Sample records for gametes

  1. Intra-Family Gamete Donation: A Solution to Concerns Regarding Gamete Donation in China?

    PubMed

    Liao, Juhong; Devolder, Katrien

    2016-09-01

    Gamete donation from third parties is controversial in China as it severs blood ties, which are considered of utmost importance in Confucian tradition. In recent years, infertile couples are increasingly demonstrating a preference for the use of gametes donated by family members to conceive children-known as "intra-family gamete donation." The main advantage of intra-family gamete donation is that it maintains blood ties between children and both parents. To date there is no practice of intra-family gamete donation in China. In this paper, we investigate intra-family adoption in China in order to illustrate that intra-family gamete donation is consistent with Confucian tradition regarding the importance of maintaining blood ties within the family. There are several specific ethical issues raised by intra-family gamete donation. It may, for example, result in consanguinity and the semblance of incest, lead to confused family relationships, and raise concerns about possible coercion of familial donors. Confucian tradition provides a new approach to understand and deal with these ethical issues in a way that Western tradition does not. As a result, we suggest intra-family gamete donation could be an acceptable solution to the problem of infertility in China. However, further discussion and open debates on the ethical issues raised by intra-family gamete donation are needed in China.

  2. Ethics and synthetic gametes.

    PubMed

    Testa, Giuseppe; Harris, John

    2005-04-01

    The recent in vitro derivation of gamete-like cells from mouse embryonic stem (mES) cells is a major breakthrough and lays down several challenges, both for the further scientific investigation and for the bioethical and biolegal discourse. We refer here to these cells as gamete-like (sperm-like or oocyte-like, respectively), because at present there is still no evidence that these cells behave fully like bona fide sperm or oocytes, lacking the fundamental proof, i.e. combination with a normally derived gamete of the opposite sex to yield a normal individual. However, the results published so far do show that these cells share some defining features of gametes. We discuss these results in the light of the bioethical and legal questions that are likely to arise would the same process become possible with human embryonic stem (hES) cells.

  3. In Vitro Assessment of Gamete Integrity

    EPA Science Inventory

    Drug and xenobiotics can compromise reproductive function by impairing gamete physiology and thereby blocking fertilization, or by damaging gamete DNA or chromatin and thereby causing pregnancy failure or birth defects. tandard measures of gamete integrity, such as morphology, mo...

  4. Refrigeration of rainbow trout gametes and embryos.

    PubMed

    Babiak, Igor; Dabrowski, Konrad

    2003-12-01

    Prolonged access to early embryos composed of undifferentiated, totipotent blastomeres is desirable in situations when multiple collections of gametes are not possible. The objective of the present study is to examine whether the refrigeration of rainbow trout Oncorhynchus mykiss gametes and early embryos would be a suitable, reliable, and efficient tool for prolonging the availability of early developmental stages up to the advanced blastula stage. The study was conducted continuously during fall, winter, and spring spawning seasons. In all, more than 500 experimental variants were performed involving individual samples from 26 females and 33 males derived from three strains. These strains represented three possible circumstances. In optimal one, gametes from good quality donors were obtained soon after ovulation. In the two non-optimal sources, either donors were of poor genetic quality or gametes were collected from a distant location and transported as unfertilized gametes. A highly significant effect of variability of individual sample quality on efficiency of gamete and embryo refrigeration was revealed. The source of gametes significantly affected viability of refrigerated oocytes and embryos, but not spermatozoa. On average, oocytes from optimal source retained full fertilization viability for seven days of chilled storage, significantly longer than from non-optimal sources. Spermatozoa, regardless of storage method, retained full fertilization ability for the first week of storage. Refrigeration of embryos at 1.4+/-0.4 degrees C significantly slowed the development. Two- week-old embryos were still in blastula stage. Average survival rate of embryos refrigerated for 10 days and then transferred to regular incubation temperatures of 9-14 degrees C was 92% in optimal and 51 and 71% in non-optimal source variants. No effect of gamete and embryo refrigeration on the occurrence of developmental abnormalities was observed. Cumulative refrigeration of oocytes and

  5. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    PubMed

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido

    2017-07-01

    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  6. [Current trends in gamete donation - psychosocial and ethical issues].

    PubMed

    Rumpíková, T; Oborná, I; Konečná, H

    2017-01-01

    To overview contemporary knowledge of legal and psychosocial rules in gamete donation. Previously, anonymous donation was preferred and recommended by experts but currently, with respect to the right to know the genetic origin of individuals, the relation to donor anonymity was reconsidered in many countries. There is a growing tendency to introduce the open identity system in gamete donation. Such system may guarantee that the child born after gamete donation may have receive the identification data of the donor of gametes. A review. Clinic of Reproductive Medicine and Gynecology Zlin. An overview of recent literature evaluating the influence of donor anonymity vs. open identity on psychosocial development of children born after gamete donation as well as on the quality of the relationship between parents and children in such families. New medical technologies usually overtake the developmental speed of ethics and psychology, and their impact on human society. Current trend to open identity is strong but there is no clear evidence that the open identity is of real importance for the healthy psychosocial development of a child born after gamete donation. Furthermore, there is no evidence that anonymity and secrecy of the gamete donation is harmful. In case of the consideration of the change in legal regulation in anonymity/open identity in gamete donation we would suggest the thorough consideration of all consequences.

  7. Gamete activation: basic knowledge and clinical applications

    PubMed Central

    Tosti, Elisabetta; Ménézo, Yves

    2016-01-01

    Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic

  8. Artificial gametes, the unnatural and the artefactual.

    PubMed

    Smajdor, Anna; Cutas, Daniela; Takala, Tuija

    2018-06-01

    In debates on the ethics of artificial gametes, concepts of naturalness have been used in a number of different ways. Some have argued that the unnaturalness of artificial gametes means that it is unacceptable to use them in fertility treatments. Others have suggested that artificial gametes are no less natural than many other tissues or processes in common medical use. We suggest that establishing the naturalness or unnaturalness of artificial gametes is unlikely to provide easy answers as to the acceptability of using them in fertility medicine. However, we also suggest that we should be cautious about repudiating any relationship between nature and moral evaluation. The property of being natural or man-made may not per se tell us anything about an entity's moral status, but it has an important impact on the moral relationship between the creator and the created organism. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Chapter 1 Historical Background on Gamete and Embryo Cryopreservation.

    PubMed

    Ali, Jaffar; AlHarbi, Naif H; Ali, Nafisa

    2017-01-01

    This chapter describes the development of the science of cryopreservation of gametes and embryos of various species including human. It attempts to record in brief the main contributions of workers in their attempts to cryopreserve gametes and embryos. The initial difficulties faced and subsequent developments and triumphs leading to present-day state of the art are given in a concise manner. The main players and their contributions are mentioned and the authors' aim is to do justice to them. This work also attempts to ensure that credit is correctly attributed for significant advances in gamete and embryo cryopreservation. In general this chapter has tried to describe the historical development of the science of cryopreservation of gametes and embryos as accurately as possible without bias or partiality.

  10. Negotiating boundaries: Accessing donor gametes in India.

    PubMed

    Widge, A; Cleland, J

    2011-01-01

    This paper documents how couples and providers access donor materials for conception in the Indian context and perceptions about using them. The objective is to facilitate understanding of critical issues and relevant concerns. A postal survey was conducted with a sample of 6000 gynaecologists and in-depth interviews were -conducted with 39 gynaecologists in four cities. Donor gametes are relatively more acceptable than a few years ago, especially if confidentiality can be -maintained, though lack of availability of donor materials is sometimes an impediment to infertility treatment. Donor sperms are usually accessed from in-house or commercial sperm banks, pathology laboratories, IVF centres, -professional donors, relatives or friends. There is scepticism about screening procedures of sperm banks. Donor eggs are usually accessed from voluntary donors, friends, relatives, egg sharing programmes, donation from other patients, advertising and commercial donors. There are several concerns regarding informed consent for using donated gametes, using -relatives and friends gametes, the unregulated use of gametes and embryos, record keeping and documentation, -unethical and corrupt practices and commercialisation. These issues need to be addressed by patients, providers and regulatory authorities by providing -information, counselling, ensuring informed consent, addressing exploitation and commercialisation, ensuring -monitoring, proper documentation and transparency.

  11. Negotiating boundaries: Accessing donor gametes in India

    PubMed Central

    Widge, A.; Cleland, J.

    2011-01-01

    Background: This paper documents how couples and providers access donor materials for conception in the Indian context and perceptions about using them. The objective is to facilitate understanding of critical issues and relevant concerns. Methods: A postal survey was conducted with a sample of 6000 gynaecologists and in-depth interviews were conducted with 39 gynaecologists in four cities. Results: Donor gametes are relatively more acceptable than a few years ago, especially if confidentiality can be maintained, though lack of availability of donor materials is sometimes an impediment to infertility treatment. Donor sperms are usually accessed from in-house or commercial sperm banks, pathology laboratories, IVF centres, professional donors, relatives or friends. There is scepticism about screening procedures of sperm banks. Donor eggs are usually accessed from voluntary donors, friends, relatives, egg sharing programmes, donation from other patients, advertising and commercial donors. There are several concerns regarding informed consent for using donated gametes, using relatives and friends gametes, the unregulated use of gametes and embryos, record keeping and documentation, unethical and corrupt practices and commercialisation. Conclusion: These issues need to be addressed by patients, providers and regulatory authorities by providing information, counselling, ensuring informed consent, addressing exploitation and commercialisation, ensuring monitoring, proper documentation and transparency. PMID:24753849

  12. 9 CFR 93.904 - Health certificate for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., fertilized eggs, and gametes. 93.904 Section 93.904 Animals and Animal Products ANIMAL AND PLANT HEALTH... eggs, and gametes. (a) General. All live fish, fertilized eggs, and gametes of SVC-susceptible species... from the date of issuance. The health certificate for the live fish, fertilized eggs, or gametes must...

  13. Exploitation of induced 2n-gametes for plant breeding.

    PubMed

    Younis, Adnan; Hwang, Yoon-Jung; Lim, Ki-Byung

    2014-02-01

    Unreduced gamete formation derived via abnormal meiotic cell division is an important approach to polyploidy breeding. This process is considered the main driving force in spontaneous polyploids formation in nature, but the potential application of these gametes to plant breeding has not been fully exploited. An effective mechanism for their artificial induction is needed to attain greater genetic variation and enable efficient use of unreduced gametes in breeding programs. Different approaches have been employed for 2n-pollen production including interspecific hybridization, manipulation of environmental factors and treatment with nitrous oxide, trifluralin, colchicine, oryzalin and other chemicals. These chemicals can act as a stimulus to produce viable 2n pollen; however, their exact mode of action, optimum concentration and developmental stages are still not known. Identification of efficient methods of inducing 2n-gamete formation will help increase pollen germination of sterile interspecific hybrids for inter-genomic recombination and introgression breeding to develop new polyploid cultivars and increase heterozygosity among plant populations. Additionally, the application of genomic tools and identification and isolation of genes and mechanisms involved in the induction of 2n-gamete will enable increased exploitation in different plant species, which will open new avenues for plant breeding.

  14. Obtaining the variance of gametic diversity with genomic models

    USDA-ARS?s Scientific Manuscript database

    It may be possible to use information about the variability among gametes (spermatozoa and ova) to select parents that are more likely than average to produce offspring with extremely high or low breeding values. In this study, statistical formulae were developed to calculate variability among gamet...

  15. Discovery of long-distance gamete dispersal in a lichen-forming ascomycete.

    PubMed

    Ronnås, Cecilia; Werth, Silke; Ovaskainen, Otso; Várkonyi, Gergely; Scheidegger, Christoph; Snäll, Tord

    2017-10-01

    Accurate estimates of gamete and offspring dispersal range are required for the understanding and prediction of spatial population dynamics and species persistence. Little is known about gamete dispersal in fungi, especially in lichen-forming ascomycetes. Here, we estimate the dispersal functions of clonal propagules, gametes and ascospores of the epiphytic lichen Lobaria pulmonaria. We use hierarchical Bayesian parentage analysis, which integrates genetic and ecological information from multiannual colonization and dispersal source data collected in a large, old-growth forest landscape. The effective dispersal range of gametes is several hundred metres to kilometres from potential paternal individuals. By contrast, clonal propagules disperse only tens of metres, and ascospores disperse over several thousand metres. Our study reveals the dispersal distances of individual reproductive units; clonal propagules, gametes and ascospores, which is of great importance for a thorough understanding of the spatial dynamics of ascomycetes. Sexual reproduction occurs between distant individuals. However, whereas gametes and ascospores disperse over long distances, the overall rate of colonization of trees is low. Hence, establishment is the limiting factor for the colonization of new host trees by the lichen in old-growth landscapes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Control of female gamete formation by a small RNA pathway in Arabidopsis.

    PubMed

    Olmedo-Monfil, Vianey; Durán-Figueroa, Noé; Arteaga-Vázquez, Mario; Demesa-Arévalo, Edgar; Autran, Daphné; Grimanelli, Daniel; Slotkin, R Keith; Martienssen, Robert A; Vielle-Calzada, Jean-Philippe

    2010-03-25

    In the ovules of most sexual flowering plants female gametogenesis is initiated from a single surviving gametic cell, the functional megaspore, formed after meiosis of the somatically derived megaspore mother cell (MMC). Because some mutants and certain sexual species exhibit more than one MMC, and many others are able to form gametes without meiosis (by apomixis), it has been suggested that somatic cells in the ovule are competent to respond to a local signal likely to have an important function in determination. Here we show that the Arabidopsis protein ARGONAUTE 9 (AGO9) controls female gamete formation by restricting the specification of gametophyte precursors in a dosage-dependent, non-cell-autonomous manner. Mutations in AGO9 lead to the differentiation of multiple gametic cells that are able to initiate gametogenesis. The AGO9 protein is not expressed in the gamete lineage; instead, it is expressed in cytoplasmic foci of somatic companion cells. Mutations in SUPPRESSOR OF GENE SILENCING 3 and RNA-DEPENDENT RNA POLYMERASE 6 exhibit an identical defect to ago9 mutants, indicating that the movement of small RNA (sRNAs) silencing out of somatic companion cells is necessary for controlling the specification of gametic cells. AGO9 preferentially interacts with 24-nucleotide sRNAs derived from transposable elements (TEs), and its activity is necessary to silence TEs in female gametes and their accessory cells. Our results show that AGO9-dependent sRNA silencing is crucial to specify cell fate in the Arabidopsis ovule, and that epigenetic reprogramming in companion cells is necessary for sRNA-dependent silencing in plant gametes.

  17. 9 CFR 93.905 - Declaration and other documents for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... live fish, fertilized eggs, and gametes. 93.905 Section 93.905 Animals and Animal Products ANIMAL AND... for live fish, fertilized eggs, and gametes. (a) For all live fish, fertilized eggs, and gametes... fish, fertilized eggs, or gametes, the number, species, and the purpose of the importation, the name of...

  18. 9 CFR 93.905 - Declaration and other documents for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... live fish, fertilized eggs, and gametes. 93.905 Section 93.905 Animals and Animal Products ANIMAL AND... for live fish, fertilized eggs, and gametes. (a) For all live fish, fertilized eggs, and gametes... fish, fertilized eggs, or gametes, the number, species, and the purpose of the importation, the name of...

  19. 9 CFR 93.903 - Import permits for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., fertilized eggs, and gametes. 93.903 Section 93.903 Animals and Animal Products ANIMAL AND PLANT HEALTH... General Provisions for Svc-Regulated Fish Species § 93.903 Import permits for live fish, fertilized eggs, and gametes. (a) Live fish, fertilized eggs, or gametes of SVC-susceptible species imported into the...

  20. 9 CFR 93.903 - Import permits for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., fertilized eggs, and gametes. 93.903 Section 93.903 Animals and Animal Products ANIMAL AND PLANT HEALTH... General Provisions for Svc-Regulated Fish Species § 93.903 Import permits for live fish, fertilized eggs, and gametes. (a) Live fish, fertilized eggs, or gametes of SVC-susceptible species imported into the...

  1. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  2. Vaginal gamete intrafallopian transfer. Experience with 14 cases.

    PubMed

    Lucena, E; Paulson, J D; Ruiz, J; Asmar, P; Mendoza, J C; Ortiz, J A; Gomez, M; Arango, A; Lucena, C; Lucena, A

    1990-06-01

    A procedure utilizing transvaginal aspiration of stimulated gametes followed by transcervical, ultrasound-guided catheterization of the tubal ostia was performed as a modification of the standardized gamete intrafallopian transfer (GIFT) technique. Among 14 patients with 16 cycles there were four normal, intrauterine pregnancies and one ectopic pregnancy. In two patients the beta-human gonadotropin level rose significantly and then started to fall; the patients aborted spontaneously. The procedure can be performed with a higher degree of patient acceptance than can traditional GIFT, and the success rate in this small series was promising.

  3. The impact of disclosure on donor gamete participants: donors, intended parents and offspring.

    PubMed

    Greenfeld, Dorothy A

    2008-06-01

    The present review examines recent publications that provide insight into how the trend toward nonanonymity and disclosure in gamete donation impacts donors, intended parents, and their donor-conceived children. Recent findings show an increase in donor programs that offer open-identity between donors and offspring. The psychological needs of gamete donors and their attitudes toward disclosure are increasingly given consideration. Qualitative research on how parents of donor gamete offspring make decisions about disclosure reveals that even when couples initially disagree about disclosing to offspring, most ultimately come to a united disclosure decision. The literature on the impact of disclosure on donor gamete offspring has extended to include children conceived through embryo donation and children born as a result of surrogacy. The absence of genetic or gestational link between parents and their child does not have a negative impact on parent-child relationships. Parents through surrogacy tend to disclose the method of family creation to their child, whereas parents through embryo donation tend to be secretive about their child's origins. The trend toward greater openness in gamete donation has been accompanied by an increase in programs offering open-identity donation. In addition, the psychological needs of gamete donors and their attitudes toward disclosure are increasingly being given consideration. Parents of donor gamete offspring give careful thought to their disclosure decisions, and the psychological well being of donor-conceived children does not seem to be impacted by those decisions.

  4. Segregation for Sexual Seed Production in Paspalum as Directed by Male Gametes of Apomictic Triploid Plants

    PubMed Central

    Martínez, Eric J.; Acuña, Carlos A.; Hojsgaard, Diego H.; Tcach, Mauricio A.; Quarin, Camilo L.

    2007-01-01

    Background and Aims Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. Methods Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. Key Results The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. Conclusions Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x × 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes. PMID:17766843

  5. Potential consequences of clinical application of artificial gametes: a systematic review of stakeholder views.

    PubMed

    Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F

    2015-01-01

    Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and

  6. Sex differences in parental care: Gametic investment, sexual selection, and social environment.

    PubMed

    Liker, András; Freckleton, Robert P; Remeš, Vladimir; Székely, Tamás

    2015-11-01

    Male and female parents often provide different type and amount of care to their offspring. Three major drivers have been proposed to explain parental sex roles: (1) differential gametic investment by males and females that precipitates into sex difference in care, (2) different intensity of sexual selection acting on males and females, and (3) biased social environment that facilitates the more common sex to provide more care. Here, we provide the most comprehensive assessment of these hypotheses using detailed parental care data from 792 bird species covering 126 families. We found no evidence for the gametic investment hypothesis: neither gamete sizes nor gamete production by males relative to females was related to sex difference in parental care. However, sexual selection correlated with parental sex roles, because the male share in care relative to female decreased with both extra-pair paternity and frequency of male polygamy. Parental sex roles were also related to social environment, because male parental care increased with male-biased adult sex ratios (ASRs). Taken together, our results are consistent with recent theories suggesting that gametic investment is not tied to parental sex roles, and highlight the importance of both sexual selection and ASR in influencing parental sex roles. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of live fish, fertilized eggs, and gametes. 93.902 Section 93.902 Animals and Animal Products ANIMAL... importation of live fish, fertilized eggs, and gametes. (a) The following ports are designated as ports of entry for live fish, fertilized eggs, and gametes of SVC-susceptible species imported under this subpart...

  8. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of live fish, fertilized eggs, and gametes. 93.902 Section 93.902 Animals and Animal Products ANIMAL... importation of live fish, fertilized eggs, and gametes. (a) The following ports are designated as ports of entry for live fish, fertilized eggs, and gametes of SVC-susceptible species imported under this subpart...

  9. GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures.

    PubMed

    Urbanowicz, Ryan J; Kiralis, Jeff; Sinnott-Armstrong, Nicholas A; Heberling, Tamra; Fisher, Jonathan M; Moore, Jason H

    2012-10-01

    Geneticists who look beyond single locus disease associations require additional strategies for the detection of complex multi-locus effects. Epistasis, a multi-locus masking effect, presents a particular challenge, and has been the target of bioinformatic development. Thorough evaluation of new algorithms calls for simulation studies in which known disease models are sought. To date, the best methods for generating simulated multi-locus epistatic models rely on genetic algorithms. However, such methods are computationally expensive, difficult to adapt to multiple objectives, and unlikely to yield models with a precise form of epistasis which we refer to as pure and strict. Purely and strictly epistatic models constitute the worst-case in terms of detecting disease associations, since such associations may only be observed if all n-loci are included in the disease model. This makes them an attractive gold standard for simulation studies considering complex multi-locus effects. We introduce GAMETES, a user-friendly software package and algorithm which generates complex biallelic single nucleotide polymorphism (SNP) disease models for simulation studies. GAMETES rapidly and precisely generates random, pure, strict n-locus models with specified genetic constraints. These constraints include heritability, minor allele frequencies of the SNPs, and population prevalence. GAMETES also includes a simple dataset simulation strategy which may be utilized to rapidly generate an archive of simulated datasets for given genetic models. We highlight the utility and limitations of GAMETES with an example simulation study using MDR, an algorithm designed to detect epistasis. GAMETES is a fast, flexible, and precise tool for generating complex n-locus models with random architectures. While GAMETES has a limited ability to generate models with higher heritabilities, it is proficient at generating the lower heritability models typically used in simulation studies evaluating new

  10. Recent developments in vaccination against malaria: Gamete vaccines and transmission-blocking immunity in malaria*

    PubMed Central

    Gwadz, Robert W.; Carter, Richard; Green, Ira

    1979-01-01

    We have recently proposed an approach to malaria control based on immunization of the host against extracellular malarial gametes, the stage in the mosquito guts, in order to block transmission by the mosquito vector. Our studies with avian and primate models have demonstrated that immunization of the host with extracellular gametes totally suppresses infectivity to the mosquito of a subsequent blood meal. Gametocytes within the erythrocytes are unaffected by the immunity, since resuspending the gametocytes in serum from normal nonimmune animals restores their infectivity to mosquitos. Immunity is mediated by antibodies that are ingested with the blood meal. These antibodies interact with extracellular gametes and prevent fertilization (the fusion of male and female gametes). Thus the infection in the mosquito is blocked, and in this way transmission is interrupted. PMID:317439

  11. Analysis of genetic composition and transmitted parental heterozygosity of natural 2n gametes in Populus tomentosa based on SSR markers.

    PubMed

    Han, Zhiqiang; Geng, Xining; Du, Kang; Xu, Congping; Yao, Pengqiang; Bai, Fengying; Kang, Xiangyang

    2018-06-01

    Natural 2n female gametes and transmission of parental heterozygosity by natural 2n gametes in Populus tomentosa are reported for the first time, which provides a new approach to polyploid breeding. Naturally occurring 2n pollen is widespread in Populus tomentosa and plays an important role in polyploid breeding. However, the competitiveness of 2n pollen is lower than that of haploid pollen during pollination and fertilization, so 2n pollen is less efficient at fertilizing haploid female gametes to produce polyploids. In theory, polyploids can also be obtained when 2n female gametes are fertilized by haploid pollen. Thus, the question becomes whether natural 2n female gametes exist in P. tomentosa, which can be answered by examining the genetic composition of natural 2n gametes. In this study, the origin of 87 triploids from the hybrid combination "X-2 × Z-5" was identified by SSR markers and 21% of natural 2n gametes were found to originate from female parents. Four SSR loci with low recombination rates were used to identify the genetic composition of natural 2n gametes. The results showed that the genetic composition of 2n female gametes was mainly characterized by SDR, while 2n male gametes were mainly produced by FDR. Moreover, the transmission of parental heterozygosity by natural 2n gametes, which is significantly different between female and male parents in FDR and SDR types, was analysed using 42 SSR primers. Here, we report naturally occurring 2n female gametes for the first time in P. tomentosa and reveal the genetic constitution and transmitted parental heterozygosity of these gametes. Our results provide a foundation for theoretical research into 2n gametes and their application in new polyploid breeding strategies.

  12. No evidence for MHC class II-based non-random mating at the gametic haplotype in Atlantic salmon.

    PubMed

    Promerová, M; Alavioon, G; Tusso, S; Burri, R; Immler, S

    2017-06-01

    Genes of the major histocompatibility complex (MHC) are a likely target of mate choice because of their role in inbreeding avoidance and potential benefits for offspring immunocompetence. Evidence for female choice for complementary MHC alleles among competing males exists both for the pre- and the postmating stages. However, it remains unclear whether the latter may involve non-random fusion of gametes depending on gametic haplotypes resulting in transmission ratio distortion or non-random sequence divergence among fused gametes. We tested whether non-random gametic fusion of MHC-II haplotypes occurs in Atlantic salmon Salmo salar. We performed in vitro fertilizations that excluded interindividual sperm competition using a split family design with large clutch sample sizes to test for a possible role of the gametic haplotype in mate choice. We sequenced two MHC-II loci in 50 embryos per clutch to assess allelic frequencies and sequence divergence. We found no evidence for transmission ratio distortion at two linked MHC-II loci, nor for non-random gamete fusion with respect to MHC-II alleles. Our findings suggest that the gametic MHC-II haplotypes play no role in gamete association in Atlantic salmon and that earlier findings of MHC-based mate choice most likely reflect choice among diploid genotypes. We discuss possible explanations for these findings and how they differ from findings in mammals.

  13. How safe is gamete micromanipulation by laser tweezers?

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  14. Homozygote Depression in Gamete-Derived Dragon-Fruit (Hylocereus) Lines

    PubMed Central

    Li, Daqing; Arroyave Martinez, Maria F.; Shaked, Ruth; Tel-Zur, Noemi

    2018-01-01

    Putative gamete-derived progenies from two Hylocereus species, the diploid H. monacanthus and the tetraploid H. megalanthus, were studied with the dual aims to confirm their gamete origin and to evaluate their potential use as genetic resources. An additional goal was to determine the origin (allotetraploid vs. autotetraploid) of H. megalanthus by exploring morphological variations in the di-haploid (2x) H. megalanthus progeny. Gamete origin was proved in all five H. monacanthus lines obtained and in 49 of the 70 H. megalanthus lines by using flow cytometry and simple sequence repeat (SSR) markers. The five double-haploid (2x) H. monacanthus lines showed low vigor and abnormal flower development, with malformed ovules and aborted pollen grains. Only one flower set fruit, giving several viable seeds. For H. megalanthus, both abnormal ovules and defective anthers were observed in the di-haploid (2x) and double di-haploid (4x) lines. Among the 46 di-haploid lines, only 14 set fruit. Another 13 di-haploid lines formed flower buds that abscised before anthesis or soon after pollination. The severe sterility of the double-haploid H. monacanthus and the reduced fertility of all the di-haploid and double di-haploid H. megalanthus lines can be linked to their reduced heterozygosity, which drastically affected the development of normal female and male organs. We thus concluded that chromosome doubling, as occurred spontaneously in the double-haploid H. monacanthus and the double di-haploid H. megalanthus, is not sufficient to restore fertility in Hylocereus. We also observed very low gametoclonal variation among the di-haploid (2x) H. megalanthus lines, a finding that supported an autotetraploid, rather than an allotetraploid, origin of this species. Nonetheless, despite the above-described challenging limitations, these gamete-derived lines are currently being bred as the seed parent, offering unique possibilities for genetic research and additional breeding. PMID:29354138

  15. Stem cells to gametes: how far should we go?

    PubMed

    Whittaker, Peter

    2007-03-01

    Murine embryonic stem cells have recently been shown to be capable of differentiating in vitro into oocytes or sperm. Should these findings be duplicated using human embryonic stem cells, this would raise a number of social and ethical concerns, some specific to these particular developments, others shared with other aspects of stem cell research. This review outlines the properties of stem cells and their conversion to gametes. Concerns raised include embryo destruction, quality of gametes derived in this way, possibility for children with two male biological parents, movement towards germ line gene therapy and 'designer babies', and the future impacts on health service provisions. It is important that public discussion of some of these issues should take place.

  16. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    PubMed

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops.

    PubMed

    Ronceret, Arnaud; Vielle-Calzada, Jean-Philippe

    2015-06-01

    Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.

  18. Gamete donors' motivation in a Swedish national sample: is there any ambivalence? A descriptive study.

    PubMed

    Svanberg, Agneta Skoog; Lampic, Claudia; Gejervall, Ann-Louise; Geijerwall, Ann-Louise; Gudmundsson, Johannes; Karlström, Per-Olof; Solensten, Nils-Gunnar; Sydsjö, Gunilla

    2012-08-01

    To study donors' motivation and ambivalence before donation of gametes. Cross-sectional study. Seven Swedish university hospital clinics. Sample. Of the 220 eligible oocyte donors and 156 eligible sperm donors who were approached, 181 (82%) oocyte donors and 119 (76%) sperm donors agreed to participate. Gamete donors completed a questionnaire in the clinic prior to the donation. Motives and ambivalence towards donation. In general, gamete donors donated for altruistic reasons (95%). A greater percentage of oocyte than sperm donors had a personal experience of biological children, which motivated them to donate (65 vs. 32%). A greater percentage of sperm donors compared with oocyte donors were curious about their own fertility (24 vs. 9%), and they also believed that they were contributing what they regarded as their own good genes to other couples (45 vs. 20%). Prior to donation, potential sperm donors were more ambivalent towards donating than were oocyte donors (39 and 21%, p < 0.001). The motives to donate gametes are mainly altruistic. We conclude that men and women differ in their view towards donating gametes. Sperm donors had a higher degree of ambivalent feelings towards donation than oocyte donors. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. Purple sea urchin Strongylocentrotus purpuratus gamete manipulation using optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.

    2013-04-01

    A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.

  20. Globalization and gametes: reproductive 'tourism,' Islamic bioethics, and Middle Eastern modernity.

    PubMed

    Inhorn, Marcia C

    2011-04-01

    'Reproductive tourism' has been defined as the search for assisted reproductive technologies (ARTs) and human gametes (eggs, sperm, embryos) across national and international borders. This article conceptualizes reproductive tourism within 'global reproscapes,' which involve the circulation of actors, technologies, money, media, ideas, and human gametes, all moving in complicated manners across geographical landscapes. Focusing on the Muslim countries of the Middle East, the article explores the Islamic 'local moral worlds' informing the movements of Middle Eastern infertile couples. The ban on third-party gamete donation in Sunni Muslim-majority countries and the recent allowance of donor technologies in the Shia Muslim-majority countries of Iran and Lebanon have led to significant movements of infertile couples across Middle Eastern national borders. In the new millennium, Iran is leading the way into this 'brave new world' of high-tech, third-party assisted conception, with Islamic bioethical discourses being used to justify various forms of technological assistance. Although the Middle East is rarely regarded in this way, it is a key site for understanding the intersection of technoscience, religious morality, and modernity, all of which are deeply implicated in the new world of reproductive tourism.

  1. Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L.

    PubMed

    Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru

    2015-12-01

    In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Gametes or organs? How should we legally classify ovaries used for transplantation in the USA?

    PubMed Central

    Campo-Engelstein, Lisa

    2011-01-01

    Ovarian tissue transplantation is an experimental procedure that can be used to treat both infertility and premature menopause. Working within the current legal framework in the USA, I examine whether ovarian tissue should be legally treated like gametes or organs in the case of ovarian tissue transplantation between two women. One option is to base classification upon its intended use: ovarian tissue used to treat infertility would be classified like gametes, and ovarian tissue used to treat premature menopause would be classified like organs. In the end, however, I argue that this approach will not work because it engenders too many legal, cultural and logistical concerns and that, at least for the near future, we should treat ovarian tissue like gametes. PMID:21245477

  3. Pushing the dead into the next reproductive frontier: post mortem gamete retrieval under the uniform anatomical gift act.

    PubMed

    Spielman, Bethany

    2009-01-01

    In re Matter of Daniel Thomas Christy authorized post mortem gamete retrieval under the most recent revision of the Uniform Anatomical Gift Act. This article recommends that the National Conference of Commissioners on Uniform State Laws explicitly address the issue of post mortem gamete retrieval for reproductive purposes; that legislators specify whether their states will follow the Christy ruling; and that ethics committees and consultants prepare for the questions about human identity and self determination that post mortem gamete retrieval raises.

  4. Mammalian gamete plasma membranes re-assessments and reproductive implications

    USDA-ARS?s Scientific Manuscript database

    Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...

  5. Gendering gametes: The unequal contributions of sperm and egg donors.

    PubMed

    Hertz, Rosanna; Nelson, Margaret K; Kramer, Wendy

    2015-12-01

    This paper compares three groups of gestational mothers who relied on gametes from donors they did not know. The three groups are women who have conceived with donor sperm and their own eggs, women who have conceived with donor eggs and a partner's sperm, and women who have conceived with embryos composed of both donor eggs and donor sperm. The paper explores three issues. First, it considers whether intending parents select sperm and egg donors for different attributes both when they are chosen as the only donor and when they are chosen as donors contributing to an entire embryo. Second, it examines how women imagine the donor. Finally, it looks at how women conceptualize the donor as an individual who contributes to their child's characteristics. Two significant findings emerged in this analysis of survey data. First, the data show that gametes are gendered with different attributes both when those gametes are separate and even more so when seen as complementary parts of a whole. Second, the data show that women minimize the impact of the egg donor (both when a sole contribution and especially when part of the complementary whole) and thus ignore the influence or impact of the egg donor relative to how they make sense of the influence or impact of the sperm donor. The data for this study comes from an online survey developed by the authors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Using stem cell-derived gametes for same-sex reproduction: an alternative scenario.

    PubMed

    Segers, Seppe; Mertes, Heidi; Pennings, Guido; de Wert, Guido; Dondorp, Wybo

    2017-10-01

    It has been suggested that future application of stem-cell derived gametes (SCD-gametes) might lead to the possibility for same-sex couples to have genetically related children. Still, for this to become possible, the technique of gamete derivation and techniques of reprogramming somatic cells to a pluripotent state (directly or via somatic cell nuclear transfer) would have to be perfected. Moreover, egg cells would have to be derived from male cells and sperm cells from female cells, which is believed to be particularly difficult, if not impossible. We suggest a more plausible scenario to provide same-sex couples with the possibility to parent a child who is genetically related to both parents. Although technical feasibility is an advantage (also in terms of safety), disadvantages are that cooperation of a donor of the opposite sex is still required and that the partners are genetically linked to the resulting child in a different degree. However, since in our scenario the donor's genetic contribution would not outweigh any of the parents' genetic contribution, this alternative route may ease the fear for a possible parental claim by the donor. Like many other applications in the field of infertility treatment, the goal to create SCD-gametes for reproductive purposes is largely based on the high value attributed to genetic parenthood. Although we believe that genetic relatedness is neither a necessary nor a sufficient condition for 'good' parenthood, we do believe that many people may consider our scenario a welcome alternative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. A relationship between traditionally motivated patterns and gamete donation and surrogacy in urban areas of Greece.

    PubMed

    Chliaoutakis, Joannes E

    2002-08-01

    Although gamete receipt or donation has become an integral part of infertility management, previous research in the field of social attitudes and intention to use medical technologies is limited. The aim of this paper was to investigate people's intentions to receive or donate sperm, oocyte or uterus (surrogacy) and to identify possible motivational patterns explaining this intention. Personal interviews were conducted with 365 men and women of reproductive age (18-45 years). Stratified random sampling was performed to select the men and women for interview. The content of the instrument used was derived from in-depth qualitative interviews with physicians experienced in assisted reproductive technologies, as well as from people who had recourse to gamete donation and surrogacy. The results obtained highlighted the following major aspects: (i) approximately 50% of the survey's participants would be prepared to receive/donate sperm and oocyte; (ii) the results from multiple regression analysis suggest that the 'traditional gender roles' pattern is positively associated with 'intention to use gamete donation and surrogacy'. On the contrary, 'confidence in emotional relationship' is negatively associated with 'intention to use gamete donation and surrogacy, and (iii) men are more likely than women to report 'intention to use gamete donation and surrogacy'. These data suggest that specific motivational patterns of the population need to be thoroughly analysed and taken into consideration, in order that appropriate counselling be addressed to individuals and couples.

  8. The long path to pregnancy: early experience with dual anonymous gamete donation in a European in vitro fertilisation referral centre.

    PubMed

    Sills, Eric Scott; Mykhaylyshyn, Lyubov O; Dorofeyeva, Ulyana S; Walsh, David J; Salma, Umme; Omar, Ahmed B; Coull, Graham D; David, Ileana A; Brickell, Kathy M; Tsar, Olga M; Walsh, Anthony Ph

    2010-08-11

    This investigation describes features of patients undergoing in vitro fertilisation (IVF) and embryo transfer (ET) where both gametes were obtained from anonymous donors. Gamete unsuitability or loss was confirmed in both members of seven otherwise healthy couples presenting for reproductive endocrinology consultation over a 12-month interval in Ireland. IVF was undertaken with fresh oocytes provided by anonymous donors in Ukraine; frozen sperm (anonymous donor) was obtained from a licensed tissue establishment. For recipients, saline-enhanced sonography was used to assess intrauterine contour with endometrial preparation via transdermal estrogen. Among commissioning couples, mean+/-SD female and male age was 41.9 +/- 3.7 and 44.6 +/- 3.5 yrs, respectively. During this period, female age for non dual anonymous gamete donation IVF patients was 37.9 +/- 3 yrs (p < 0.001). Infertility duration was >/=3 yrs for couples enrolling in dual gamete donation, and each had >/=2 prior failed fertility treatments using native oocytes. All seven recipient couples proceeded to embryo transfer, although one patient had two transfers. Clinical pregnancy was achieved for 5/7 (71.4%) patients. Non-transferred cryopreserved embryos were available for all seven couples. Mean age of females undergoing dual anonymous donor gamete donation with IVF is significantly higher than the background IVF patient population. Even when neither partner is able to contribute any gametes for IVF, the clinical pregnancy rate per transfer can be satisfactory if both anonymous egg and sperm donation are used concurrently. Our report emphasises the role of pre-treatment counselling in dual anonymous gamete donation, and presents a coordinated screening and treatment approach in IVF where this option may be contemplated.

