrians have complained about encounters with cyclists speeding down trails with little regard for...

  1. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Treesearch

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  2. Rocky Mountain Research Station: 2003 Research Accomplishments

    Treesearch

    Rick Fletcher

    2004-01-01

    The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...

  3. Rocky Mountain Research Station: 2010 Research Accomplishments

    Treesearch

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  4. VIEW, FRONT ELEVATION, LOOKING SOUTHSOUTHEAST Mountain Home Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW, FRONT ELEVATION, LOOKING SOUTH-SOUTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, Colonel's Residence, Tuck Street (originally Locust Street), Mountain Home, Elmore County, ID

  5. OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  6. Mud aprons in front of Svalbard surge moraines: Evidence of subglacial deforming layers or proglacial glaciotectonics?

    NASA Astrophysics Data System (ADS)

    Kristensen, Lene; Benn, Douglas I.; Hormes, Anne; Ottesen, Dag

    2009-10-01

    Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.

  7. A comparison of northern and southern table mountain pine stands

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop; Helen H. Mohr

    2010-01-01

    Table Mountain pine (Pinus pungens) stands occur throughout the Appalachian Mountains, but ecological research has concentrated on the southern part of this region. In 2006, research was initiated in northern Table Mountain pine stands growing in PA to compare some basic attributes of those stands with previously described ones in TN. Overall, the...

  8. 75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...

  9. Mountain Goats (Oreamnos americanum) at the livestock/wildlife interface: A susceptible species

    USDA-ARS?s Scientific Manuscript database

    Mountain goats (Oreamnos americanum) were first introduced into the East Humboldt and Ruby Mountains of Elko County, Nevada in the 1960’s. These contiguous mountain ranges are also home to introduced Rocky Mountain bighorn sheep and native mule deer and are surrounded by both public and private rang...

  10. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  11. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated

  12. Estimating abundance of mountain lions from unstructured spatial sampling

    USGS Publications Warehouse

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and

  13. Mountain Infantry - Is There a Need?

    DTIC Science & Technology

    1988-06-03

    Valley and was used extensively by the Germans. The 9objective of the mountaineers was the Monte Belvedere- Monte Della Torraccia Ridge network which...hopes of attaining surprise. The 85th conducted a frontal attack against Monte Belvedere and Monte Gorgolesco, while the 87th attacked up the western...fought a bloody battle the last 300 yards from the summit of both mountains. Monte Della Torraccia proved to be a tough fight. On the afternoon of the

  14. OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTHSOUTHWEST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTH-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  15. OBLIQUE VIEW, FRONT ELEVATION, LOOKING WESTSOUTHWEST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, FRONT ELEVATION, LOOKING WEST-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  16. Middle Miocene Displacement Along the Rand Detachment Fault, Rand Mountains

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Grove, M. J.

    2015-12-01

    Laramide flat-slab subduction extinguished Sierra Nevada pluton emplacement in southern California by ca. 85 Ma as trench-derived sediments were underthrust and accreted beneath arc basement. These relationships are well illustrated in the Rand Mountains, situated just south of the Garlock fault in the northwestern Mojave Desert. Here, accreted rocks within the Rand Mountains are referred to as Rand Schist. The Rand Detachment fault juxtaposes Rand Schist beneath 87 Ma Sierran granitoids. New zircon (U-Th)/He age results from schist and basement juxtaposed across the Rand Detachment fault are 15 ± 3 Ma and 30 ± 5 Ma, respectively. When considered within the context of previously reported thermochronology from the Rand Mountains, our data shows that the Rand Detachment fault in the Rand Mountains is a middle Miocene fault that facilitated extension of the northwest Mojave Desert. This timing is in temporal and spatial agreement with regional extension throughout the Mojave triggered by northern migration of the slab window after collision of the Mendocino Triple Junction with the southern California margin. Further evidence of slab-window-related magmatism in the easternmost Rand Mountains is provided by the 19 Ma Yellow Aster pluton and 19 Ma rhyolite porphyry. It is possible that Miocene extension re-activated an older structure within the Rand Mountains. For example, a similar low-angle fault juxtaposing schist and basement present in the San Emigdio Mountains is believed to have accommodated large scale Late Cretaceous displacement, exhuming Rand Schist and overlying deepest Sierran basement to shallow crustal levels by 77 Ma [1]. However, 68-72 Ma phengite cooling ages and other thermochronology from the Rand Mountains indicates that any pre-Miocene extension in this area must postdate that in the San Emigdio Mountains. [1] Chapman et al., 2012. Geosphere, 8, 314-341.

  17. Mountain-Top-to-Mountain-Top Optical Link Demonstration. Part 1

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Wright, M. W.

    2002-01-01

    A mountain-top-to-mountain-top optical link was demonstrated between JPL's Table Mountain Facility (TMF), Wrightwood, California, and Strawberry Peak (SP), Lake Arrowhead, California, during the months of June, August, and September of 2000. The bidirectional laser link was nearly horizontal at an altitude of 2 km and spanned a range of 46.8 km. The 780-nm beacon laser transmitted from TMF comprised eight co-propagating mutually incoherent laser beams. The normalized variance or scintillation index (SI) of the individual beacon lasers measured by recording the signal received through 8.50-cm-diameter spotting telescopes on three different nights (June 28-30, 2000) was 1.05 +/- 0.2, 1.76 +/- 0.6, and 0.96 +/- 0.24, respectively. These measurements agreed with values predicted by a heuristic model. The SI of the signal received at SP was found to decrease progressively with an increasing number of beams, and a factor of 3 to 3.5 reduction was achieved for all eight beams. The beam divergence determined by mapping out the point spread function of a few of the individual laser footprints received at SP was 85 to 150 microrad, compared to a design goal of 120 microrad. The 852-nm communications laser beam received at TMF through a 60-cm-diameter telescope on the nights of August 4 and September 14 and 15, 2000, yielded SI values of 0.23 +/- 0.04, 0.32 +/- 0.01, and 0.49 +/- 0.18, respectively, where the reduction was attributed to aperture averaging. The probability distribution functions of the received signal at either end, mitigated by multi-beam averaging in one direction and by aperture averaging in the other direction, displayed lognormal behavior. Consequently, the measured fade statistics showed good agreement with a lognormal model.