  9. Gamete and Embryo Donation and Surrogacy in Australia: The Social Context and Regulatory Framework

    PubMed Central

    Hammarberg, Karin; Johnson, Louise; Petrillo, Tracey

    2011-01-01

    The social and legal acceptability of third-party reproduction varies around the world. In Australia, gamete and embryo donation and surrogacy are permitted within the regulatory framework set out by federal and state governments. The aim of this paper is to describe the social context and regulatory framework for third-party reproduction in Australia. This is a review of current laws and regulations related to third-party reproduction in Australia. Although subtle between-state differences exist, third-party reproduction is by and large a socially acceptable and legally permissible way to form a family throughout Australia. The overarching principles that govern the practice of third-party reproduction are altruism; the right of donorconceived people to be informed of their biological origins; and the provision of comprehensive counselling about the social, psychological, physical, ethical, financial and legal implications of third-party reproduction to those considering donating or receiving gametes or embryos and entering surrogacy arrangements. These principles ensure that donors are not motivated by financial gain, donor offspring can identify and meet with the person or persons who donated gametes or embryos, and prospective donors and recipients are aware of and have carefully considered the potential consequences of third-party reproduction. Australian state laws and federal guidelines prohibit commercial and anonymous third-party reproduction; mandate counselling of all parties involved in gamete and embryo donation and surrogacy arrangements; and require clinics to keep records with identifying and non- identifying information about the donor/s to allow donor-conceived offspring to trace their biological origins. PMID:24851179

  10. Gamete and embryo donation and surrogacy in australia: the social context and regulatory framework.

    PubMed

    Hammarberg, Karin; Johnson, Louise; Petrillo, Tracey

    2011-01-01

    The social and legal acceptability of third-party reproduction varies around the world. In Australia, gamete and embryo donation and surrogacy are permitted within the regulatory framework set out by federal and state governments. The aim of this paper is to describe the social context and regulatory framework for third-party reproduction in Australia. This is a review of current laws and regulations related to third-party reproduction in Australia. Although subtle between-state differences exist, third-party reproduction is by and large a socially acceptable and legally permissible way to form a family throughout Australia. The overarching principles that govern the practice of third-party reproduction are altruism; the right of donorconceived people to be informed of their biological origins; and the provision of comprehensive counselling about the social, psychological, physical, ethical, financial and legal implications of third-party reproduction to those considering donating or receiving gametes or embryos and entering surrogacy arrangements. These principles ensure that donors are not motivated by financial gain, donor offspring can identify and meet with the person or persons who donated gametes or embryos, and prospective donors and recipients are aware of and have carefully considered the potential consequences of third-party reproduction. Australian state laws and federal guidelines prohibit commercial and anonymous third-party reproduction; mandate counselling of all parties involved in gamete and embryo donation and surrogacy arrangements; and require clinics to keep records with identifying and non- identifying information about the donor/s to allow donor-conceived offspring to trace their biological origins.

  11. [Gamete donation contracts: gift of life or sale of genetic material?].

    PubMed

    Raposo, Vera Lúcia

    2012-01-01

    When science made possible to overcome the biological limitation to infertility, gamete had become a "valuable good". Therefore, lawyers are asked to define their juridical status, their modality of transference, their possible uses and the legal protection reserved to them.

  12. The long path to pregnancy: early experience with dual anonymous gamete donation in a European in vitro fertilisation referral centre

    PubMed Central

    2010-01-01

    Background This investigation describes features of patients undergoing in vitro fertilisation (IVF) and embryo transfer (ET) where both gametes were obtained from anonymous donors. Methods Gamete unsuitability or loss was confirmed in both members of seven otherwise healthy couples presenting for reproductive endocrinology consultation over a 12-month interval in Ireland. IVF was undertaken with fresh oocytes provided by anonymous donors in Ukraine; frozen sperm (anonymous donor) was obtained from a licensed tissue establishment. For recipients, saline-enhanced sonography was used to assess intrauterine contour with endometrial preparation via transdermal estrogen. Results Among commissioning couples, mean±SD female and male age was 41.9 ± 3.7 and 44.6 ± 3.5 yrs, respectively. During this period, female age for non dual anonymous gamete donation IVF patients was 37.9 ± 3 yrs (p < 0.001). Infertility duration was ≥3 yrs for couples enrolling in dual gamete donation, and each had ≥2 prior failed fertility treatments using native oocytes. All seven recipient couples proceeded to embryo transfer, although one patient had two transfers. Clinical pregnancy was achieved for 5/7 (71.4%) patients. Non-transferred cryopreserved embryos were available for all seven couples. Conclusions Mean age of females undergoing dual anonymous donor gamete donation with IVF is significantly higher than the background IVF patient population. Even when neither partner is able to contribute any gametes for IVF, the clinical pregnancy rate per transfer can be satisfactory if both anonymous egg and sperm donation are used concurrently. Our report emphasises the role of pre-treatment counselling in dual anonymous gamete donation, and presents a coordinated screening and treatment approach in IVF where this option may be contemplated. PMID:20701806

  13. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes.

    PubMed

    Fakhri, Zhaleh; Mirzaghaderi, Ghader; Ahmadian, Samira; Mason, Annaliese S

    2016-05-01

    The presence of homologous subgenomes inhibited unreduced gamete formation in wheat × Aegilops interspecific hybrids. Unreduced gamete rates were under the control of the wheat nuclear genome. Production of unreduced gametes is common among interspecific hybrids, and may be affected by parental genotypes and genomic similarity. In the present study, five cultivars of Triticum aestivum and two tetraploid Aegilops species (i.e. Ae. triuncialis and Ae. cylindrica) were reciprocally crossed to produce 20 interspecific hybrid combinations. These hybrids comprised two different types: T. aestivum × Aegilops triuncialis; 2n = ABDU(t)C(t) (which lack a common subgenome) and T. aestivum × Ae. cylindrica; 2n = ABDD(c)C(c) (which share a common subgenome). The frequency of unreduced gametes in F1 hybrids was estimated in sporads from the frequency of dyads, and the frequency of viable pollen, germinated pollen and seed set were recorded. Different meiotic abnormalities recorded in the hybrids included precocious chromosome migration to the poles at metaphase I and II, laggards in anaphase I and II, micronuclei and chromosome stickiness, failure in cell wall formation, premature cytokinesis and microspore fusion. The mean frequency of restitution meiosis was 10.1 %, and the mean frequency of unreduced viable pollen was 4.84 % in T. aestivum × Ae. triuncialis hybrids. By contrast, in T. aestivum × Ae. cylindrica hybrids no meiotic restitution was observed, and a low rate of viable gametes (0.3 %) was recorded. This study present evidence that high levels of homologous pairing between the D and D(c) subgenomes may interfere with meiotic restitution and the formation of unreduced gametes. Variation in unreduced gamete production was also observed between T. aestivum × Ae. triuncialis hybrid plants, suggesting genetic control of this trait.

  14. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas.

    PubMed

    Liu, Yanjie; Misamore, Michael J; Snell, William J

    2010-05-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.

  15. In vitro gamete derivation from pluripotent stem cells: progress and perspective.

    PubMed

    Nagano, Makoto C

    2007-04-01

    Germ cells constitute a highly specialized cell population that is indispensable for the continuation and evolution of the species. Recently, several research groups have shown that these unique cells can be produced in vitro from pluripotent stem cells. Furthermore, live births of offspring using induced germ cells have been reported in one study. These results suggest that it may be possible to investigate germ cell development ex vivo and to establish novel reproductive technologies. To this end, it is critical to assess if gamete induction processes in vitro faithfully recapitulate normal germ cell development in vivo. Here, this issue is discussed with a focus on the germ line specification and the sex-specific development of pre- and postnatal germ cells. The aim of this paper is to concisely summarize the past progress and to present some future issues for the investigation into in vitro gamete production from pluripotent stem cells.

  16. Making muslim babies: Ivf and gamete donation in sunni versus shi’a islam

    PubMed Central

    2006-01-01

    Medical anthropological research on science, biotechnology, and religion has focused on the “local moral worlds” of men and women as they make difficult decisions regarding their health and the beginnings and endings of human life. This paper focuses on the local moral worlds of infertile Muslims as they attempt to make, in the religiously correct fashion, Muslim babies at in vitro fertilization (IVF) clinics in Egypt and Lebanon. As early as 1980, authoritative fatwas issued from Egypt’s famed Al-Azhar University suggested that IVF and similar technologies are permissible as long as they do not involve any form of third-party donation (of sperm, eggs, embryos, or uteruses). Since the late 1990s, however, divergences in opinion over third-party gamete donation have occurred between Sunni and Shi’ite Muslims, with Iran’s leading ayatollah permitting gamete donation under certain conditions. This Iranian fatwa has had profound implications for the country of Lebanon, where a Shi’ite majority also seeks IVF services. Based on three periods of ethnographic research in Egyptian and Lebanese IVF clinics, this paper explores official and unofficial religious discourses surrounding the practice of IVF and third-party donation in the Muslim world, as well as the gender implications of gamete donation for Muslim marriages. PMID:17051430

  17. GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT

    EPA Science Inventory

    GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT

    Sally D. Perreault, U. S. Environmental Toxicology Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC 27711

  18. Property rights in human gametes in Australia.

    PubMed

    White, Vanessa

    2013-03-01

    It has long been a basic tenet of the common law that there can be no property interest in human bodies or body parts. However, exceptions to the rule have been recognised from the mid-19th century and developed over time. In the early 21st century, there have been interesting developments in the common law of Australia and England, with Australian Supreme Court judges and the English Court of Appeal casting aside existing exceptions, and finding property rights in human body parts, including gametes, by relying instead on a "rational" and "logical" basis to identify property interests in human body parts.

  19. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids

  20. Molecular mechanisms involved in gamete interaction: evidence for the participation of cysteine-rich secretory proteins (CRISP) in sperm-egg fusion.

    PubMed

    Da Ros, V; Busso, D; Cohen, D J; Maldera, J; Goldweic, N; Cuasnicu, P S

    2007-01-01

    Epididymal protein DE and testicular protein Tpx-1 are two cysteine-rich secretory proteins also known as CRISP-1 and CRISP-2, respectively. DE/ CRISP-1 is localised on the equatorial segment of acrosome-reacted sperm and participates in rat gamete fusion through its binding to egg-complementary sites. Recent results using bacterially-expressed recombinant fragments of DE as well as synthetic peptides revealed that the ability of DE to bind to the egg surface and inhibit gamete fusion resides in a region of 12 amino acids corresponding to an evolutionary conserved motif of the CRISP family (Signature 2). Given the high degree of homology between DE/CRISP-1 and Tpx-1/CRISP-2, we also explored the potential participation of the testicular intra-acrosomal protein in gamete fusion. Results showing the ability of recombinant Tpx-1 to bind to the surface of rat eggs (evaluated by indirect immunofluorescence) and to significantly inhibit zona-free egg penetration, support the participation of this protein in gamete fusion through its interaction with egg-binding sites. Interestingly, rat Tpx-1 exhibits only two substitutions in Signature 2 when compared to this region in DE. Together, these results provide evidence for the involvement of both epididymal DE/CRISP-1 and testicular Tpx-1/CRISP-2 in gamete fusion suggesting the existence of a functional cooperation between homologue molecules as a mechanism to ensure the success of fertilisation.

  1. Procuring gametes for research and therapy: the argument for unisex altruism--a response to Donald Evans.

    PubMed Central

    Dickenson, D L

    1997-01-01

    There has been a troublesome anomaly in the UK between cash payment to men for sperm donation and the effective assumption that women will pay to donate eggs. Some commentators, including Donald Evans in this journal, have argued that the anomaly should be resolved by treating women on the same terms as men. But this argument ignores important difficulties about property in the body, particularly in relation to gametes. There are good reasons for thinking that the contract model and payment for gametes are both inappropriate, and that a model based on altruism should be applied to both sexes. PMID:9134489

  2. Incest, gamete donation by siblings and the importance of the genetic link.

    PubMed

    Pennings, G

    2002-01-01

    Recently, several requests have emerged in which women wished to be impregnated with donor eggs fertilized with spermatozoa of their brother. An important argument advanced against such applications is that it is a kind of incest. Four definitions of incest are reviewed in this article to evaluate the acceptability of these demands. The first three (sexual intercourse, reproduction with gametes of first-degree relatives and symbolic incest) do not apply to the cases. However, when the sister and her brother intend to raise the child as social mother and father, these requests should be considered as "intentional incest". If the brother only functions as an uncle, the request of the woman resembles the currently accepted practice of oocyte donation from sister to sister. In that case, the wish to receive gametes from a first-degree relative is motivated by the wish to establish as far as possible a genetic link with the child.

  3. Is vitronectin the velcro that binds the gametes together?

    PubMed

    Fusi, F M; Bernocchi, N; Ferrari, A; Bronson, R A

    1996-11-01

    Evidence has been presented that the adhesion of human spermatozoa to the oolemma is mediated by integrins recognizing the Arg-Gly-Asp sequence (RGD). Fibronectin and vitronectin, glycoproteins that contain functional RGD sequences, are both present on human spermatozoa, and integrins that recognize these ligands have been detected on spermatozoa and eggs. In this work, we studied the effects of oligopeptides specifically designed to block fibronectin or vitronectin receptors on the interaction of human spermatozoa with zona-free hamster oocytes. GRGDdSP, a peptide blocking cell attachment to fibronectin, was without effect, while GdRGDSP, which blocks both fibronectin and vitronectin receptors, significantly inhibited the binding of human spermatozoa to the oolemma of zona-free hamster eggs, in a concentration-dependent manner, over a range 1-100 microM. As these experiments suggested that a vitronectin receptor plays a role in sperm-oolemmal adhesion, we performed a series of experiments studying the effects of exogenous vitronectin, when added to spermatozoa and oocytes, on gamete interactions. Sperm-oolemmal adherence, as well as sperm aggregation, was promoted by vitronectin, over range of 2.2 nM to 1 microM, but only in the presence of calcium ions. We propose that vitronectin released during the sperm acrosome reaction is recognized by both gametes and plays a role in their adhesion.

  4. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females.

    PubMed

    Smouse, P E; Dyer, R J; Westfall, R D; Sork, V L

    2001-02-01

    Gene flow is a key factor in the spatial genetic structure in spatially distributed species. Evolutionary biologists interested in microevolutionary processess and conservation biologists interested in the impact of landscape change require a method that measures the real time process of gene movement. We present a novel two-generation (parent-offspring) approach to the study of genetic structure (TwoGener) that allows us to quantify heterogeneity among the male gamete pools sampled by maternal trees scattered across the landscape and to estimate mean pollination distance and effective neighborhood size. First, we describe the model's elements: genetic distance matrices to estimate intergametic distances, molecular analysis of variance to determine whether pollen profiles differ among mothers, and optimal sampling considerations. Second, we evaluate the model's effectiveness by simulating spatially distributed populations. Spatial heterogeneity in male gametes can be estimated by phiFT, a male gametic analogue of Wright's F(ST) and an inverse function of mean pollination distance. We illustrate TwoGener in cases where the male gamete can be categorically or ambiguously determined. This approach does not require the high level of genetic resolution needed by parentage analysis, but the ambiguous case is vulnerable to bias in the absence of adequate genetic resolution. Finally, we apply TwoGener to an empirical study of Quercus alba in Missouri Ozark forests. We find that phiFT = 0.06, translating into about eight effective pollen donors per female and an effective pollination neighborhood as a circle of radius about 17 m. Effective pollen movement in Q. alba is more restricted than previously realized, even though pollen is capable of moving large distances. This case study illustrates that, with a modest investment in field survey and laboratory analysis, the TwoGener approach permits inferences about landscape-level gene movements.

  5. [COMPARATIVE STUDY ON THE SECRET OF THE DONOR'S IDENTITY OF DONATED GAMETES].

    PubMed

    Tisseyre, Sandrine

    2015-07-01

    French law lies down a principle of anonymity of donated gametes. This principle is ignored by English law. Moreover, English law has established, few years ago, the contrary principle: the one of transparency of the donor's identity. This study of English law reports this evolution and its consequences.

  6. Effects of an oil production effluent on gametogenesis and gamete performance in the purple sea urchin (Strongylocentrotus purpuratus Stimpson)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, P.R.

    1994-07-01

    Adult organisms subjected to chronic discharges from a point source of pollution may exhibit several sublethal responses. One such response is the impairment of gamete production. This may be expressed in the amount and/or quality of gametes produced by adults. In this study the effects of chronic exposure to produced water (an oil production effluent) on the gametogenesis and gamete performance of the purple sea urchin (Strongylocentrotus purpuratus Stimpson) were examined using an in situ caging experiment. Adult purple sea urchins were kept in benthic cages arrayed down-field from a discharging diffuser at 13 sites, with distances ranging from 5more » to 1,000 m. Cage exposures were maintained in the field for eight weeks, and each cage held 25 animals. Gametogenesis was examined for each sex by comparing a size-independent measure of relative gonads ass as determined by analysis of covariance. Results showed that there was a significant negative relationship between these estimates of relative gonad mass and distance from the outfall for both sexes, indicating that sea urchins living closer to the outfall produced significantly larger gonads. Gamete performance was measured through a fertilization kinetics bioassay that held the concentration of eggs constant and varied the amount of sperm added. The proportion of eggs fertilized under each sperm concentration was determined and the response fit to a model of fertilizability showed a positive relationship with distance away from the outfall. These findings indicate that although adult sea urchins exposed to a produced water outfall exhibit larger gonads, they suffer a marked decrease in a gamete performance.« less

  7. Peering beneath the surface: novel imaging techniques to noninvasively select gametes and embryos for ART.

    PubMed

    Jasensky, Joshua; Swain, Jason E

    2013-10-01

    Embryo imaging has long been a critical tool for in vitro fertilization laboratories, aiding in morphological assessment of embryos, which remains the primary tool for embryo selection. With the recent emergence of clinically applicable real-time imaging systems to assess embryo morphokinetics, a renewed interest has emerged regarding noninvasive methods to assess gamete and embryo development as a means of inferring quality. Several studies exist that utilize novel imaging techniques to visualize or quantify intracellular components of gametes and embryos with the intent of correlating localization of organelles or molecular constitution with quality or outcome. However, the safety of these approaches varies due to the potential detrimental impact of light exposure or other variables. Along with complexity of equipment and cost, these drawbacks currently limit clinical application of these novel microscopes and imaging techniques. However, as evidenced by clinical incorporation of some real-time imaging devices as well as use of polarized microscopy, some of these imaging approaches may prove to be useful. This review summarizes the existing literature on novel imaging approaches utilized to examine gametes and embryos. Refinement of some of these imaging systems may permit clinical application and serve as a means to offer new, noninvasive selection tools to improve outcomes for various assisted reproductive technology procedures.

  8. Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization.

    PubMed

    Nadeau, Joseph H

    2017-10-01

    A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics. Copyright © 2017 by the Genetics Society of America.

  9. Does selection for gamete dispersal and capture lead to a sex difference in clump water-holding capacity?

    PubMed

    Moore, Jonathan D; Kollar, Leslie M; McLetchie, D Nicholas

    2016-08-01

    Differences in male and female reproductive function can lead to selection for sex-specific gamete dispersal and capture traits. These traits have been explored from shoot to whole plant levels in wind-pollinated species. While shoot traits have been explored in water-fertilized species, little is known about how whole plant morphology affects gamete dispersal and capture. We used the dioecious, water-fertilized plant Bryum argenteum to test for differences in clump morphology and water-holding characteristics consistent with divergent selection. We hypothesized that sex-specific clump morphology, arising at maturity, produces relatively low male water-holding capacity for gamete dispersal and high female capacity for gamete capture. We measured isolated young shoot and clump water-holding capacity and clump morphological characteristics on greenhouse-grown plants. Young shoot capacity was used to predict clump capacity, which was compared with actual clump capacity. Young male shoots held more water per unit length, and male clumps had higher shoot density, which extrapolated to higher clump water-holding capacity. However, female clumps held more water and were taller with more robust shoots. Actual clump capacity correlated positively with clump height and shoot cross-sectional area. The sex difference in actual clump capacity and its unpredictability from younger shoots are consistent with our hypothesis that males should hold less water than females to facilitate sexual reproduction. These results provide conceptual connections to other plant groups and implications for connecting divergent selection to female-biased sex ratios in B. argenteum and other bryophytes. © 2016 Botanical Society of America.

  10. Gamete competence assessment by polarizing optics in assisted reproduction.

    PubMed

    Montag, Markus; Köster, Maria; van der Ven, Katrin; van der Ven, Hans

    2011-01-01

    The purpose of this study was first to give an overview of the historical development of polarization microscopy, second to describe the various applications of this technique in assisted reproduction techniques (ART) and third to discuss the potential benefit of polarization microscopy as a predictor for IVF success. The history of polarization microscopy was undertaken by performing a backward search in the scientific literature using Google and internet sites of several Societies for Microscopy and Cell Biology. Studies of polarization microscopy in ART were identified by using a systematic literature search in PubMed and Scopus. A total of 62 articles were identified by the direct search and further relevant articles were found by screening the cited literature in these articles. The topics relevant for assisted reproduction were spindle and zona imaging in combination with IVF success, meiotic cell cycle progression, pharmaceutical studies and cryopreservation. A separate topic was the use of sperm birefringence in ART. The majority of studies are observational studies and were not performed in a randomized manner and there is no direct comparison of techniques using other gamete selection markers. Despite this, most studies show that polarization microscopy may help us to further increase our knowledge on gametes and meiosis. Whether certain applications such as spindle or zona imaging may lead to an increase in IVF success is unclear at present. Publications on the use of polarization microscopy on sperm are still very limited.

  11. Noninvasive imaging systems for gametes and embryo selection in IVF programs: a review.

    PubMed

    Omidi, Marjan; Faramarzi, Azita; Agharahimi, Azam; Khalili, Mohammad Ali

    2017-09-01

    Optimizing the efficiency of the in vitro fertilization procedure by improving pregnancy rates and reducing the risks of multiple pregnancies simultaneously are the primary goals of the current assisted reproductive technology program. With the move to single embryo transfers, the need for more cost-effective and noninvasive methods for embryo selection prior to transfer is paramount. These aims require advancement in a more acquire gametes/embryo testing and selection procedures using high-tech devices. Therefore, the aim of the present review is to evaluate the efficacy of noninvasive imaging systems in the current literatures, focusing on the potential clinical application in infertile patients undergoing assisted reproductive technology treatments. In this regards, three advanced imaging systems of motile sperm organelle morphology examination, polarization microscopy and time-lapse monitoring for the best selection of the gametes and preimplantation embryos are introduced in full. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Mandatory counseling for gamete donation recipients: ethical dilemmas.

    PubMed

    Benward, Jean

    2015-09-01

    Mental health professionals have engaged in mandatory pretreatment counseling and assessment of patients seeking treatment at IVF programs in the United States since the 1980s. At present, most recipient patients undergoing IVF with egg or embryo donation in the United States are required to meet with a mental health professional for one pretreatment session. Mandatory counseling of gamete recipients is fraught with ethical questions for the mental health professional. Attention to issues of autonomy, confidentiality, role clarity, along with self-evaluation and openness with the patient can help lessen the impact of these ethical challenges. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  14. "I am Your Mother and Your Father!" In Vitro Derived Gametes and the Ethics of Solo Reproduction.

    PubMed

    Cutas, Daniela; Smajdor, Anna

    2017-12-01

    In this paper, we will discuss the prospect of human reproduction achieved with gametes originating from only one person. According to statements by a minority of scientists working on the generation of gametes in vitro, it may become possible to create eggs from men's non-reproductive cells and sperm from women's. This would enable, at least in principle, the creation of an embryo from cells obtained from only one individual: 'solo reproduction'. We will consider what might motivate people to reproduce in this way, and the implications that solo reproduction might have for ethics and policy. We suggest that such an innovation is unlikely to revolutionise reproduction and parenting. Indeed, in some respects it is less revolutionary than in vitro fertilisation as a whole. Furthermore, we show that solo reproduction with in vitro created gametes is not necessarily any more ethically problematic than gamete donation-and probably less so. Where appropriate, we draw parallels with the debate surrounding reproductive cloning. We note that solo reproduction may serve to perpetuate reductive geneticised accounts of reproduction, and that this may indeed be ethically questionable. However, in this it is not unique among other technologies of assisted reproduction, many of which focus on genetic transmission. It is for this reason that a ban on solo reproduction might be inconsistent with continuing to permit other kinds of reproduction that also bear the potential to strengthen attachment to a geneticised account of reproduction. Our claim is that there are at least as good reasons to pursue research towards enabling solo reproduction, and eventually to introduce solo reproduction as an option for fertility treatment, as there are to do so for other infertility related purposes.

  15. Regulatory considerations for global transfer of cryopreserved fish gametes

    USGS Publications Warehouse

    Jenkins, Jill A.; Tiersch, Terrence R.; Green, Christopher C.

    2011-01-01

    Federal and state resource managers, scientists, lawmakers, business and development investors, and the general public all struggle with issues surrounding the conservation of our biological heritage, especially in the face of increased population growth and consequent anthropogenic disturbances. Conservation interests include recovering exploited aquatic populations, decreasing the loss of genetic diversity, and reintroducing locally depleted species. However, research on husbandry and other techniques critical to implementing conservation strategies is often not started until few individuals remain. A program in the cryopreservation of gametes and embryos from aquatic species would address several of these conservation concerns by allowing the establishment of gene banks

  16. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa.

    PubMed

    Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu

    2017-09-01

    Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora (Pinaceae).

    PubMed

    Iwaizumi, Masakazu G; Takahashi, Makoto; Isoda, Keiya; Austerlitz, Frédéric

    2013-09-01

    Genetic variability in monoecious woody plant populations results from the assemblage of individuals issued from asymmetrical male and female reproductive functions, produced during spatially and temporarily heterogeneous reproductive and dispersal events. Here we investigated the dispersal patterns and levels of genetic diversity and differentiation of both paternal and maternal gametes in a natural population of Pinus densiflora at the multiple-year scale as long as five consecutive years. • We analyzed the paternity and maternity for 1576 seeds and 454 candidate adult trees using nuclear DNA polymorphisms of diploid biparental embryos and haploid maternal megagametophytes at eight microsatellite loci. • Despite the low levels of genetic differentiation among gamete groups, a two-way AMOVA analysis showed that the parental origin (paternal vs. maternal gametes), the year of gamete production and their interaction had significant effects on the genetic composition of the seeds. While maternal gamete groups showed a significant FST value across the 5 years, this was not true for their paternal counterparts. Within the population, we found that the relative reproductive contributions of the paternal vs. the maternal parent differed among adult trees, the maternal contributions showing a larger year-to-year fluctuation. • The overall genetic variability of dispersed seeds appeared to result from two sources of heterogeneity: the difference between paternal and maternal patterns of reproduction and gamete dispersal and year-to-year heterogeneity of reproduction of adult trees, especially in their maternal reproduction.

  18. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    PubMed

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  19. Influences of DMP on the Fertilization Process and Subsequent Embryogenesis of Abalone (Haliotis diversicolor supertexta) by Gametes Exposure

    PubMed Central

    Cai, Zhong-Hua

    2011-01-01

    Di-methyl phthalate (DMP), a typical endocrine disrupting chemical (EDC), is ubiquitously distributed in aquatic environments; yet studies regarding its impact on gametes and the resulting effects on embryogenesis in marine gastropods are relatively scarce. In this study, the influences of DMP on the gametes and subsequent developmental process of abalone (Haliotis diversicolor supertexta, a representative marine benthic gastropod) were assessed. Newborn abalone eggs and sperm were exposed separately to different DMP concentrations (1, 10 or 100 ppb) for 60 min. At the end-point of exposure, the DMP-treated eggs and sperm were collected for analysis of their ultra-structures, ATPase activities and total lipid levels, and the fertilized gametes (embryos) were collected to monitor related reproductive parameters (fertilization rate, abnormal development rate and hatching success rate). Treatment with DMP did not significantly alter the structure or total lipid content of eggs at any of the doses tested. Hatching failures and morphological abnormalities were only observed with the highest dose of DMP (100 ppb). However, DMP exposure did suppress sperm ATPase activities and affect the morphological character of their mitochondria. DMP-treated sperm exhibited dose-dependent decreases in fertilization efficiency, morphogenesis and hatchability. Relatively obvious toxicological effects were observed when both sperm and eggs were exposed to DMP. Furthermore, RT-PCR results indicate that treatment of gametes with DMP changed the expression patterns of physiologically-regulated genes (cyp3a, 17β-HSD-11 and 17β-HSD-12) in subsequent embryogenesis. Taken together, this study proofed that pre-fertilization exposure of abalone eggs, sperm or both to DMP adversely affects the fertilization process and subsequent embryogenesis. PMID:22028799

  20. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission

    PubMed Central

    Marques, Sara R; Ramakrishnan, Chandra; Carzaniga, Raffaella; Blagborough, Andrew M; Delves, Michael J; Talman, Arthur M; Sinden, Robert E

    2015-01-01

    Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions. PMID:25154861

  1. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction.

    PubMed

    Zumoffen, C M; Gil, R; Caille, A M; Morente, C; Munuce, M J; Ghersevich, S A

    2013-05-01

    Is lactoferrin (LF) (detected in oviductal secretion) able to bind to oocytes and sperm and modulate gamete interaction? LF binds to zona pellucida (ZP) and spermatozoa (depending upon the capacitation stage and acrosome status) and inhibits gamete interaction in vitro. Proteins from human oviductal tissue secretion modulate gamete interaction and parameters of sperm function in vitro and some of them bind to sperm, but they remain to be isolated and identified. Proteins were isolated from human oviductal tissue secretion using their sperm membrane binding ability. One of the isolated proteins was identified as human LF and immunolocalized in tubal tissues. LF expression was analyzed in native oviductal fluid and oviduct epithelial cells (at different phases of the menstrual cycle: proliferative, periovulatory and secretory). In addition, the LF binding sites on spermatozoa (at different capacitation and acrosome reaction stages) and on ZP and the dose-dependent effect of LF on gamete interaction were investigated. All experiments were performed at least three times. Tubal tissues obtained from premenopausal patients (scheduled for hysterectomy, n = 23) were cultured in DMEM/Ham's F12 medium and conditioned media (CM) were collected. Motile spermatozoa were obtained by swim-up from normozoospermic semen samples from healthy donors (n = 4). An affinity chromatography with sperm membrane extracts was used to isolate proteins from CM. Isolated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophresis and further identified by nano liquid chromatography tandem mass spectrometry peptide sequencing. The presence of LF in oviductal tissue was investigated by immunohistochemistry and immunofluorescence and was detected in native oviductal fluid and oviduct epithelial cells homogenates by western blot. LF binding sites on gametes were investigated by incubating gametes with the protein coupled to fluorescein isothiocyanate (FITC). The acrosome

  2. Gamete donors' expectations and experiences of contact with their donor offspring

    PubMed Central

    Kirkman, Maggie; Bourne, Kate; Fisher, Jane; Johnson, Louise; Hammarberg, Karin

    2014-01-01

    STUDY QUESTION What are the expectations and experiences of anonymous gamete donors about contact with their donor offspring? SUMMARY ANSWER Rather than consistently wanting to remain distant from their donor offspring, donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. WHAT IS KNOWN ALREADY Donor conception is part of assisted reproduction in many countries, but little is known about its continuing influence on gamete donors' lives. STUDY DESIGN, SIZE, DURATION A qualitative research model appropriate for understanding participants' views was employed; semi-structured interviews were conducted during January–March 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Before 1998, gamete donors in Victoria, Australia, were subject to evolving legislation that allowed them to remain anonymous or (from 1988) to consent to the release of identifying information. An opportunity to increase knowledge of donors' expectations and experiences of contact with their donor offspring recently arose in Victoria when a recommendation was made to introduce mandatory identification of donors on request from their donor offspring, with retrospective effect. Pre-1998 donors were invited through an advertising campaign to be interviewed about their views, experiences and expectations; 36 sperm donors and 6 egg donors participated. MAIN RESULTS AND THE ROLE OF CHANCE This research is unusual in achieving participation by donors who would not normally identify themselves to researchers or government inquiries. Qualitative thematic analysis revealed that most donors did not characterize themselves as parents of their donor offspring. Donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. LIMITATIONS, REASONS FOR CAUTION It is not possible to establish whether participants were representative of all pre-1998 donors. WIDER IMPLICATIONS OF THE FINDINGS Anonymous

  3. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming amore » metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin

  4. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy.

    PubMed

    Palacios-González, César

    2015-01-01

    In this paper I explore some of the moral issues that could emerge from the creation of human-nonhuman chimeras (HNH-chimeras) capable of human gamete production and human pregnancy. First I explore whether there is a cogent argument against the creation of HNH-chimeras that could produce human gametes. I conclude that so far there is none, and that in fact there is at least one good moral reason for producing such types of creatures. Afterwards I explore some of the moral problems that could emerge from the fact that a HNH-chimera could become pregnant with a human conceptus. I focus on two sets of problems: problems that would arise by virtue of the fact that a human is gestated by a nonhuman creature, and problems that would emerge from the fact that such pregnancies could affect the health of the HNH-chimera.

  5. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes.

    PubMed

    Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick

    2015-03-08

    Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the

  6. The ethics of anonymous gamete donation: is there a right to know one's genetic origins?

    PubMed

    De Melo-Martín, Inmaculada

    2014-01-01

    A growing number of jurisdictions hold that gamete donors must be identifiable to the children born with their eggs or sperm, on grounds that being able to know about one's genetic origins is a fundamental moral right. But the argument for that belief has not yet been adequately made.

  7. Recent microfluidic devices for studying gamete and embryo biomechanics.

    PubMed

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System.

    PubMed

    Corcos, D

    2015-11-01

    Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  9. 9 CFR 93.905 - Declaration and other documents for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Animal Species General Provisions for Svc-Regulated Fish Species § 93.905 Declaration and other documents... entry, the name and address of the importer, the name and address of the broker, the origin of the live fish, fertilized eggs, or gametes, the number, species, and the purpose of the importation, the name of...

  10. 9 CFR 93.905 - Declaration and other documents for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Animal Species General Provisions for Svc-Regulated Fish Species § 93.905 Declaration and other documents... entry, the name and address of the importer, the name and address of the broker, the origin of the live fish, fertilized eggs, or gametes, the number, species, and the purpose of the importation, the name of...

  11. 9 CFR 93.905 - Declaration and other documents for live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Animal Species General Provisions for Svc-Regulated Fish Species § 93.905 Declaration and other documents... entry, the name and address of the importer, the name and address of the broker, the origin of the live fish, fertilized eggs, or gametes, the number, species, and the purpose of the importation, the name of...

  12. A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant.

    PubMed

    Meyer, Régis E; Delaage, Michèle; Rosset, Roland; Capri, Michèle; Aït-Ahmed, Ounissa

    2010-11-16

    Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction.

  13. Genetic control of gamete quality in the mouse--a tribute to Halina Krzanowska.

    PubMed

    Styrna, Jozefa

    2008-01-01

    In this article, we summarise the principal research findings of the distinguished Polish scientist, Professor Halina Krzanowska, related to the genetic control of mammalian gamete quality. During the early stages of her career, Halina Krzanowska conducted experiments on poultry and then she moved on to work on mice. All her research on gamete quality was conducted on the research models, consomic, congenic and recombinant inbred strains, which Krzanowska developed herself. These models differed mostly in their fertility. Krzanowska was one of the first researchers to demonstrate the influence of chromosome Y on the morphology of mice spermatozoa. She also showed that the uterotubal junction is in vivo a selection barrier for the morphologically abnormal spermatozoa, whereas in vitro abnormal spermatozoa are able to participate in fertilization, the function of selective barrier being performed by the granulosa cell layer and the zona pellucida. Another model which Krzanowska produced were chimaeras, which she used to find out if the percentage of abnormal spermatozoa and the efficiency of fertilization are determined by germ cells themselves or by environmental factors and she discovered that sperm head shape, the proportion of abnormal sperm and fertilizing capacity are determined mainly by the genotype of germ cells and only minimally by environmental factors.

  14. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation

    PubMed Central

    Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo

    2009-01-01

    The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085

  15. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of live fish, fertilized eggs, and gametes. 93.902 Section 93.902 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Svc-Regulated Fish Species § 93.902 Ports designated for the...

  16. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of live fish, fertilized eggs, and gametes. 93.902 Section 93.902 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Svc-Regulated Fish Species § 93.902 Ports designated for the...

  17. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of live fish, fertilized eggs, and gametes. 93.902 Section 93.902 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN... Animal Species General Provisions for Svc-Regulated Fish Species § 93.902 Ports designated for the...

  18. Gametic embryogenesis and haploid technology as valuable support to plant breeding.

    PubMed

    Germanà, Maria Antonietta

    2011-05-01

    Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders' search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.