  18. Can wolves help save Japan's mountain forests?

    USGS Publications Warehouse

    Barber-Meyer, Shannon

    2017-01-01

    Japan’s wolves were extinct by 1905. Today Japan's mountain forests are being killed by overabundant sika deer and wild boars. Since the early 1990s, the Japan Wolf Association has proposed wolf reintroduction to Japan to restore rural ecology and to return a culturally important animal. In this article I discuss whether the return of wolves could help save Japan's mountain forests.

  19. Aspen biology, community classification, and management in the Blue Mountains

    Treesearch

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  20. Risk factor profile for sudden cardiac death during mountain hiking.

    PubMed

    Burtscher, M; Pachinger, O; Schocke, M F H; Ulmer, H

    2007-07-01

    Mountain hiking is associated with a death rate of about 4 deaths per 100,000 hikers annually. About 50 % of all fatalities during mountain hiking are sudden cardiac deaths (SCDs). But there are only few data available regarding risk factors and triggers associated with SCD during mountain hiking. Thus, a case-control analysis between persons who died suddenly during mountain hiking and randomly selected controls was carried out. Risk factor profiles of 179 males over the age of 34 who suffered SCD during mountain hiking were compared to those of 537 matched controls. Hikers who died suddenly during mountain hiking were much more likely to have had a prior MI (17% vs. 0.9%; p < 0.001), known coronary artery disease (CAD) without prior MI (17 % vs. 4%; p < 0.001), diabetes (6% vs. 1 %; p < 0.001), hypercholesterolemia (54 % vs. 20%; p < 0.001), and were less engaged in regular mountain sports activities (31% vs. 58%; p < 0.001) compared to hikers from the control group. Based on the reported relationship between traditional risk factors and coronary plaque morphology, acute plaque rupture with thrombus formation and subsequent lethal arrhythmias may be assumed to be a dominant mechanism precipitating SCD during hiking. In contrast, in skiers especially non-occlusive plaques may precipitate ischemia leading to an imbalance between oxygen demand and supply and subsequent lethal arrhythmias. As preventive measures recommended to hikers at risk, adaptation to regular mountain sports activities by an adequate training program and pharmacological interventions, e.g. lipid lowering drugs, aspirin, and beta-blockers, should be considered.

  1. The case study of drillbit and borehole frozen water of the subglacial Lake Vostok, East Antarctica for microbial content

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey; Doronin, Maxim; Dominique, Marie; Lipenkov, Vladimir; Lukin, Valery; Karlov, Denis; Demchenko, Leonid; Khilchenko, Margarita

    The objective was to estimate microbial content and diversity in the subglacial Lake Vostok (buried beneath 4-km thick East Antarctic ice sheet) by studying the uppermost water layer which entered the borehole upon lake entry (February 5, 2012) and then shortly frozen within. The samples of so-called drillbit water frozen on a drill bit upon lake enter (RAE57) along with re-drilled so-called borehole-frozen water (RAE58) were provided for the study with the ultimate goal to discover the life in this extreme icy environment. The comprehensive analyses (constrained by Ancient DNA research criteria) of the first lake water samples - drillbit- (one sample) and borehole-frozen (3 different depths 5G-2N-3425, 3429 et 3450m), are nearly got finished. If the drillbit water sample was heavily polluted with drill fluid (at ratio 1:1), re-drilled borehole-frozen samples were proved to be rather clean but still strongly smelling kerosene and containing numerous micro-droplets of drill fluid making the ice non-transparent. The cell concentrations measured by flow cytofluorometry showed 167 cells per ml in the drillbit water sample while in borehole-frozen samples ranged from 5.5 (full-cylinder 3429m deep frozen water ice core) to 38 cells per ml (freeze-centre of 3450m deep moon-shape ice core). DNA analyses came up with total 44 bacterial phylotypes discovered by sequencing of different regions (v3-v5, v4-v8, v4-v6 et full-gene) of 16S rRNA genes. Amongst them all but two were considered to be contaminants (were present in our contaminant library, including drill fluid findings). The 1st remaining phylotype successfully passing all contamination criteria proved to be hitherto-unknown type of bacterium (group of clones, 3 allelic variants) showing less than 86% similarity with known taxa. Its phylogenetic assignment to bacterial divisions or lineages was also unsuccessful despite of the RDP has classified it belonging to OD1 uncultured Candidate Division. The 2nd phylotype was

  2. Mountain pine beetle

    Treesearch

    Ken Gibson; Sandy Kegley; Barbara Bentz

    2009-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.

  3. Trend of mountain big Sagebrush crown cover and ground cover on burned sites, Uinta Mountains and West Tavaputs Plateau, Utah

    Treesearch

    Sherel Goodrich; Allen Huber; Brian Monroe

    2008-01-01

    Photography and notes on file at the Supervisors Office, Ashley National Forest make it possible to date many fires in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) communities on this National Forest. Crown cover of mountain big sagebrush and other shrubs was measured in repeat visits to many burned sites. Burned...

  4. Respiratory disease, behavior, and survival of mountain goat kids

    USGS Publications Warehouse

    Blanchong, Julie A.; Anderson, Christopher A.; Clark, Nicholas J.; Klaver, Robert W.; Plummer, Paul J.; Cox, Mike; Mcadoo, Caleb; Wolff, Peregrine L.

    2018-01-01

    Bacterial pneumonia is a threat to bighorn sheep (Ovis canadensis) populations. Bighorn sheep in the East Humboldt Mountain Range (EHR), Nevada, USA, experienced a pneumonia epizootic in 2009–2010. Testing of mountain goats (Oreamnos americanus) that were captured or found dead on this range during and after the epizootic detected bacteria commonly associated with bighorn sheep pneumonia die‐offs. Additionally, in years subsequent to the bighorn sheep epizootic, the mountain goat population had low kid:adult ratios, a common outcome for bighorn sheep populations that have experienced a pneumonia epizootic. We hypothesized that pneumonia was present and negatively affecting mountain goat kids in the EHR. From June–August 2013–2015, we attempted to observe mountain goat kids with marked adult females in the EHR at least once per week to document signs of respiratory disease; identify associations between respiratory disease, activity levels, and subsequent disappearance (i.e., death); and estimate weekly survival. Each time we observed a kid with a marked adult female, we recorded any signs of respiratory disease and collected behavior data that we fit to a 3‐state discrete hidden Markov model (HMM) to predict a kid's state (active vs. sedentary) and its probability of disappearing. We first observed clinical signs of respiratory disease in kids in late July–early August each summer. We observed 8 of 31 kids with marked adult females with signs of respiratory disease on 13 occasions. On 11 of these occasions, the HMM predicted that kids were in the sedentary state, which was associated with increased probability of subsequent death. We estimated overall probability of kid survival from June–August to be 0.19 (95% CI = 0.08–0.38), which was lower than has been reported in other mountain goat populations. We concluded that respiratory disease was present in the mountain goat kids in the EHR and negatively affected their activity levels and survival

  5. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  6. Mountain building on Io driven by deep faulting

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B

    2016-01-01

    Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1, 2, 3, 4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.

  7. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  8. Effects of Bedrock Lithology and Subglacial Till on the Motion of Ruth Glacier, Alaska, Deduced from Five Pulses from 1973-2012

    NASA Technical Reports Server (NTRS)

    Turrin, J.; Forster, R.; Sauber, Jeanne; Hall, Dorothy K.; Bruhn, R.

    2013-01-01

    A pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM, and ETM+ imagery and feature tracking software, a time-series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in the 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40 m/yr to 160 m/yr, and occurred in an area of the glacier underlain by sedimentary bedrock. Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is theorized to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate.

  9. Anti-Atlas Mountains, Morocco

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Anti-Atlas Mountains of northern Africa and the nearby Atlas mountains were created by the prolonged collision of the African and Eurasian tectonic plates, beginning about 80 million years ago. Massive sandstone and limestone layers have been crumpled and uplifted more than 4,000 meters in the High Atlas and to lower elevations in the Anti-Atlas. Between more continuous major fold structures, such as the Jbel Ouarkziz in the southwestern Anti-Atlas, tighter secondary folds (arrow) have developed. Earlier, the supercontinent of Pangea rifted apart to form precursors to the Mediterranean and the Atlantic Ocean (Beauchamp and others, 1996). In those seas sands, clays, limey sediments, and evaporite layers (gypsum, rock salt) were deposited. Later, during the mountain-building plate collision, the gypsum layers flowed under the pressure and provided a slippery surface on which overlying rigid rocks could glide (Burkhard, 2001). The broad, open style of folds seen in this view is common where evaporites are involved in the deformation. Other examples can be found in the Southern Zagros of Iran and the Sierra Madre Oriental of Mexico. Information Sources: Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M., 1996, Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco: Tulsa, American Association of Petroleum Geologists Bulletin, v. 80, No. 9, p. 1459-1482. Burkhard, Martin, 2001, Tectonics of the Anti-Atlas of Morocco -- Thin-skin/thick-skin relationships in an atypical foreland fold belt. University of Neuchatel, Switzerland: http://www-geol.unine.ch/Structural/Antiatlas.html (accessed 1/29/02). STS108-711-25 was taken in December, 2001 by the crew of Space Shuttle mission 108 using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography

  10. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  11. Modelling distributed mountain glacier volumes: A sensitivity study in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Huss, Matthias; Fischer, Andrea; Otto, Jan Christoph

    2017-04-01

    Knowledge about the spatial ice thickness distribution in glacier covered mountain regions and the elevation of the bedrock underneath the glaciers yields the basis for numerous applications in geoscience. Applications include the modelling of glacier dynamics, natural risk analyses and studies on mountain hydrology. Especially in recent times of accelerating and unprecedented changes of glacier extents, the remaining ice volume is of interest regarding future glacier and sea level scenarios. Subglacial depressions concern because of their hazard potential in case of sudden releases of debris or water. A number of approaches with different level of complexity have been developed in the past years to infer glacier ice thickness from surface characteristics. Within the FUTURELAKES project, the ice thickness estimation method presented by Huss and Farinotti (2012) was applied to all glaciers in the Austrian Alps based on glacier extents and surface topography corresponding to the three Austrian glacier inventories (1969 - 1997 - 2006) with the aim to predict size and location of future proglacial lakes. The availability of measured ice thickness data and a time series of glacier inventories of Austrian glaciers, allowed carrying out a sensitivity study of the key parameter, the apparent mass balance gradient. First, the parameters controlling the apparent mass balance gradient of 58 glaciers where calibrated glacier-wise with the aim to minimize mean deviations and mean absolute deviations to measured ice thickness. The results were analysed with respect to changes of the mass balance gradient with time. Secondly, we compared the observed to modelled ice thickness changes. For doing so, glacier-wise as well as regional means of mass balance gradients have been used. The results indicate that the initial values for the apparent mass balance gradient have to be adapted to the changing conditions within the four decades covered by the glacier inventories. The gradients

  12. SHEEP MOUNTAIN WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Patten, Lowell L.

    1984-01-01

    On the basis of a mineral survey the Sheep Mountain Wilderness study area in Wyoming was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin. Geophysical studies, such as reflection seismic profiling would help define the oil and gas potential in fault-controlled structures, such as those beneath the thrust fault that crops out along the east flank of Sheep Mountain.