  19. The Effect of Filamentous Turf Algal Removal on the Development of Gametes of the Coral Orbicella annularis

    PubMed Central

    Cetz-Navarro, Neidy P.; Carpizo-Ituarte, Eugenio J.; Espinoza-Avalos, Julio; Chee-Barragán, Guillermina

    2015-01-01

    Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7–10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost

  20. The effect of filamentous turf algal removal on the development of gametes of the coral Orbicella annularis.

    PubMed

    Cetz-Navarro, Neidy P; Carpizo-Ituarte, Eugenio J; Espinoza-Avalos, Julio; Chee-Barragán, Guillermina

    2015-01-01

    Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7-10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost complete

  1. A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant

    PubMed Central

    2010-01-01

    Background Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. Results We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. Conclusions We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction. PMID:21080953

  2. Toxic money or paid altruism: the meaning of payments for identity-release gamete donors.

    PubMed

    Gilman, Leah

    2018-05-01

    Public discourses commonly frame gamete, organ and other forms of bodily donation as altruistic 'gifts'. However, despite on-going debates about the ethics of payments to donors, few studies have examined the views of donors themselves regarding the meaning of payments and their compatibility (or not) with understandings of these practices as gifts. This article addresses this issue, analysing 24 in-depth interviews with UK identity-release gamete donors. It was crucial to all participants that their donation be viewed as fundamentally other-oriented, motivated by the desire to help others. However, whilst egg donors often accommodated payment within this narrative, male participants explained that any money would taint the gift they had given. I argue that sperm donors faced particular challenges to incorporating payment within a gift narrative for two key reasons: first, sperm donors relied on a discourse of 'pure altruism', including absolute opposition between gifts and market exchange, in order to present their donation as other-oriented. In contrast, egg donors were also able to mobilise a discourse of relational giving to present their donations as a personal gift. Second, according to a continued stereotype of sperm donors as financially motivated students, their payments have already been culturally earmarked as side-line earnings. © 2018 Foundation for the Sociology of Health & Illness.

  3. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered Southern Corroboree Frog, Pseudophryne corroboree

    PubMed Central

    2010-01-01

    Background Conservation Breeding Programs (CBP's) are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART), including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF), in one of Australia's most critically endangered frog species, Pseudophryne corroboree. Methods Male frogs were administered a single dose of either human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRHa), while female frogs received both a priming and ovulatory dose of LHRHa. Spermiation responses were evaluated at 3, 7, 12, 24, 36, 48, 60 and 72 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Ovulation responses were evaluated by stripping females every 12 h PA for 5 days. Once gametes were obtained, IVF was attempted by combining spermic urine with oocytes in a dilute solution of simplified amphibian ringer (SAR). Results Administration of both hCG and LHRHa induced approximately 80% of males to release sperm over 72 h. Peak sperm release occurred at 12 h PA for hCG treated males and 36 h PA for LHRHa treated males. On average, LHRHa treated males released a significantly higher total number of live sperm, and a higher concentration of sperm, over a longer period. In female frogs, administration of LHRHa induced approximately 30% of individuals to release eggs. On average, eggs were released between 24 and 48 h PA, with a peak in egg release at 36 h PA. IVF resulted in a moderate percentage (54.72%) of eggs being fertilised

  4. Human testicular protein TPX1/CRISP-2: localization in spermatozoa, fate after capacitation and relevance for gamete interaction.

    PubMed

    Busso, D; Cohen, D J; Hayashi, M; Kasahara, M; Cuasnicú, P S

    2005-04-01

    Testicular protein Tpx-1, also known as CRISP-2, is a cysteine-rich secretory protein specifically expressed in the male reproductive tract. Since the information available on the human protein is limited to the identification and expression of its gene, in this work we have studied the presence and localization of human Tpx-1 (TPX1) in sperm, its fate after capacitation and acrosome reaction (AR), and its possible involvement in gamete interaction. Indirect immunofluorescence studies revealed the absence of significant staining in live or fixed non-permeabilized sperm, in contrast to a clear labelling in the acrosomal region of permeabilized sperm. These results, together with complementary evidence from protein extraction procedures strongly support that TPX1 would be mainly an intra-acrosomal protein in fresh sperm. After in vitro capacitation and ionophore-induced AR, TPX1 remained associated with the equatorial segment of the acrosome. The lack of differences in the electrophoretic mobility of TPX1 before and after capacitation and AR indicates that the protein would not undergo proteolytical modifications during these processes. The possible involvement of TPX1 in gamete interaction was evaluated by the hamster oocyte penetration test. The presence of anti-TPX1 during gamete co-incubation produced a significant and dose-dependent inhibition in the percentage of penetrated zona-free hamster oocytes without affecting sperm motility, the AR or sperm binding to the oolema. Together, these results indicate that human TPX1 would be a component of the sperm acrosome that remains associated with sperm after capacitation and AR, and is relevant for sperm-oocyte interaction.

  5. Comparative study of the germination of Ulva prolifera gametes on various substrates

    NASA Astrophysics Data System (ADS)

    Geng, Huixia; Yan, Tian; Zhou, Mingjiang; Liu, Qing

    2015-09-01

    Since 2007, massive green tides have occurred every summer in the southern Yellow Sea (YS), China. They have caused severe ecological consequences and huge economic losses. Ulva prolifera originated from Subei Shoal of the YS was confirmed as causative species of the green tides. The Porphyra yezoensis aquaculture rafts in the Subei Shoal have been highly suspected to be the "seed bed" of the green tides, because U. prolifera abundantly fouled the Porphyra yezoensis aquaculture facilities. Besides, various habitats of aquaculture ponds along the Jiangsu coastline and mudflat in the Subei Shoal were proposed to be possible sources of green tides. To understand the "seed" of the green tides in the southern YS and mitigate the original biomass of the green tide, various materials used as substrates for the germination of U. prolifera gametes were tested in this study. Culture experiments showed the following: 1) materials used in the P. yezoensis rafts (plastic, bamboo, jute rope, plastic rope, nylon netting, and plastic netting) displayed a significantly higher germination rate than those associated with mudflats and aquaculture ponds (mud, sand and rock); 2) plastics were the best substrates for the germination of U. prolifera gametes; 3) poor germination was found on old fronds of U. prolifera,, and rubber showed inhibitory effect on germination. The success in germination on P. yezoensis rafts related materials supports the notion that these mariculture structures may be involved in acting as a seed bed for green tide macroalgae. The lack of germination on rubber surfaces may suggest one way to limit the proliferation of early stages of U. prolifera.

  6. Mettl3 Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish.

    PubMed

    Xia, Hui; Zhong, Chengrong; Wu, Xingxing; Chen, Ji; Tao, Binbin; Xia, Xiaoqin; Shi, Mijuan; Zhu, Zuoyan; Trudeau, Vance L; Hu, Wei

    2018-02-01

    N 6 -methyladenosine (m 6 A), catalyzed by Mettl3 methyltransferase, is a highly conserved epigenetic modification in eukaryotic messenger RNA (mRNA). Previous studies have implicated m 6 A modification in multiple biological processes, but the in vivo function of m 6 A has been difficult to study, because mettl3 mutants are embryonic lethal in both mammals and plants. In this study, we have used transcription activator-like effector nucleases and generated viable zygotic mettl3 mutant, Z mettl3 m/m , in zebrafish. We find that the oocytes in Z mettl3 m/m adult females are stalled in early development and the ratio of full-grown stage (FG) follicles is significantly lower than that of wild type. Human chorionic gonadotropin-induced ovarian germinal vesicle breakdown in vitro and the numbers of eggs ovulated in vivo are both decreased as well, while the defects of oocyte maturation can be rescued by sex hormone in vitro and in vivo In Z mettl3 m/m adult males, we find defects in sperm maturation and sperm motility is significantly reduced. Further study shows that 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels are significantly decreased in Z mettl3 m/m , and defective gamete maturation is accompanied by decreased overall m 6 A modification levels and disrupted expression of genes critical for sex hormone synthesis and gonadotropin signaling in Z mettl3 m/m Thus, our study provides the first in vivo evidence that loss of Mettl3 leads to failed gamete maturation and significantly reduced fertility in zebrafish. Mettl3 and m 6 A modifications are essential for optimal reproduction in vertebrates. Copyright © 2018 by the Genetics Society of America.

  7. The attitudes of IVF patients treated in the Czech Republic towards informing children born after gamete donation.

    PubMed

    Rumpikova, Tatana; Oborna, Ivana; Belaskova, Silvie; Konecna, Hana; Rumpik, David

    2018-03-01

    In recent decades gamete donation has received growing attention. Data from the Czech National Registry of Assisted Reproduction show that the number of cycles using donated oocytes has been increasing every year. According to Czech law, gamete donation is anonymous. Since 2011, some members of the Czech parliament have repeatedly made requests to revoke the anonymity but anonymity is one of the preconditions for such donation in this country. The aim of this study was to find out how the gamete recipients feel towards informing their child about the circumstances of their conception and their access to the identity of the donor. A total of 195 recipients (122 women undergoing treatment - 43 Czechs, 79 foreigners (Western Europe and the USA) and 73 male partners - 28 Czechs, 45 foreigners) participated in this survey. The data were obtained by anonymous questionnaire. A significant difference between the attitude of the future Czech and foreign parents regarding disclosing the mode of conception was found (P = 0.003). The vast majority of Czechs were against disclosure. The foreign recipients were somewhat more divided. Regarding the donor's identity, there was no difference in atttitude between the groups. Recipients rarely consider that the knowledge of the donor's identity will be important for their child. The recipients overall, were convinced that the psychological aspects of parenting are far more important to the child than genetics, and see no reasons for disclosing the donor´s identity. While the the foreign recipients were less adamant about non-disclosure, the overall finding was in accord with the current Czech law on anonymity and not in agreement with the proposed abolition. The recipient's attitudes towards disclosing were also culturally determined. The fact that some countries have revised their rules towards open idendity is not a rationale for such change in the Czech Republic.

  8. Progress, challenges and perspectives on fish gamete cryopreservation: A mini-review.

    PubMed

    Asturiano, Juan F; Cabrita, Elsa; Horváth, Ákos

    2017-05-01

    Protocols for the cryopreservation of fish gametes have been developed for many different fish species, in special, freshwater salmonids and cyprinids. Methods for sperm freezing have progressed during the last decades due to the increasing number of potential applications: aquaculture (genetic improvement programs, broodstock management, helping with species having reproductive problems), biotechnology studies using model fish species (preservation of transgenic or mutant lines), cryobanking of genetic resources from endangered species, etc. This mini-review tries to give an overview of the present situation of this area of research, identifying the main challenges and perspectives, redirecting the reader to more in-depth reviews and papers. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes.

    PubMed

    Proudhon, Charlotte; Duffié, Rachel; Ajjan, Sophie; Cowley, Michael; Iranzo, Julian; Carbajosa, Guillermo; Saadeh, Heba; Holland, Michelle L; Oakey, Rebecca J; Rakyan, Vardhman K; Schulz, Reiner; Bourc'his, Déborah

    2012-09-28

    Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Protection against De Novo Methylation Is Instrumental in Maintaining Parent-of-Origin Methylation Inherited from the Gametes

    PubMed Central

    Proudhon, Charlotte; Duffié, Rachel; Ajjan, Sophie; Cowley, Michael; Iranzo, Julian; Carbajosa, Guillermo; Saadeh, Heba; Holland, Michelle L.; Oakey, Rebecca J.; Rakyan, Vardhman K.; Schulz, Reiner; Bourc’his, Déborah

    2012-01-01

    Summary Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life. PMID:22902559

  11. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D.

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  12. Sex ratio and gamete size across eastern North America in Dictyostelium discoideum, a social amoeba with three sexes.

    PubMed

    Douglas, T E; Strassmann, J E; Queller, D C

    2016-07-01

    Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robyn; Kucera, Paul A.

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is notmore » a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of

  14. Melatonin Scavenger Properties against Oxidative and Nitrosative Stress: Impact on Gamete Handling and In Vitro Embryo Production in Humans and Other Mammals

    PubMed Central

    Loren, Pía; Sánchez, Raúl; Arias, María-Elena; Felmer, Ricardo; Risopatrón, Jennie; Cheuquemán, Carolina

    2017-01-01

    Oxidative and nitrosative stress are common problems when handling gametes in vitro. In vitro development in mammalian embryos is highly affected by culture conditions, especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because their absence or overproduction causes embryo arrest and changes in gene expression. Melatonin in gamete co-incubation during in vitro fertilization (IVF) has deleterious or positive effects, depending on the concentration used in the culture medium, demonstrating the delicate balance between antioxidant and pro-oxidant activity. Further research is needed to better understand the possible impact of melatonin on the different IVP steps in humans and other mammals, especially in seasonal breeds where this neuro-hormone system highly regulates its reproduction physiology. PMID:28613231

  15. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?

    PubMed

    Carnevali, Oliana; Santangeli, Stefania; Forner-Piquer, Isabel; Basili, Danilo; Maradonna, Francesca

    2018-06-11

    Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.

  16. Case reports to suggest an algorithm for management of total fertilisation failure prior to use of donor gametes.

    PubMed

    Nicopoullos, James D M; Whitney, E; Wells, V; Batha, S; Faris, R; Abdalla, H

    2015-11-01

    Total fertilisation failure (TFF), even with intracytoplasmic sperm injection (ICSI), occurs in approximately 3 % of cycles, can be recurrent and the exact cause is difficult to elucidate. Differentiation between oocyte and sperm-related cause of TFF is possible using mouse oocyte-activation techniques, but is not an option within most clinical settings. Therefore, the management of these couples is clinically driven, and the endpoint, if recurrent, is often the use of donor gametes. However, with the invariable lack of a definitive cause of TFF, any decision between the use of donor sperm or oocytes remains an emotive one. We present two case reports demonstrating the importance of appropriate investigation, activation techniques (mechanical and chemical) and clinical management options to develop a clinical algorithm prior to the use of donor gametes. This study is composed of two case reports of assisted reproduction investigation and treatment within an assisted conception unit for couples with recurrent total fertilisation failure. Using appropriate investigation (endocrine, urological and embryological) and treatments (ICSI, IMSI, oocyte-activation techniques), a fertilisation rate of 48 % was achieved in two cycles in couples following a total of nine previous cycles (and 200 previously collected eggs) with TFF. Oocyte activation requires the triggering of intracellular calcium oscillations by the release of a sperm-specific factor (phospholipase C zeta (PLCζ)) into the oocyte cytoplasm. Although, PLCζ deficiencies have been demonstrated as putative causes of failed activation, impaired oocyte responsiveness may also be a factor. The use of donor gametes is often recommended and is often the required endpoint of treatment. However, these reports outline a clinical algorithm that potentially offers success without donation, and also offers a systematic approach to help decide whether donor oocytes or sperm should be recommended.

  17. The end of donor anonymity: how genetic testing is likely to drive anonymous gamete donation out of business.

    PubMed

    Harper, Joyce C; Kennett, Debbie; Reisel, Dan

    2016-06-01

    Thousands of people worldwide have been conceived using donor gametes, but not all parents tell their children of their origin. Several countries now allow donor-conceived offspring to potentially know their genetic parent if they are informed of their donor-conceived status. At the same time, personal genetic testing is a rapidly expanding field. Over 3 million people have already used direct-to-consumer genetic testing to find information about their ancestry, and many are participating in international genetic genealogy databases that will match them with relatives. The increased prevalence of these technologies poses numerous challenges to the current practice of gamete donation. (i) Whether they are donating in a country that practices anonymous donation or not, donors should be informed that their anonymity is not guaranteed, as they may be traced if their DNA, or that of a relative, is added to a database. (ii) Donor-conceived adults who have not been informed of their status may find out that they are donor-conceived. (iii) Parents using donor conception need to be fully informed that their children's DNA will identify that they are not the biological parents and they should be encouraged to disclose the use of donor gametes to their children. Together, these concerns make urgent a wide-ranging societal conversation about how to best safeguard and promote the interests of donor-conceived offspring and protect the rights of donors. Specifically, there is a need to ensure that new genetic information is communicated in a way that promotes both the safety and the privacy rights of offspring and donors alike. All parties concerned must be aware that, in 2016, donor anonymity does not exist. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. © 2015. Published by The Company of Biologists Ltd.

  19. Delayed childbearing: determining responsibilities for prime gamete quality.

    PubMed

    Campagne, Daniel M

    2013-01-01

    Delayed parenting affects fertility in women and in men, and cryopreservation of oocytes and sperm is becoming the latest trend as a solution for those who want or need to postpone procreation, in an attempt to avoid the damage medical conditions or time itself produces in gametes. Although "social freezing" is considered legitimate, its ethical and social aspects are in need of an overdue medical, public and legal debate. Assisted reproduction and cryopreservation, in combination with womb outsourcing, have opened the door to biological ectogenesis and the subsequent question of whether delayed childbearing means we should formally separate procreation from sexual activity. This article briefly summarizes what cryotechniques are capable of presently and in the near future, to separate fact from fiction. It names the implications for and discusses the practically virgin subject of the underlying responsibilities of delayed parenting techniques towards the child-to-be-not only the unborn but also the not-yet-conceived child. Considering the medical, economic, legal and social consequences of these rapidly growing developments in reproduction, several reasons point at the need to formally separate procreation from sexual activity, specifying responsibilities in the first while respecting personal choice in the second.

  20. Reproductive and therapeutic cloning, germline therapy, and purchase of gametes and embryos: comments on Canadian legislation governing reproduction technologies

    PubMed Central

    Bernier, L; Gregoire, D

    2004-01-01

    In this article the three main topics covered in the new legislation are commented on: cloning, germline therapy, and purchase of gametes and embryos. Some important issues also covered in the new legislation, such as privacy and access to information, data protection, identity of donors, and inspection, will not be addressed. PMID:15574437

  1. When genes move farther than offspring: gene flow by male gamete dispersal in the highly philopatric bat species Thyroptera tricolor.

    PubMed

    Buchalski, M R; Chaverri, G; Vonhof, M J

    2014-02-01

    For species characterized by philopatry of both sexes, mate selection represents an important behaviour for inbreeding avoidance, yet the implications for gene flow are rarely quantified. Here, we present evidence of male gamete-mediated gene flow resulting from extra-group mating in Spix's disc-winged bat, Thyroptera tricolor, a species which demonstrates all-offspring philopatry. We used microsatellite and capture-recapture data to characterize social group structure and the distribution of mated pairs at two sites in southwestern Costa Rica over four breeding seasons. Relatedness and genetic spatial autocorrelation analyses indicated strong kinship within groups and over short distances (<50 m), resulting from matrilineal group structure and small roosting home ranges (~0.2 ha). Despite high relatedness among-group members, observed inbreeding coefficients were low (FIS  = 0.010 and 0.037). Parentage analysis indicated mothers and offspring belonged to the same social group, while fathers belonged to different groups, separated by large distances (~500 m) when compared to roosting home ranges. Simulated random mating indicated mate choice was not based on intermediate levels of relatedness, and mated pairs were less related than adults within social groups on average. Isolation-by-distance (IBD) models of genetic neighbourhood area based on father-offspring distances provided direct estimates of mean gamete dispersal distances (r^) > 10 roosting home range equivalents. Indirect estimates based on genetic distance provided even larger estimates of r^, indicating direct estimates were biased low. These results suggest extra-group mating reduces the incidence of inbreeding in T. tricolor, and male gamete dispersal facilitates gene flow in lieu of natal dispersal of young. © 2013 John Wiley & Sons Ltd.

  2. Collection of gametes from live axolotl, Ambystoma mexicanum, and standardization of in vitro fertilization.

    PubMed

    Mansour, N; Lahnsteiner, F; Patzner, R A

    2011-01-15

    This study established the first protocol for collection of gametes from live axolotl, Ambystoma mexicanum, by gentle abdominal massage and in vitro fertilization. To stimulate spermiation and ovulation, human chorionic gonadotrophin (hCG) and Ovopel pellets, which are commercially used to stimulate spawning in fish, were tested. The hCG was more effective than Ovopel pellets and yielded a higher semen volume in the injected males and a shorter response time in the females. Collected semen by this method was already motile and fertile. Fertile eggs could be collected in 3-4 successive collection times after the female has started the typical spawning behaviour. The fertilization condition that yielded the highest hatching rate was mixing semen with eggs before the addition of a fertilization saline solution (20 mmol/l NaCl, 1 mmol/l KCl, 1 mmol/l Mg(2)SO(4), 1 mmol Ca(2)Cl, 3 mmol NaHCO(3), 10 mmol/l Tris, pH 8.5 - Osmolality = 65 mosmol/kg). When the pH of the fertilization solution was increased to ≥ 10, the hatching rate was significantly increased. The use of fertilization solutions with osmolalities of ≥ 150 and ≥ 182 were accompanied with a significant decrease in hatching rates and the appearance of deformed larvae, respectively. In conclusion, a reliable protocol for gamete collection from live axolotl is established as a laboratory model of in vitro fertilization for urodele amphibians. This protocol may be transferable to endangered urodeles. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Two HAP2-GCS1 homologs responsible for gamete interactions in the cellular slime mold with multiple mating types: Implication for common mechanisms of sexual reproduction shared by plants and protozoa and for male-female differentiation.

    PubMed

    Okamoto, Marina; Yamada, Lixy; Fujisaki, Yukie; Bloomfield, Gareth; Yoshida, Kentaro; Kuwayama, Hidekazu; Sawada, Hitoshi; Mori, Toshiyuki; Urushihara, Hideko

    2016-07-01

    Fertilization is a central event in sexual reproduction, and understanding its molecular mechanisms has both basic and applicative biological importance. Recent studies have uncovered the molecules that mediate this process in a variety of organisms, making it intriguing to consider conservation and evolution of the mechanisms of sexual reproduction across phyla. The social amoeba Dictyostelium discoideum undergoes sexual maturation and forms gametes under dark and humid conditions. It exhibits three mating types, type-I, -II, and -III, for the heterothallic mating system. Based on proteome analyses of the gamete membranes, we detected expression of two homologs of the plant fertilization protein HAP2-GCS1. When their coding genes were disrupted in type-I and type-II strains, sexual potency was completely lost, whereas disruption in the type-III strain did not affect mating behavior, suggesting that the latter acts as female in complex organisms. Our results demonstrate the highly conserved function of HAP2-GCS1 in gamete interactions and suggest the presence of additional allo-recognition mechanisms in D. discoideum gametes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Examination of relaxin and its receptors expression in pig gametes and embryos

    PubMed Central

    2011-01-01

    Background Relaxin is a small peptide also known as pregnancy hormone in many mammals. It is synthesized by both male and female tissues, and its secretions are found in various body fluids such as plasma serum, ovarian follicular fluid, utero-oviduct secretions, and seminal plasma of many mammals, including pigs. However, the presence and effects of relaxin in porcine gametes and embryos are still not well-known. The purpose of this study was to assess the presence of relaxin and its receptors RXFP1 and RXFP2 in pig gametes and embryos. Methods Immature cumulus-oocyte complexes (COCs) were aspirated from sows' ovaries collected at the abattoir. After in vitro-maturation, COCs were in vitro-fertilized and cultured. For studies, immature and mature COCs were separately collected, and oocytes were freed from their surrounding cumulus cells. Denuded oocytes, cumulus cells, mature boar spermatozoa, zygotes, and embryos (cleaved and blastocysts) were harvested for temporal and spatial gene expression studies. Sections of ovary, granulosa and neonatal porcine uterine cells were also collected to use as controls. Results Using both semi-quantitative and quantitative PCRs, relaxin transcripts were not detected in all tested samples, while RXFP1 and RXFP2 mRNA were present. Both receptor gene products were found at higher levels in oocytes compared to cumulus cells, irrespective of the maturation time. Cleaved-embryos contained higher levels of RXFP2 mRNA, whereas, blastocysts were characterized by a higher RXFP1 mRNA content. Using western-immunoblotting or in situ immunofluorescence, relaxin and its receptor proteins were detected in all samples. Their fluorescence intensities were consistently more important in mature oocytes than immature ones. The RXFP1 and RXFP2 signal intensities were mostly located in the plasma membrane region, while the relaxin ones appeared homogeneously distributed within the oocytes and embryonic cells. Furthermore, spermatozoa displayed

  5. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    PubMed Central

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5]. PMID:24388851

  6. Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin.

    PubMed Central

    Landry, C; Geyer, L B; Arakaki, Y; Uehara, T; Palumbi, Stephen R

    2003-01-01

    The rich species diversity of the marine Indo-West Pacific (IWP) has been explained largely on the basis of historical observation of large-scale diversity gradients. Careful study of divergence among closely related species can reveal important new information about the pace and mechanisms of their formation, and can illuminate the genesis of biogeographic patterns. Young species inhabiting the IWP include urchins of the genus Echinometra, which diverged over the past 1-5 Myr. Here, we report the most recent divergence of two cryptic species of Echinometra inhabiting this region. Mitochondrial cytochrome oxidase 1 (CO1) sequence data show that in Echinometra oblonga, species-level divergence in sperm morphology, gamete recognition proteins and gamete compatibility arose between central and western Pacific populations in the past 250 000 years. Divergence in sperm attachment proteins suggests rapid evolution of the fertilization system. Divergence of sperm morphology may be a common feature of free-spawning animals, and offers opportunities to simultaneously understand genetic divergence, changes in protein expression patterns and morphological evolution in traits directly related to reproductive isolation. PMID:12964987

  7. The effect of mental illness and psychotropic medication on gametes and fertility: a systematic review.

    PubMed

    Worly, Brett L; Gur, Tamar L

    2015-07-01

    Psychiatric disorders during the reproductive years and their treatment with psychotropic medications are increasingly common, and their effect on the reproductive system is an important area of research. To review the effect of mental illness and psychotropic medication on gametes and fertility. Searches of the PubMed database were conducted for English-language articles containing the keywords gametes, fertility, psychotropic, oocyte, sperm, mental illness, depression, and/or anxiety, in the title or abstract. The searches yielded 3,603 citations. Studies were evaluated for relevance. Those not pertinent to the clinical question, not written in English, and focusing on invertebrates were excluded. Full texts of 50 articles were obtained for further evaluation. Additional articles were identified from reference lists. Ultimately, a total of 37 studies were deemed suitable and reviewed. Clinical studies have not demonstrated a deleterious effect of psychotropic medication on oocytes in terms of retrieval and pregnancy rates. Clinical studies demonstrate inconclusive results regarding the effect on sperm, with several studies suggesting increased sperm motility and quantity with certain psychotropics. Decreased sperm quantity and motility are described in a number of studies, including in vitro and in vivo studies. Maternal psychiatric illness is associated with decreased reproductive success, including lower rates of oocyte retrieval, lower rates of ongoing pregnancy, and dysregulation of the stress system in a majority (n = 11) but not all (n = 3) studies reviewed. Male depression did not appear to affect sperm, but anxiety did have an effect (n = 1). Given the detrimental effect of untreated mental illness, current literature is not robust enough to influence the use of psychotropics in males or females who are considering reproduction. © Copyright 2015 Physicians Postgraduate Press, Inc.

  8. ESHRE Task Force on Ethics and Law 21: genetic screening of gamete donors: ethical issues.

    PubMed

    Dondorp, W; De Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K; Eichenlaub-Ritter, U; Tüttelmann, F; Provoost, V

    2014-07-01

    This Task Force document explores the ethical issues involved in the debate about the scope of genetic screening of gamete donors. Calls for expanded donor screening arise against the background of both occasional findings of serious but rare genetic conditions in donors or donor offspring that were not detected through present screening procedures and the advent of new genomic technologies promising affordable testing of donors for a wide range of conditions. Ethical principles require that all stakeholders' interests are taken into account, including those of candidate donors. The message of the profession should be that avoiding all risks is impossible and that testing should remain proportional.

  9. In Vitro Fertilization with Isolated, Single Gametes Results in Zygotic Embryogenesis and Fertile Maize Plants.

    PubMed Central

    Kranz, E; Lorz, H

    1993-01-01

    We demonstrate here the possibility of regenerating phenotypically normal, fertile maize plants via in vitro fertilization of isolated, single sperm and egg cells mediated by electrofusion. The technique leads to the highly efficient formation of polar zygotes, globular structures, proembryos, and transition-phase embryos and to the formation of plants from individually cultured fusion products. Regeneration of plants occurs via embryogenesis and occasionally by polyembryony and organogenesis. Flowering plants can be obtained within 100 days of gamete fusion. Regenerated plants were studied by karyological and morphological analyses, and the segregation of kernel color was determined. The hybrid nature of the plants was confirmed. PMID:12271084

  10. To give or sell human gametes - the interplay between pragmatics, policy and ethics

    PubMed Central

    Daniels, K

    2000-01-01

    The ever-growing acceptance and use of assisted human reproduction techniques has caused demand for "donated" sperm and eggs to outstrip supply. Medical professionals and others argue that monetary reward is the only way to recruit sufficient numbers of "donors". Is this a clash between pragmatics and policy/ethics? Where monetary payments are the norm, alternative recruitment strategies used successfully elsewhere may not have been considered, nor the negative consequences of commercialism on all participants thought through. Considerations leading some countries to ban the buying and selling of sperm, eggs and embryos are outlined and a case made that the collective welfare of all involved parties be the primary consideration in this, at times heated, debate. Key Words: Gametes • gifting • selling • ethics • policy PMID:10860215

  11. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    PubMed

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development.

    PubMed Central

    Hartweck, Lynn M; Scott, Cheryl L; Olszewski, Neil E

    2002-01-01

    The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting. PMID:12136030

  13. The Armadillo Repeat Protein PF16 Is Essential for Flagellar Structure and Function in Plasmodium Male Gametes

    PubMed Central

    Ferguson, David J. P.; Bunting, Karen A.; Xu, Zhengyao; Bailes, Elizabeth; Sinden, Robert E.; Holder, Anthony A.; Smith, Elizabeth F.; Coates, Juliet C.; Rita Tewari

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite. PMID:20886115

  14. Induced pluripotent stem cell-derived gamete-associated proteins incite rejection of induced pluripotent stem cells in syngeneic mice.

    PubMed

    Kim, Eun-Mi; Manzar, Gohar; Zavazava, Nicholas

    2017-06-01

    The safety of induced pluripotent stem cells (iPSCs) in autologous recipients has been questioned after iPSCs, but not embryonic stem cells (ESCs), were reported to be rejected in syngeneic mice. This important topic has remained controversial because there has not been a mechanistic explanation for this phenomenon. Here, we hypothesize that iPSCs, but not ESCs, readily differentiate into gamete-forming cells that express meiotic antigens normally found in immune-privileged gonads. Because peripheral blood T cells are not tolerized to these antigens in the thymus, gamete-associated-proteins (GAPs) sensitize T cells leading to rejection. Here, we provide evidence that GAPs expressed in iPSC teratomas, but not in ESC teratomas, are responsible for the immunological rejection of iPSCs. Furthermore, silencing the expression of Stra8, 'the master regulator of meiosis', in iPSCs, using short hairpin RNA led to significant abrogation of the rejection of iPSCs, supporting our central hypothesis that GAPs expressed after initiation of meiosis in iPSCs were responsible for rejection. In contrast to iPSCs, iPSC-derivatives, such as haematopoietic progenitor cells, are able to engraft long-term into syngeneic recipients because they no longer express GAPs. Our findings, for the first time, provide a unifying explanation of why iPSCs, but not ESCs, are rejected in syngeneic recipients, ending the current controversy on the safety of iPSCs and their derivatives. © 2017 John Wiley & Sons Ltd.

  15. Epigenetic effects of methoxychlor and vinclozolin on male gametes.

    PubMed

    Paoloni-Giacobino, Ariane

    2014-01-01

    Imprinting is an epigenetic form of gene regulation that mediates a parent-of-origin-dependent expression of the alleles of a number of genes. Imprinting, which occurs at specific sites within or surrounding the gene, called differentially methylated domains, consists in a methylation of CpGs. The appropriate transmission of genomics imprints is essential for the control of embryonic development and fetal growth. A number of endocrine disruptors (EDs) affect male reproductive tract development and spermatogenesis. It was postulated that the genetic effects of EDs might be induced by alterations in gene imprinting. We tested two EDs: methoxychlor and vinclozolin. Their administration during gestation induced in the offspring a decrease in sperm counts and significant modifications in the methylation pattern of a selection of paternally and maternally expressed canonical imprinted genes. The observation that imprinting was largely untouched in somatic cells suggests that EDs exert their damaging effects via the process of reprogramming that is unique to gamete development. Interestingly, the effects were transgenerational, although disappearing gradually from F1 to F3. A systematic analysis showed a heterogeneity in the CpG sensitivity to EDs. We propose that the deleterious effects of EDs on the male reproductive system are mediated by imprinting defects in the sperm. The reported effects of EDs on human male spermatogenesis might be mediated by analogous imprinting alterations. © 2014 Elsevier Inc. All rights reserved.

  16. Gamete ripening and hormonal correlates in three strains of lake trout

    USGS Publications Warehouse

    Foster, N.R.; O'Connor, D.V.; Schreck, C.B.

    1993-01-01

    In our 2-year laboratory study of hatchery-reared adult lake trout Salvelinus namaycush of the Seneca Lake, Marquette (Lake Superior Lean), and Jenny Lake strains, we compared gamete ripening times and changes in plasma concentrations of seven hormones. If interstrain differences in these traits were found, such differences might help explain the apparent failure of stocked fish of these strains to develop large, naturally reproducing populations in the Great Lakes. The complex temporal changes in plasma hormone levels that occur during sexual maturation in lake trout have not been previously described. We detected little evidence of temporal isolation that would prevent interbreeding among the three strains. Strain had no effect on ovulation date (OD) in either year. Strain did not affect spermiation onset date (SOD) in year 1 but did in year 2, when the mean SOD of Jenny Lake males was earlier than that of Seneca Lake males but not different from that of Marquette males. Hormonal data were normalized around ODs for individual females and SODs for individual males. In females, estradiol-17β (E2) was highest 8 weeks before the OD; the highest testosterone (T) level occurred 6 weeks before the OD, and the next highest level occurred simultaneously with the highest level of 11-ketotestosterone (11-KT) 2 weeks before the OD. Plasma levels of 17∝-hydroxy-20β-dihydroprogesterone (DHP) peaked 1 week before the OD, then abruptly declined immediately after. Cortisol (F), triiodothyronine (T3), and thyroxine (T4) were highly variable, but F was the only hormone that showed no trend with week in either year. In males, plasma E2 levels were highest 3 weeks before the SOD, highest levels of T and of 11-KT occurred simultaneously 2 weeks after the SOD, and DHP peaked 5 weeks after the SOD and 3 weeks after the highest levels of T and 11-KT. As in females, plasma levels of F, T3, and T4 were highly variable, and F was the only hormone that showed no trend with week in

  17. Gamete rescue in the African black rhinoceros (Diceros bicornis).

    PubMed

    Stoops, M A; O'Brien, J K; Roth, T L

    2011-10-15

    Mortality rates are high among captive African black rhinoceroses (Diceros bicornis), due to increased susceptibility to disease. The ability to rescue genetic material from individuals that die unexpectedly represents a practical approach to assist ex situ conservation efforts. The objectives of the present study were to attempt postmortem oocyte recovery from ovaries of African black rhinoceroses (N = 6) and to test the efficacy of equine protocols for rhinoceros oocyte IVM and IVF using cryopreserved rhinoceros sperm. The interval from ovary removal to oocyte recovery was 25.3 ± 13.9 h (mean ± SD). Ovaries were transported at 4 °C or 22 °C and effects of temperature on postmortem oocyte competence was evaluated. Numbers of oocytes collected per female averaged 15.8 ± 6.9. In total, 95 oocytes were recovered. Of these, 85 were inseminated using homologous sperm and 10 were inseminated using heterologous sperm. Overall, substantial numbers of viable oocytes were retrieved from African black rhinoceros ovaries 1 to 2 days postmortem from ovaries stored at ambient temperature. A proportion of these oocytes matured and underwent penetration and fertilization by heterologous or homologous frozen-thawed rhinoceros sperm. The reproductive competence of postmortem oocytes was further demonstrated by development of a single two-cell embryo. Despite the need for further refinements, gamete rescue in the rhinoceros has promise for producing rhinoceros embryos, as well as testing sperm functions in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effect of gametes aging on their activation and fertilizability in zebrafish (Danio rerio).

    PubMed

    Cardona-Costa, Jose; Pérez-Camps, Mireia; García-Ximénez, Fernando; Espinós, Francisco J

    2009-03-01

    The zebrafish represents an important model organism for biological research. In this context, in vitro collection and fertilization of zebrafish gametes are basic and widely used techniques for many topical research works. In this work, the fertilization ability and normal embryo development of gold-type zebrafish sperm and eggs were re-evaluated after being stored for different times at 8 degrees C in a modified medium (Hanks' saline supplemented with 1.5 g BSA and 0.1 g ClNa; 320 mOsm, pH 7.4). Results obtained indicated that the temporal limits usually recommended for zebrafish sperm to fertilize fresh eggs (2 h) could be extended for up to 24 h without significant differences compared with fresh sperm. In contrast, the rapid egg aging observed (even less than 1 h) recommends minimizing as far as possible the egg storage time before fertilization. These results suggest a possible strain difference in the fertilization response.