  13. Current Seismicity in the Vicinity of Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Smith, K.; von Seggern, D.; dePolo, D.

    2001-12-01

    The 1992 to 2000 earthquakes in the Southern Great Basin have been relocated in order to better recognize the active tectonic processes in the vicinity of Yucca Mountain. During this time period seismic monitoring in the Southern Great Basin transitioned from a primarily single-component analog network to a 3-component digital network. Through the transition analog and digital networks were run in tandem. The station density over this period is as great as any prior recording period. The analog and digital networks were administered separately during the transition, and we have merged the phase data from the two operations. We performed relocations starting in October 1992, thus creating a hypocentral list for FY1993-FY2000. Aftershocks of the June 1992 M 5.6 Little Skull Mountain earthquake, located approximately 20 km southeast of Yucca Mountain, dominate the seismicity in the Southern Great Basin from 1992-2000. After the Little Skull Mountain earthquake, there was a general increase in earthquake activity in southern NTS, principally associated with the Rock Valley fault zone. There was no corresponding increase in seismicity west of Little Skull Mountain near the potential repository site. The distribution of high-quality earthquake locations generally reflects trends in Miocene tectonism. In particular, a general north-south trending gravity low, interpreted by Carr (1984) as the Kawich-Greenwater Rift, is highlighted by the microseismicity in many areas. Locally small magnitude earthquakes tend to outline the 8-10 Ma Timber Mountain caldera in northern and central NTS. Although these structures do not generally correlate with Quaternary faults, the micro-earthquake activity may reflect zones of weakness within these older structures. A 100 km long, conspicuous, north-south trending seismic zone, which shows no correlation with know Quaternary features, aligns along the steep gravity gradient bordering the western side of the Kawich-Greenwater gravity

  14. 14 CFR 95.21 - Puerto Rico Mountainous Area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...

  15. 14 CFR 95.21 - Puerto Rico Mountainous Area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...

  16. 14 CFR 95.21 - Puerto Rico Mountainous Area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...

  17. 14 CFR 95.21 - Puerto Rico Mountainous Area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...

  18. 14 CFR 95.21 - Puerto Rico Mountainous Area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Puerto Rico Mountainous Area. 95.21 Section 95.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.21 Puerto Rico...

  19. Habitat use by mountain quail in Northern California

    Treesearch

    Leonard A. Brennan; R. J. Gutierrez

    1987-01-01

    We studied habitat use by Mountain Quail (Oreortyx pictus) at four sites in northern California. Vegetative cover types (macrohabitats) were used in proportion to availability. Significant microhabitat variables which distinguished used from available microhabitat structure included proximity to water and tall, dense shrubs. Mountain Quail population...

  20. The physiology of mountain biking.

    PubMed

    Impellizzeri, Franco M; Marcora, Samuele M

    2007-01-01

    Mountain biking is a popular outdoor recreational activity and an Olympic sport. Cross-country circuit races have a winning time of approximately equal 120 minutes and are performed at an average heart rate close to 90% of the maximum, corresponding to 84% of maximum oxygen uptake (VO2max). More than 80% of race time is spent above the lactate threshold. This very high exercise intensity is related to the fast starting phase of the race; the several climbs, forcing off-road cyclists to expend most of their effort going against gravity; greater rolling resistance; and the isometric contractions of arm and leg muscles necessary for bike handling and stabilisation. Because of the high power output (up to 500W) required during steep climbing and at the start of the race, anaerobic energy metabolism is also likely to be a factor of off-road cycling and deserves further investigation. Mountain bikers' physiological characteristics indicate that aerobic power (VO2max >70 mL/kg/min) and the ability to sustain high work rates for prolonged periods of time are prerequisites for competing at a high level in off-road cycling events. The anthropometric characteristics of mountain bikers are similar to climbers and all-terrain road cyclists. Various parameters of aerobic fitness are correlated to cross-country performance, suggesting that these tests are valid for the physiological assessment of competitive mountain bikers, especially when normalised to body mass. Factors other than aerobic power and capacity might influence off-road cycling performance and require further investigation. These include off-road cycling economy, anaerobic power and capacity, technical ability and pre-exercise nutritional strategies.

  1. Characterize Eruptive Processes at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004more » [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.« less

  2. Microsurgical scalp reconstruction after a mountain lion attack.

    PubMed

    Hazani, Ron; Buntic, Rudolf F; Brooks, Darrell

    2008-09-01

    Mountain lion attacks on humans are rare and potentially fatal. Although few victims experience minor injuries, permanent disfigurement and disability is common among survivors of these assaults. Since 1986, a steady number of mountain lion attacks have been noted in California. We report a recent attack of a cougar on a couple hiking in California's Prairie Creek Redwoods State Park. The victim sustained a significant scalp injury that led to a life-threatening soft-tissue infection. We present an analysis of the injury pattern as it relates to the bite marks, the resulting degloving injury, and the surgical reconstruction. We also offer a current survey of the pathogens often found in cats' and mountain lions' bite wounds and the appropriate antibiotic treatment. Given the infrequency at which clinicians encounter mountain lion injuries, we recommend that after initial management and exclusion of life threatening injuries patients be transferred to a tertiary care facility capable of managing the various reconstructive challenges such as the one presented in this case.