  19. Early experience with gamete intrafallopian transfer (GIFT) and direct intraperitoneal insemination (DIPI).

    PubMed Central

    Dooley, M; Lim-Howe, D; Savvas, M; Studd, J W

    1988-01-01

    We present our early experience with gamete intrafallopian transfer (GIFT) and direct intraperitoneal insemination (DIPI) combined with intrauterine insemination (IUI), two recently described methods of assisting conception in patients with patent fallopian tubes. Sixty-nine patients (93 cycles) were entered into the study. Thirty-three patients (51 cycles) entered the DIPI/IUI programme and 36 patients (42 cycles) entered the GIFT programme. The mean age, duration and aetiology of infertility were similar in both groups. In the GIFT programme 12 pregnancies occurred, which is a 29% pregnancy rate per cycle and a 33% pregnancy rate per patient. In the DIPI/IUI programme only 3 pregnancies occurred, being a 6% pregnancy rate per cycle and a 9% pregnancy rate per patient. With the live birth rate of in vitro fertilization (IVF) being 12% per embryo transfer, we conclude that GIFT is more successful than either DIPI/IUI or IVF in patients with patent fallopian tubes. Further controlled studies are required to assess the future role of DIPI/IUI in clinical practice. PMID:3210194

  20. Expression and localization of tubulin cofactors TBCD and TBCE in human gametes.

    PubMed

    Jiménez-Moreno, Victoria; Agirregoitia, Ekaitz

    2017-06-01

    The tubulin cofactors TBCD and TBCE play an essential role in regulation of the microtubule dynamics in a wide variety of somatic cells, but little information is known about the expression of these cofactors in human sperm and oocytes. In this study, we focused on the investigation of the presence of, and the differential distribution of, the tubulin cofactors TBCD and TBCE in human sperm and during human oocyte maturation. We performed expression assays for TBCD and TBCE by reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescence and verified the presence of both cofactors in human gametes. TBCD and TBCE were located mainly in the middle region and in the tail of the sperm while in the oocyte the localization was cytosolic. The mRNA of both tubulin cofactors were present in the human oocytes but not in sperm cells. This finding gives a first insight into where TBCD and TBCE could carry out their function in the continuous changes that the cytoskeleton experiences during gametogenesis and also prior to fertilization.

  1. The influence of sperm concentration, length of the gamete co-culture and the evolution of different sperm parameters on the in vitro fertilization of prepubertal goat oocytes.

    PubMed

    Palomo, M J; Mogas, T; Izquierdo, D; Paramio, M T

    2010-11-01

    The aims of the present study were: (1) to evaluate the influence of sperm concentration (ranging from 0.5 × 10(6) to 4 × 10(6) spermatozoa/ml) and length of the gamete co-incubation time (2, 4, 6, 8, 10, 12, 16, 20, 24 or 28 h) on in vitro fertilization (IVF), assessing the sperm penetration rate; (2) to investigate the kinetics of different semen parameters as motility, viability and acrosome status during the co-culture period; and (3) to analyse the effect of the presence of cumulus-oocytes complexes (COCs) on these parameters. To achieve these objectives, several experiments were carried out using in vitro matured oocytes from prepubertal goats. The main findings of this work are that: (1) in our conditions, the optimum sperm concentration is 4 × 10(6) sperm/ml, as this sperm:oocyte ratio (approximately 28,000) allowed us to obtain the highest penetration rate, without increasing polyspermy incidence; (2) the highest percentage of viable acrosome-reacted spermatozoa is observed between 8-12 h of gamete co-culture, while the penetration rate is maximum at 12 h of co-incubation; and (3) the presence of COCs seems to favour the acrosome reaction of free spermatozoa on IVF medium, but not significantly. In conclusion, we suggest that a gamete co-incubation for 12-14 h, with a concentration of 4 × 10(6) sperm/ml, would be sufficient to obtain the highest rate of penetration, reducing the exposure of oocytes to high levels of reactive oxygen species produced by spermatozoa, especially when a high sperm concentration is used to increase the caprine IVF outcome.

  2. Gamete donors' satisfaction; gender differences and similarities among oocyte and sperm donors in a national sample

    PubMed Central

    Svanberg, Agneta Skoog; Lampic, Claudia; Gejerwall, Ann-Louise; Gudmundsson, Johannes; Karlström, Per-olof; Solensten, Nils-Gunnar; Sydsjö, Gunilla

    2013-01-01

    ObjectiveTo explore oocyte and sperm donors' emotional stress, experiences of care and satisfaction after donation. DesignProspective multicenter study. SettingsAll fertility clinics performing gamete donation in Sweden during the period 2005 to 2008. PopulationOf 220 eligible oocyte donors who were approached, 181 agreed to complete the first questionnaire and 165 completed the second questionnaire 2 months after oocyte donation. Of 156 eligible sperm donors 119 accepted to complete the first questionnaire before donation. Eighty-nine participants completed the second questionnaire 2 months after sperm donation. MethodsStandardized and study-specific questionnaires. Main outcome measuresSatisfaction with the donation, respondents' mental health and overall care. ResultsA larger percentage of sperm donors (97.8%) were satisfied with their overall experience of being a donor than oocyte donors (85.9%, p = 0.003). Some oocyte and sperm donors did not receive sufficient information about practical issues (9.1% and 13.5%, respectively) and future consequences (12.8% and 3.4%, respectively, p = 0.014). The donors' symptoms of anxiety and depression did not show any differences in relation to negative or positive perceptions of satisfaction. The donors who did not indicate ambivalence before treatment were on average almost five times more satisfied compared with those who did indicate ambivalence (odds ratio 4.71; 95% CI 1.34–16.51). ConclusionsMost donors were satisfied with their contribution after the donation. Oocyte and sperm donors who expressed ambivalence before donation were less satisfied after donation. In vitro fertilization staff fulfilled most of the donors' needs for information and care. Please cite this article as: Skoog Svanberg A, Lampic C, Gejerwall A-L, Gudmundsson J, Karlström P-O, Solensten N-G, Sydsjö G. Gamete donors’ satisfaction; gender differences and similarities among oocyte and sperm donors in a national sample. Acta

  3. Regulating Gamete Donation in the U.S.: Ethical, Legal and Social Implications

    PubMed Central

    Sabatello, Maya

    2015-01-01

    This article explores the practice of gamete donation in the U.S. having in mind the larger question of what do we as a society owe children born as a result (donor-conceived children). Do recipient-parents have a duty to tell their donor-conceived child about his/her genetic origins? Should the identity of the donor be disclosed or remain anonymous? Does the child have a right to know her conception story and to receive information, including identifying information, about the donor? Furthermore, if a donor-conceived child has a right to know, who has the duty to tell her/him about it? The Article underscores the ethical, legal and social dilemmas that arise, comparing and contrasting with international developments in this arena. It highlights the market-based and more specific medical justifications for regulating this field, explores the emerging so-called right of the child to know his/her genetic origins (“the right to know”), and considers the challenges such a right evokes to existing legal culture and principles of medical ethics in the U.S. as well as other broader societal implications of such a right. PMID:26388996

  4. Regulating Gamete Donation in the U.S.: Ethical, Legal and Social Implications.

    PubMed

    Sabatello, Maya

    2015-09-01

    This article explores the practice of gamete donation in the U.S. having in mind the larger question of what do we as a society owe children born as a result (donor-conceived children). Do recipient-parents have a duty to tell their donor-conceived child about his/her genetic origins? Should the identity of the donor be disclosed or remain anonymous? Does the child have a right to know her conception story and to receive information, including identifying information, about the donor? Furthermore, if a donor-conceived child has a right to know, who has the duty to tell her/him about it? The Article underscores the ethical, legal and social dilemmas that arise, comparing and contrasting with international developments in this arena. It highlights the market-based and more specific medical justifications for regulating this field, explores the emerging so-called right of the child to know his/her genetic origins ("the right to know"), and considers the challenges such a right evokes to existing legal culture and principles of medical ethics in the U.S. as well as other broader societal implications of such a right.

  5. Keeping mum about dad: "contracts" to protect gamete donor anonymity.

    PubMed

    Rees, Anne

    2012-06-01

    This article considers the legal status of so-called contracts for anonymity between fertility clinics and donors of gametes that were made in the period before legislation authorising disclosure. It notes that while clinics frequently cite the existence of these "contracts" to argue against retrospective legislation authorising disclosure of the donor's identity, they may be nothing more than one-sided statements of informed consent. However, the article notes that even if an agreement between a donor and a clinic is not contractual, it does not follow that a person conceived through assisted reproductive technology has any right of access to the identity of the donor. The writer has not been able to locate examples of written promises by the clinics promising anonymity. There are written promises by the donors not to seek the identity of the recipients. These promises do not bind the resulting offspring nor do they appear to be supported by consideration. The article suggests that the basis for any individual donor to restrain a clinic from revealing their identity may be found in promissory estoppel. Nevertheless, there is no real issue in Australia concerning clinics revealing these details absent legislative authority. The issue is whether parliaments will legislate to authorise the disclosure. The article notes that it would be rare for parliaments to legislate to overturn existing legal contracts but suggests that the contract argument may not be as strong as has been thought.

  6. The chemistry of gamete attraction: chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones.

    PubMed Central

    Boland, W

    1995-01-01

    Female gametes of marine brown algae release and/or attract their conspecific males by chemical signals. The majority of these compounds are unsaturated, nonfunctionalized acyclic, and/or alicyclic C11 hydrocarbons. Threshold concentrations for release and attraction are generally observed in the range of 1-1000 pmol. The blends may contain various configurational isomers of the genuine pheromones as well as mixtures of enantiomers. Higher plants produce the C11 hydrocarbons from dodeca-3,6,9-trienoic acid; brown algae exploit the family of icosanoids for biosynthesis of the same compounds. The biosynthetic routes comprise several spontaneously occurring pericyclic reactions such as [3.3]-sigmatropic rearrangements, [1.7]-hydrogen shifts, and electrocyclic ring closures. All pheromones are (a)biotically degraded by ubiquitous oxidative pathways involving singlet oxygen or hydroxyl radicals, which may be produced through the agency of heavy metals, huminic acids, or light. PMID:7816845

  7. Postmating sexual conflict and female control over fertilization during gamete interaction.

    PubMed

    Firman, Renée C

    2018-06-01

    Males and females rarely have identical evolutionary interests over reproduction, and when the fitness of both sexes is dependent upon paternity outcomes, sexual conflict over fertilization is inevitable. In internal fertilizers, the female tract is a formidable selective force on the number and integrity of sperm that reach the egg. Selection on sperm quality is intensified when females mate multiply and rival males are forced to compete for fertilizations. While male adaptations to sperm competition have been well documented (e.g., increased sperm fertilizing capacity), much less attention has been given to the evolutionary consequences of postmating sexual conflict for egg form and function. Specifically, increased sperm competitiveness can be detrimental by giving rise to an elevation in reproductive failure resulting from polyspermy. Spanning literature on both internal and external fertilizers, in this review I discuss how females respond to sperm competition via fertilization barriers that mediate sperm entry. These findings, which align directly with sexual conflict theory, indicate that females have greater control over fertilization than has previously been appreciated. I then consider the implications of gametic sexual conflict in relation to the development of reproductive isolation and speculate on potential mechanisms accounting for "egg defensiveness." Finally, I discuss the functional significance of egg defensiveness for both the sexes, and sperm selection for females. © 2018 New York Academy of Sciences.

  8. Role of the Calcium-Sensing Receptor (CaSR) in bovine gametes and during in vitro fertilization.

    PubMed

    Macías-García, Beatriz; Lopes, Graça; Rocha, Antonio; González-Fernández, Lauro

    2017-06-01

    Calcium Sensing Receptor (CaSR) is a G-protein coupled receptor which senses extracellular calcium and activates diverse intracellular pathways. The objective of our work was to demonstrate the presence of CaSR in bovine gametes and its possible role in fertilization and embryo development. The location of CaSR was demonstrated by immunofluorescence in bovine gametes; additionally bovine sperm were incubated with 5, 10 and 15 μM of the specific CaSR inhibitor NPS2143 in a Tyrode's Albumin Lactate Pyruvate medium (4 h). Sperm viability was maintained for all concentrations tested while total motility decreased significantly at 10 and 15 μM. Addition of 15 μM of NPS2143 during oocyte in vitro maturation did not alter the maturation rate. When NPS2143 (15 μM) was added to the fertilization medium during sperm-oocyte co-incubation the cleavage, morula and blastocyst rates remained unchanged. To confirm if 15 μM of NPS2143 exerted any effect on embryo development, NPS2143 was added to the embryo culture medium. Cleavage rates remained unchanged when 15 μM of NPS2143 was added to the culture medium (79.1 ± 6.8 vs. 73.7 ± 5.3; mean % ± SEM; p > 0.05, control vs. inhibitor). By contrast, development to the morula (46.6 ± 7.3 vs. 24.3 ± 4.3; mean % ± SEM; p < 0.05) and blastocyst stages (29.9 ± 9.0 vs. 9.9 ± 3.6; mean % ± SEM; p < 0.05) decreased (control vs. inhibitor). Our results demonstrate a key role of CaSR on sperm motility and embryo development but not on oocyte maturation or fertilization in the bovine species. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Who gets the gametes? An argument for a points system for fertility patients

    PubMed Central

    Jenkins, Simon; Ives, Jonathan; Avery, Sue

    2017-01-01

    Abstract This paper argues that the convention of allocating donated gametes on a ‘first come, first served’ basis should be replaced with an allocation system that takes into account more morally relevant criteria than waiting time. This conclusion was developed using an empirical bioethics methodology, which involved a study of the views of 18 staff members from seven U.K. fertility clinics, and 20 academics, policy‐makers, representatives of patient groups, and other relevant professionals, on the allocation of donated sperm and eggs. Against these views, we consider some nuanced ways of including criteria in a points allocation system. We argue that such a system is more ethically robust than ‘first come, first served’, but we acknowledge that our results suggest that a points system will meet with resistance from those working in the field. We conclude that criteria such as a patient's age, potentially damaging substance use, and parental status should be used to allocate points and determine which patients receive treatment and in what order. These and other factors should be applied according to how they bear on considerations like child welfare, patient welfare, and the effectiveness of the proposed treatment. PMID:29194680

  10. Vertical transmission of Prunus necrotic ringspot virus: hitch-hiking from gametes to seedling.

    PubMed

    Amari, Khalid; Burgos, Lorenzo; Pallás, Vicente; Sánchez-Pina, Maria Amelia

    2009-07-01

    The aim of this work was to follow Prunus necrotic ringspot virus (PNRSV) infection in apricot reproductive tissues and transmission of the virus to the next generation. For this, an analysis of viral distribution in apricot reproductive organs was carried out at different developmental stages. PNRSV was detected in reproductive tissues during gametogenesis. The virus was always present in the nucellus and, in some cases, in the embryo sac. Studies within infected seeds at the embryo globular stage revealed that PNRSV infects all parts of the seed, including embryo, endosperm and testa. In the torpedo and bent cotyledon developmental stages, high concentrations of the virus were detected in the testa and endosperm. At seed maturity, PNRSV accumulated slightly more in the embryo than in the cotyledons. In situ hybridization showed the presence of PNRSV RNA in embryos obtained following hand-pollination of virus-free pistils with infected pollen. Interestingly, tissue-printing from fruits obtained from these pistils showed viral RNA in the periphery of the fruits, whereas crosses between infected pistils and infected pollen resulted in a total invasion of the fruits. Taken together, these results shed light on the vertical transmission of PNRSV from gametes to seedlings.

  11. Germline Defects Caused by Smed-boule RNA-Interference Reveal That Egg Capsule Deposition Occurs Independently of Fertilization, Ovulation, Mating, or the Presence of Gametes in Planarian Flatworms.

    PubMed

    Steiner, Jessica Kathryne; Tasaki, Junichi; Rouhana, Labib

    2016-05-01

    Few animals are known to lay eggs in the absence of ovulation or copulation, as it is presumably energetically wasteful and subjected to negative selection. Characterization of Smed-boule, a member of the DAZ family of germline RNA-binding proteins, revealed that egg capsule (or capsule) production and deposition occurs independently of the presence of gametes in the planarian flatworm Schmidtea mediterranea. Reduction of Smed-boule expression by RNA-interference (RNAi) causes ablation of spermatogonial stem cells and the inability of ovarian germline stem cells to undergo oogenesis. Although animals subjected to Smed-boule RNAi lose their gametes and become sterile, they continue to lay egg capsules. Production of sterile capsules is even observed in virgin Smed-boule(RNAi) and control planarians maintained in complete isolation, demonstrating that egg production in S. mediterranea occurs independently of ovulation, fertilization, or mating. Evidence suggests that this is a conserved feature amongst Platyhelminthes, and therefore relevant to the pathology and dissemination of parasitic flatworms. These findings demonstrate that Smed-boule functions at different stages during male and female germline stem cell development, and also demonstrate that egg capsule production by planarian flatworms occurs independently of signals produced by mating or ova.

  12. Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals

    NASA Astrophysics Data System (ADS)

    Schweinsberg, M.; González Pech, R. A.; Tollrian, R.; Lampert, K. P.

    2014-03-01

    In recent years, the new phenomenon of intracolonial genetic variability within a single coral colony has been described. This connotes that coral colonies do not necessarily consist of only a single genotype, but may contain several distinct genotypes. Harboring more than one genotype could improve survival under stressful environmental conditions, e.g., climate change. However, so far it remained unclear whether the intracolonial genetic variability of the adult coral is also present in the gametes. We investigated the occurrence of intracolonial genetic variability in 14 mature colonies of the coral Acropora hyacinthus using eight microsatellite loci. A grid was placed over each colony before spawning, and the emerging egg/sperm bundles were collected separately in each grid. The underlying tissues as well as the egg/sperm bundles were genotyped to determine whether different genotypes were present. Within the 14 mature colonies, we detected 10 colonies with more than one genotype (intracolonial genetic variability). Four out of these 10 mature colonies showed a transfer of different genotypes via the eggs to the next generation. In two out of these four cases, we found additional alleles, and in the two other cases, we found only a subset of alleles in the unfertilized eggs. Our results suggest that during reproduction of A. hyacinthus, more than one genotype per colony is able to reproduce. We discuss the occurrence of different genotypes within a single coral colony and the ability for those to release eggs which are genetically distinct.

  13. Identification and localization of the sperm CRISP family protein CiUrabin involved in gamete interaction in the ascidian Ciona intestinalis.

    PubMed

    Yamaguchi, Akira; Saito, Takako; Yamada, Lixy; Taniguchi, Hisaaki; Harada, Yoshito; Sawada, Hitoshi

    2011-07-01

    Ascidians are hermaphrodites, and most release sperm and eggs nearly simultaneously. Many species, including Halocynthia roretzi and Ciona intestinalis, are self-sterile. We previously reported that the interaction between a 12 EGF-like repeat-containing vitelline-coat (VC) protein, HrVC70, and a sperm GPI-anchored CRISP, HrUrabin, in lipid rafts plays a key role in self-/nonself-recognizable gamete interaction in H. roretzi. On the other hand, we recently identified two pairs of polymorphic genes responsible for self-incompatibility in C. intestinalis by positional cloning: The sperm polycystin 1-like receptors s-Themis-A/B and its fibrinogen-like ligand v-Themis-A/B on the VC. However, it is not known if the orthologs of HrVC70 and HrUrabin also participate in gamete interaction in C. intestinalis since they are from different orders. Here, we tested for a C. intestinalis ortholog (CiUrabin) of HrUrabin by searching the genome database and proteomes of sperm lipid rafts. The identified CiUrabin belongs to the CRISP family, with a PR domain and a GPI-anchor-attachment site. CiUrabin appears to be specifically expressed in the testis and localized at the surface of the sperm head, as revealed by Northern blotting and immunocytochemistry, respectively. The specific interaction between CiVC57, a C. intestinalis ortholog of HrVC70, and CiUrabin was confirmed by Far Western analysis, similarly to the interaction between HrVC70 and HrUrabin. The molecular interaction between CiVC57 and CiUrabin may be involved in the primary binding of sperm to the VC prior to the allorecognition process, mediated by v-Themis-A/B and s-Themis-A/B, during fertilization of C. intestinalis. Copyright © 2011 Wiley-Liss, Inc.

  14. Reproductive and therapeutic cloning, germline therapy, and purchase of gametes and embryos: comments on Canadian legislation governing reproduction technologies.

    PubMed

    Bernier, L; Grégoire, D

    2004-12-01

    In Canada, the Assisted Human Reproduction Act received royal assent on 29 March 2004. The approach proposed by the federal government responds to Canadians' strong desire for an enforceable legislative framework in the field of reproduction technologies through criminal law. As a result of the widening gap between the rapid pace of technological change and governing legislation, a distinct need was perceived to create a regulatory framework to guide decisions regarding reproductive technologies. In this article the three main topics covered in the new legislation are commented on: cloning, germline therapy, and purchase of gametes and embryos. Some important issues also covered in the new legislation, such as privacy and access to information, data protection, identity of donors, and inspection, will not be addressed.

  15. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    PubMed

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  16. Shortening gametes co-incubation time improves live birth rate for couples with a history of fragmented embryos.

    PubMed

    Le Bras, Anne; Hesters, Laetitia; Gallot, Vanessa; Tallet, Cathie; Tachdjian, Gerard; Frydman, Nelly

    2017-10-01

    Short gamete co-incubation (SGCO) consists in decreasing the duration of contact between oocytes and sperm from the standard overnight insemination (SOI) toward 2 hours. However, the effectiveness of this technique to improve in vitro fertilization and embryo transfer (IVF-ET) outcomes remains controversial. Our study was designed to evaluate the efficiency of SGCO in a poor prognosis population with a history of fragmented embryos defined by the presence of at least 50% of the embryos with more than 25% of cytoplasmic fragments. From January 2010 to January 2014, 97 couples were included in a SGCO protocol. We separated women into 2 subgroups: younger and older than 35 years. Compared to SOI, after SGCO, 2-cell stage embryos were higher in all women (p<0.001) and less fragmented in women over 35 years (p<0.05). On day 2, top quality embryos obtained and transferred were higher with SCGO than with SOI, independently of the age of the women (p<0.001). Moreover, the number of embryos with less than 25% of fragmentation was higher after SGCO than SOI (p<0.001) whereas the number of multinucleated embryos was lower (p<0.001). We observed that after fresh ET, independently of the age of the women, the clinical pregnancy rate was 3 times higher after SGCO than after SOI. However, the live-birth rate was 4 times higher with SGCO than with SOI in women above 35 years but 3 times higher with SGCO than with SOI in women younger than 35 years. The present results indicate that for a particular indication, reducing the time of oocytes and sperm co-incubation may improve IVF-ET outcomes in terms of live-birth rate. AMH: anti mullerian hormone; COC: cumulus-oocytes complex; E2: estradiol; ET: embryo transfer; FET: frozen embryo transfer; FSH: follicle stimulating hormone; GnRH: gonadotrophin releasing hormone; hCG: human chorionic gonadotropin hormone; hMG: human menopausal gonadotropin hormone; IRB: institutional review board; IVF: in vitro fertilization; IVF-ET: in vitro

  17. Germline Defects Caused by Smed-boule RNA-Interference Reveal That Egg Capsule Deposition Occurs Independently of Fertilization, Ovulation, Mating, or the Presence of Gametes in Planarian Flatworms

    PubMed Central

    Steiner, Jessica Kathryne; Tasaki, Junichi; Rouhana, Labib

    2016-01-01

    Few animals are known to lay eggs in the absence of ovulation or copulation, as it is presumably energetically wasteful and subjected to negative selection. Characterization of Smed-boule, a member of the DAZ family of germline RNA-binding proteins, revealed that egg capsule (or capsule) production and deposition occurs independently of the presence of gametes in the planarian flatworm Schmidtea mediterranea. Reduction of Smed-boule expression by RNA-interference (RNAi) causes ablation of spermatogonial stem cells and the inability of ovarian germline stem cells to undergo oogenesis. Although animals subjected to Smed-boule RNAi lose their gametes and become sterile, they continue to lay egg capsules. Production of sterile capsules is even observed in virgin Smed-boule(RNAi) and control planarians maintained in complete isolation, demonstrating that egg production in S. mediterranea occurs independently of ovulation, fertilization, or mating. Evidence suggests that this is a conserved feature amongst Platyhelminthes, and therefore relevant to the pathology and dissemination of parasitic flatworms. These findings demonstrate that Smed-boule functions at different stages during male and female germline stem cell development, and also demonstrate that egg capsule production by planarian flatworms occurs independently of signals produced by mating or ova. PMID:27149082

  18. Expression and putative function of fibronectin and its receptor (integrin alpha(5)beta(1)) in male and female gametes during bovine fertilization in vitro.

    PubMed

    Thys, Mirjan; Nauwynck, Hans; Maes, Dominiek; Hoogewijs, Maarten; Vercauteren, Dries; Rijsselaere, Tom; Favoreel, Herman; Van Soom, Ann

    2009-09-01

    Fibronectin (Fn) is a 440 kDa glycoprotein assumed to participate in sperm-egg interaction in human. Recently, it has been demonstrated that Fn--when present during bovine IVF--strongly inhibits sperm penetration. The present study was conducted firstly to evaluate the expression of Fn and its integrin receptor (alpha(5)beta(1)) on male and female bovine gametes using indirect immunofluorescence and secondly, to determine the function of Fn during bovine IVF. Endogenous Fn was detected underneath the zona pellucida (ZP) and integrin alpha(5) on the oolemma of cumulus-denuded oocytes. Bovine spermatozoa displayed integrin alpha(5) at their equatorial segment after acrosome reaction. We established that the main inhibitory effect of exogenously supplemented Fn was located at the sperm-oolemma binding, with a (concurrent) effect on fusion, and this can probably be attributed to the binding of Fn to spermatozoa at the equatorial segment, as shown by means of Alexa Fluor 488-conjugated Fn. Combining these results, the inhibitory effect of exogenously supplemented Fn seemed to be exerted on the male gamete by binding to the exposed integrin alpha(5)beta(1) receptor after acrosome reaction. The presence of endogenous Fn underneath the ZP together with integrin alpha(5) expression on oolemma and acrosome-reacted (AR) sperm cell surface suggests a 'velcro' interaction between the endogenous Fn ligand and corresponding receptors on both (AR) sperm cell and oolemma, initiating sperm-egg binding.

  19. The limits of evidence: evidence based policy and the removal of gamete donor anonymity in the UK.

    PubMed

    Frith, Lucy

    2015-03-01

    This paper will critically examine the use of evidence in creating policy in the area of reproductive technologies. The use of evidence in health care and policy is not a new phenomenon. However, codified strategies for evidence appraisal in health care technology assessments and attempts to create evidence based policy initiatives suggest that the way evidence is used in practice and policy has changed. This paper will examine this trend by considering what is counted as 'good' evidence, difficulties in translating evidence into policy and practice and how evidence interacts with principles. To illustrate these points the removal of gamete donor anonymity in the UK in 2005 and the debates that preceded this change in the law will be examined. It will be argued that evidence will only ever take us so far and attention should also be paid to the underlying principles that guide policy. The paper will conclude with suggestions for how underlying principles can be more rigorously used in policy formation.

  20. Gamete donors' reasons for, and expectations and experiences of, registration with a voluntary donor linking register.

    PubMed

    Blyth, Eric; Crawshaw, Marilyn; Frith, Lucy; van den Akker, Olga

    2017-12-01

    This paper reports on a study of the views and experiences of 21 sperm donors and five egg donors registered with UK DonorLink (UKDL), a voluntary DNA-based contact register established to facilitate contact between adults who wish to identify and locate others to whom they are genetically related following donor conception. Specifically, the paper examines donors' reasons for searching for, or making information about themselves available to donor-conceived offspring. Their expectations of registration with UKDL, experiences of being registered and finally, the experiences of those who had contacted donor-conceived offspring and other genetic relatives are investigated. While most respondents reported largely positive experiences of registration, the study found significant issues relating to concerns about donation, DNA testing, possible linking with offspring and expectations of any relationship that might be established with offspring that have implications for support, mediation and counselling. Research that puts the experiences, perceptions and interests of gamete donors as the central focus of study is a relatively recent phenomenon. This study contributes to this debate and highlights directions for future research in this area.

  1. Production of Viable Gametes without Meiosis in Maize Deficient for an ARGONAUTE Protein[W

    PubMed Central

    Singh, Manjit; Goel, Shalendra; Meeley, Robert B.; Dantec, Christelle; Parrinello, Hugues; Michaud, Caroline; Leblanc, Olivier; Grimanelli, Daniel

    2011-01-01

    Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize. PMID:21325139

  2. Does reducing gamete co-incubation time improve clinical outcomes: a retrospective study.

    PubMed

    Li, Rui-Qi; Ouyang, Neng-Yong; Ou, Song-Bang; Ni, Ren-Min; Mai, Mei-Qi; Zhang, Qing-Xue; Yang, Dong-Zi; Wang, Wen-Jun

    2016-01-01

    The objective of this retrospective study was to determine whether patients undergoing in vitro fertilization (IVF) benefit from reducing the gamete co-incubation time. Patients (n = 570) were enrolled, including 281 patients in the reduced incubation time group (2-h incubation) and 289 patients in the standard IVF group (18-h incubation). The observed outcomes, including the clinical pregnancy rate (CPR), implantation rate (IR), live birth rate (LBR), and miscarriage rate (MR), were similar between the two groups. When the data were divided into two subgroups based on the maternal age (≤30 and >30 years), the rates of top-quality embryos (30.83 vs. 25.89 %; p = 0.028), CPR (66.67 vs. 42.11 %; p = 0.013), and IR (41.90 vs. 31.25 %, p = 0.019) of the 2-h incubation group were significantly higher in the younger subgroup. However, for older patients, only a lower MR (7.59 vs. 20.83 %; p = 0.019) was achieved. Reducing the time of incubation still improved the CPR (OR = 1.993, 95 % CI 1.141-3.480) and MR (OR = 3.173, 95 % CI 1.013-9.936) in the younger and older subgroups, respectively, after it was adjusted for potential confounders. Reducing incubation time improves the clinical results of IVF, although the LBR is not statistically different between the 2- and 18-h incubation time groups. And the specific clinical outcomes of reducing incubation time varied between the >30-year-old and the ≤30-year-old.

  3. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens

    PubMed Central

    Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Chernomordik, Leonid V.

    2017-01-01

    Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion. PMID:28137780

  4. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions

    PubMed Central

    Guerrero, Adán; Carneiro, Jorge; Pimentel, Arturo; Wood, Christopher D.; Corkidi, Gabriel; Darszon, Alberto

    2011-01-01

    The spermatozoon must find its female gamete partner and deliver its genetic material to generate a new individual. This requires that the spermatozoon be motile and endowed with sophisticated swimming strategies to locate the oocyte. A common strategy is chemotaxis, in which spermatozoa detect and follow a gradient of chemical signals released by the egg and its associated structures. Decoding the female gamete’s positional information is a process that spermatozoa undergo in a three-dimensional (3D) space; however, due to their speed and small size, this process has been studied almost exclusively in spermatozoa restricted to swimming in two dimensions (2D). This review examines the relationship between the mechanics of sperm propulsion and the physiological function of these cells in 3D. It also considers whether it is possible to derive all the 3D sperm swimming characteristics by extrapolating from 2D measurements. It is concluded that full insight into flagellar beat dynamics, swimming paths and chemotaxis under physiological conditions will eventually require quantitative imaging of flagellar form, ion flux changes, cell trajectories and modelling of free-swimming spermatozoa in 3D. PMID:21642645

  5. Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish.

    PubMed

    Wang, Jing; Liu, Qingfeng; Luo, Kaikun; Chen, Xuan; Xiao, Jun; Zhang, Chun; Tao, Min; Zhao, Rurong; Liu, Shaojun

    2016-08-17

    The gynogenetic diploid hybrid clone line (GDH) derived from red crucian carp (♀ RCC) × common carp (♂ CC) possesses the unusual reproductive trait of producing unreduced diploid eggs. To identify the mechanism underlying this phenomenon, we examined the structure, in vivo developmental process and in vitro dynamic development of the GDH gonad. In summary, compared with RCC and CC, GDH showed certain special straits. First, a high frequency (84.7%) of germ cell fusion occurred in gonadal tissue culture in vitro as observed by time-lapse microscopy. Second, microstructural and ultrastructural observation showed numerous binucleated and multinucleated germ cells in the gonad, providing evidence of germ cell fusion in vivo. By contrast, in the diploid RCC and CC ovaries, neither cell fusion nor multinucleated cells were observed during the development of gonads. Third, the ovary of GDH remained at stage I for 10 months, whereas those of RCC and CC remained at that stage for 2 months, indicating that the GDH germ cells underwent abnormal development before meiosis. This report is the first to demonstrate that cell fusion facilitates the formation of unreduced gametes in vertebrates, which is a valuable finding for both evolutionary biology and reproductive biology.

  6. Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization.

    PubMed

    Almiñana, C; Gil, M A; Cuello, C; Parrilla, I; Roca, J; Vazquez, J M; Martinez, E A

    2008-07-01

    A reduction in co-incubation time has been suggested as an alternative method to reduce polyspermic fertilization. The aim of this study was to evaluate the effect of short periods of gamete co-incubation during pig in vitro fertilization. A total of 2,833 in vitro matured oocytes were inseminated with thawed spermatozoa and coincubated for 0.25, 1, 2, 3, 7, 10 min and 6h. The oocytes from the 0.25-10 min groups were washed three times in modified Tris-buffered medium (mTBM) medium to remove spermatozoa not bound to the zona and transferred to the same medium (containing no spermatozoa) until 6h of co-incubation time were completed. After 6h, presumptive zygotes from each group were cultured in NCSU-23 medium for 12-15 h to assess fertilization parameters. After each period of co-incubation, 45-50 oocytes from each group were stained with Hoechst-33342 and the number of spermatozoa bound to the zona was counted. Although the number of zona bound spermatozoa increased (p<0.05) with the co-incubation time, no increase was observed in penetration rates among groups from 2 min to 6h of co-incubation time (ranging from 53.5+/-2.8 to 61.3+/-2.6%). Similarly, the efficiency of fertilization reached a maximum for the 2 min of co-incubation group with values ranging between 32.3+/-2.4 and 41.9+/-2.5%. The reduction of co-incubation time did not affect the monospermy rate (range: 71.3+/-3.4-80.2+/-3.8%) and the mean number of spermatozoa/oocyte (range: 1.2+/-0.4-1.4+/-0.5). These results show that, under our in vitro conditions, high penetration rate can be obtained with co-incubation times as short as 2 min, although monospermy could not be improved using this strategy.

  7. Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles.

    PubMed

    González-Fernández, Carmen; Tallec, Kevin; Le Goïc, Nelly; Lambert, Christophe; Soudant, Philippe; Huvet, Arnaud; Suquet, Marc; Berchel, Mathieu; Paul-Pont, Ika

    2018-06-06

    While the detection and quantification of nano-sized plastic in the environment remains a challenge, the growing number of polymer applications mean that we can expect an increase in the release of nanoplastics into the environment by indirect outputs. Today, very little is known about the impact of nano-sized plastics on marine organisms. Thus, the objective of this study was to investigate the toxicity of polystyrene nanoplastics (NPs) on oyster (Crassostrea gigas) gametes. Spermatozoa and oocytes were exposed to four NPs concentrations ranging from 0.1 to 100 mg L -1 for 1, 3 and 5 h. NPs coated with carboxylic (PS-COOH) and amine groups (PS-NH 2 ) were used to determine how surface properties influence the effects of nanoplastics. Results demonstrated the adhesion of NPs to oyster spermatozoa and oocytes as suggested by the increase of relative cell size and complexity measured by flow-cytometry and confirmed by microscopy observations. A significant increase of ROS production was observed in sperm cells upon exposure to 100 mg L -1 PS-COOH, but was not observed with PS-NH 2 , suggesting a differential effect according to the NP-associated functional group. Altogether, these results demonstrate that the effects of NPs occur rapidly, are complex and are possibly associated with the cellular eco-corona, which could modify NPs behaviour and toxicity. Copyright © 2018. Published by Elsevier Ltd.

  8. Sex- and Gamete-Specific Patterns of X Chromosome Segregation in a Trioecious Nematode.

    PubMed

    Tandonnet, Sophie; Farrell, Maureen C; Koutsovoulos, Georgios D; Blaxter, Mark L; Parihar, Manish; Sadler, Penny L; Shakes, Diane C; Pires-daSilva, Andre

    2018-01-08

    Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2-4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.

    PubMed

    Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra

    2009-01-01

    Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.

  10. Azadirachtin effects on mating success, gametic abnormalities and progeny survival in Drosophila melanogaster (Diptera).

    PubMed

    Oulhaci, Chemseddine M; Denis, Béatrice; Kilani-Morakchi, Samira; Sandoz, Jean-Christophe; Kaiser, Laure; Joly, Dominique; Aribi, Nadia

    2018-01-01

    Azadirachtin is a prominent natural pesticide and represents an alternative to conventional insecticides. It has been successfully used against insect pests. However, its effects on reproduction require further analysis. Here we investigated lethal and sublethal effects of azadirachtin, on treated adults in a model insect, Drosophila melanogaster (Meigen). Dose-mortality relationships as well as several parameters of reproduction (mating, spermatogenesis, oogenesis and fertility) were examined. Neem-Azal, a commercial formulation of azadirachtin, applied topically on newly emerged adults, increased mortality with a positive dose-dependent relationship. The LD 50 (0.63 μg) was determined 24 h after treatment using a non-linear regression. Adults surviving this dose had a mating success that was divided by 3 and a progeny production reduced by half when males were treated, and even more when females were treated. When combining probability of survival, of mating and reduced progeny, it appeared that LD 50 induced a 98% reduction in reproductive rates. Reduced progeny was partially explained by the effect of adult treatment on gametes number and abnormalities. The number of cysts and the apical nuclei positions within the cysts decreased by 29.7% and 20%, respectively, in males. In females, the number of oocytes per ovary and the volume of basal oocytes also decreased by 16.1% and 32.4%, respectively. Azadirachtin causes significant toxic effects in both sexes and decreases the fecundity and fertility of D. melanogaster. Females are more sensitive to azadirachtin. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Season-dependent effects of elevated temperature on stress biomarkers, energy metabolism and gamete development in mussels.