  3. Body composition and somatotype of experienced mountain climbers.

    PubMed

    Barbieri, Davide; Zaccagni, Luciana; Cogo, Annalisa; Gualdi-Russo, Emanuela

    2012-03-01

    In order to evaluate body composition and somatotype, 10 Italian experienced mountain climbers were assessed from an anthropometric point of view, before a high altitude ascent. Body mass, height, girths, skinfolds, and bone breadths were gathered and used to calculate body composition and somatotype of each subject. Means and standard deviations of the subjects' anthropometric characteristics were calculated. Mesomorphism (5.28±1.10) is the dominant somatotype component in all but one the participants, endomorphism (1.55±0.49) is low, and body fat percentage (11.76%±2.93) is low. Comparisons with athletes involved in other climbing subdisciplines highlight the specificity of elite mountain climbers anthropometry. The elite mountain climbers in our sample were predominantly mesomorphic with somatotype attitudinal mean values lower than reported for male athletes participating in free-climbing, volleyball, gymnastics, and soccer. Anthropometric characteristics may therefore play a role in mountain climbing, even though the trainable components may be more relevant than the nontrainable ones.

  4. San Antonio Mountain Experiment (SAMEX).

    NASA Astrophysics Data System (ADS)

    McCutchan, Morris H.; Fox, Douglas G.; Furman, R. William

    1982-10-01

    The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being taken at nine locations over a three- to five-year period that began in 1980. The experiment is designed to isolate the effect of topography on these meteorological variables by using a geometric configuration sufficiently simple to lead to generalized results. One remote automatic weather station (RAWS) is located at the peak (3322 m); four are located at midslope (3033 m) on southwest, southeast, northeast, and northwest aspects; and four are at the base (2743 m) on southwest, southeast, northeast, and northwest aspects. The surface observations are supplemented by rawinsonde, pibal, tethersonde, and constant-level balloon observations at selected times during each year. The unique set of meteorological data collected in the experiment will be used to 1) determine the effect of elevation and aspect on the meteorological variables; 2) compare the temperature, humidity, and wind components on the mountain with observations and/or predictions of these variables in the free air nearby; and 3) validate temperature, humidity, and wind models in complex terrain.

  5. Optimum gradient of mountain paths.

    PubMed

    Minetti, A E

    1995-11-01

    By combining the experiment results of R. Margaria (Atti Accad. Naz. Lincei Memorie 7: 299-368, 1938), regarding the metabolic cost of gradient locomotion, together with recent insights on gait biomechanics, a prediction about the most economical gradient of mountain paths (approximately 25%) is obtained and interpreted. The pendulum-like mechanism of walking produces a waste of mechanical work against gravity within the gradient range of up to 15% (the overall efficiency is dominated by the low transmission efficiency), whereas for steeper values only the muscular efficiency is responsible for the (slight) metabolic change (per meter of vertical displacement) with respect to gradient. The speeds at the optimum gradient turned out to be approximately 0.65 m/s (+0.16 m/s vertical) and 1.50 m/s (-0.36 m/s vertical), for uphill and downhill walking, respectively, and the ascensional energy expenditure was 0.4 and 2.0 ml O2.kg body mass-1.vertical m-1 climbed or descended. When the metabolic power becomes a burden, as in high-altitude mountaineering, the optimum gradient should be reduced. A sample of real mountain path gradients, experimentally measured, mimics the obtained predictions.

  6. Regional metamorphism in the Condrey Mountain Quadrangle, north-central Klamath Mountains, California

    USGS Publications Warehouse

    Hotz, Preston Enslow

    1979-01-01

    A subcircular area of about 650 km 2 in northern California and southwestern Oregon is occupied by rocks of the greenschist metamorphic facies called the Condrey Mountain Schist. This greenschist terrane is bordered on the east and west by rocks belonging to the amphibolite metamorphic facies that structurally overlie and are thrust over the Condrey Mountain Schist. The amphibolite facies is succeeded upward by metavolcanic and metasedimentary rocks belonging to the greenschist metamorphic facies. The Condrey Mountain Schist is composed predominantly of quartz-muscovite schist and lesser amounts of actinolite-chlorite schist formed by the metamorphism of graywacke and spilitic volcanic rocks that may have belonged to the Galice Formation of Late Jurassic age. Potassium-argon age determinations of 141?4 m.y. and 155?5 m.y. obtained on these metamorphic rocks seem to be incompatible with the Late Jurassic age usually assigned the Galice. The rocks that border the amphibolite facies are part of an extensive terrane of metavolcanic and metasedimentary rocks belonging to the western Paleozoic and Triassic belt. The metavolcanic rocks include some unmetamorphosed spilite but are mostly of the greenschist metamorphic facies composed of oligoclase (An15-20) and actinolite with subordinate amounts of chlorite and clinozoisiteepidote. The interbedded sedimentary rocks are predominantly argillite and slaty argillite, less commonly siliceous argillite and chert, and a few lenticular beds of marble. On the south, high-angle faults and a tabular granitic pluton separate the greenschist metavolcanic terrane from the amphibolite facies rocks; on the east, nonfoliated amphibolite is succeeded upward, apparently conformably, by metasedimentary rocks belonging to the greenschist metavolcanic terrane. In the southern part of Condrey Mountain quadrangle, an outlier of a thrust plate composed of the Stuart Fork Formation overlies the metavolcanic and metasedimentary rocks. The Stuart

  7. Post-wildfire erosion in the Chiricahua Mountains

    Treesearch

    Ann Youberg; Daniel G. Neary; Karen A. Koestner; Peter E. Koestner

    2013-01-01

    The Horseshoe 2 Fire burned 90,226 ha (222,954 ac) of the Chiricahua Mountains in the Coronado National Forest of southeast Arizona from May 8 to June 25, 2011. This mountain range in the Madrean Archipelago was burned by widespread fires prior to 1890, numerous small fires after 1890, and, more recently, the 11,129 ha (27,500 ac) Rattlesnake Fire in 1994. The latter...