    PubMed

    Múgica, M; Sokolova, I M; Izagirre, U; Marigómez, I

    2015-02-01

    In coastal areas, sessile species can be severely affected by thermal stress associated to climate change. Presently, the effect of elevated temperature on metabolic, cellular and tissue-level responses of mussels was determined to assess whether the responses vary seasonally with seawater temperature and reproductive stage. Mussels were collected in fall, winter and summer, and (a) maintained at 16, 12, and 20 °C respectively or (b) subject to gradual temperature elevation for 8 days (+1 °C per day; from 16 to 24 °C in fall, from 12 to 20 °C in winter and from 20 to 28 °C in summer) and further maintained at 24 °C (fall), 20 °C (winter) and 28 °C (summer) for the following 6 days. Temperature elevation induced membrane destabilization, lysosomal enlargement, and reduced the aerobic scope in fall and summer whereas in winter no significant changes were found. Changes at tissue-level were only evident at 28 °C. Gamete development was impaired irrespective of season. Since the threshold of negative effects of warming was close to ambient temperatures in summer (24 °C or above) studied mussel populations would be vulnerable to the global climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Selling blood and gametes during tough economic times: insights from Google search.

    PubMed

    Wu, Jonathan A; Ngo, Tin C; Rothman, Cappy; Breyer, Benjamin N; Eisenberg, Michael L

    2015-10-01

    To use Google Insights search volume and publicly available economic indicators to test the hypothesis that sperm, egg, and blood donations increase during economic downturns and to demonstrate the feasibility of using Google search volume data to predict national trends in actual sperm, egg, and blood donations rates. Cross-correlation statistical analysis comparing Google search data for terms relating to blood, egg, and sperm donations with various economic indicators including the S&P 500 closing values, gross domestic product (GDP), the U.S. Index of Leading Indicators (U.S. Leading Index), gross savings rate, mortgage interest rates, unemployment rate, and consumer price index (CPI) from 2004-2011. A secondary analysis determined the Pearson correlation coefficient between Google search data with actual sperm, egg, and blood donation volume in the U.S. as measured by California Cryobank, the National Assisted Reproductive Technology Surveillance System, and the National Blood Collection and Utilization Survey, respectively. Significance of cross-correlation and Pearson correlation analysis as indicated by p value. There were several highly significant cross-correlation relationships between search volume and various economic indicators. Correlation between Google search volume for the term 'sperm donation,' 'egg donation,' and 'blood donation' with actual number of sperm, egg and blood donations in the United States demonstrated Pearson correlation coefficients of 0.2 (p > 0.10), -0.1 (p > 0.10), and 0.07 (p > 0.10), respectively. Temporal analysis showed an improved correlation coefficient of 0.9 (p < 0.05) for blood donation when shifted 12 months later relative to Google search volume. Google search volume data for search terms relating to sperm, egg, and blood donation increase during economic downturns. This finding suggests gamete and bodily fluid donations are influenced by market forces like other commodities. Google search may be useful for

  13. [Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan].

    PubMed

    Drozdov, A L; Vinnikova, V V

    2010-01-01

    The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The spermatozoons in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. grizeus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the zoosperm; S. intermedius, by a bullet-shaped one. The zoosperm spearhead and small amount of postacrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The zoosperm of Sc. griseus is characterized by two lipid drops in the cell center. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the zoosperm of cordiform sea urchins. The differences in the fine structure of zoosperm in eurybiont species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of zoosperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and tremelloid membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fubrillary material. The tremelloid membrane is formed by fubrillary material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the tremelloid membrane, with the highest abundance in Sc. mirabilis.

  14. How parents whose children have been conceived with donor gametes make their disclosure decision: contexts, influences, and couple dynamics.

    PubMed

    Shehab, Dena; Duff, Julia; Pasch, Lauri A; Mac Dougall, Kirstin; Scheib, Joanna E; Nachtigall, Robert D

    2008-01-01

    To describe parents' disclosure decision-making process. In-depth ethnographic interviews. Participants were recruited from 11 medical infertility practices and 1 sperm bank in Northern California. One hundred forty-one married couples who had conceived a child using donor gametes (62 with donor sperm, 79 with donor oocytes). Husbands and wives were interviewed together and separately. Thematic analysis of interview transcripts. Ninety-five percent of couples came to a united disclosure decision, some "intuitively," but most after discussions influenced by the couples' local sociopolitical environment, professional opinion, counseling, religious and cultural background, family relationships, and individual personal, psychological, and ethical beliefs. Couples who were not initially in agreement ultimately came to a decision after one partner deferred to the wishes or opinions of the other. Deferral could reflect the result of a prior agreement, one partner's recognition of the other's experiential or emotional expertise, or direct persuasion. In disclosing couples, men frequently deferred to their wives, whereas, in nondisclosing couples, women always deferred to their husbands. Although the majority of couples were in initial agreement about disclosure, for many the disclosure decision was a complex, negotiated process reflecting a wide range of influences and contexts.

  15. Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km(2) hypoxic region in the northern Gulf of Mexico.

    PubMed

    Thomas, Peter; Rahman, Md Saydur; Picha, Matthew E; Tan, Wenxian

    2015-12-15

    The long-term impacts of recent marked increases in the incidence and extent of hypoxia (dissolved oxygen <2 mg/L) in coastal regions worldwide on fisheries and ecosystems are unknown. Reproductive impairment was investigated in Atlantic croaker collected in 2010 from the extensive coastal hypoxic region in the northern Gulf of Mexico. Potential fecundity was significantly lower in croaker collected throughout the ~20,000 km(2) hypoxic region than in croaker from normoxic sites. In vitro bioassays of gamete viability showed reductions in oocyte maturation and sperm motility in croaker collected from the hypoxic sites in response to reproductive hormones which were accompanied by decreases in gonadal levels of membrane progestin receptor alpha, the receptor regulating these processes. The finding that environmental hypoxia exposure reduces oocyte viability in addition to decreasing oocyte production in croaker suggests that fecundity estimates need to be adjusted to account for the decrease in oocyte maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Framing the ethical and legal issues of human artificial gametes in research, therapy, and assisted reproduction: A German perspective.

    PubMed

    Advena-Regnery, Barbara; Dederer, Hans-Georg; Enghofer, Franziska; Cantz, Tobias; Heinemann, Thomas

    2018-06-01

    Recent results from studies on animals suggest that functional germ cells may be generated from human pluripotent stem cells, giving rise to three possibilities: research with these so-called artificial gametes, including fertilization experiments in vitro; their use in vivo for therapy for the treatment of human infertility; and their use in assisted reproductive technologies in vitro. While the legal, philosophical, and ethical questions associated with these possibilities have been already discussed intensively in other countries, the debate in Germany is still at its beginning. A systematic and detailed analysis of the legal framework in Germany is provided with regard to the three possibilities, including the applicable statutory laws as well as the constitutional law. The question emerges as to whether the statutory laws as well as the constitution justify a distinction to be made between embryos of artificial and natural origin. This question is subject to philosophical analysis, discussing the distinction between person and thing, dignity and price, personality and property, and nature and technique. As a result, the criterion of naturalness alone may not be sufficient to differentiate between embryos of natural and artificial origin, and other criteria need to be identified. © 2018 The Authors. Bioethics Published by John Wiley & Sons Ltd.

  17. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    PubMed

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  18. Effect of Different Media and Protein Source on Equine Gametes: Potential Impact During In Vitro Fertilization.

    PubMed

    González-Fernández, L; Macedo, S; Lopes, J S; Rocha, A; Macías-García, B

    2015-12-01

    Equine in vitro fertilization (IVF) is still inconsistent. In the present work, we studied how modified Whitten's (MW) medium and Tissue Culture Medium 199 (TCM) added with Foetal Bovine Serum (FBS; 10% v/v) or Bovine Serum Albumin (BSA; 7 mg/ml) affected equine gametes to subsequently run IVF trials. Compact (Cp) and expanded (Ex) cumuli equine oocytes were matured and placed in TCM or MW supplemented with BSA or FBS for 18-20 h (no sperm added). In Ex oocytes, TCM-199 added with FBS or BSA resulted in higher metaphase II (MII) rates (75.7% and 62.7%, respectively) than MW added with BSA (54%) or FBS (52.2%; p < 0.05); this was not observed for Cp oocytes. Equine sperm were capacitated in the same media at 10 × 10(6) sperm/ml for 4 h at 37°C; total motility and protein tyrosine phosphorylation (PY) were evaluated. While motility remained unchanged, TCM or MW added with FBS enhanced the number of sperm showing PY-stained tails (25 ± 4.8% and 31 ± 6.6%; mean ± SEM, respectively) over BSA supplemented media (3 ± 1.2% and 11.7 ± 1.1%) for TCM and MW (p < 0.05). In view of the previous results, sperm were capacitated in TCM + FBS and MW + BSA (control); IVF trials were run in the same media supplemented with 200 ng/ml of progesterone, but no fertilization occurred. Our results show that TCM + FBS enhances Ex equine oocyte's meiotic competence over MW + BSA and TCM or MW added with FBS successfully induce equine PY over media supplemented with BSA. © 2015 Blackwell Verlag GmbH.

  19. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana

    PubMed Central

    Park, Jin-Sup; Frost, Jennifer M.; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2017-01-01

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana. DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation. PMID:28130550

  20. Secondary use of empirical research data in medical ethics papers on gamete donation: forms of use and pitfalls.

    PubMed

    Provoost, Veerle

    2015-03-01

    This paper aims to provide a description of how authors publishing in medical ethics journals have made use of empirical research data in papers on the topic of gamete or embryo donation by means of references to studies conducted by others (secondary use). Rather than making a direct contribution to the theoretical methodological literature about the role empirical research data could play or should play in ethics studies, the focus is on the particular uses of these data and the problems that can be encountered with this use. In the selection of papers examined, apart from being used to describe the context, empirical evidence was mainly used to recount problems that needed solving. Few of the authors looked critically at the quality of the studies they quoted, and several instances were found of empirical data being used poorly or inappropriately. This study provides some initial baseline evidence that shows empirical data, in the form of references to studies, are sometimes being used in inappropriate ways. This suggests that medical ethicists should be more concerned about the quality of the empirical data selected, the appropriateness of the choice for a particular type of data (from a particular type of study) and the correct integration of this evidence in sound argumentation. Given that empirical data can be misused also when merely cited instead of reported, it may be worthwhile to explore good practice requirements for this type of use of empirical data in medical ethics.

  1. Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Seo, Han Geuk; Moon, Sung-Hwan; Chung, Hyung-Min; Do, Jeong Tae

    2014-11-01

    Somatic cells are reprogrammed to induced pluripotent stem cells (iPSCs) by overexpression of a combination of defined transcription factors. We generated iPSCs from mouse embryonic fibroblasts (with Oct4-GFP reporter) by transfection of pCX-OSK-2A (Oct4, Sox2, and Klf4) and pCX-cMyc vectors. We could generate partially reprogrammed cells (XiPS-7), which maintained more than 20 passages in a partially reprogrammed state; the cells expressed Nanog but were Oct4-GFP negative. When the cells were transferred to serum-free medium (with serum replacement and basic fibroblast growth factor), the XiPS-7 cells converted to Oct4-GFP-positive iPSCs (XiPS-7c, fully reprogrammed cells) with ESC-like properties. During the conversion of XiPS-7 to XiPS-7c, we found several clusters of slowly reprogrammed genes, which were activated at later stages of reprogramming. Our results suggest that partial reprogrammed cells can be induced to full reprogramming status by serum-free medium, in which stem cell maintenance- and gamete generation-related genes were upregulated. These long-term expandable partially reprogrammed cells can be used to verify the mechanism of reprogramming.

  2. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  3. In vitro penetration of swine oocytes by homologous spermatozoa: Distinct systems for gamete's co-incubation and oocyte's cryopreservation.

    PubMed

    Macedo, M C; Lucia, T; Rambo, G; Ferreira Filho, E B; Rosa, A P; Fabiane, C; Cabral, M; Deschamps, J C

    2010-02-01

    In vitro penetration (IVP) of swine oocytes by homologous spermatozoa was evaluated in two experiments using four boars as semen donors. In experiment 1, the IVP rate and the number of penetrating spermatozoa (PSP) were compared using three co-incubation systems for vitrified oocytes and fresh sperm: (1) 35mL petri dishes in a CO(2) incubator, (2) 35mL petri dishes in bags (submarine system) and (3) glass flasks partially submerged in water bath with the same gas mixture used for the bag system. Mean PSP was 8.2+/-10.1 and the IVP rate was 90.5%. The PSP differed across all systems (P=0.0006): 15.5+/-0.5 for flasks, 6.3+/-0.4 for CO(2), and 3.9+/-0.4 for bags. The IVP rate for flasks (95.0%) was greater (P=0.01) than for CO(2) and bags (90.8% and 85.0%, respectively), but it did not differ between flasks and CO(2) for three boars (P>0.05). In experiment 2, co-incubation was done as described for glass flasks in experiment 1. The IVP rate and PSP were compared for cryopreserved oocytes: either vitrified in open pulled straws (OPS), or frozen in cryotubes. Mean PSP was 5.4+/-6.5 and IVP rate was 89.6%. Both PSP and IVP rate were greater (P<0.0001) for oocytes frozen in cryotubes (7.0+/-0.3% and 95.8%, respectively) than those frozen in OPS (3.7+/-0.3% and 83.4%, respectively), with no differences found for three boars (P>0.05). In summary, successful IVP of swine oocytes by homologous spermatozoa can be achieved using gametes incubated in glass flasks and oocytes frozen in cryotubes.

  4. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  5. Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes.

    PubMed

    Herklotz, V; Ritz, C M

    2017-08-01

    Polyploidy and hybridization are important factors for generating diversity in plants. The species-rich dog roses ( Rosa sect. Caninae ) originated by allopolyploidy and are characterized by unbalanced meiosis producing polyploid egg cells (usually 4 x ) and haploid sperm cells (1 x ). In extant natural stands species hybridize spontaneously, but the extent of natural hybridization is unknown. The aim of the study was to document the frequency of reciprocal hybridization between the subsections Rubigineae and Caninae with special reference to the contribution of unreduced egg cells (5 x ) producing 6 x offspring after fertilization with reduced (1 x ) sperm cells. We tested whether hybrids arose by independent multiple events or via a single or few incidences followed by a subsequent spread of hybrids. Population genetics of 45 mixed stands of dog roses across central and south-eastern Europe were analysed using microsatellite markers and flow cytometry. Hybrids were recognized by the presence of diagnostic alleles and multivariate statistics were used to display the relationships between parental species and hybrids. Among plants classified to subsect. Rubigineae , 32 % hybridogenic individuals were detected but only 8 % hybrids were found in plants assigned to subsect. Caninae . This bias between reciprocal crossings was accompanied by a higher ploidy level in Rubigineae hybrids, which originated more frequently by unreduced egg cells. Genetic patterns of hybrids were strongly geographically structured, supporting their independent origin. The biased crossing barriers between subsections are explained by the facilitated production of unreduced gametes in subsect. Rubigineae . Unreduced egg cells probably provide the highly homologous chromosome sets required for correct chromosome pairing in hybrids. Furthermore, the higher frequency of Rubigineae hybrids is probably influenced by abundance effects because the plants of subsect. Caninae are much more abundant

  6. 78 FR 13301 - Notice of Request for Extension of Approval of an Information Collection; Spring Viremia of Carp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Restrictions on Certain Live Fish, Fertilized Eggs, and Gametes AGENCY: Animal and Plant Health Inspection... with the regulations for the importation of live fish, fertilized eggs, and gametes to prevent the... for the importation of live fish, fertilized eggs, and gametes, contact Dr. Christa Speekmann, Import...

  7. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana

    PubMed Central

    Kawashima, Tomokazu; Maruyama, Daisuke; Shagirov, Murat; Li, Jing; Hamamura, Yuki; Yelagandula, Ramesh; Toyama, Yusuke; Berger, Frédéric

    2014-01-01

    In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants. DOI: http://dx.doi.org/10.7554/eLife.04501.001 PMID:25303363

  8. Genetic analysis of children of atomic bomb survivors.

    PubMed Central

    Satoh, C; Takahashi, N; Asakawa, J; Kodaira, M; Kuick, R; Hanash, S M; Neel, J V

    1996-01-01

    Studies are under way for the detection of potential genetic effects of atomic bomb radiation at the DNA level in the children of survivors. In a pilot study, we have examined six minisatellites and five microsatellites in DNA derived from 100 families including 124 children. We detected a total of 28 mutations in three minisatellite loci. The mean mutation rates per locus per gamete in the six minisatellite loci were 1.5% for 65 exposed gametes for which mean parental gonadal dose was 1.9 Sv and 2.0% for 183 unexposed gametes. We detected four mutations in two tetranucleotide repeat sequences but no mutations in three trinucleotide repeat sequences. The mean mutation rate per locus per gamete was o% for the exposed gametes and 0.5% for the unexposed gametes in the five microsatellite loci. No significant differences in the mutation rates between the exposed and the unexposed gametes were detected in these repetitive sequences. Additional loci are being analyzed to increase the power of our study to observe a significant difference in the mutation rates at the 0.05 level of significance. Images Figure 1. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. PMID:8781374

  9. New "missing link" genus of the colonial volvocine green algae gives insights into the evolution of oogamy.

    PubMed

    Nozaki, Hisayoshi; Yamada, Toshihiro K; Takahashi, Fumio; Matsuzaki, Ryo; Nakada, Takashi

    2014-03-03

    The evolution of oogamy from isogamy, an important biological event, can be summarized as follows: morphologically similar gametes (isogametes) differentiated into small "male" and large "female" motile gametes during anisogamy, from which immotile female gametes (eggs) evolved. The volvocine green algae represent a model lineage to study this type of sex evolution and show two types of gametic unions: conjugation between isogametes outside the parental colonies (external fertilization during isogamy) and fertilization between small motile gametes (sperm) and large gametes (eggs) inside the female colony (internal fertilization during anisogamy and oogamy). Although recent cultural studies on volvocine algae revealed morphological diversity and molecular genetic data of sexual reproduction, an intermediate type of union between these two gametic unions has not been identified. We identified a novel colonial volvocine genus, Colemanosphaera, which produces bundles of spindle-shaped male gametes through successive divisions of colonial cells. Obligately anisogamous conjugation between male and female motile gametes occurred outside the female colony (external fertilization during anisogamy). This new genus contains 16- or 32-celled spheroidal colonies similar to those of the volvocine genera Yamagishiella and Eudorina. However, Colemanosphaera can be clearly distinguished from these two genera based on its sister phylogenetic position to the enigmatic flattened colonial volvocine Platydorina and external fertilization during anisogamy. Two species of Colemanosphaera were found in a Japanese lake; these species are also distributed in European freshwaters based on a published sequence of an Austrian strain and the original description of Pandorina charkowiensis from Ukraine. Based on phylogeny and morphological data, this novel genus exhibits a missing link between Platydorina and the typical spheroidal colonial volvocine members such as Pandorina or Yamagishiella

  10. Sexual fusion and life history of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) in Dalian, china

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Zhang, Zeyu; Dong, Shuanglin; Cao, Shuqing

    2011-06-01

    Morphology and life history of a brown alga Scytosiphon lomentaria (Lyngbye) Link (Scytosiphonaceae, Phaeophyceae) were investigated from 2005 to 2009 in the coastal waters of Dalian, China. The erect thalli collected in the field were tubular, hollow, and commonly constricted at intervals. Ascocysts were presented. Plurilocular gametangia, which were positioned in continuous sori on the erect thallus surface, produced biflagellar gametes. Gametophytes were dioecious and gametes were nearly isogamous. Gametes fusion occurred in three types. Type one, female and male gametes fused directly while swimming; type two, female gamete settled first, with which a male one contacted and fused rapidly; type three, while settling adjacently, a male gamete's entire protoplast moved slowly into the previously settled female one, with only an empty cell membrane left. In culture zygotes developed into crustose sporophytes that formed unilocular sporangia. Biflagellar zoospores developed into erect thalli that formed plurilocular gametangia. The results indicated that a periodical heteromorphic alternation history with haploid gametophyte generation and diploid sporophyte generation exists in S. lomentaria of the Dalian populations.

  11. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  12. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  13. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  14. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  15. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  16. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (oocyte) during manipulation. (4) Embryo incubators, used to store and preserve gametes and/or embryos at..., and maintain gametes and/or embryos at an appropriate freezing temperature. (b) Classification. Class...

  17. 21 CFR 884.6120 - Assisted reproduction accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (oocyte) during manipulation. (4) Embryo incubators, used to store and preserve gametes and/or embryos at..., and maintain gametes and/or embryos at an appropriate freezing temperature. (b) Classification. Class...

  18. 77 FR 28349 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... and Plant Health Inspection Service Title: Health Certificate for the Export of Live Crustaceans... exporting any live crustaceans and their gametes, live finfish, and their gametes, or live mollucks and...

  19. Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus.

    PubMed

    Lipinska, Agnieszka P; Van Damme, Els J M; De Clerck, Olivier

    2016-01-05

    Evolutionary studies of genes that mediate recognition between sperm and egg contribute to our understanding of reproductive isolation and speciation. Surface receptors involved in fertilization are targets of sexual selection, reinforcement, and other evolutionary forces including positive selection. This observation was made across different lineages of the eukaryotic tree from land plants to mammals, and is particularly evident in free-spawning animals. Here we use the brown algal model species Ectocarpus (Phaeophyceae) to investigate the evolution of candidate gamete recognition proteins in a distant major phylogenetic group of eukaryotes. Male gamete specific genes were identified by comparing transcriptome data covering different stages of the Ectocarpus life cycle and screened for characteristics expected from gamete recognition receptors. Selected genes were sequenced in a representative number of strains from distant geographical locations and varying stages of reproductive isolation, to search for signatures of adaptive evolution. One of the genes (Esi0130_0068) showed evidence of selective pressure. Interestingly, that gene displayed domain similarities to the receptor for egg jelly (REJ) protein involved in sperm-egg recognition in sea urchins. We have identified a male gamete specific gene with similarity to known gamete recognition receptors and signatures of adaptation. Altogether, this gene could contribute to gamete interaction during reproduction as well as reproductive isolation in Ectocarpus and is therefore a good candidate for further functional evaluation.

  20. Stem Cell Information: Glossary

    MedlinePlus

    ... germ cells (those that would become sperm and eggs). Embryonic germ cells are thought to have properties ... the male gamete (sperm) and the female gamete (egg). Fetus - In humans, the developing human from approximately ...

  1. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds.

    PubMed

    Larmer, S G; Sargolzaei, M; Schenkel, F S

    2014-05-01

    Genomic selection requires a large reference population to accurately estimate single nucleotide polymorphism (SNP) effects. In some Canadian dairy breeds, the available reference populations are not large enough for accurate estimation of SNP effects for traits of interest. If marker phase is highly consistent across multiple breeds, it is theoretically possible to increase the accuracy of genomic prediction for one or all breeds by pooling several breeds into a common reference population. This study investigated the extent of linkage disequilibrium (LD) in 5 major dairy breeds using a 50,000 (50K) SNP panel and 3 of the same breeds using the 777,000 (777K) SNP panel. Correlation of pair-wise SNP phase was also investigated on both panels. The level of LD was measured using the squared correlation of alleles at 2 loci (r(2)), and the consistency of SNP gametic phases was correlated using the signed square root of these values. Because of the high cost of the 777K panel, the accuracy of imputation from lower density marker panels [6,000 (6K) or 50K] was examined both within breed and using a multi-breed reference population in Holstein, Ayrshire, and Guernsey. Imputation was carried out using FImpute V2.2 and Beagle 3.3.2 software. Imputation accuracies were then calculated as both the proportion of correct SNP filled in (concordance rate) and allelic R(2). Computation time was also explored to determine the efficiency of the different algorithms for imputation. Analysis showed that LD values >0.2 were found in all breeds at distances at or shorter than the average adjacent pair-wise distance between SNP on the 50K panel. Correlations of r-values, however, did not reach high levels (<0.9) at these distances. High correlation values of SNP phase between breeds were observed (>0.94) when the average pair-wise distances using the 777K SNP panel were examined. High concordance rate (0.968-0.995) and allelic R(2) (0.946-0.991) were found for all breeds when imputation

  2. Pig sperm preincubation and gamete coincubation with glutamate enhance sperm-oocyte binding and in vitro fertilization.

    PubMed

    Spinaci, M; Bucci, D; Gadani, B; Porcu, E; Tamanini, C; Galeati, G

    2017-06-01

    As the taste receptor for monosodium glutamate (umami) is expressed in both murine and human spermatozoa and the presence of α-gustducin and α-transducin, G proteins involved in the umami taste signaling, has been described in boar germ cells, the aim of this study was to evaluate if monosodium glutamate (MSG) would exert any effect on sperm-oocyte binding, in vitro fertilization (IVF) and sperm parameters during in vitro induced capacitation. For sperm-zona pellucida binding assay, boar spermatozoa were preincubated for 1 h and then coincubated for 1 h with denuded in vitro matured oocytes in presence of different concentrations of MSG (0, 0.1, 1, 10 mM). MSG 1 and 10 mM significantly (P < 0.05) increased the mean number of sperm bound to ZP compared with control (12.3 ± 9.0, 17.8 ± 11.3, 17.6 ± 10.8, MSG 0, 1 and 10 mM respectively). For in vitro fertilization trials, both sperm preicubation (1 h) and gamete coincubation (1 h) were performed in presence of different concentrations of MSG (0, 0.1, 1, 10 mM). After 19 h of culture in fresh IVF medium, oocytes were fixed. MSG 1 mM significantly (P < 0.05) increased the penetration rate compared with control (53.7 ± 20.4 vs. 36.8 ± 16.2). The addition of MSG during in vitro induced capacitation of boar spermatozoa did not cause any significant difference, compared with control, on the percentage of viable cells, spermatozoa with intact acrosome and the percentage of spermatozoa displaying tyrosine-phosphorylation of sperm tail proteins. In order to evaluate whether the effect elicited by MSG could be due to glutamate uptake in boar spermatozoa, fertilization trials were performed in presence of either 1 mM MSG or 1 mM MSG + 100 μM DL-threo-beta-hydroxyaspartic acid (THA), a non selective inhibitor of glutamate uptake. A significant increase (P < 0.05) in the penetration rate in both MSG and MSG + THA groups compared to control was recorded (39.8 ± 15.7, 53.7 ± 22

  3. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  4. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  5. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  6. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  7. Legal and ethical issues in the international transaction of donor sperm and eggs.

    PubMed

    Heng, Boon Chin

    2007-04-01

    Pertinent ethical and legal issues in the international transaction of donor sperm and eggs are discussed. Firstly, there may be legislative and ethical "contradiction" by the local health authority in permitting import of donor gametes, due to varying policies on donor reimbursement in different countries. This is particularly significant in countries where the underlying principle of gamete donation is altruistic motivation, and where reimbursement is given only for direct "out-of-pocket" expenses i.e. traveling costs. Secondly, there is a lack of clear and coherent internationally-binding legislation and regulatory guidelines overseeing the exchange of donor gametes across international borders. In particular, provisions should be made for donor traceability if gametes are sourced from abroad. Thirdly, in the case of "frozen-egg donation" from abroad, patients must rightfully be informed that current cryopreservation technology is still sub-optimal, and all studies have consistently shown that the chances of conception are always lower with "frozen-eggs" compared to freshly-retrieved eggs. Finally, regulatory safeguards should be put in place to prevent fertility clinics and medical professionals from "re-selling" imported donor gametes at a profit to the patient, since it would be thoroughly unprofessional for them to earn a profit simply through the 'brokerage' of donated human material.

  8. The evolution of sexes: A specific test of the disruptive selection theory.

    PubMed

    da Silva, Jack

    2018-01-01

    The disruptive selection theory of the evolution of anisogamy posits that the evolution of a larger body or greater organismal complexity selects for a larger zygote, which in turn selects for larger gametes. This may provide the opportunity for one mating type to produce more numerous, small gametes, forcing the other mating type to produce fewer, large gametes. Predictions common to this and related theories have been partially upheld. Here, a prediction specific to the disruptive selection theory is derived from a previously published game-theoretic model that represents the most complete description of the theory. The prediction, that the ratio of macrogamete to microgamete size should be above three for anisogamous species, is supported for the volvocine algae. A fully population genetic implementation of the model, involving mutation, genetic drift, and selection, is used to verify the game-theoretic approach and accurately simulates the evolution of gamete sizes in anisogamous species. This model was extended to include a locus for gamete motility and shows that oogamy should evolve whenever there is costly motility. The classic twofold cost of sex may be derived from the fitness functions of these models, showing that this cost is ultimately due to genetic conflict.

  9. ANTIBODIES TO EIMERIA MAXIMA GAMETOCYTE ANTIGENS CROSS-REACT WITH EIMERIA TENELLA AND E. ACERVULINA: IMPLICATIONS FOR VACCINE DEVELOPMENT

    USDA-ARS?s Scientific Manuscript database

    It has been shown previously that vaccination with gamete specific molecules in Eimeria maxima offers protection via transfer of maternal antibodies (anti-EmAPGA), not just against infection with E. maxima, but also against E. tenella and E. acervulina. Antibodies to the gamete proteins recognise t...

  10. wtf genes are prolific dual poison-antidote meiotic drivers.

    PubMed

    Nuckolls, Nicole L; Bravo Núñez, María Angélica; Eickbush, Michael T; Young, Janet M; Lange, Jeffrey J; Yu, Jonathan S; Smith, Gerald R; Jaspersen, Sue L; Malik, Harmit S; Zanders, Sarah E

    2017-06-20

    Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe . We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility.

  11. Should Mitochondrial Donation Be Anonymous?

    PubMed Central

    Appleby, John B

    2018-01-01

    Abstract Currently in the United Kingdom, anyone donating gametes has the status of an open-identity donor. This means that, at the age of 18, persons conceived with gametes donated since April 1, 2005 have a right to access certain pieces of identifying information about their donor. However, in early 2015, the UK Parliament approved new regulations that make mitochondrial donors anonymous. Both mitochondrial donation and gamete donation are similar in the basic sense that they involve the contribution of gamete materials to create future persons. Given this similarity, this paper presumes that both types of donor should be treated the same and made open-identity under the law, unless there is a convincing argument for treating them differently. I argue that none of the existing arguments that have been made so far in favor of mitochondrial donor anonymity are convincing and mitochondrial donors should therefore be treated as open-identity donors under UK law. PMID:29301011

  12. Should Mitochondrial Donation Be Anonymous?

    PubMed

    Appleby, John B

    2018-03-13

    Currently in the United Kingdom, anyone donating gametes has the status of an open-identity donor. This means that, at the age of 18, persons conceived with gametes donated since April 1, 2005 have a right to access certain pieces of identifying information about their donor. However, in early 2015, the UK Parliament approved new regulations that make mitochondrial donors anonymous. Both mitochondrial donation and gamete donation are similar in the basic sense that they involve the contribution of gamete materials to create future persons. Given this similarity, this paper presumes that both types of donor should be treated the same and made open-identity under the law, unless there is a convincing argument for treating them differently. I argue that none of the existing arguments that have been made so far in favor of mitochondrial donor anonymity are convincing and mitochondrial donors should therefore be treated as open-identity donors under UK law.

  13. "Chromoseratops Meiosus": A Simple, Two-Phase Exercise to Represent the Connection between Meiosis & Increased Genetic Diversity

    ERIC Educational Resources Information Center

    Eliyahu, Dorit

    2014-01-01

    I present an activity to help students make the connection between meiosis and genetic variation. The students model meiosis in the first phase of the activity, and by that process they produce gametes of a fictitious reptilobird species, "Chromoseratops meiosus." Later on, they will "mate" their gametes and produce a zygote…

  14. wtf genes are prolific dual poison-antidote meiotic drivers

    PubMed Central

    Nuckolls, Nicole L; Bravo Núñez, María Angélica; Eickbush, Michael T; Young, Janet M; Lange, Jeffrey J; Yu, Jonathan S; Smith, Gerald R; Jaspersen, Sue L; Malik, Harmit S; Zanders, Sarah E

    2017-01-01

    Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe. We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility. DOI: http://dx.doi.org/10.7554/eLife.26033.001 PMID:28631612

  15. Somatic embryogenesis in forestry: A practical approach to cloning the best trees

    Treesearch

    Alex M. Diner

    1999-01-01

    Trees as well as humans have two basic cell types based on genetic content: somatic cells and gametic or reproductive cells. Somatic cells, such as skin cells or the sapwood cells in a tree, have at least twice (2n) the base set of chromosomes. The reproductive cells (gametic cells) have a single (n) set of chromosomes.

  16. Epigenetic information in gametes: Gaming from before fertilization. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Shi, Junchao; Zhang, Xudong; Liu, Ying; Chen, Qi

    2017-03-01

    In their interesting article [1] Wang et al. proposed a mathematical model based on evolutionary game theory [2] to tackle the fundamental question in embryo development, that how sperm and egg interact with each other, through epigenetic processes, to form a zygote and direct successful embryo development. This work is based on the premise that epigenetic reprogramming (referring to the erasure and reconstruction of epigenetic marks, such as DNA methylation and histone modifications) after fertilization might be of paramount importance to maintain the normal development of embryos, a premise we fully agree, given the compelling experimental evidence reported [3]. Wang et al. have specifically chosen to employ the well-studied DNA methylation reprogramming process during mammalian early embryo development, as a basis to develop their mathematical model, namely epigenetic game theory (epiGame). They concluded that the DNA methylation pattern in mammalian early embryo could be formulated and quantified, and their model can be further used to quantify the interactions, such as competition and/or cooperation of expressed genes that maximize the fitness of embryos. The efforts by Wang et al. in quantitatively and systematically analyzing the beginning of life apparently hold value and represent a novel direction for future embryo development research from both theoretical and experimental biologists. On the other hand, we see their theory still at its infancy, because there are plenty more parameters to consider and there are spaces for debates, such as the cases of haploid embryo development [4]. Here, we briefly comment on the dynamic process of epigenetic reprogramming that goes beyond DNA methylation, a dynamic interplay that involves histone modifications, non-coding RNAs, transposable elements et al., as well as the potential input of the various types of 'hereditary' epigenetic information in the gametes - a game that has started before the fertilization.

  17. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum

    PubMed Central

    Johnson, M G; Shaw, A J

    2016-01-01

    A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population. PMID:26905464

  18. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum.

    PubMed

    Johnson, M G; Shaw, A J

    2016-06-01

    A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population.

  19. The commodification of human reproductive materials.

    PubMed Central

    Resnik, D B

    1998-01-01

    This essay develops a framework for thinking about the moral basis for the commodification of human reproductive materials. It argues that selling and buying gametes and genes is morally acceptable although there should not be a market for zygotes, embryos, or genomes. Also a market in gametes and genes should be regulated in order to address concerns about the adverse social consequences of commodification. PMID:9873979

  20. Broadcast Spawning Coral Mussismilia hispida Can Vertically Transfer its Associated Bacterial Core

    PubMed Central

    Leite, Deborah C. A.; Leão, Pedro; Garrido, Amana G.; Lins, Ulysses; Santos, Henrique F.; Pires, Débora O.; Castro, Clovis B.; van Elsas, Jan D.; Zilberberg, Carla; Rosado, Alexandre S.; Peixoto, Raquel S.

    2017-01-01

    The hologenome theory of evolution (HTE), which is under fierce debate, presupposes that parts of the microbiome are transmitted from one generation to the next [vertical transmission (VT)], which may also influence the evolution of the holobiont. Even though bacteria have previously been described in early life stages of corals, these early life stages (larvae) could have been inoculated in the water and not inside the parental colony (through gametes) carrying the parental microbiome. How Symbiodinium is transmitted to offspring is also not clear, as only one study has described this mechanism in spawners. All other studies refer to incubators. To explore the VT hypothesis and the key components being transferred, colonies of the broadcast spawner species Mussismilia hispida were kept in nurseries until spawning. Gamete bundles, larvae and adult corals were analyzed to identify their associated microbiota with respect to composition and location. Symbiodinium and bacteria were detected by sequencing in gametes and coral planula larvae. However, no cells were detected using microscopy at the gamete stage, which could be related to the absence of those cells inside the oocytes/dispersed in the mucus or to a low resolution of our approach. A preliminary survey of Symbiodinium diversity indicated that parental colonies harbored Symbiodinium clades B, C and G, whereas only clade B was found in oocytes and planula larvae [5 days after fertilization (a.f.)]. The core bacterial populations found in the bundles, planula larvae and parental colonies were identified as members of the genera Burkholderia, Pseudomonas, Acinetobacter, Ralstonia, Inquilinus and Bacillus, suggesting that these populations could be vertically transferred through the mucus. The collective data suggest that spawner corals, such as M. hispida, can transmit Symbiodinium cells and the bacterial core to their offspring by a coral gamete (and that this gamete, with its bacterial load, is released into

  1. Strategies for outcrossing and genetic manipulation of Drosophila compound autosome stocks.

    PubMed

    Martins, T; Kotadia, S; Malmanche, N; Sunkel, C E; Sullivan, W

    2013-01-01

    Among all organisms, Drosophila melanogaster has the most extensive well-characterized collection of large-scale chromosome rearrangements. Compound chromosomes, rearrangements in which homologous chromosome arms share a centromere, have proven especially useful in genetic-based surveys of the entire genome. However, their potential has not been fully realized because compound autosome stocks are refractile to standard genetic manipulations: if outcrossed, they yield inviable aneuploid progeny. Here we describe two strategies, cold-shock and use of the bubR1 mutant alleles, to produce nullo gametes through nondisjunction. These gametes are complementary to the compound chromosome-bearing gametes and thus produce viable progeny. Using these techniques, we created a compound chromosome two C(2)EN stock bearing a red fluorescent protein-histone transgene, facilitating live analysis of these unusually long chromosomes.