  8. Periodic Burning In Table Mountain-Pitch Pine Stands

    Treesearch

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  9. Geology of Tenderfoot Creek Experimental Forest Little Belt Mountains, Meagher County, Montana

    Treesearch

    Mitchell W. Reynolds

    1975-01-01

    The Tenderfoot Creek Experimental Forest in the west-central part of the Little Belt Mountains occupies a transition zone in the west-central part of the Mountains-a transition from rolling mountain parks with rounded peaks that rise about 500 feet above the upland of the range to deeply incised canyons that drain the west end of the Mountains. The Experimental Forest...

  10. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  11. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  12. 40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  13. An Antarctic stratigraphic record of step-wise ice-sheet growth through the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Ciarletta, D. J.; Miriagos, T.; Bijl, P.; Bohaty, S. M.

    2016-12-01

    The Antarctic cryosphere plays a critical role in the ocean-atmosphere system, but its early evolution is still poorly known. With a near-field record from Prydz Bay, Antarctica, we conclude that Antarctic continental ice-sheet growth commenced with the EOT-1 "precursor" glaciation, during a time of Subantarctic surface ocean cooling and a decline in atmospheric pCO2. Prydz Bay lies downstream of a major East Antarctic ice-sheet drainage system and the Gamburtsev Mountains, a likely nucleation point for the first ice sheets. Its sedimentary records uniquely constrain the timing of ice-sheet advance onto the continental shelf. We investigate a detrital record extracted from three Ocean Drilling Program drill holes in Prydz Bay within a new depositional and chronological framework spanning the late Eocene to early Oligocene ( 36-33 Ma). The chemical index of alteration (CIA) and the S-index, calculated from the major element geochemistry of bulk samples, yield estimates of chemical weathering intensities and mean annual temperature (MAT) on the East Antarctic continent. We document evidence for late Eocene mountain glaciation along with transient warm events at 35.8-34.8 Ma. These data and our sedimentological analyses confirm the presence of ephemeral mountain glaciers on East Antarctica during the late Eocene between 35.9 and 34.4 Ma. Furthermore, we document the stepwise climate cooling of the Antarctic hinterland from 34.4 Ma as the ice sheet advanced towards the edges of the continent during EOT-1. The youngest part of our data set correlates to the time interval of the Oi-1 glaciation, when the ice-sheet in Prydz Bay extended to the outer shelf. Cooling and ice growth on Antarctica was spatially variable and ice sheets formed under declining pCO2. These results point to complex ice sheet - atmosphere - ocean - solid-earth feedbacks.

  14. A geographic analysis of the status of mountain lions in Oklahoma

    USGS Publications Warehouse

    Pike, J.R.; Shaw, J.H.; Leslie, David M.; Shaw, M.G.

    1999-01-01

    The geographic distribution of sightings and sign of mountain lions (Puma concolor) in Oklahoma was investigated. Mail survey questionnaires were sent to natural resource professionals throughout Oklahoma to gather temporal and spatial information on sightings of mountain lions from 1985 to 1995. We used a geographic information system (GIS) to compare locations of sightings and sign in the state with ecoregions, deer harvest, human population densities, locations of licensed owners and breeders of mountain lions, and generalized topography. Sightings and sign of mountain lions occurred significantly more often in the Central Rolling Red Plains than elsewhere in the state. Sightings of mountain lions increased with total deer harvest statewide (R2=0.828, P<0.001). Numbers of sightings of mountain lions were correlated negatively with density of the human population (R2=0.885, P=0.017). Surveys are a valuable method to assess the status of rare wildlife species when other methods are not available and when those receiving the survey are qualified.

  15. Are Crown Fires Necessary For Table Mountain Pine?

    Treesearch

    Thomas A. Waldrop; Patrick H. Brose; Nicole Turrill Welch; Helen H. Mohr; Ellen A. Gray; Frank H. Tainter; Lisa E. Ellis

    2003-01-01

    Ridgetop pine communities of the southern Appalachian Mountains have historically been maintained by lightning- and human-caused fires. Because of fire supression for several decades, these stands are entering later seral stages. Such stands typically have an overstory of Table Mountain Pine (Pinus pungens) that is being replaced by shade tolerant...

  16. AmeriFlux US-Rms RCEW Mountain Big Sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rms RCEW Mountain Big Sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by mountain big sagebrush on land managed by USDI Bureau of Land Management.

  17. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  18. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  19. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  20. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  1. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  2. Landslide Susceptibility Analysis along Li-Shing Mountain Road in Nantou County, Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, J. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Slopeland hazards are frequently occurred during typhoon periods in the mountain areas of Taiwan. The Li-Shing Mountain Road was suffered from the landslide and erosion of road foundation due to its fragile geological structure, overuse of land, and heavy rainfall. Transportation of agricultural produce in Li-Shing areas was seriously affected while the Li-Shing Mountain Road was blocked by the landslides. To evaluate the landslide susceptibilities along the Li-Shing Mountain Road, this study collected the landslide inventories from Typhoon Mindulle in July, 2004 and Typhoon Kalmaegi in July, 2008. By combining the landslide inventories with hydrological and geological factors, such as rainfall, distance to river, geology, and land slope and aspect, the Instability Index Method was used to specify the landslide susceptibilities of the slopes along the Li-Shing Mountain Road. The accuracy of the present model was evaluated by comparison of the predicted and the typhoon triggered landslides. Finally, the high landslide potential slopes along the Li-Shing Mountain Road were identified. It is expected to provide the information for landslide warning system and engineering countermeasures planning along the Li-Shing Mountain Road. Keywords: Landslide, Instability Index Method, Li-Shing Mountain Road

  3. Mountain waves modulate the water vapor distribution in the UTLS

    NASA Astrophysics Data System (ADS)

    Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus

    2017-12-01

    The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our

  4. Correlation of the Klamath Mountains and Sierra Nevada

    USGS Publications Warehouse

    Irwin, William P.

    2003-01-01

    This report graphically portrays the broadly parallel tectonic development of the Klamath Mountains and Sierra Nevada from early Paleozoic to Early Cretaceous time. It is dedicated to J.S. Diller of the U.S. Geological Survey who, during his pioneer field studies a century ago, recognized significant similarities between these two important provinces. The report is based mainly on the numerous published reports of the field and laboratory studies by various geologists and students during the last century, and to a lesser extent on my own field work which has been substantial in the Klamath Mountains but minimal in the Sierra Nevada. For brevity, required by the format of this report, little of the extensive literature pertaining to these two provinces is referenced. This report is preliminary in nature and was prepared as an aid to further study of the tectonic relations between the Klamath Mountains and Sierra Nevada. This report consists of two sheets: Sheet 1, Map showing accreted terranes and plutons of the Klamath Mountains and Sierra Nevada, and Sheet 2, Successive accretionary episodes of the Klamath mountains and northern part of Sierra Nevada, showing related plutonic, volcanic, and metamorphic events. The map on Sheet 1 was compiled and modified from two Open-File maps (Irwin and Wooden, 1999 and 2001) which had been compiled and modified mainly from Jennings (1977), Harwood (1992), Irwin (1994), Jayko (1988), Graymer and Jones (1994), Edelman and Sharp (1989), Schweickert and others (1999), Saucedo and Wagner(1992), Saleeby and Sharp (1980), Wagner and others (1981), and various other sources. For detailed lists of the sources for the isotopic age data used in Sheets 1 and 2, see Irwin and Wooden (1999 and 2001). On Sheet 2, the accretionary episodes are shown sequentially from left to right in two tiers of figures. Episodes for the Klamath Mountains are in the upper tier; correlative episodes of the Sierra Nevada are directly below in the lower tier

  5. Hurricane Mountain Formation melange: history of Cambro-Ordovician accretion of the Boundary Mountains terrane within the northern Appalachian orthotectonic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, G.M.; Boudette, E.L.

    1985-01-01

    The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick aremore » lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.« less

  6. Rocky Mountain Research Station: 2012-2013 Annual Report

    Treesearch

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  7. Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Barbara Bentz

    2008-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...

  8. Rocky Mountain Research Station: Looking back on 2014

    Treesearch

    Cass Cairns

    2015-01-01

    The Rocky Mountain Research Station (RMRS) is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of...

  9. View east over the Rocky Mountains and Great Plains

    NASA Image and Video Library

    1974-02-01

    SL4-138-3875 (February 1974) --- A color oblique photograph looking east over the Rocky Mountains and Great Plains. This view covers a portion of the States of Colorado, Wyoming, and Nebraska. A Skylab 4 crewmen took this picture with a hand-held 70mm Hasselblad camera. This entire region, covered with a blanket of snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Man's only apparent change to the snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. Grand Junction, Colorado on the western slope of the Rocky Mountains is just off the photograph at left center bottom. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton and Yale form the high region of the Collegiate Range which is the pronounced mountain area in the right center. Snow cover not only enhances mountain features but also the drainage patterns. East of Denver (right corner) the sinuous trace of the South Platte River (center) and its junction with the North Platte River near North Platte, Nebraska. Lake McConaughy in Nebraska is the body of water (black) near the river intersection. The trace of the Republic River in southern Nebraska is visible near the right corner of the photography. Geologic and hydro logic studies using this photograph will be conducted by Dr. Roger Morrison, U.S. Geological Survey. Photo credit: NASA

  10. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  11. A View from the Mountain Top: The Purple Mountain Observatory Library, China

    ERIC Educational Resources Information Center

    Zhang, Jian

    2012-01-01

    This paper discusses the author's experience directing the Purple Mountain Observatory Library, Chinese Academy of Sciences (CAS) in Nanjing, China. Routine collection development, management and preservation issues are described, and the unique challenges and opportunities involved in operating a remote observatory library are highlighted.

  12. Mountaineering-induced bilateral plantar paresthesia.

    PubMed

    Henderson, Kyle K; Parker, Justine; Heinking, Kurt P

    2014-07-01

    Flat feet (pes planus) have been implicated in multiple musculoskeletal complaints, which are often exacerbated by lack of appropriate arch support or intense exercise. To investigate the efficacy of osteopathic manipulative treatment (OMT) on a patient (K.K.H.) with mountaineering-induced bilateral plantar paresthesia and to assess the association of pes planus with paresthesia in members of the mountaineering expedition party that accompanied the patient. A patient history and physical examination of the musculoskeletal system were performed. The hindfoot, midfoot, forefoot, big toe, and distal toes were evaluated for neurologic function, specifically pin, vibration, 10-g weight sensitivity, and 2-point discrimination during the 4-month treatment period. To determine if OMT could augment recovery, the patient volunteered to use the contralateral leg as a control, with no OMT performed on the sacrum or lower back. To determine if pes planus was associated with mountaineering-induced paresthesia, a sit-to-stand navicular drop test was performed on members of the expedition party. Osteopathic manipulative treatment improved fibular head motion and muscular flexibility and released fascial restrictions of the soleus, hamstring, popliteus, and gastrocnemius. The patient's perception of stiffness, pain, and overall well-being improved with OMT. However, OMT did not shorten the duration of paresthesia. Of the 9 expedition members, 2 experienced paresthesia. Average navicular drop on standing was 5.1 mm for participants with no paresthesia vs 8.9 mm for participants with paresthesia (t test, P<.01; Mann-Whitney rank sum test, P=.06). These preliminary findings suggest that weakened arches may contribute to mountaineering-induced plantar paresthesia. Early diagnosis of pes planus and treatment with orthotics (which may prevent neuropathies)--or, less ideally, OMT after extreme exercise--should be sought to relieve tension and discomfort. © 2014 The American Osteopathic