  2. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment

    PubMed Central

    Hemmings, K.E.; Maruthini, D.; Vyjayanthi, S.; Hogg, J.E.; Balen, A.H.; Campbell, B.K.; Leese, H.J.; Picton, H.M.

    2013-01-01

    STUDY QUESTION Can amino acid profiling differentiate between human oocytes with differing competence to mature to metaphase II (MII) in vitro? SUMMARY ANSWER Oocytes which remained arrested at the germinal vesicle (GV) stage after 24 h of in vitro maturation (IVM) displayed differences in the depletion/appearance of amino acids compared with oocytes which progressed to MII and patient age, infertile diagnosis and ovarian stimulation regime significantly affected oocyte amino acid turnover during IVM. WHAT IS KNOWN ALREADY Amino acid profiling has been proposed as a technique which can distinguish between human pronucleate zygotes and cleavage stage embryos with the potential to develop to the blastocyst stage and implant to produce a pregnancy and those that arrest. Most recently, the amino acid turnover by individual bovine oocytes has been shown to be predictive of oocyte developmental competence as indicated by the gamete's capacity to undergo fertilization and early cleavage divisions in vitro. STUDY DESIGN, SIZE, DURATION The study was conducted between March 2005 and March 2010. A total of 216 oocytes which were at the GV or metaphase I (MI) stages at the time of ICSI were donated by 67 patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS The research was conducted in university research laboratories affiliated to a hospital-based infertility clinic. Oocytes were cultured for 24 h and the depletion/appearance of amino acids was measured during the final 6 h of IVM. Amino acid turnover was analysed in relation to oocyte meiotic progression, patient age, disease aetiology and controlled ovarian stimulation regime. MAIN RESULTS AND THE ROLE OF CHANCE The depletion/appearance of key amino acids was linked to the maturation potential of human oocytes in vitro. Oocytes which arrested at the GV stage (n = 9) depleted significantly more valine and isoleucine than those which progressed to MI (n = 32) or MII (n = 107) (P < 0.05). Glutamate, glutamine, arginine and

  3. Fluorescence microscopy study on the cytoskeletal displacements during sperm differentiation in the bush-cricket Tylopsis liliifolia (Fabricius) (Orthoptera: Tettigoniidae).

    PubMed

    Viscuso, Renata; Federico, Concetta; Saccone, Salvatore; Bonaccorsi, Bianca; Vitale, Danilo G M

    2016-02-01

    A study by fluorescence microscopy has been carried out on male gametes from testicular follicles, seminal vesicles, spermatophores, and seminal receptacles of the bush-cricket Tylopsis liliifolia, focusing the attention on localization and movements of F-actin and α-tubulin during sperm differentiation, since data in this respect are lacking in the Orthoptera. F-actin and α-tubulin positivity was detected in the testicular follicles, in particular at the bridges connecting spermatids of a same clone and around their nucleus, during the first differentiation stages. During the following differentiation stages in the testes, F-actin was found at one of the spermatid poles and then, during nucleus elongation, at the whole acrosomal region. A peculiar F-actin-positivity was found at the flagellum, more markedly immediately posterior to the nucleus, at the basal body region of the gametes from the testicular follicles and from the other examined districts. Other interesting data from our investigations concerns the α-tubulin displacements during the differentiation stages of the spermatid and a constant absence of α-tubulin-positivity where the centrioles are located. No positivity was also found for both α-tubulin and nuclear markers at the anterior region of the gamete, where the acrosomal wings are localized. Our results, compared with what is so far known in literature for the insects, lead us to assert that microfilaments and microtubules undergo gradual displacements, markedly in the testicular follicles, during the morphogenesis of the male gamete of T. liliifolia aimed to its organization and motility and probably also to its interaction with the female gamete. © 2015 Wiley Periodicals, Inc.

  4. Conspecific Sperm Precedence Is a Reproductive Barrier between Free-Spawning Marine Mussels in the Northwest Atlantic Mytilus Hybrid Zone

    PubMed Central

    Klibansky, Lara K. J.; McCartney, Michael A.

    2014-01-01

    Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP), a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal—dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns. PMID:25268856

  5. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate.

    PubMed

    Torrezan-Nitao, Elis; Boni, Raianna; Marques-Santos, Luis Fernando

    2016-10-01

    Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility. © 2016 International Federation for Cell Biology.

  6. Genetic Compatibility Underlies Benefits of Mate Choice in an External Fertilizer.

    PubMed

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2016-05-01

    Mate choice is a common feature of sexually reproducing species. In sessile or sedentary external fertilizers, however, direct interactions between reproductive partners are minimal, and instead mate recognition and choice must occur at the level of gametes. It is common for some sperm and egg combinations to have higher fertilization success than others, but it remains unclear whether differences in fertilization reflect gamete-level mate choice (GMC) for paternal quality or parental compatibility. Here, we examine the mechanisms underlying GMC in an externally fertilizing ascidian. A manipulative mate-choice assay confirmed that offspring viability was greater in clutches where we allowed GMC than in clutches where we precluded GMC. A complementary quantitative genetic experiment then revealed that paternal quality effects were generally weaker than parental compatibility effects, particularly for the trait combination underlying the benefits of GMC. Overall, our data suggest that gametes that are more compatible at fertilization produce more viable offspring than gametes that are less compatible at fertilization. Therefore, although the regalia we typically associate with sexual selection are absent in external fertilizers, mechanisms that allow females to bias fertilization in favor of some males over others produce significant fitness benefits in organisms reproducing via the ancestral strategy.

  7. Transgenderism and reproduction.

    PubMed

    TʼSjoen, Guy; Van Caenegem, Eva; Wierckx, Katrien

    2013-12-01

    The development of new reproductive medicine techniques creates opportunities for preserving fertility in transgender persons. Before, losing fertility was accepted as the price to pay for transitioning. The desire for children is present in many trans persons, as in the general population. Ethical concerns are sometimes raised against the preservation of fertility; however, the only unique aspect of this group is the gender transition of one of the parents. All other elements such as same sex parenthood, use of donor gametes, social stigma, etc., can be found in other groups of parents. Not all reproductive options for all trans persons are equal because not only the gametes are of importance, but also the sex of the (future) partner. In trans women, the best option to preserve gametes is cryopreservation of sperm by preference initiated before starting hormonal therapy. In trans men, donor sperm is most often used, but in theory, there are three options available to preserve fertility: oocyte banking, embryo banking and banking of ovarian tissue. Fertility is possible for both trans men and women, but it requires timely cryopreservation of gametes or stopping cross-sex hormones and possible fertility treatments which are costly and may be unpleasant. Centers should elucidate their policy and inform trans persons on the possibilities and limitations.

  8. Hard time to be parents? Sea urchin fishery shifts potential reproductive contribution of population onto the shoulders of the young adults.

    PubMed

    Loi, Barbara; Guala, Ivan; Pires da Silva, Rodrigo; Brundu, Gianni; Baroli, Maura; Farina, Simone

    2017-01-01

    In Sardinia, as in other regions of the Mediterranean Sea, sustainable fisheries of the sea urchin Paracentrotus lividus have become a necessity. At harvesting sites, the systematic removal of large individuals (diameter ≥ 50 mm) seriously compromises the biological and ecological functions of sea urchin populations. Specifically, in this study, we compared the reproductive potential of the populations from Mediterranean coastal areas which have different levels of sea urchin fishing pressure. The areas were located at Su Pallosu Bay, where pressure is high and Tavolara-Punta Coda Cavallo, a marine protected area where sea urchin harvesting is low. Reproductive potential was estimated by calculating the gonadosomatic index (GSI) from June 2013 to May 2014 both for individuals of commercial size (diameter without spines, TD ≥ 50 mm) and the undersized ones with gonads (30 ≤ TD < 40 mm and 40 ≤ TD < 50 mm). Gamete output was calculated for the commercial-size class and the undersized individuals with fertile gonads (40 ≤ TD < 50 mm) in relation to their natural density (gamete output per m 2 ). The reproductive potential of populations was slightly different at the beginning of the sampling period but it progressed at different rates with an early spring spawning event in the high-pressure zone and two gamete depositions in early and late spring in the low-pressure zone. For each fertile size class, GSI values changed significantly during the year of our study and between the two zones. Although the multiple spawning events determined a two-fold higher total gamete output of population (popTGO) in the low-pressure zone, the population mean gamete output (popMGO) was similar in the two zones. In the high-pressure zone, the commercial-sized individuals represented approximatively 5% of the population, with almost all the individuals smaller than 60 mm producing an amount of gametes nearly three times lower than the undersized ones. Conversely, the high

  9. Hard time to be parents? Sea urchin fishery shifts potential reproductive contribution of population onto the shoulders of the young adults

    PubMed Central

    Guala, Ivan; Pires da Silva, Rodrigo; Brundu, Gianni; Baroli, Maura; Farina, Simone

    2017-01-01

    Background In Sardinia, as in other regions of the Mediterranean Sea, sustainable fisheries of the sea urchin Paracentrotus lividus have become a necessity. At harvesting sites, the systematic removal of large individuals (diameter ≥ 50 mm) seriously compromises the biological and ecological functions of sea urchin populations. Specifically, in this study, we compared the reproductive potential of the populations from Mediterranean coastal areas which have different levels of sea urchin fishing pressure. The areas were located at Su Pallosu Bay, where pressure is high and Tavolara-Punta Coda Cavallo, a marine protected area where sea urchin harvesting is low. Methods Reproductive potential was estimated by calculating the gonadosomatic index (GSI) from June 2013 to May 2014 both for individuals of commercial size (diameter without spines, TD ≥ 50 mm) and the undersized ones with gonads (30 ≤ TD < 40 mm and 40 ≤ TD < 50 mm). Gamete output was calculated for the commercial-size class and the undersized individuals with fertile gonads (40 ≤ TD < 50 mm) in relation to their natural density (gamete output per m2). Results The reproductive potential of populations was slightly different at the beginning of the sampling period but it progressed at different rates with an early spring spawning event in the high-pressure zone and two gamete depositions in early and late spring in the low-pressure zone. For each fertile size class, GSI values changed significantly during the year of our study and between the two zones. Although the multiple spawning events determined a two-fold higher total gamete output of population (popTGO) in the low-pressure zone, the population mean gamete output (popMGO) was similar in the two zones. In the high-pressure zone, the commercial-sized individuals represented approximatively 5% of the population, with almost all the individuals smaller than 60 mm producing an amount of gametes nearly three times lower than the undersized ones

  10. Creating and Selling Embryos for “Donation”: Ethical Challenges

    PubMed Central

    Klitzman, Robert; Sauer, Mark V.

    2015-01-01

    The commercial creation and sale of embryos has begun, posing a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, firstly, regarding the rights of the unborn children – their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring will thus never learn that their parents are not their biological parents. Yet, such disclosures – regarding not only one, but both of these biological parents – may be important for these individuals; and lack of this knowledge may impede their physical and psychological health. Secondly, questions surface regarding the fees that providers should charge for embryos, and whether these amounts should vary based on the traits of one or both of the gamete donors. Some prospective parents may seek specific traits in a baby (e.g., height or eye/hair coloring), prompting creation of embryos from two gamete donors who possess these characteristics. Thirdly, ownership of embryos created without an advanced directive by patients poses dilemmas – e.g., disposition of any remaining embryos. Fourthly, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married and procreate. This discussion has several critical implications for future practice, and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists and other physicians about these techniques and practices. Clinicians can refer such patients to Assisted Reproductive Technology specialists, but familiarity with the basic aspects of the issues and complexities involved could aid themselves and their patients Several of these issues can be

  11. Creating and selling embryos for "donation": ethical challenges.

    PubMed

    Klitzman, Robert; Sauer, Mark V

    2015-02-01

    The commercial creation and sale of embryos has begun, which poses a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, first, regarding the rights of the unborn children and their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring thus will never learn that their parents are not their biologic parents. Yet, such disclosures, regarding not only one but both of these biologic parents, may be important for these individuals; and a lack of this knowledge may impede their physical and psychological health. Second, questions surface regarding the fees that providers should charge for embryos and whether these amounts should vary based on the traits of 1 or both of the gamete donors. Some prospective parents may seek specific traits in a baby (eg, height or eye/hair coloring), which prompts the creation of embryos from 2 gamete donors who possess these characteristics. Third, ownership of embryos created without an advanced directive by patients poses dilemmas (eg, disposition of any remaining embryos). Fourth, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married, and procreate. This discussion has several critical implications for future practice and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists, and other physicians about these techniques and practices. Clinicians can refer such patients to assisted reproductive technology specialists; however, familiarity with the basic aspects of the issues and complexities involved could aid these providers and their patients Several of these issues can be

  12. Evolutionary history of the HAP2/GCS1 gene and sexual reproduction in metazoans.

    PubMed

    Steele, Robert E; Dana, Catherine E

    2009-11-03

    The HAP2/GCS1 gene first appeared in the common ancestor of plants, animals, and protists, and is required in the male gamete for fusion to the female gamete in the unicellular organisms Chlamydomonas and Plasmodium. We have identified a HAP2/GCS1 gene in the genome sequence of the sponge Amphimedon queenslandica. This finding provides a continuous evolutionary history of HAP2/GCS1 from unicellular organisms into the metazoan lineage. Divergent versions of the HAP2/GCS1 gene are also present in the genomes of some but not all arthropods. By examining the expression of the HAP2/GCS1 gene in the cnidarian Hydra, we have found the first evidence supporting the hypothesis that HAP2/GCS1 was used for male gamete fusion in the ancestor of extant metazoans and that it retains that function in modern cnidarians.

  13. ESHRE Task Force on Ethics and Law 11: Posthumous assisted reproduction.

    PubMed

    Pennings, G; de Wert, G; Shenfield, F; Cohen, J; Devroey, P; Tarlatzis, B

    2006-12-01

    This article analyses the different ethical aspects of posthumous assisted reproduction. Two situations are distinguished: cases in which the gametes or embryos are used by the surviving partner and cases in which the gametes or embryos are made available for third persons. The moral evaluation of the procedure depends on whether the act is restricted to the existing parental project. A major difficulty for the moral evaluation is the inconclusiveness of the empirical data on the psychosocial development of children born after this procedure. The Task Force concluded that posthumous reproduction by a partner is acceptable if the following conditions are met: written consent has been given by the deceased person, the partner received extensive counselling and a minimum waiting period of 1 year is imposed before a treatment can be started. For use by third parties, the usual conditions for gamete and embryo donation apply.

  14. Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.

    PubMed

    Wilson, Nedra F

    2008-01-01

    During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.

  15. Formation and structural organization of the egg-sperm bundle of the scleractinian coral Montipora capitata

    NASA Astrophysics Data System (ADS)

    Padilla-Gamiño, J. L.; Weatherby, T. M.; Waller, R. G.; Gates, R. D.

    2011-06-01

    The majority of scleractinian corals are hermaphrodites that broadcast spawn their gametes separately or packaged as egg-sperm bundles during spawning events that are timed to the lunar cycle. The egg-sperm bundle is an efficient way of transporting gametes to the ocean surface where fertilization takes place, while minimizing sperm dilution and maximizing the opportunity for gamete encounters during a spawning event. To date, there are few studies that focus on the formation and structure of egg-sperm bundle. This study explores formation, ultrastructure, and longevity of the egg-sperm bundle in Montipora capitata, a major reef building coral in Hawai`i. Our results show that the egg-sperm bundle is formed by a mucus layer secreted by the oocytes. The sperm package is located at the center of each bundle, possibly reflecting the development of male and female gametes in different mesenteries. Once the egg-sperm bundle has reached the ocean surface, it breaks open within 10-35 min, depending on the environmental conditions (i.e., wind, water turbulence). Although the bundle has an ephemeral life span, the formation of an egg-sperm bundle is a fundamental part of the reproductive process that could be strongly influenced by climate change and deterioration of water quality (due to anthropogenic effects) and thus requires further investigation.

  16. Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal.

    PubMed

    Van Drunen, Wendy E; van Kleunen, Mark; Dorken, Marcel E

    2015-07-21

    Clonality is a pervasive feature of sessile organisms, but this form of asexual reproduction is thought to interfere with sexual fitness via the movement of gametes among the modules that comprise the clone. This within-clone movement of gametes is expected to reduce sexual fitness via mate limitation of male reproductive success and, in some cases, via the production of highly inbred (i.e., self-fertilized) offspring. However, clonality also results in the spatial expansion of the genetic individual (i.e., genet), and this should decrease distances gametes and sexually produced offspring must travel to avoid competing with other gametes and offspring from the same clone. The extent to which any negative effects of clonality on mating success might be offset by the positive effects of spatial expansion is poorly understood. Here, we develop spatially explicit models in which fitness was determined by the success of genets through their male and female sex functions. Our results indicate that clonality serves to increase sexual fitness when it is associated with the outward expansion of the genet. Our models further reveal that the main fitness benefit of clonal expansion might occur through the dispersal of offspring over a wider area compared with nonclonal phenotypes. We conclude that, instead of interfering with sexual reproduction, clonal expansion should often serve to enhance sexual fitness.

  17. Different segregation patterns in five carriers due to a pericentric inversion of chromosome 1.

    PubMed

    Luo, Yuqin; Xu, Chenming; Sun, Yixi; Wang, Liya; Chen, Songchang; Jin, Fan

    2014-12-01

    Pericentric inversion can produce recombinant gametes; however, meiotic segregation studies on the relationship between the frequency of recombinants and the inverted segment size are rare. Triple-color fluorescence in situ hybridization (FISH) was performed to analyze the meiotic behavior in five inv(1) carriers with different breakpoints. Recombination gametes were absent in Patient 1, whereas the percentages of the recombinants in Patients 2, 3, 4, and 5 were of 9.2%, 15.3%, 17.3%, and 40.9%, respectively. A significant difference was present for the frequencies of the recombinant spermatozoa among the five patients (p < 0.001). For each patient, the frequency of the two types of recombinant gametes (dup(1p)/del(1q) or del(1p)/dup(1q)) did not exhibit a significant difference in comparison with the expected 1:1 ratio (p > 0.05). The meiotic segregation of nine inv(1) carriers (including those presented in this paper) is now available. A significant correlation was discovered between the rate of recombination and the proportion of the chromosome implicated in the inversion (R = 0.9435, p < 0.001). The frequency of the recombinant gametes was directly related to the proportion of the chromosome that was inverted. Sperm-FISH allowed an additional comprehension of the patterns of meiotic segregation and provided accurate genetic counseling.

  18. Bio-foam enhances larval retention in a free-spawning marine tunicate

    PubMed Central

    Castilla, Juan Carlos; Manríquez, Patricio H.; Delgado, Alejandro P.; Gargallo, Ligia; Leiva, Angel; Radic, Deodato

    2007-01-01

    Here we report a mechanism that reduces dispersal of early developing stages and larvae in a free-spawning intertidal and shallow subtidal tunicate, Pyura praeputialis (Heller 1878), in the Bay of Antofagasta, Chile. The spawning of gametes by the tunicate into the naturally turbulent aerated seawater decreases their surface tension and induces the formation of a bio-foam. Water collected from foamy intertidal pools and tide channels showed a high concentration of P. praeputialis early developing stages and tadpole larvae in the foam. Because gametes are synchronically spawned for external fertilization and larvae settle near adults, our results suggest that this bio-foam increases fertilization success and effective settlement of their short-lived larvae in the vicinity of the adults spawning the gametes. This mechanism reinforces published evidence suggesting that local retention of intertidal and inshore marine invertebrate larvae may be more common than previously thought, offering, for instance, new perspectives for the design and networking of marine protected and management areas. PMID:17984045

  19. Bio-foam enhances larval retention in a free-spawning marine tunicate.

    PubMed

    Castilla, Juan Carlos; Manríquez, Patricio H; Delgado, Alejandro P; Gargallo, Ligia; Leiva, Angel; Radic, Deodato

    2007-11-13

    Here we report a mechanism that reduces dispersal of early developing stages and larvae in a free-spawning intertidal and shallow subtidal tunicate, Pyura praeputialis (Heller 1878), in the Bay of Antofagasta, Chile. The spawning of gametes by the tunicate into the naturally turbulent aerated seawater decreases their surface tension and induces the formation of a bio-foam. Water collected from foamy intertidal pools and tide channels showed a high concentration of P. praeputialis early developing stages and tadpole larvae in the foam. Because gametes are synchronically spawned for external fertilization and larvae settle near adults, our results suggest that this bio-foam increases fertilization success and effective settlement of their short-lived larvae in the vicinity of the adults spawning the gametes. This mechanism reinforces published evidence suggesting that local retention of intertidal and inshore marine invertebrate larvae may be more common than previously thought, offering, for instance, new perspectives for the design and networking of marine protected and management areas.

  20. Chemical regulation of spawning in the zebra mussel (Dreissena polymorpha)

    USGS Publications Warehouse

    Ram, Jeffrey L.; Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Previous literature suggests that spawning in bivalves is chemically regulated, both by environmental chemical cues and by internal chemical mediators. In a model proposed for zebra mussels, chemicals from phytoplankton initially trigger spawning, and chemicals associated with gametes provide further stimulus for spawning. The response to environmental chemicals is internally mediated by a pathway utilizing serotonin (5-hydroxytryptamine, a neurotransmitter), which acts directly on both male and female gonads. The role of serotonin and most other aspects of the model have been tested only on bivalves other than zebra mussels. The effect of serotonin on zebra mussel spawning was tested. Serotonin (10-5 and 10-3 M) injected into ripe males induced spawning, but injection of serotonin into females did not. Gametes were not released by 10-6 serotonin; in most cases, serotonin injection did not release gametes from immature recipients. Serotonin injection provides a reliable means for identifying ripe male zebra mussels and for obtaining zebra mussel sperm without the need for dissection.

  1. Inheritance of microsatellite loci in the polyploid lake sturgeon (Acipenser fulvescens)

    USGS Publications Warehouse

    Pyatskowit, J.D.; Krueger, C.C.; Kincaid, H.L.; May, B.

    2001-01-01

    Inheritance in the expression of amplicons for four microsatellite primer pairs was determined using 10 families created from gametes of wild lake sturgeon (Acipenser fulvescens). Loci Afu34 and Afu68 expressed a maximum of two even-intensity bands per individual and had progeny genotype ratios that fit disomic inheritance (P > 0.05). Some variation exhibited at Afu34 and Afu68 was attributable to a null allele. Genotype expression at both loci also indicated that one female parent had transmitted unreduced gametes. Primer Afu39 amplified products that exhibited four gene doses, where genotype counts fit expected ratios for disomic inheritance (P > 0.05) indicating amplification of products from two disomic loci that share alleles. Meiotic drive was evident at the Afu39 loci based on a test for random segregation (P < 0.05). Only the expression of Afu19 gave evidence of tetrasomic inheritance based on a single progeny potentially produced by a double reduction gamete. No evidence for proposed octoploid inheritance was observed.

  2. Islam, Assisted Reproduction, and the Bioethical Aftermath.

    PubMed

    Inhorn, Marcia C; Tremayne, Soraya

    2016-04-01

    Assisted reproductive technologies (ARTs), including in vitro fertilization to overcome infertility, are now widely available across the Middle East. Islamic fatwas emerging from the Sunni Islamic countries have permitted many ARTs, while prohibiting others. However, recent religious rulings emanating from Shia Muslim-dominant Iran have created unique avenues for infertile Muslim couples to obtain donor gametes through third-party reproductive assistance. The opening of Iran to gamete donation has had major impacts in Shia-dominant Lebanon and has led to so-called reproductive tourism of Sunni Muslim couples who are searching for donor gametes across national and international borders. This paper explores the "bioethical aftermath" of donor technologies in the Muslim Middle East. Other unexpected outcomes include new forms of sex selection and fetal "reduction." In general, assisted reproduction in the Muslim world has been a key site for understanding how emerging biomedical technologies are generating new Islamic bioethical discourses and local moral responses, as ARTs are used in novel and unexpected ways.

  3. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei

    PubMed Central

    Rangarajan, Radha; Bei, Amy K; Jethwaney, Deepa; Maldonado, Priscilla; Dorin, Dominique; Sultan, Ali A; Doerig, Christian

    2005-01-01

    Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission. PMID:15864297

  4. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization

    PubMed Central

    Jégou, Antoine; Ziyyat, Ahmed; Barraud-Lange, Virginie; Perez, Eric; Wolf, Jean Philippe; Pincet, Frédéric; Gourier, Christine

    2011-01-01

    CD9 tetraspanin is the only egg membrane protein known to be essential for fertilization. To investigate its role, we have measured, on a unique acrosome reacted sperm brought in contact with an egg, the adhesion probability and strength with a sensitivity of a single molecule attachment. Probing the binding events at different locations of wild-type egg we described different modes of interaction. Here, we show that more gamete adhesion events occur on Cd9 null eggs but that the strongest interaction mode disappears. We propose that sperm–egg fusion is a direct consequence of CD9 controlled sperm–egg adhesion properties. CD9 generates adhesion sites responsible for the strongest of the observed gamete interaction. These strong adhesion sites impose, during the whole interaction lifetime, a tight proximity of the gamete membranes, which is a requirement for fusion to take place. The CD9-induced adhesion sites would be the actual location where fusion occurs. PMID:21690351

  5. Evolution of haploid selection in predominantly diploid organisms

    PubMed Central

    Otto, Sarah P.; Scott, Michael F.; Immler, Simone

    2015-01-01

    Diploid organisms manipulate the extent to which their haploid gametes experience selection. Animals typically produce sperm with a diploid complement of most proteins and RNA, limiting selection on the haploid genotype. Plants, however, exhibit extensive expression in pollen, with actively transcribed haploid genomes. Here we analyze models that track the evolution of genes that modify the strength of haploid selection to predict when evolution intensifies and when it dampens the “selective arena” within which male gametes compete for fertilization. Considering deleterious mutations, evolution leads diploid mothers to strengthen selection among haploid sperm/pollen, because this reduces the mutation load inherited by their diploid offspring. If, however, selection acts in opposite directions in haploids and diploids (“ploidally antagonistic selection”), mothers evolve to reduce haploid selection to avoid selectively amplifying alleles harmful to their offspring. Consequently, with maternal control, selection in the haploid phase either is maximized or reaches an intermediate state, depending on the deleterious mutation rate relative to the extent of ploidally antagonistic selection. By contrast, evolution generally leads diploid fathers to mask mutations in their gametes to the maximum extent possible, whenever masking (e.g., through transcript sharing) increases the average fitness of a father’s gametes. We discuss the implications of this maternal–paternal conflict over the extent of haploid selection and describe empirical studies needed to refine our understanding of haploid selection among seemingly diploid organisms. PMID:26669442

  6. B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes

    PubMed Central

    Dhar, Manoj K.; Kour, Gurmeet; Kaul, Sanjana

    2017-01-01

    Abstract Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen mother cells. Several experiments were done to determine the transmission of B chromosome through male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was significantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to have preferential transmission through the female sex track, which may be due to meiotic drive. One of the most intriguing aspects of the present study was the recovery of plants having more chromosomes than the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromosome carrying plants. The origin of these plants can be explained on the basis of a two step process; formation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar genetic constitution of 1B (parent) and plants with higher number of chromosomes. PMID:28919970

  7. Fertility tourism: circumventive routes that enable access to reproductive technologies and substances.

    PubMed

    Bergmann, Sven

    2011-01-01

    “Fertility tourism” is a journalistic eye‐catcher focusing on the phenomenon of patients who search for a reproductive treatment in another country in order to circumvent laws, access restrictions, or waiting lists in their home country. In Europe, the reasons why people seek reproductive treatments outside their national boundaries are quite diverse, in part because regulations differ so much among countries. Beginning with four examples of people who crossed borders for an in vitro fertilization (IVF) treatment with gamete donation, this article provides some insight into these transnational circumvention practices based on material from ethnographic fieldwork and interviews in Spain, Denmark, and the Czech Republic. In all three countries, gamete donation is made strictly anonymous. Clinical practices such as egg donor recruitment and phenotypical matching between donors and recipients serve to naturalize the substitution of gametes and to install social legitimacy through resemblance markers with the prospective child. In comparison to other areas of medical tourism, which are subjects of debate as a consequence of neoliberal health politics and international medical competition, mobility in the area of reproductive technologies is deeply intertwined with new forms of doing kinship. For prospective parents, it holds a promise of generating offspring who could pass as biogenetically conceived children. Therefore, IVF with gamete donation is mostly modeled after conceptions of nature. Through anonymity and concealment it creates forms of nonrelatedness that leave space for future imaginings and traces of transnational genetic creators.

  8. Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster.

    PubMed

    Bloch Qazi, Margaret C; Hogdal, Leah

    2010-09-01

    Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females 'hold on' to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.

  9. Signal transduction at fertilization: the Ca2+ release pathway in echinoderms and other invertebrate deuterostomes.

    PubMed

    Townley, Ian K; Roux, Michelle M; Foltz, Kathy R

    2006-04-01

    Gamete interaction and fusion triggers a number of events that lead to egg activation and development of a new organism. A key event at fertilization is the rise in intracellular calcium. In deuterostomes, this calcium is released from the egg's endoplasmic reticulum and is necessary for proper activation. This article reviews recent data regarding how gamete interaction triggers the initial calcium release, focusing on the echinoderms (invertebrate deuterostomes) as model systems. In eggs of these animals, Src-type kinases and phospholipase C-gamma are required components of the initial calcium trigger pathway in eggs.

  10. Genetic aspects of artificial insemination with donor semen: the French CECOS Federation guidelines.

    PubMed

    Jalbert, P; Leonard, C; Selva, J; David, G

    1989-06-01

    The genetic problems raised by assisted reproduction using donor gametes (AID) are numerous and often complex. They concern the legitimacy and the appropriate forms of genetic screening for both gamete donors and recipients; the identification of genetic indications justifying the use of this method of reproduction; and ascertainment of the state of health of the conceptus at birth. The experience and guidelines of the French CECOS Federation, which comprises 20 AID treatment centers, are described. The discussion emphasizes the need for an international exchange of view on this subject.

  11. Origin of C. latifolia and C. aurantiifolia triploid limes: the preferential disomic inheritance of doubled-diploid 'Mexican' lime is consistent with an interploid hybridization hypothesis.

    PubMed

    Rouiss, H; Bakry, F; Froelicher, Y; Navarro, L; Aleza, P; Ollitrault, P

    2018-03-05

    Two main types of triploid limes are produced worldwide. The 'Tahiti' lime type (Citrus latifolia) is predominant, while the 'Tanepao' type (C. aurantiifolia) is produced to a lesser extent. Both types result from natural interspecific hybridization involving a diploid gamete of C. aurantiifolia 'Mexican' lime type (itself a direct interspecific C. micrantha × C. medica hybrid). The meiotic behaviour of a doubled-diploid 'Mexican' lime, the interspecific micrantha/medica recombination and the resulting diploid gamete structures were analysed to investigate the possibility that 'Tahiti' and 'Tanepao' varieties are derived from natural interploid hybridization. A population of 85 tetraploid hybrids was established between a doubled-diploid clementine and a doubled-diploid 'Mexican' lime and used to infer the genotypes of 'Mexican' lime diploid gametes. Meiotic behaviour was studied through combined segregation analysis of 35 simple sequenbce repeat (SSR) and single nucleotide polymorphismn (SNP) markers covering the nine citrus chromosomes and cytogenetic studies. It was supplemented by pollen viability assessment. Pollen viability of the doubled-diploid Mexican lime (64 %) was much higher than that of the diploid. On average, 65 % of the chromosomes paired as bivalents and 31.4 % as tetravalents. Parental heterozygosity restitution ranged from 83 to 99 %. Disomic inheritance with high preferential pairing values was deduced for three chromosomes. Intermediate inheritances, with disomic trend, were found for five chromosomes, and an intermediate inheritance was observed for one chromosome. The average effective interspecific recombination rate was low (1.2 cM Mb-1). The doubled-diploid 'Mexican' lime had predominantly disomic segregation, producing interspecific diploid gamete structures with high C. medica/C. micrantha heterozygosity, compatible with the phylogenomic structures of triploid C. latifolia and C. aurantiifolia varieties. This disomic trend limits

  12. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816).

    PubMed

    Moulin, Laure; Catarino, Ana Isabel; Claessens, Thomas; Dubois, Philippe

    2011-01-01

    The effect of pH ranging from 8.0 to 6.8 (total scale - pH(T)) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pH(T)=7.4) and another where pH was more stable (lowest pH(T)=7.8). The highest pH(T) at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pH(T) 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pH(T) 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Linking genotoxic responses and reproductive success in ecotoxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.L.; Wild, G.C.

    1994-12-01

    The potential of genotoxicity biomarkers as predictors of detrimental environmental effects, such as altered reproductive success of wild organisms, must be rigorously determined. Recent research to evaluate relationships between genotoxic responses and indicators of reproductive success in model animals is described from an ecotoxicological perspective. Genotoxicity can be correlated with reproductive effects such as gamete loss due to cell death; embryonic mortality; and heritable mutations in a range of model animals including polychaete worms, nematodes, sea urchins, amphibians, and fish. In preliminary studies, the polychaete worm, Neanthes arenaceodentata, and the nematode, Caenorhabditis elegans, have also shown the potential for cumulativemore » DNA damage in gametes. If DNA repair capacity is limited in gametes, then selected life history traits such as long and synchronous periods of gametogenesis may confer vulnerability to genotoxic substances in chronic exposures. Recommendations for future research include strategic development of animal models that can be used to elucidate multiple mechanisms of effect (multiend point) at varying levels of biological organization (multilevel). 27 refs., 2 tabs.« less

  14. Roles of the oviduct in mammalian fertilization

    PubMed Central

    Coy, P; García-Vázquez, FA; Visconti, PE; Avilés, M

    2014-01-01

    The oviduct or Fallopian tube is the anatomical region where every new life begins in mammalian species. After a long journey, the spermatozoa meet the oocyte in the specific site of the oviduct named ampulla, and fertilization takes place. The successful fertilization depends on several biological processes which occur in the oviduct some hours before this rendezvous and affect both gametes. Estrogen and progesterone, released from the ovary, orchestrate a series of changes by genomic- and non-genomic pathways in the oviductal epithelium affecting gene expression, proteome and secretion of its cells into the fluid bathing the oviductal lumen. In addition, new regulatory molecules are being discovered playing important roles in oviductal physiology and fertilization. The present review tries to describe these processes, building a comprehensive map of the physiology of the oviduct, to better understand the importance of this organ in reproduction. With this purpose, gamete transport, sperm and oocyte changes in the oviductal environment and other interactions between gametes and oviduct are discussed in light of recent publications in the field. PMID:23028122

  15. Manipulation of the fertility of marsupials for conservation of endangered species and control of over-abundant populations.

    PubMed

    Mate, K E; Molinia, F C; Rodger, J C

    1998-10-01

    Marsupials present a dichotomy in population management; the numbers of many Australian marsupial species have declined due to loss of habitat, competition from introduced herbivores and predation by introduced carnivores, but other species have become locally overabundant in Australia or are introduced pests in New Zealand. The manipulation of reproduction offers the means to increase or decrease productivity; however, considerable fundamental research is required before reproductive technologies can be applied to marsupials. Marsupials differ from eutherian mammals in several aspects of their reproduction including sex differentiation, gamete function and endocrinology, as well as in the relative lengths of gestation and lactation. Although these differences present unique problems in the application of reproductive technologies to marsupials, they also present unique opportunities for marsupial-specific fertility control. This paper summarises the assisted breeding technologies currently being applied to marsupials including superovulation, artificial insemination, in vitro fertilization and gene banking; unique marsupial targets for contraceptive intervention including gamete production, sperm capacitation, gamete surface antigens and embryonic development; and some options for the delivery of contraceptive vaccines to marsupial populations.

  16. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice

    PubMed Central

    Baibakov, Boris; Boggs, Nathan A.; Yauger, Belinda; Baibakov, Galina

    2012-01-01

    Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1–3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm–egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy. PMID:22734000

  17. Mutation-selection balance in mixed mating populations.

    PubMed

    Kelly, John K

    2007-05-21

    An approximation to the average number of deleterious mutations per gamete, Q, is derived from a model allowing selection on both zygotes and male gametes. Progeny are produced by either outcrossing or self-fertilization with fixed probabilities. The genetic model is a standard in evolutionary biology: mutations occur at unlinked loci, have equivalent effects, and combine multiplicatively to determine fitness. The approximation developed here treats individual mutation counts with a generalized Poisson model conditioned on the distribution of selfing histories in the population. The approximation is accurate across the range of parameter sets considered and provides both analytical insights and greatly increased computational speed. Model predictions are discussed in relation to several outstanding problems, including the estimation of the genomic deleterious mutation rates (U), the generality of "selective interference" among loci, and the consequences of gametic selection for the joint distribution of inbreeding depression and mating system across species. Finally, conflicting results from previous analytical treatments of mutation-selection balance are resolved to assumptions about the life-cycle and the initial fate of mutations.

  18. Breeding animals for quality products: not only genetics.

    PubMed

    Chavatte-Palmer, Pascale; Tarrade, Anne; Kiefer, Hélène; Duranthon, Véronique; Jammes, Hélène

    2016-01-01

    The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.

  19. Establishment and functions of DNA methylation in the germline

    PubMed Central

    Stewart, Kathleen R; Veselovska, Lenka; Kelsey, Gavin

    2016-01-01

    Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization. PMID:27659720

  20. Regulating small things: genes, gametes and nanotechnology.

    PubMed

    Bennett, Belinda

    2007-08-01

    Biotechnology and nanotechnology both intersect with other technologies in ways that open new possibilities for further technological progress. The potential for increased convergence between technological fields highlights the need for regulatory frameworks to be integrated, flexible and responsive. Within a federal legal system such as Australia's, there is a need to ensure that we adopt a coordinated national approach to the crafting of regulatory solutions. In addition, there is a need for global cooperation in the development of international standards and regulatory harmonisation. Finally, this article considers the role that law plays in negotiating risk in relation to new technologies.

  1. Sulfogalactosylglycerolipid is involved in human gamete interaction.

    PubMed

    Weerachatyanukul, W; Rattanachaiyanont, M; Carmona, E; Furimsky, A; Mai, A; Shoushtarian, A; Sirichotiyakul, S; Ballakier, H; Leader, A; Tanphaichitr, N

    2001-12-01

    Recent results from our laboratory have revealed the role of sulfogalactosylglycerolipid (SGG) in mouse sperm-zona pellucida (ZP) binding. In this report, we demonstrated the presence of SGG in Percoll-gradient centrifuged (PGC) human sperm by high performance thin layer chromatography with orcinol and Azure A staining, specific for glycolipids and sulfolipids, respectively. SGG in human PGC sperm was quantified by its affinity to Azure A to be 12-15 mol% of sperm lipids. Indirect immunofluorescence revealed that SGG existed on both live and aldehyde fixed human sperm in the head region. Pretreatment of human PGC sperm with affinity purified antiSGG Fab markedly inhibited sperm binding to the ZP in a concentration dependent manner, without any changes in the spontaneous acrosome rate or sperm motility parameters. Fluorescently labeled SGG liposomes also bound uniformly to isolated human ZP, while fluorescently labeled galactosylglycerolipid (GG, SGG's parental lipid) or phosphatidylserine (PS, negatively charged like SGG) liposomes did not. All of these results suggested the role of human sperm SGG in ZP binding. Copyright 2001 Wiley-Liss, Inc.

  2. Positive selection on human gamete-recognition genes

    PubMed Central

    Stover, Daryn A.; Guerra, Vanessa; Mozaffari, Sahar V.; Ober, Carole; Mugal, Carina F.; Kaj, Ingemar

    2018-01-01

    Coevolution of genes that encode interacting proteins expressed on the surfaces of sperm and eggs can lead to variation in reproductive compatibility between mates and reproductive isolation between members of different species. Previous studies in mice and other mammals have focused in particular on evidence for positive or diversifying selection that shapes the evolution of genes that encode sperm-binding proteins expressed in the egg coat or zona pellucida (ZP). By fitting phylogenetic models of codon evolution to data from the 1000 Genomes Project, we identified candidate sites evolving under diversifying selection in the human genes ZP3 and ZP2. We also identified one candidate site under positive selection in C4BPA, which encodes a repetitive protein similar to the mouse protein ZP3R that is expressed in the sperm head and binds to the ZP at fertilization. Results from several additional analyses that applied population genetic models to the same data were consistent with the hypothesis of selection on those candidate sites leading to coevolution of sperm- and egg-expressed genes. By contrast, we found no candidate sites under selection in a fourth gene (ZP1) that encodes an egg coat structural protein not directly involved in sperm binding. Finally, we found that two of the candidate sites (in C4BPA and ZP2) were correlated with variation in family size and birth rate among Hutterite couples, and those two candidate sites were also in linkage disequilibrium in the same Hutterite study population. All of these lines of evidence are consistent with predictions from a previously proposed hypothesis of balancing selection on epistatic interactions between C4BPA and ZP3 at fertilization that lead to the evolution of co-adapted allele pairs. Such patterns also suggest specific molecular traits that may be associated with both natural reproductive variation and clinical infertility. PMID:29340252

  3. Mating compatibility in the parasitic protist Trypanosoma brucei.

    PubMed

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  4. Mating compatibility in the parasitic protist Trypanosoma brucei

    PubMed Central

    2014-01-01

    Background Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. Methods We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Results Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. Conclusions The outcomes of individual crosses, particularly back

  5. Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum.

    PubMed

    Iwanaga, Akiko; Sasaki, Akira

    2004-04-01

    A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in

  6. Methylxanthines and reproduction.

    PubMed

    Minelli, Alba; Bellezza, Ilaria

    2011-01-01

    Reproduction is the process by which organisms create descendants. In human reproduction, two kinds of sex cells, or gametes, are involved. Sperm, the male gamete, and egg egg , or ovum ovum Vedi egg , the female gamete, must meet in the female reproductive system to create a new individual and both the female and the male reproductive systems are essential to the occurrence of reproduction. Scientific reports dealing with the effects of methylxanthines on reproduction are mostly centred on the use of these compounds as phosphodiesterase inhibitors that, by maintaining high intracellular levels of cyclic AMP (cAMP) cyclic AMP , will affect the gametes differently. High cAMP levels will sustain sperm sperm maturation while they hold the oocytes in mitotic arrest. Caffeine caffeine , being the methylxanthine most widely consumed by every segment of the population, has been the subject of greatest interest among health professionals and researchers. Conflicting results still seem to characterize the association between male/female caffeine caffeine consumption in adult life and semen quality/fertility fertility , although moderate daily caffeine consumption of levels up to 400-450 mg/day (5.7-6.4 mg/kg/day in a 70-kg adult) do not seem to be associated with adverse effects, i.e. general toxicity, effects on bone status and calcium balance, cardiovascular effects, behavioural changes, increased incidence of cancer, or effects on male fertility. A clear stimulation of egg-laying by the coffee leaf pest Leucoptera coffeella was recently reported, providing support for the hypothesis that caffeine, in a dose-dependent way, in insects stimulates egg-laying, thus leading to the death of coffee trees.

  7. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template

    PubMed Central

    de Paula, Wilson B. M.; Lucas, Cathy H.; Agip, Ahmed-Noor A.; Vizcay-Barrena, Gema; Allen, John F.

    2013-01-01

    Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line. PMID:23754815

  8. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera

    PubMed Central

    Adachi-Hagimori, Tetsuya; Miura, Kazuki; Stouthamer, Richard

    2008-01-01

    Vertically transmitted endosymbiotic bacteria, such as Wolbachia, Cardinium and Rickettsia, modify host reproduction in several ways to facilitate their own spread. One such modification results in parthenogenesis induction, where males, which are unable to transmit the bacteria, are not produced. In Hymenoptera, the mechanism of diploidization due to Wolbachia infection, known as gamete duplication, is a post-meiotic modification. During gamete duplication, the meiotic mechanism is normal, but in the first mitosis the anaphase is aborted. The two haploid sets of chromosomes do not separate and thus result in a single nucleus containing two identical sets of haploid chromosomes. Here, we outline an alternative cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. During female gamete formation in Rickettsia-infected Neochrysocharis formosa (Westwood) parasitoids, meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with a non-segregation pattern in the offspring of heterozygous females. We conclude that diploidy in N. formosa is maintained through a functionally apomictic cloning mechanism that differs entirely from the mechanism induced by Wolbachia. PMID:18713719

  9. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  10. Trace metals in the living and nonliving components of scleractinian corals.

    PubMed

    Reichelt-Brushett, A J; McOrist, G

    2003-12-01

    Trace metals in coral tissue and skeleton have been investigated in various ways since the early seventies. More recently it has been suggested that the symbiotic zooxanthellae may play an important role in the accumulation and regulation of trace metals. Furthermore gamete development and mucus production may influence the metal accumulation and loss in corals. Many studies have attempted to use the annual growth bands in coral skeletons to investigate historical pollution events. However the relationship between the metal concentrations in the surrounding environment and the incorporation of this into coral skeleton is not well understood. This paper explains a method for investigating metal loads in coral tissue, zooxanthellae and skeleton. Furthermore, it presents new information suggesting that zooxanthellae accumulate most metals (Al, Fe, As, Mn, Ni, Cu, Zn, Cd, Pb) in greater concentrations than the coral tissue. Coral skeletons had consistently lower metal concentration than the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress events may have a significant contribution to the total metal loads in corals. The use of corals as biomonitors should carefully factor in zooxanthellae densities and gamete development before conclusions are drawn.

  11. A conversation across generations: soma-germ cell crosstalk in plants.

    PubMed

    Feng, Xiaoqi; Zilberman, Daniel; Dickinson, Hugh

    2013-02-11

    Plants undergo alternation of generation in which reproductive cells develop in the plant body ("sporophytic generation") and then differentiate into a multicellular gamete-forming "gametophytic generation." Different populations of helper cells assist in this transgenerational journey, with somatic tissues supporting early development and single nurse cells supporting gametogenesis. New data reveal a two-way relationship between early reproductive cells and their helpers involving complex epigenetic and signaling networks determining cell number and fate. Later, the egg cell plays a central role in specifying accessory cells, whereas in both gametophytes, companion cells contribute non-cell-autonomously to the epigenetic landscape of the gamete genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [The mammalian oviduct revisited].

    PubMed

    Halter, S; Reynaud, K; Tahir, Z; Thoumire, S; Chastant-Maillard, S; Saint-Dizier, M

    2011-11-01

    The oviducts, or uterine tubes, support the transport and final maturation of gametes, and harbour fertilization and early embryo development. The oviduct environment is finely regulated by ovarian steroids as well as by gametes and embryos that interact with it. Previously regarded as a simple transit zone, the oviduct is now regarded as a complex organ with multiple functions in these various processes. The tubal fluid, now better characterized, is to be regarded as the first interface between the mother and the embryo. It may play a major role in the quality of the conceptus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Does oocyte banking for anticipated gamete exhaustion influence future relational and reproductive choices? A follow-up of bankers and non-bankers.

    PubMed

    Stoop, D; Maes, E; Polyzos, N P; Verheyen, G; Tournaye, H; Nekkebroeck, J

    2015-02-01

    What is the nature of the relational status, reproductive choices and possible regret of a pioneer cohort of women that either considered or actually performed oocyte banking for anticipated gamete exhaustion (AGE)? Only half of the women who banked oocytes anticipate using them in the future but the experience with oocyte banking is overwhelmingly positive, with the majority of AGE bankers preferring to have it performed at a younger age. Most women who choose to cryopreserve oocytes for the prevention of age-related fertility decline are single and are hoping to buy time in their search for a suitable partner. The question of why some candidates actually embark on such treatment while others eventually prefer not to freeze remains unclear. There are no follow-up data available either on post-freezing changes in relational status, or on attitude towards the undergone treatment and the reproductive outcome. A retrospective cohort study was performed with 140 women who visited the outpatient clinic between 2009 and 2011. All women (mean age 36.7 ± SD 2.62) considered oocyte preservation for age-related infertility. At least 1 year after their initial visit (range 12-45 months), women were contacted by phone to participate in a standardized questionnaire developed to evaluate their actual relational and reproductive situation, their attitude towards banking and future reproductive plan. Eighty-six women (61.4%) completed at least one cryopreservation cycle. The non-bankers included 54 women who either preferred no treatment (n = 51) or attempted stimulation but cancelled because of poor response (n = 3). The response rate among bankers was 75.4% (65/86) while 55.8% (29/52) of the non-bankers were reached for interview. Among bankers, 50.8% of women think they will use the oocytes at some point, while 29.2% indicated that they currently consider the use of frozen oocytes less likely than anticipated at time of oocyte retrieval. However, although 95.4% would decide to

  14. Utility of antioxidants during assisted reproductive techniques: an evidence based review.

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi; du Plessis, Stefan S

    2014-11-24

    Assisted reproductive technology (ART) is a common treatment of choice for many couples facing infertility issues, be it due to male or female factor, or idiopathic. Employment of ART techniques, however, come with its own challenges as the in vitro environment is not nearly as ideal as the in vivo environment, where reactive oxygen species (ROS) build-up leading to oxidative stress is kept in check by the endogenous antioxidants system. While physiological amounts of ROS are necessary for normal reproductive function in vivo, in vitro manipulation of gametes and embryos exposes these cells to excessive ROS production either by endogenous or exogenous environmental factors. In this review, we discuss the sources of ROS in an in vitro clinical setting and the influence of oxidative stress on gamete/embryo quality and the outcome of IVF/ICSI. Sources of ROS and different strategies of overcoming the excessive generation of ROS in vitro are also highlighted. Endogenously, the gametes and the developing embryo become sources of ROS. Multiple exogenous factors act as potential sources of ROS, including exposure to visible light, composition of culture media, pH and temperature, oxygen concentration, centrifugation during spermatozoa preparation, ART technique involving handling of gamete/embryo and cryopreservation technique (freeze/thawing process). Finally, the use of antioxidants as agents to minimize ROS generation in the in vitro environment and as oral therapy is highlighted. Both enzymatic and non-enzymatic antioxidants are discussed and the outcome of studies using these antioxidants as oral therapy in the male or female or its use in vitro in media is presented. While results of studies using certain antioxidant agents are promising, the current body of evidence as a whole suggests the need for further well-designed and larger scale randomized controlled studies, as well as research to minimize oxidative stress conditions in the clinical ART setting.

  15. Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: Implication of a common mechanism of sperm–egg fusion in plants and animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebchuqin, Eerdundagula; Yokota, Naoto; Yamada, Lixy

    Highlights: • GCS1 is a sperm transmembrane protein that is essential for gamete fusion in flowering plants. • The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals. • NvGCS1 gene is expressed in the testis and GCS1 protein exists in sperm of a sea anemone. • Anti-GCS1 antibodies inhibited the fertilization, showing the participation in fertilization. - Abstract: It has been reported that GCS1 (Generative Cell Specific 1) is a transmembrane protein that is exclusively expressed in sperm cells and is essential for gamete fusion in flowering plants. The GCS1 gene is presentmore » not only in angiosperms but also in unicellular organisms and animals, implying the occurrence of a common or ancestral mechanism of GCS1-mediated gamete fusion. In order to elucidate the common mechanism, we investigated the role of GCS1 in animal fertilization using a sea anemone (Cnidaria), Nematostella vectensis. Although the existence of the GCS1 gene in N. vectensis has been reported, the expression of GCS1 in sperm and the role of GCS1 in fertilization are not known. In this study, we showed that the GCS1 gene is expressed in the testis and that GCS1 protein exists in sperm by in situ hybridization and proteomic analysis, respectively. Then we made four peptide antibodies against the N-terminal extracellular region of NvGCS1. These antibodies specifically reacted to NvGCS1 among sperm proteins on the basis of Western analysis and potently inhibited fertilization in a concentration-dependent manner. These results indicate that sperm GCS1 plays a pivotal role in fertilization, most probably in sperm–egg fusion, in a starlet sea anemone, suggesting a common gamete-fusion mechanism shared by eukaryotic organisms.« less

  16. Assessing the impact of diclofenac, ibuprofen and sildenafil citrate (Viagra®) on the fertilisation biology of broadcast spawning marine invertebrates.

    PubMed

    Mohd Zanuri, Norlaila Binti; Bentley, Matthew G; Caldwell, Gary S

    2017-06-01

    Exposure to synthetic chemicals is a key environmental challenge faced by aquatic organisms. The time and dose effects of the pharmaceuticals diclofenac, ibuprofen, and sildenafil citrate on sperm motility and successful fertilisation are studied using the echinoderms, Asterias rubens and Psammechinus miliaris, and the polychaete worm Arenicola marina, all important components of the marine benthos. Motility was reduced for all species when exposed to diclofenac concentrations ≥0.1 μg/L. Exposure to ≥1.0 μg/L of ibuprofen affected only P. miliaris gametes and fertilisation success of A. marina. A. rubens and P. miliaris sperm increased in both percentage motility and swimming velocity when exposed to sildenafil citrate at concentrations ≥18 and ≥ 50 ng/L, respectively. Pre-incubation of sperm with sildenafil citrate significantly increased fertilisation success in A. rubens and P. miliaris but not in A. marina. Pre-incubated A. rubens oocytes fertilised successfully in ibuprofen. According to EU Directive 93/67/EEC, diclofenac is classified as a very toxic substance to gametes of A. rubens, P. miliaris, and A. marina (EC 50  = 100-1000 μg/L) while ibuprofen is classified as very toxic to gametes of P. miliaris but non-toxic to gametes of A. marina (EC 50  > 10,000 μg/L). The present study indicates that diclofenac exposure may have negative impacts on invertebrate reproductive success, whereas ibuprofen potentially may compromise P. miliaris reproduction. This study provides a valuable insight into the mechanisms that allow marine invertebrates to survive and reproduce in contaminated and changing habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of cryoprotectant agents and freezing protocol on motility of black-lip pearl oyster (Pinctada margaritifera L.) spermatozoa.

    PubMed

    Acosta-Salmón, Héctor; Jerry, Dean R; Southgate, Paul C

    2007-02-01

    Gamete cryopreservation techniques have been applied to several bivalve mollusc species. However, research activity in this area has primarily focused on cryopreserving gametes from edible oysters (Ostreiidae). Few studies have examined the effect of cryoprotectants and freezing protocols in the preservation of spermatozoa from cultured pearl oysters (Pteriidae). Pearl oyster producers are increasingly looking towards the development of improved family lines and, as a consequence, the ability to cryopreserve gametes would bring about significant benefits to the cultured pearl industry. In response to this need, we evaluated the effect of three cryoprotectant additives (CPA) on motility of spermatozoa from the black-lip pearl oyster, Pinctada margaritifera. These additives have previously been used to cryopreserve gametes of other bivalve species. The following CPA mixtures were evaluated: (1) 0.45M trehalose and 0, 0.64, 1.02 and 1.53 M dimethyl sulfoxide (Me(2)SO); (2) 0.2M glucose and 2M Me(2)SO and (3) 1.31 M propylene glycol (PG). The effects of four different freezing protocols on motility of P. margaritifera spermatozoa were also evaluated (slow, medium, medium-rapid and rapid cooling). This study showed that total motility was best retained when spermatozoa were cryopreserved in 0.45 M trehalose and 0, 0.64, 1.02 or 1.53 M Me(2)SO and frozen using slow to medium-rapid cooling rates (2.1-5.2 degrees Cmin(-1)). Rapid freezing through direct plunging of spermatozoa into liquid nitrogen resulted in the lowest overall retention of motility regardless of the CPA additive; however, CPA mixture also influenced retention of motility, with 0.2M glucose in 2M Me(2)SO and 1.31 M PG retaining the lowest levels of motility for the CPAs evaluated.

  18. Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny

    PubMed Central

    Huo, Beibei; Liu, Wanting; Li, Daili; Liao, Ling

    2017-01-01

    Triploid plants are usually highly aborted owing to unbalanced meiotic chromosome segregation, but limited viable gametes can participate in the transition to different ploidy levels. In this study, numerous meiotic abnormalities were found with high frequency in an intersectional allotriploid poplar (Populus alba × P. berolinensis ‘Yinzhong’), including univalents, precocious chromosome migration, lagging chromosomes, chromosome bridges, micronuclei, and precocious cytokinesis, indicating high genetic imbalance in this allotriploid. Some micronuclei trigger mini-spindle formation in metaphase II and participate in cytokinesis to form polyads with microcytes. Unbalanced chromosome segregation and chromosome elimination resulted in the formation of microspores with aneuploid chromosome sets. Fusion of sister nuclei occurs in microsporocytes with precocious cytokinesis, which could form second meiotic division restitution (SDR)-type gametes. However, SDR-type gametes likely contain incomplete chromosome sets due to unbalanced segregation of homologous chromosomes during the first meiotic division in triploids. Misorientation of spindles during the second meiotic division, such as fused and tripolar spindles with low frequency, could result in the formation of first meiotic division restitution (FDR)-type unreduced gametes, which most likely contain three complete chromosome sets. Although ‘Yinzhong’ yields 88.7% stainable pollen grains with wide diameter variation from 23.9 to 61.3 μm, the pollen viability is poor (2.78% ± 0.38). A cross of ‘Yinzhong’ pollen with a diploid female clone produced progeny with extensive segregation of ploidy levels, including 29 diploids, 18 triploids, 4 tetraploids, and 48 aneuploids, suggesting the formation of viable aneuploidy and unreduced pollen in ‘Yinzhong’. Individuals with different chromosome compositions are potential to analyze chromosomal function and to integrate the chromosomal dosage variation into

  19. Spermatozeugmata structure and dissociation of the Australian flat oyster Ostera angasi: Implications for reproductive strategy.

    PubMed

    Hassan, Md Mahbubul; Qin, Jian G; Li, Xiaoxu

    2016-06-01

    Variation in reproductive strategy is one of the key factors contributing to recruitment success of molluscs in different habitats. Spermcasting is a unique mode in mollusc reproduction where males produce spermatozeugmata, a radially arrayed sperm cluster wrapped by gelatinous membrane. In this study, spermatozeugmata structure and their dissociation in the Australian flat oyster Ostrea angasi were investigated to elucidate the reproductive strategy in spermcasting molluscs. The histological observation indicated that spermatogonia gradually aggregated in the gonad follicle at the early gonad development stages and developed into spermatozeugmata and became tightly packed at the advanced stages. Even though mature male and female gametes could be found in a hermaphroditic individual, the animal may prevent self-fertilization by shedding different sex gametes at different time. The O. angasi sperm are similar in size and shape to broadcasting oysters, but have one additional mitochondrion. Variations in maintaining spermatozeugmata integrity and sperm motility between individuals depended on the level of masculinity or femineity. The durations of spermatozeugmata dissociation and sperm viability were longer in males than in hermaphrodites. The unique structure and capability for spermatozeugmata to maintain the functional integrity after spawning have adaptive significance for fertilization and gamete dispersal in this species. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  1. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle

    PubMed Central

    Urrego, Rodrigo; Rodriguez-Osorio, Nélida; Niemann, Heiner

    2014-01-01

    The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders. PMID:24709985

  2. Pheromonal communication in nereids and the likely intervention by petroleum derived pollutants.

    PubMed

    Müller, Carsten T; Priesnitz, Frank M; Beckmann, Manfred

    2005-01-01

    Nereis succinea and Platynereis dumerilii (Annelida, Polychaeta) are broadcast spawners and reproduce semelparously. The final events in reproduction, swarming and spawning are co-ordinated by sex pheromones.A water-soluble fraction of crude oil, the volatile fraction (C9-C16) of EKO FISK crude oil was found to induce release of gametes in male nereids at levels <0.3 ppm.Using vacuum distillation, column chromatography, preparative GC and GC-MS analysis we showed that C(5)-alkylated benzenes were most potent in inducing sperm release, of those n-butyl-4-methylbenzene and 1,4-diethyl-2-methylbenzene were found to induce release of gametes at concentrations ≥4 nM. This threshold is lower than those reported for natural pheromones (nereithione: 60 nM, uric acid: 600 nM) but higher than background levels of aromatic compounds of 0.05 nM and below.Other oil fractions showed additional effects, blocking pheromone reception or narcotising and intoxicating animals. Part of these effects could be assigned to naphthalenes at levels down to approx. 320 nM. In the original mixtures, their action was modified or compensated by the presence of gamete release inducing alkylated benzenes. Other highly paralysing substances remained elusive.

  3. Rarity and persistence.

    PubMed

    Vermeij, Geerat J; Grosberg, Richard K

    2018-01-01

    Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Duan, Meina; Xiong, Deqi; Yang, Mengye; Xiong, Yijun; Ding, Guanghui

    2018-05-03

    The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  6. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes.

    PubMed

    Deligianni, Elena; Morgan, Rhiannon N; Bertuccini, Lucia; Wirth, Christine C; Silmon de Monerri, Natalie C; Spanos, Lefteris; Blackman, Michael J; Louis, Christos; Pradel, Gabriele; Siden-Kiamos, Inga

    2013-08-01

    Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress. © 2013 John Wiley & Sons Ltd.

  7. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    PubMed

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  8. CRYPTIC CHOICE OF CONSPECIFIC SPERM CONTROLLED BY THE IMPACT OF OVARIAN FLUID ON SPERM SWIMMING BEHAVIOR

    PubMed Central

    Yeates, Sarah E; Diamond, Sian E; Einum, Sigurd; Emerson, Brent C; Holt, William V; Gage, Matthew J G

    2013-01-01

    Despite evidence that variation in male–female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species’ ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species’ identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior. PMID:24299405

  9. Emerging models for facilitating contact between people genetically related through donor conception: a preliminary analysis and discussion.

    PubMed

    Crawshaw, Marilyn; Daniels, Ken; Adams, Damian; Bourne, Kate; van Hooff, J A P; Kramer, Wendy; Pasch, Lauri; Thorn, Petra

    2015-12-01

    Previous research indicates interest among some donor-conceived people, donors and recipient parents in having contact. Outcomes of such contact appear largely, but not universally, positive. This paper seeks to understand better the characteristics of associated support services. Information gathered using the authors' direct experiences and professional and personal networks in different parts of the world indicates the emergence of four main groupings: (i) publically funded services outside of treatment centers; (ii) services provided by fertility treatment or gamete bank services; (iii) services provided privately by independent psychosocial or legal practitioners; and (4) services organized by offspring and/or recipient parents. Key operational features examined were: (i) who can access such services and when; (ii) what professional standards and funding are in place to provide them; and (iii) how 'matching' and contact processes are managed. Differences appear influenced variously by the needs of those directly affected, local policies, national legislation and the interests of the fertility services which recruit gamete donors and/or deliver donor conception treatments. The paper is intended to inform fuller debate about how best to meet the needs of those seeking information and contact, the implications for the way that fertility treatment and gametes donation services are currently provided and future research needs.

  10. Confocal observations of late-acting self-incompatibility in Theobroma cacao L.

    PubMed

    Ford, Caroline S; Wilkinson, Mike J

    2012-09-01

    Cocoa (Theobroma cacao) has an idiosyncratic form of late-acting self-incompatibility that operates through the non-fusion of incompatible gametes. Here, we used high-resolution confocal microscopy to define fine level changes to the embryo sac of the strongly self-incompatible cocoa genotype SCA 24 in the absence of pollination, and following compatible and incompatible pollination. All sperm nuclei had fused with the female nuclei by 48 h following compatible pollinations. However, following incompatible pollinations, we observed divergence in the behaviour of sperm nuclei following release into the embryo sac. Incomplete sperm nucleus migration occurred in approximately half of the embryo sacs, where the sperm nuclei had so far failed to reach the female gamete nuclei. Sperm nuclei reached but did not fuse with the female gamete nuclei in the residual cases. We argue that the cellular mechanisms governing sperm nucleus migration to the egg nucleus and those controlling subsequent nuclear fusion are likely to differ and should be considered independently. Accordingly, we recommend that future efforts to characterise the genetic basis of LSI in cocoa should take care to differentiate between these two events, both of which contribute to failed karyogamy. Implications of these results for continuing efforts to gain better understanding of the genetic control of LSI in cocoa are discussed.

  11. Chromosome Inversion Polymorphisms in DROSOPHILA MELANOGASTER. I. Latitudinal Clines and Associations between Inversions in Australasian Populations

    PubMed Central

    Knibb, W. R.; Oakeshott, J. G.; Gibson, J. B.

    1981-01-01

    Nineteen Australasian populations of Drosophila melanogaster have been screened for chromosome inversion polymorphisms. All 15 of the inversion types found are paracentric and autosomal, but only four of these, one on each of the major autosome arms, are common and cosmopolitan. North-south clines occur, with the frequencies of all four of the common cosmopolitan inversions increasing toward the equator. These clines in the Southern Hemisphere mirror north-south clines in the Northern Hemisphere, where the frequencies of all four of the common cosmopolitan inversions again increase towards the equator.—While few of the Australasian populations show significant disequilibrium between linked common cosmopolitan inversions, those that do invariably have excesses of coupling gametes, which is consistent with other reports. We also find nonrandom associations between the two major autosomes, with the northern populations in Australasia (those with high inversion frequencies) tending to be deficient in gametes with common cosmopolitan inversions on both major autosomes, while the southern populations in Australasia (low inversion frequencies) tend to have an excess of this class of gametes.—The clines and the nonrandom associations between the two major autosomes are best interpreted in terms of selection operating to maintain the common cosmopolitan inversion polymorphisms in natural populations of D. melanogaster. PMID:17249108

  12. MethBank: a database integrating next-generation sequencing single-base-resolution DNA methylation programming data.

    PubMed

    Zou, Dong; Sun, Shixiang; Li, Rujiao; Liu, Jiang; Zhang, Jing; Zhang, Zhang

    2015-01-01

    DNA methylation plays crucial roles during embryonic development. Here we present MethBank (http://dnamethylome.org), a DNA methylome programming database that integrates the genome-wide single-base nucleotide methylomes of gametes and early embryos in different model organisms. Unlike extant relevant databases, MethBank incorporates the whole-genome single-base-resolution methylomes of gametes and early embryos at multiple different developmental stages in zebrafish and mouse. MethBank allows users to retrieve methylation levels, differentially methylated regions, CpG islands, gene expression profiles and genetic polymorphisms for a specific gene or genomic region. Moreover, it offers a methylome browser that is capable of visualizing high-resolution DNA methylation profiles as well as other related data in an interactive manner and thus is of great helpfulness for users to investigate methylation patterns and changes of gametes and early embryos at different developmental stages. Ongoing efforts are focused on incorporation of methylomes and related data from other organisms. Together, MethBank features integration and visualization of high-resolution DNA methylation data as well as other related data, enabling identification of potential DNA methylation signatures in different developmental stages and accordingly providing an important resource for the epigenetic and developmental studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Nanobiotechnologies in the System of Farm Animals' Gene Pool Preservation

    NASA Astrophysics Data System (ADS)

    Kovtun, S. I.; Galagan, N. P.; Shcherbak, O. V.; Klymenko, N. Y.; Osypchuk, O. S.

    It has been determined that sperm viability and mobility upon long storage in liquid nitrogen is being reduced. This issue is relevant for gene pool objects' preservation and for reproductive medicine. The use of nanomaterials (NM) in reproductive biotechnology can expand to the methodology of the rational gene pool preservation technology, especially of valuable biomaterial. Use of nanoparticles, based on ultrafine silica (UFS) with different agents located on its surface gives a positive effect on the thawed sperm mobility, increasing its activity and survival rate and leading to increased fertilization ability. After thawing, the sperm of bulls had an average activity level of 47 %. This activity index of gametes in control was being maintained for 30 min. In the experimental groups after 30 min, the most active gametes were those with UFS + sucrose (52 %). A lower activity compared with the control and UFS + sucrose had gametes with UFS + D-galactosamine. Sperm activity with UFS + D-galactosamine decreased by 14 % compared with the control and by 19 % compared to the UFS + sucrose. So, the feasibility of adding NM with UFS + sucrose at a concentration of 0.001 % to thawed bull sperm that has been cryopreserved for a long time was proved.

  14. Phenotypic and Molecular Analysis of Mes-3, a Maternal-Effect Gene Required for Proliferation and Viability of the Germ Line in C. Elegans

    PubMed Central

    Paulsen, J. E.; Capowski, E. E.; Strome, S.

    1995-01-01

    mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481

  15. Analysis of multilocus zygotic associations.

    PubMed

    Yang, Rong-Cai

    2002-05-01

    While nonrandom associations between zygotes at different loci (zygotic associations) frequently occur in Hardy-Weinberg disequilibrium populations, statistical analysis of such associations has received little attention. In this article, we describe the joint distributions of zygotes at multiple loci, which are completely characterized by heterozygosities at individual loci and various multilocus zygotic associations. These zygotic associations are defined in the same fashion as the usual multilocus linkage (gametic) disequilibria on the basis of gametic and allelic frequencies. The estimation and test procedures are described with details being given for three loci. The sampling properties of the estimates are examined through Monte Carlo simulation. The estimates of three-locus associations are not free of bias due to the presence of two-locus associations and vice versa. The power of detecting the zygotic associations is small unless different loci are strongly associated and/or sample sizes are large (>100). The analysis of zygotic associations not only offers an effective means of packaging numerous genic disequilibria required for a complete characterization of multilocus structure, but also provides opportunities for making inference about evolutionary and demographic processes through a comparative assessment of zygotic association vs. gametic disequilibrium for the same set of loci in nonequilibrium populations.

  16. In vitro and in vivo effects of ulipristal acetate on fertilization and early embryo development in mice.

    PubMed

    Gómez-Elías, Matías D; Munuce, María J; Bahamondes, Luis; Cuasnicú, Patricia S; Cohen, Débora J

    2016-01-01

    Does ulipristal acetate (UPA), a selective progesterone receptor modulator used for emergency contraception (EC), interfere with fertilization or early embryo development in vitro and in vivo? At doses similar to those used for EC, UPA does not affect mouse gamete transport, fertilization or embryo development. UPA acts as an emergency contraceptive mainly by inhibiting or delaying ovulation. However, there is little information regarding its effects on post-ovulatory events preceding implantation. This was an in vitro and in vivo experimental study involving the use of mouse gametes and embryos from at least three animals in each set of experiments. For in vitro fertilization experiments, mouse epididymal spermatozoa capacitated in the presence of different concentrations of UPA (0-1000 ng/ml) were used to inseminate cumulus-intact or cumulus-free eggs in the presence or absence of UPA during gamete co-incubation, and the percentage of fertilized eggs was determined. For in vivo fertilization experiments, superovulated females caged with proven fertile males were injected with UPA (40 mg/kg) or vehicle just before or just after mating and the percentage of fertilized eggs recovered from the ampulla was determined. To investigate the effect of UPA on embryo development, zygotes were recovered from mated females, cultured in the presence of UPA (1000 ng/ml) for 4 days and the progression of embryo development was monitored daily. In vitro studies revealed that the presence of UPA during capacitation and/or gamete co-incubation does not affect fertilization. Whereas the in vivo administration of UPA at the same time as hCG injection produced a decrease in the number of eggs ovulated compared with controls (vehicle injected animals, P < 0.05), no effects on fertilization were observed when UPA was administered shortly before or after mating. No differences were observed in either the percentage of cleaved embryos or the cleavage speed when UPA was present during in

  17. Circadian regulation of reproduction: from gamete to offspring.

    PubMed

    Boden, M J; Varcoe, T J; Kennaway, D J

    2013-12-01

    Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Vitamin D and Reproduction: From Gametes to Childhood

    PubMed Central

    Sowell, Krista D.; Keen, Carl L.; Uriu-Adams, Janet Y.

    2015-01-01

    Vitamin D is well recognized for its essentiality in maintaining skeletal health. Recent research has suggested that vitamin D may exert a broad range of roles throughout the human life cycle starting from reproduction to adult chronic disease risk. Rates of vitamin D deficiency during pregnancy remain high worldwide. Vitamin D deficiency has been associated with an increased risk of fertility problems, preeclampsia, gestational diabetes, and allergic disease in the offspring. Vitamin D is found naturally in only a few foods thus supplementation can provide an accessible and effective way to raise vitamin D status when dietary intakes and sunlight exposure are low. However, the possibility of overconsumption and possible adverse effects is under debate. The effect of vitamin D supplementation during pregnancy and early life on maternal and infant outcomes will be of particular focus in this review. PMID:27417816

  19. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedures. These include syringes, IVF tissue culture dishes, IVF tissue culture plates, pipette tips, dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture...

  20. Wrestling with Chromosomes: The Roles of SUMO During Meiosis.

    PubMed

    Nottke, Amanda C; Kim, Hyun-Min; Colaiácovo, Monica P

    2017-01-01

    Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.

  1. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    PubMed

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  2. Oocyte quality of tambaqui (Colossoma macropomum) during the reproductive season.

    PubMed

    Galo, J M; Ribeiro, R P; Streit-Junior, D P; Albuquerque, D M; Fornari, D C; Roma, C F C; Guerreiro, L R J

    2015-05-01

    The study aimed to analyze the Colossoma macropomum reproductive behavior and quality of the female gametes throughout the reproductive season. The experiment was carried out in Pimenta Bueno - Rondônia State (Northern Brazil) during the reproductive season (2010-2011) using 36 females. Each sampling was performed on a 15 ± 5 days interval. Female gametes were collected by stripping and the following analyses were performed: weight of oocytes released (g); productivity index, fertilization and hatching rate. During the sampling period was verified effect (p < 0.05) of collecting time into the season for oocytes weight, productivity index and fertilization rate. Although the period 3 (December) did not differ significantly from other periods, it showed better parameters for the quality of C. macropomum oocytes.

  3. Review of concepts useful for maintaining quality of male reproductive field samples for laboratory study

    USGS Publications Warehouse

    Jenkins, Jill A.

    2011-01-01

    Investigations into cellular and molecular characteristics of male gametes obtained from fish in natural ecosystems require careful sample handling and shipping in order to minimize artifacts. Maintaining sample integrity engenders confident assessments of ecosystem health, whereby animal condition is often reflected by gamete biomarkers - indicators that respond in measurable ways to changes. A number of our investigations have addressed the hypothesis that biomarkers from fish along a pollution gradient are reflective of site location. Species biology and the selected biological endpoints direct choice of parameters such as: temperature, buffer osmolality, time in transit, fixation, cryoprotectants, protease inhibition, and antibiotic inclusion in extender. This paper will highlight case studies, and outline parameters and thoughts on approaches for use by field and laboratory researchers.

  4. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  5. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  6. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  7. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  8. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  9. Ultrastructural characters of the spermatozoon of the cestode Corallobothrium solidum Fritsch, 1886 (Cestoda: Proteocephalidea), a parasite of the electric catfish Malapterurus electricus.

    PubMed

    Brunanská, Magdaléna; Scholz, Tomás; Ibraheem, Mohammed Hassan

    2004-12-01

    The fine structure of the mature spermatozoon of the corallobothriine tapeworm Corallobothrium solidum Fritsch, 1886 (Cestoda: Proteocephalidea) from the electric catfish Malapterurus electricus from the Nile River in Egypt was studied by transmission electron microscopy for the first time. The filiform spermatozoon of C. solidum contains two axonemes of unequal length and a typical 9 + "1" trepaxonematan pattern. A single helicoidal crested body (30-200 nm thick) is localized at the anterior extremity of the gamete. The cortical microtubules line the periphery of the cell, largely parallel to the long axis of the spermatozoon and exhibiting signs of twisting at the beginning of region II. The nucleus, in the form of an electron-dense (largely in gametes of testes) and/or fibrous cord (largely in gametes from male reproductive ducts and seminal vesicle), coils in a spiral through the middle part (region III) of the spermatozoon. The cytoplasm contains electron-dense granules in regions II, III and partly in region IV. The cytoplasm of some spermatozoa exhibits an apparently higher electron-density at the end of the nucleated region (III), and continuously toward the middle part of region IV. The anterior and posterior extremities of the spermatozoa have a single axoneme. The ultrastructural features of the mature spermatozoon of C. solidum mostly coincide with those of the spermatozoon of other proteocephalideans, especially the gangesiine Electrotaenia malopteruri parasitizing the same host.