  13. The age-related performance decline in ultraendurance mountain biking.

    PubMed

    Haupt, Samuel; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    The age-related changes in ultraendurance performance have been previously examined for running and triathlon but not mountain biking. The aims of this study were (i) to describe the performance trends and (ii) to analyze the age-related performance decline in ultraendurance mountain biking in a 120-km ultraendurance mountain bike race the "Swiss Bike Masters" from 1995 to 2009 in 9,325 male athletes. The mean (±SD) race time decreased from 590 ± 80 min to 529 ± 88 min for overall finishers and from 415 ± 8 min to 359 ± 16 min for the top 10 finishers, respectively. The mean (±SD) age of all finishers significantly (P < 0.001) increased from 31.6 ± 6.5 years to 37.9 ± 8.9 years, while the age of the top 10 remained stable at 30.0 ± 1.6 years. The race time of mountain bikers aged between 25 and 34 years was significantly (P < 0.01) faster compared with the race time of older age groups. The age-related decline in performance in endurance mountain bikers in the "Swiss Bike Masters" appears to start earlier compared with other ultraendurance sports.

  14. Cemented Fractures in Mountain Inside Gale Crater on Mars

    NASA Image and Video Library

    2011-07-22

    One type of feature of scientific interest on the mountain inside Gale crater is exposure of cemented fractures, evidence that groundwater once reached to at least that height of the mountain. This image is from NASA Mars Reconnaissance Orbiter.

  15. Rocky Mountain Research Station: 2013-2014 Annual Report

    Treesearch

    Cass Cairns

    2014-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...

  16. Eye problems in mountain and remote areas: prevention and onsite treatment--official recommendations of the International Commission for Mountain Emergency Medicine ICAR MEDCOM.

    PubMed

    Ellerton, John A; Zuljan, Igor; Agazzi, Giancelso; Boyd, Jeffrey J

    2009-01-01

    Although eyes are not frequently injured in the mountains, they are exposed to many adverse factors from the environment. This article, intended for first responders, paramedics, physicians, and mountaineers, is the consensus opinion of the International Commission for Mountain Emergency Medicine (ICAR-MEDCOM). Its aim is to give practical advice on the management of eye problems in mountainous and remote areas. Snow blindness and minor injuries, such as conjunctival and corneal foreign bodies, could immobilize a person and put him or her at risk of other injuries. Blunt or penetrating trauma can result in the loss of sight in the eye; this may be preventable if the injury is managed properly. In almost all cases of severe eye trauma, protecting the eye and arranging an immediate evacuation are necessary. The most common eye problems, however, are due to ultraviolet light and high altitude. People wearing contact lenses and with previous history of eye diseases are more vulnerable. Any sight-threatening eye problem or unexplained visual loss at high altitude necessitates descent. Wearing appropriate eye protection, such as sunglasses with sidepieces and goggles with polarized or photochromic lenses, could prevent most of the common eye problems in mountaineering.

  17. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    PubMed

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  18. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small upliftsmore » also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data.« less

  19. Klamath Mountains bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor; James K. Agee

    2006-01-01

    The Klamath Mountains bioregion makes up a major portion of northwestern California continuing into southwestern Oregon to near Roseburg. In California, the bioregion lies primarily between the Northern California Coast bioregion on the west and the southern Cascade Range to the east. The southern boundary is made up of the Northern California Coast Ranges and Northern...

  20. Meta-image navigation augmenters for GPS denied mountain navigation of small UAS

    NASA Astrophysics Data System (ADS)

    Wang, Teng; ćelik, Koray; Somani, Arun K.

    2014-06-01

    We present a novel approach to use mountain drainage patterns for GPS-Denied navigation of small unmanned aerial systems (UAS) such as the ScanEagle, utilizing a down-looking fixed focus monocular imager. Our proposal allows extension of missions to GPS-denied mountain areas, with no assumption of human-made geographic objects. We leverage the analogy between mountain drainage patterns, human arteriograms, and human fingerprints, to match local drainage patterns to Graphics Processing Unit (GPU) rendered parallax occlusion maps of geo-registered radar returns (GRRR). Details of our actual GPU algorithm is beyond the subject of this paper, and is planned as a future paper. The matching occurs in real-time, while GRRR data is loaded on-board the aircraft pre-mission, so as not to require a scanning aperture radar during the mission. For recognition purposes, we represent a given mountain area with a set of spatially distributed mountain minutiae, i.e., details found in the drainage patterns, so that conventional minutiae-based fingerprint matching approaches can be used to match real-time camera image against template images in the training set. We use medical arteriography processing techniques to extract the patterns. The minutiae-based representation of mountains is achieved by first exposing mountain ridges and valleys with a series of filters and then extracting mountain minutiae from these ridges/valleys. Our results are experimentally validated on actual terrain data and show the effectiveness of minutiae-based mountain representation method. Furthermore, we study how to select landmarks for UAS navigation based on the proposed mountain representation and give a set of examples to show its feasibility. This research was in part funded by Rockwell Collins Inc.