  10. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa).

    PubMed

    Barfield, Sarah; Aglyamova, Galina V; Matz, Mikhail V

    2016-01-13

    The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions. © 2016 The Author(s).

  11. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa)

    PubMed Central

    Barfield, Sarah; Aglyamova, Galina V.; Matz, Mikhail V.

    2016-01-01

    The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions. PMID:26763699

  12. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production.

    PubMed

    Ferraz, Marcia A M M; Henning, Heiko H W; Stout, Tom A E; Vos, Peter L A M; Gadella, Bart M

    2017-07-01

    The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce 'organs-on-chips', i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.

  13. Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono

    PubMed Central

    Han, Jong Won; Klochkova, Tatyana A.; Shim, Jun Bo; Yoon, Kangsup

    2012-01-01

    In red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system. Aglaothamnion oosumiense is a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novel N-acetyl-d-galactosamine-specific protein was isolated from female plants of A. oosumiense by affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding. PMID:22865077

  14. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior.

    PubMed

    Yeates, Sarah E; Diamond, Sian E; Einum, Sigurd; Emerson, Brent C; Holt, William V; Gage, Matthew J G

    2013-12-01

    Despite evidence that variation in male-female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species' ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species' identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. [Exploration of the concept of genetic drift in genetics teaching of undergraduates].

    PubMed

    Wang, Chun-ming

    2016-01-01

    Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.

  16. Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression.

    PubMed

    Pace, Tomasino; Olivieri, Anna; Sanchez, Massimo; Albanesi, Veronica; Picci, Leonardo; Siden Kiamos, Inga; Janse, Chris J; Waters, Andrew P; Pizzi, Elisabetta; Ponzi, Marta

    2006-05-01

    Transmission of the malaria parasite depends on specialized gamete precursors (gametocytes) that develop in the bloodstream of a vertebrate host. Gametocyte/gamete differentiation requires controlled patterns of gene expression and regulation not only of stage and gender-specific genes but also of genes associated with DNA replication and mitosis. Once taken up by mosquito, male gametocytes undergo three mitotic cycles within few minutes to produce eight motile gametes. Here we analysed, in two Plasmodium species, the expression of SET, a conserved nuclear protein involved in chromatin dynamics. SET is expressed in both asexual and sexual blood stages but strongly accumulates in male gametocytes. We demonstrated functionally the presence of two distinct promoters upstream of the set open reading frame, the one active in all blood stage parasites while the other active only in gametocytes and in a fraction of schizonts possibly committed to sexual differentiation. In ookinetes both promoters exhibit a basal activity, while in the oocysts the gametocyte-specific promoter is silent and the reporter gene is only transcribed from the constitutive promoter. This transcriptional control, described for the first time in Plasmodium, provides a mechanism by which single-copy genes can be differently modulated during parasite development. In male gametocytes an overexpression of SET might contribute to a prompt entry and execution of S/M phases within mosquito vector.

  17. Sensitivity of eastern oyster (Crassostrea virginica) spermatozoa and oocytes to dispersed oil: Cellular responses and impacts on fertilization and embryogenesis.

    PubMed

    Vignier, J; Volety, A K; Rolton, A; Le Goïc, N; Chu, F-L E; Robert, R; Soudant, P

    2017-06-01

    The 2010 Deepwater Horizon (DWH) oil spill released millions of barrels of oil and dispersant into the Gulf of Mexico. The timing of the spill coincided with the spawning season of Crassostrea virginica. Consequently, gametes released in the water were likely exposed to oil and dispersant. This study aimed to (i) evaluate the cellular effects of acute exposure of spermatozoa and oocytes to surface slick oil, dispersed mechanically (HEWAF) and chemically (CEWAF), using flow-cytometric (FCM) analyses, and (ii) determine whether the observed cellular effects relate to impairments of fertilization and embryogenesis of gametes exposed to the same concentrations of CEWAF and HEWAF. Following a 30-min exposure, the number of spermatozoa and their viability were reduced due to a physical action of oil droplets (HEWAF) and a toxic action of CEWAF respectively. Additionally, reactive oxygen species (ROS) production in exposed oocytes tended to increase with increasing oil concentrations suggesting that exposure to dispersed oil resulted in an oxidative stress. The decrease in fertilization success (1-h), larval survival (24-h) and increase in abnormalities (6-h and 24-h) may be partly related to altered cellular characteristics. FCM assays are a good predictor of sublethal effects especially on fertilization success. These data suggest that oil/dispersant are cytotoxic to gametes, which may affect negatively the reproduction success and early development of oysters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The species recognition system: a new corollary for the human fetoembryonic defense system hypothesis.

    PubMed

    Clark, G F; Dell, A; Morris, H R; Patankar, M S; Easton, R L

    2001-01-01

    We have previously suggested that the human fetus is protected during human development by a system of both soluble and cell surface associated glycoconjugates that utilize their carbohydrate sequences as functional groups to enable them to evoke tolerance. The proposed model has been referred to as the human fetoembryonic defense system hypothesis (hu-FEDS). In this paradigm, it has previously been proposed that similar oligosaccharides are used to mediate crucial recognition events required during both human sperm-egg binding and immune-inflammatory cell interactions. This vertical integration suggested to us that the sperm-egg binding itself is related to universal recognition events that occur between immune and inflammatory cells, except that in this case recognition of 'species' rather than recognition of 'self' is being manifested. In this paper, we have designated this component of hu-FEDS as the species recognition system (SRS). We propose that the SRS is an integral component of the hu-FEDS used to enable sperm-egg recognition and protection of the gametes from potential immune responses. Recent structural data indicates that the glycan sequences implicated in mediating murine gamete recognition are also expressed on CD45 in activated murine T lymphocytes and cytotoxic T lymphocytes. This overlap supports our contention that there is an overlap between the immune and gamete recognition systems. Therefore the hu-FEDS paradigm may be a subset of a larger model that also applies to other placental mammals. We therefore propose that the hu-FEDS model for protection should in the future be referred to as the eutherian fetoembryonic defense system hypothesis (eu-FEDS) to account for this extension. The possibility exists that the SRS component of eu-FEDS could predate eutherians and extend to all sexually reproducing organisms. Future investigation of the interactions between the immune and gamete recognition system will be required to determine the degree of

  19. Environmental and biological cues for spawning in the crown-of-thorns starfish

    PubMed Central

    Pratchett, Morgan S.

    2017-01-01

    Sporadic outbreaks of the coral-eating crown-of-thorns starfish are likely to be due, at least in part, to spatial and temporal variation in reproductive and settlement success. For gonochoric and broadcast spawning species such as crown-of-thorns starfish, spawning synchrony is fundamental for achieving high rates of fertilization. Highly synchronized gamete release within and among distinct populations is typically the result of the entrainment of neurohormonal endogenous rhythms by cues from the environment. In this study, we conducted multiple spawning assays to test the effects of temperature change, reduced salinity and nutrient enrichment of seawater, phytoplankton, gametes (sperm and eggs), and the combined effect of sperm and phytoplankton on the likelihood of spawning in male and female crown-of-thorns starfish. We also investigated sex-specific responses to each of these potential spawning cues. We found that (1) abrupt temperature change (an increase of 4°C) induced spawning in males, but less so in females; (2) males often spawned in response to the presence of phytoplankton, but none of the females spawned in response to these cues; (3) the presence of sperm in the water column induced males and females to spawn, although additive and synergistic effects of sperm and phytoplankton were not significant; and (4) males are more sensitive to the spawning cues tested and most likely spawn prior to females. We propose that environmental cues act as spawning ‘inducers’ by causing the release of hormones (gonad stimulating substance) in sensitive males, while biological cues (pheromones) from released sperm, in turn, act as spawning ‘synchronizers’ by triggering a hormonal cascade resulting in gamete shedding by conspecifics. Given the immediate temporal linkage between the timing of spawning and fertilization events, variability in the extent and synchronicity of gamete release will significantly influence reproductive success and may account for

  20. Central cell-derived peptides regulate early embryo patterning in flowering plants.

    PubMed

    Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F

    2014-04-11

    Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.

  1. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system.

    PubMed

    Fujii, Junichi; Iuchi, Yoshihito; Okada, Futoshi

    2005-09-02

    Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  2. Identification of the mechanism underlying a human chimera by SNP array analysis.

    PubMed

    Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju

    2012-09-01

    Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  3. Equality and selection for existence.

    PubMed Central

    Persson, I

    1999-01-01

    It is argued that the policy of excluding from further life some human gametes and pre-embryos as "unfit" for existence is not at odds with a defensible idea of human equality. Such an idea must be compatible with the obvious fact that the "functional" value of humans differs, that their "use" to themselves and others differs. A defensible idea of human equality is instead grounded in the fact that as this functional difference is genetically determined, it is nothing which makes humans deserve or be worthy of being better or worse off. Rather, nobody is worth a better life than anyone else. This idea of equality is, however, not applicable to gametes and pre-embryos, since they are not human beings, but something out of which human beings develop. PMID:10226918

  4. Cloning and initial characterization of nuclear and four membrane progesterone receptors in the fathead minnow(Pimephales promelas)

    EPA Science Inventory

    Both native progestagens and synthetic progestins have important effects on reproduction that are mediated through progesterone receptors (PRs). Progestagens regulate gamete maturation in vertebrates, are critical regulators of placental mammal pregnancy, and act as reproductive ...

  5. Culturing Embryos and Larvae of Marine Molluscs and Protochordates.

    ERIC Educational Resources Information Center

    Healey, R.; Turner, S. C.

    1979-01-01

    Presents a description for maintaining adult forms of molluscs and protochordates in order to obtain gametes for laboratory studies of animal development. The methods also include those for culturing embryonic larvae forms in vitro. (Author/SA)

  6. Xenotransplantation of testicular tissue into nude mice can be used for detecting leukemic cell contamination.

    PubMed

    Hou, Mi; Andersson, Margareta; Eksborg, Staffan; Söder, Olle; Jahnukainen, Kirsi

    2007-07-01

    Xeno-grafting of testicular tissue may allow viable gamete maturation. This would be beneficial for prepubertal cancer patients in that it may allow restoration of fertility without the risk of a cancer relapse. However it is unknown whether cancer cells in the testicular graft can transmit the malignancy into the host animal and also if gametes can be retrieved from testicular grafts that are contaminated with malignant cells. Rat T-cell leukemia was employed as the source of leukemic lymphoblasts and testicular tissue. This was injected i.p. (lymphoblasts) or grafted s.c. (fresh or cryopreserved testicular tissue) into the back skin of intact nude mice. To simulate clinical autografting, testicular tissue was also transplanted into healthy piebald variegated (PVG) rats. 50-70% of the mice, receiving 200 or 6000 leukemic lymphoblasts, developed terminal leukemia. All mice, grafted with either fresh or cryopreserved testicular tissue from leukemic donor, developed generalized leukemia and/or local tumors. All syngenic PVG rats, treated in the same manner, died of generalized leukemia. In all of the retrieved leukemic grafts, rat spermatogenesis was destroyed and only leukemic infiltration was detected. Grafting testicular tissue contaminated with leukemic cells led to tumor growth at the injection site without potential to differentiate germline stem cells into gametes. Xenografting could provide a novel functional strategy for simultaneous detection of malignant cell contamination and spermatogonial potential in testicular xenografts collected for fertility preservation.

  7. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility.

    PubMed

    Lanaud, Claire; Fouet, Olivier; Legavre, Thierry; Lopes, Uilson; Sounigo, Olivier; Eyango, Marie Claire; Mermaz, Benoit; Da Silva, Marcos Ramos; Loor Solorzano, Rey Gaston; Argout, Xavier; Gyapay, Gabor; Ebaiarrey, Herman Ebai; Colonges, Kelly; Sanier, Christine; Rivallan, Ronan; Mastin, Géraldine; Cryer, Nicholas; Boccara, Michel; Verdeil, Jean-Luc; Efombagn Mousseni, Ives Bruno; Peres Gramacho, Karina; Clément, Didier

    2017-10-13

    Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. A role for carbohydrate recognition in mammalian sperm-egg binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Gary F., E-mail: clarkgf@health.missouri.edu

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the eggmore » cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented.« less

  9. Participation of cysteine-rich secretory proteins (CRISP) in mammalian sperm-egg interaction.

    PubMed

    Cohen, Débora J; Busso, Dolores; Da Ros, Vanina; Ellerman, Diego A; Maldera, Julieta A; Goldweic, Nadia; Cuasnicu, Patricia S

    2008-01-01

    Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.

  10. Sex before the State: Civic Sex, Reproductive Innovations, and Gendered Parental Identity.

    PubMed

    Murphy, Timothy F

    2017-04-01

    Certain changes in the way that states classify people by sex as well as certain reproductive innovations undercut the rationale for state identification of people as male or female in signifying gendered parental relationships to children. At present, people known to the state as men may be genetic mothers to their children; people known to the state as women may be genetic fathers to their children. Synthetic gametes would make it possible for transgender men to be genetically related to children as fathers and transgender women to be genetically related to children as mothers, even if they have otherwise relied on naturally-occurring gametes to be genetic mothers and genetic fathers of children respectively. Synthetic gametes would presumably make it possible for any person to be the genetic father or genetic mother of children, even in a mix-and-match way. Other reproductive innovations will also undercut existing expectations of gendered parental identity. Uterus transplants would uncouple the maternal function of gestation from women, allowing men to share in maternity that way. Extracorporeal gestation ((ExCG)-gestation outside anyone's body-would also undercut the until-now absolute connection between female sex and maternity. In kind, effects such as these-undoing conventionally gendered parenthood-undercut the state's interest in knowing whether parents are male or female in relation to a given child, as against knowing simply whether someone stands in a parental relationship to that child, as a matter of rights and duties.

  11. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    PubMed

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  12. Sexual orientation in males and the evolution of anisogamy.

    PubMed

    Reed, Lawrence Ian

    2010-02-01

    How might homosexual orientation have evolved and been maintained? Several adaptationist explanations have been examined in attempt to reconcile the presence of same-sex sexual behaviors with traditional selection-based theory, showing little empirical support. The current paper presents a novel adaptationist explanation for the evolution and maintenance of same-sex sexual behaviors in males, both between- and within-species, related to the evolution of anisogamy. Under conditions of isogamy, sexual reproduction occurs between individuals with gametes of similar morphology. With the evolution of anisogamy came greater specificity on the types of individuals that would produce offspring when mated with (i.e. those with opposing gamete sizes). It is suggested that with this evolutionary change, a specified psychological adaptation orienting individuals primarily towards mating partners with newly opposing gamete sizes was then selected for. It is thus hypothesized that sexual orientation will vary along the anisogamy-isogamy continuum, with homosexual orientation being associated with closer approximations towards isogamy. This hypothesis leads to two specific predictions. First, in comparisons between species, the presence of same-sex sexual behaviors will be more likely to occur as sperm to egg ratios approach 1:1. Second, in comparisons within species, those individuals with greater sperm lengths will be more likely to exhibit same-sex sexual behaviors than those with lesser sperm lengths. Examination of the present hypothesis stands to greatly increase our knowledge of the selective forces shaping both biological and psychological evolution.

  13. Oxidative stress and its implications in female infertility - a clinician's perspective.

    PubMed

    Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh

    2005-11-01

    Reactive oxygen species (ROS) have a role in the modulation of gamete quality and gamete interaction. Generation of ROS is inherent in spermatozoa and contaminating leukocytes. ROS influence spermatozoa, oocytes, embryos and their environment. Oxidative stress (OS) mediates peroxidative damage to the sperm membrane and induces nuclear DNA damage. ROS can modulate the fertilizing capabilities of the spermatozoa. There is extensive literature on OS and its role in male infertility and sperm DNA damage and its effects on assisted reproductive techniques. Evidence is accumulating on the role of ROS in female reproduction. Many animal and human studies have elucidated a role for ROS in oocyte development, maturation, follicular atresia, corpus luteum function and luteolysis. OS-mediated precipitation of pathologies in the female reproductive tract is similar to those involved in male infertility. OS influences the oocyte and embryo quality and thus the fertilization rates. ROS appears to play a significant role in the modulation of gamete interaction and also for successful fertilization to take place. ROS in culture media may impact post-fertilization development, i.e. cleavage rate, blastocyst yield and quality (indicators of assisted reproduction outcomes). OS is reported to affect both natural and assisted fertility. Antioxidant strategies should be able to intercept both extracellular and intracellular ROS. This review discusses the sources of ROS in media used in IVF-embryo transfer and strategies to overcome OS in oocyte in-vitro maturation, in-vitro culture and sperm preparation techniques.

  14. Detecting Coevolution in Mammalian Sperm–Egg Fusion Proteins

    PubMed Central

    CLAW, KATRINA G.; GEORGE, RENEE D.; SWANSON, WILLIE J.

    2018-01-01

    SUMMARY Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm–egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm–egg proteins; interacting sperm–egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm–egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm–egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm–egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm–egg protein pairs. PMID:24644026

  15. Detecting coevolution in mammalian sperm-egg fusion proteins.

    PubMed

    Claw, Katrina G; George, Renee D; Swanson, Willie J

    2014-06-01

    Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm-egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm-egg proteins; interacting sperm-egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm-egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm-egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm-egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm-egg protein pairs. © 2014 Wiley Periodicals, Inc.

  16. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success.

    PubMed

    Gage, Matthew J G; Macfarlane, Christopher P; Yeates, Sarah; Ward, Richard G; Searle, Jeremy B; Parker, Geoffrey A

    2004-01-06

    Sperm competition occurs when sperm from more than one male compete for fertilizations. This form of post-copulatory sexual selection is recognized as a significant and widespread force in the evolution of male reproductive biology and as a key determinant of differential male reproductive success. Despite its importance, however, detailed mechanisms of sperm competition at the gamete level remain poorly understood. Here, we use natural variation in spermatozoal traits among wild Atlantic salmon (Salmo salar), a species naturally adapted to sperm competition, to examine how the relative influences of sperm (i) number, (ii) velocity, (iii) longevity, and (iv) total length determine sperm competition success. Atlantic salmon fertilize externally, and we were therefore able to conduct controlled in vitro fertilization competitions while concurrently measuring spermatozoal traits within the aqueous micro-environment to which salmon gametes are naturally adapted. Microsatellite DNA fingerprinting revealed that a male's relative sperm velocity was the primary determinant of sperm competition success. There was no significant relationship between fertilization success and either relative sperm number or total length; sperm longevity showed an inverse relationship with competition success. These relationships were consistent for two experimental repeats of the in vitro fertilization competitions. Our results therefore show, under the natural microenvironment for salmon gametes, that relative sperm velocity is a key spermatozoal component for sperm competition success. Atlantic salmon sperm can be considered to enter a competition analogous to a race in which the fastest sperm have the highest probability of success.

  17. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea.

    PubMed

    Iyer, Harini; Collins, James J; Newmark, Phillip A

    2016-06-01

    Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis.

  18. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae).

    PubMed

    Friedman, William E

    2015-02-01

    The female gametophyte of Welwitschia has long been viewed as highly divergent from other members of the Gnetales and, indeed, all other seed plants. However, the formation of female gametes and the process of fertilization have never been observed. Standard histological techniques were applied to study gametophyte development and the fertilization process in Welwitschia. In Welwitschia, fertilization events occur when pollen tubes with binucleate sperm cells grow down through the nucellus and encounter prothallial tubes, free nuclear tubular extensions of the micropylar end of the female gametophyte that grow up through the nucellus. Entry of a binucleate sperm cell into a vacuolate prothallial tube appears to stimulate the rapid coagulation of cytoplasm around a single female nucleus, which differentiates into an egg cell. One sperm nucleus enters the female gamete, while the second sperm nucleus remains outside and ultimately degenerates. Only a single fertilization event occurs per mating pair of pollen tube and prothallial tube. Welwitschia lacks the gnetalean pattern of regular double fertilization, as found in Ephedra and Gnetum, involving sperm from a single pollen tube to yield two zygotes. Moreover, an analysis of character evolution indicates that the female gametophyte of Welwitschia is highly apomorphic both among seed plants, and specifically within Gnetales, but also shares several key synapomorphies with its sister taxon Gnetum. Finally, the biological role of prothallial tubes in Welwitschia is examined from the perspectives of gamete competition and kin conflict. © 2015 Botanical Society of America, Inc.

  19. Cloning and initial characterization of nuclear and membrane progesterone receptors in the Fathead Minnow, Pimephales promelas

    EPA Science Inventory

    Both native progestagens and synthetic progestins have important effects on reproduction that are mediated through progesterone receptors (PRs). They regulate gamete maturation and can serve as precursors for other steroid hormones in vertebrates and act as reproductive pheromone...

  20. The resurgence of haploids in higher plants.

    PubMed

    Forster, Brian P; Heberle-Bors, Erwin; Kasha, Ken J; Touraev, Alisher

    2007-08-01

    The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.

  1. Live-Cell Imaging of F-Actin Dynamics During Fertilization in Arabidopsis thaliana.

    PubMed

    Susaki, Daichi; Maruyama, Daisuke; Yelagandula, Ramesh; Berger, Frederic; Kawashima, Tomokazu

    2017-01-01

    Fertilization comprises a complex series of cellular processes leading to the fusion of a male and female gamete. Many studies have been carried out to investigate each step of fertilization in plants; however, our comprehensive understanding of all the sequential events during fertilization is still limited. This is largely due to difficulty in investigating events in the female gametophyte, which is deeply embedded in the maternal tissue. Recent advances in confocal microcopy assisted by fluorescent marker lines have contributed to visualizing subcellular dynamics in real time during fertilization in vivo. In this chapter, we describe a method focusing on the investigation of F-actin dynamics in the central cell during male gamete nuclear migration. This method also allows the study of a wide range of early sexual reproduction events, from pollen tube guidance to the early stage of seed development.

  2. A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex.

    PubMed

    Hirano, Naoko; Marukawa, Yuka; Abe, Jun; Hashiba, Sayuri; Ichikawa, Machiko; Tanabe, Yoichi; Ito, Motomi; Nishii, Ichiro; Tsuchikane, Yuki; Sekimoto, Hiroyuki

    2015-07-01

    Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Broadcast spawning patterns of Favia species on the inshore reefs of Thailand

    NASA Astrophysics Data System (ADS)

    Kongjandtre, N.; Ridgway, T.; Ward, S.; Hoegh-Guldberg, O.

    2010-03-01

    To obtain a global perspective of coral reproductive patterns, there is a clear need for more descriptive studies from under-represented regions (e.g., Thailand). As such, this study provides the first data on the timing of gamete maturation and spawning of seven species of Favia from Thailand. Corals in the inner and eastern Gulf of Thailand (GOT) spawned following the full moons of February/March, whereas spawning in the southwestern GOT and the Andaman Sea occurred 1 month later following the full moons of March/April. Aquarium observations of five Favia species confirmed spawning between five and six nights after the respective full moon, with the time of release of gametes overlapping among species. Further research on gametogenesis in additional coral species is required to document whether the spawning patterns exhibited by Favia are typical of all coral species in Thailand.

  4. AN OVACYSTIS-LIKE CONDITION IN THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN FROM THE NORTHEASTERN GULF OF MEXICO

    EPA Science Inventory

    Histological examination of the eastern oyster, Crassostrea virginica, from a study in Pensacola Bay, Florida, revealed two cases of abnormally large, basophilic ova that resemble ovacystis disease previously reported in oysters from Maine and Long Island. The hypertrophied gamet...

  5. A22316 Gametophyte and sporophyte (version 2.0)

    USDA-ARS?s Scientific Manuscript database

    Gametogenesis is the process of gamete formation, which includes micro- and megagametogenesis. Gametogenesis initiates after specialized cells in the sporophyte undergo meiosis, and subsequent mitotic divisions yield the gametophytic phase of the plant life cycle. In higher plants, microgametogenesi...

  6. Gametogenesis

    USDA-ARS?s Scientific Manuscript database

    Gametogenesis is the process of gamete formation, which includes microgametogenesis and megagametogenesis. Gametogenesis initiates after specialized cells in the sporophyte undergo meiosis, and subsequent mitotic divisions yield the gametophyte phase of the plant life cycle. In higher plants, microg...

  7. Production of triploid Hydrangea macrophylla via unreduced gamete breeding

    USDA-ARS?s Scientific Manuscript database

    Hydrangea macrophylla (Thunb.) Ser., florist’s or bigleaf hydrangea, is the most economically important member of the Hydrangea genus, which accounted for 73,000,000 in US nursery sales in 2007. Diploid and triploid cultivars exist and there is some evidence triploidy leads to larger plant and flora...

  8. Gamete selection for forage quality improvement in tall fescue

    USDA-ARS?s Scientific Manuscript database

    Within the Festuca-Lolium genome complex there is a need for modern breeding approaches that facilitate the rapid development of improved germplasm or cultivars. Traditional recurrent or mass-selection methods for population or synthetic development are labor intensive and time consuming. The use ...

  9. Hormone preparation, dosage calculation, and injection technique for induced spawning of foodfish

    USDA-ARS?s Scientific Manuscript database

    Reliable spawning and fry production of food species is critical for successful commercial production. Environmental stimuli often fail to trigger the requisite hormone cascades for gamete formation, final oocyte maturation, and ovulation in fish held under captive conditions. In general, enviro...

  10. [The 14/2006 law on human assisted reproduction techniques: scientific and ethical considerations].

    PubMed

    Lacadena, Juan-Ramón

    2006-01-01

    The new Spanish Law on Artificial Human Reproduction Techniques is analyzed from the scientific, ethical and legal points of view, paying special attention to the preimplantational diagnosis and the experimental utilization of gametes and preembryos. Other items are also analyzed.

  11. NEUROENDOCRINE AND REPRODUCTIVE EFFECTS OF PESTICIDES

    EPA Science Inventory

    Neuroendocrine and Reproductive Effects of Pesticides

    1Stoker, TE, Goldman 2, JM and Cooper 2, RL.

    1Gamete and Early Embryogenesis Biology Branch and 2 Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effects Research Laborat...

  12. Lasers in the in-vitro fertilization laboratory

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Neev, Joseph; Berns, Michael W.

    1993-05-01

    Laser beams are routinely used in the clinical practice of assisted reproduction. The main applications are in laparoscopic and hysteroscopic surgery. The potential applications of laser microbeams as a tool for gamete manipulations are studied and basic concepts are discussed.

  13. PARASITIC AND SYMBIONIC FAUNA IN OYSTERS (CRASSOSTREA VIRGINICA) COLLECTED FROM THE CALOOSAHATCHEE RIVER AND ESTUARY, FLORIDA

    EPA Science Inventory



    Studies of oysters, Crassostrea virginica, collected from ten sites in the Caloosahatchee River and Estuary, Florida, revealed a varied parasite and symbiotic fauna that have never been reported from this area. Organisms observed included ovacystis virus infecting gametes...

  14. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?

    PubMed

    Mugnier, Sylvie; Kervella, Morgane; Douet, Cécile; Canepa, Sylvie; Pascal, Géraldine; Deleuze, Stefan; Duchamp, Guy; Monget, Philippe; Goudet, Ghylène

    2009-11-19

    Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates. Our study

  15. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?

    PubMed Central

    2009-01-01

    Background Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. Methods & results In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly

  16. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study.

    PubMed

    Soubry, Adelheid; Guo, Lisa; Huang, Zhiqing; Hoyo, Cathrine; Romanus, Stephanie; Price, Thomas; Murphy, Susan K

    2016-01-01

    Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and

  17. An extreme bias in the germ line of XY C57BL/6<->XY FVB/N chimaeric mice

    PubMed Central

    MacGregor, G. R.

    2011-01-01

    Chimaeric analysis is a powerful method to address questions about the cell-autonomous nature of defects in spermatogenesis. Symplastic spermatids (sys) mice have a recessive mutation that causes male sterility due to an arrest in germ-cell development during spermiogenesis. Chimaeric mice were generated by aggregation of eight-cell embryos from sys (FVB/N genetic background) and wild-type C57BL/6 (B6) mice to determine whether the male germ-cell defect is cell-autonomous. The resulting FVB/N<->B6 chimaeras (<-> denotes fusion of embryos) were mated with FVB/N mice and coat colour of offspring was used to identify transmission of FVB/N or B6 gametes. Regardless of the relative contribution of B6 to somatic tissues of the chimaeras, almost all (282 of 284; 99.3%) offspring of B6 XY<->XY FVB/N (+/+ or sys/+) males (n = 9) received a FVB/N-derived paternal gamete. After mating of female B6<->FVB/N chimaeras, 51 of 73 (69.9%) offspring received an FVB-derived maternal gamete. Southern blot analysis of different tissues from chimaeric males indicated that, despite the presence of balanced chimaerism in somatic tissues, the germ line in B6 XY<->XY FVB/N mice was essentially FVB/N in composition. Thus there is a strong selective advantage for FVB/N male germ cells over B6 male germ cells in B6<->FVB/N-aggregation chimaeras at some stage during development of the male germ line. Each of three male chimaeras that were either B6 XY<->XY FVB/N (sys/sys) or B6 XX<->XY FVB/N (sys/sys) in composition was sterile, and testis histology was essentially sys mutant. This finding indicates that the function of the gene(s) affected in the sys mutation may be required in the testis, although whether expression is required in germ cells, somatic cells or both remains unknown. The extreme bias in transmission of male gametes has implications for experimental design in studies that use chimaeric analysis to address questions regarding the cell-autonomous nature of germ-cell defects in mice

  18. Development of yellow perch (Perca flavescens) broodstocks: initial characterization of growth and quality traits following grow-out of different stocks

    USDA-ARS?s Scientific Manuscript database

    Broodstocks of yellow perch (Perca flavescens) were initiated from fertilized gametes obtained from wild fish taken from the Perquimans River (North Carolina), Choptank River (Maryland), Lake Winnebago (Wisconsin), and Lac du Flambeau (Wisconsin). Populations at these sites were chosen based on the ...

  19. The Regulation of Vesicle Trafficking by Small GTPases and Phospholipids during Pollen Tube Growth

    USDA-ARS?s Scientific Manuscript database

    Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane...

  20. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    USDA-ARS?s Scientific Manuscript database

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  1. The Concept of Horizontal Linkage and Its Application to Genetics and Breeding

    USDA-ARS?s Scientific Manuscript database

    In diploid organisms, all dominance and many epistatic interactions are lost during the formation of gametes by meiosis. While outcrossing strategies may help to restore heterozygosity upon fertilization, there are few examples of mechanisms that retain inter- and intra-locus interactions during se...

  2. TROPICAL COLLECTOR URCHIN, TRIPNEUSTES GRATILLA, FERTILIZATION TEST METHOD

    EPA Science Inventory

    This document describes a fertilization method to estimate the chronic toxicity of effluents and receiving waters to the gametes of the tropical sea urchin (Tripneustes gratilla). This toxicity test measures the fertilizing capacity of sperm following a static, non-renewal 60-mi...

  3. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  4. GENE ARRAYS FOR ELUCIDATING MECHANISTIC DATA FROM MODELS OF MALE INFERTILITY AND CHEMICAL EXPOSURE IN MICE, RATS AND HUMANS

    EPA Science Inventory

    Gene arrays for elucidating mechanistic data from models of male infertility and chemical exposure in mice, rats and humans
    John C. Rockett and David J. Dix
    Gamete and Early Embryo Biology Branch, Reproductive Toxicology Division, National Health and Environmental Effects ...

  5. Meiotic Divisions: No Place for Gender Equality.

    PubMed

    El Yakoubi, Warif; Wassmann, Katja

    2017-01-01

    In multicellular organisms the fusion of two gametes with a haploid set of chromosomes leads to the formation of the zygote, the first cell of the embryo. Accurate execution of the meiotic cell division to generate a female and a male gamete is required for the generation of healthy offspring harboring the correct number of chromosomes. Unfortunately, meiosis is error prone. This has severe consequences for fertility and under certain circumstances, health of the offspring. In humans, female meiosis is extremely error prone. In this chapter we will compare male and female meiosis in humans to illustrate why and at which frequency errors occur, and describe how this affects pregnancy outcome and health of the individual. We will first introduce key notions of cell division in meiosis and how they differ from mitosis, followed by a detailed description of the events that are prone to errors during the meiotic divisions.

  6. Stem cells, in vitro gametogenesis and male fertility.

    PubMed

    Nagamatsu, Go; Hayashi, Katsuhiko

    2017-12-01

    Reconstitution in culture of biological processes, such as differentiation and organization, is a key challenge in regenerative medicine, and one in which stem cell technology plays a central role. Pluripotent stem cells and spermatogonial stem cells are useful materials for reconstitution of germ cell development in vitro , as they are capable of differentiating into gametes. Reconstitution of germ cell development, termed in vitro gametogenesis, will provide an experimental platform for a better understanding of germ cell development, as well as an alternative source of gametes for reproduction, with the potential to cure infertility. Since germ cells are the cells for 'the next generation', both the culture system and its products must be carefully evaluated. In this issue, we summarize the progress in in vitro gametogenesis, most of which has been made using mouse models, as well as the future challenges in this field. © 2017 Society for Reproduction and Fertility.

  7. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Harrison, P.; Adjeroud, M.

    2006-03-01

    Little information is available on reproductive processes among corals in isolated central Pacific reef regions, including French Polynesia. This study examined the timing and mode of sexual reproduction for Acropora reef corals at Moorea. Spawning was observed and/or inferred in 110 Acropora colonies, representing 12 species, following full moon periods in September through November 2002. Gamete release was observed and inferred in four species of Acropora between 9 and 13 nights after the full moon (nAFM) in September 2002. Twelve Acropora spp. spawned gametes between 5 and 10 nAFM in October 2002, with six species spawning 7 nAFM and four species spawning 9 nAFM. In November 2002, spawning of egg and sperm bundles was observed and inferred in 27 colonies of Acropora austera, 6 nAFM. These are the first detailed records of spawning by Acropora corals in French Polynesia.

  8. Uptake of free amino acids by bacteria-free larvae of the sand dollar Dendraster excentricus.

    PubMed

    Davis, J P; Stephens, G C

    1984-10-01

    Larvae of Dendraster excentricus were produced by collecting gametes and carrying out fertilization under aseptic conditions. Since gametes are free of bacteria in the gonad, bacteria-free (axenic) suspensions of larvae result. Net rates of entry of 14 amino acids and the rate of production of ammonia were simultaneously determined by high-performance liquid chromatography. The net rates of uptake of neutral amino acids were an order of magnitude greater than rates for basic and acidic amino acids. Influx of 14C-labeled leucine, arginine, and glutamate accurately reflects the net entry rate of these substrates. Uptake of amino acids by axenic suspensions of larvae was compared with uptake by suspensions prepared without aseptic precautions. There was no significant difference in net uptake of the 14 amino acids or in the pattern of oxidation and assimilation of [14C]leucine during short-term experiments of 4-h duration or less.

  9. Families working it out: adolescents' views on communicating about donor-assisted conception.

    PubMed

    Kirkman, Maggie; Rosenthal, Doreen; Johnson, Louise

    2007-08-01

    Prompted by legislation in Victoria, Australia, permitting gamete donors to seek identifying details of people conceived from their gametes, this research investigated the views of adolescents from the general population on how parents can best talk to their donor-conceived adolescent children about their conception. Qualitative interviews (six group discussions, n = two to six per group, and one individual interview) lasting c. 50 min with 25 secondary school students. Naïve adolescents had views largely consistent with those of donor-conceived adults, for example, urging parental honesty, adaptation to individual children, and family cohesion. They identified the social father as the parent while acknowledging the significance of genetic connection to the donor. A minority asserted a preference for non-disclosure; all said that, if disclosed, it should be by parents. This small study contributes to increasing understanding of communication within families about donor-assisted conception.

  10. Laboratory techniques for human embryos.

    PubMed

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  11. Comprehensive Genome Profiling of Single Sperm Cells by Multiple Annealing and Looping-Based Amplification Cycles and Next-Generation Sequencing from Carriers of Robertsonian Translocation.

    PubMed

    Sha, Yanwei; Sha, Yankun; Ji, Zhiyong; Ding, Lu; Zhang, Qing; Ouyang, Honggen; Lin, Shaobin; Wang, Xu; Shao, Lin; Shi, Chong; Li, Ping; Song, Yueqiang

    2017-03-01

    Robertsonian translocation (RT) is a common cause for male infertility, recurrent pregnancy loss, and birth defects. Studying meiotic recombination in RT-carrier patients helps decipher the mechanism and improve the clinical management of infertility and birth defects caused by RT. Here we present a new method to study spermatogenesis on a single-gamete basis from two RT carriers. By using a combined single-cell whole-genome amplification and sequencing protocol, we comprehensively profiled the chromosomal copy number of 88 single sperms from two RT-carrier patients. With the profiled information, chromosomal aberrations were identified on a whole-genome, per-sperm basis. We found that the previously reported interchromosomal effect might not exist with RT carriers. It is suggested that single-cell genome sequencing enables comprehensive chromosomal aneuploidy screening and provides a powerful tool for studying gamete generation from patients carrying chromosomal diseases. © 2017 John Wiley & Sons Ltd/University College London.

  12. Toxicity of marine pollutants on the ascidian oocyte physiology: an electrophysiological approach.

    PubMed

    Gallo, Alessandra

    2018-02-01

    In marine animals with external fertilization, gametes are released into seawater where fertilization and embryo development occur. Consequently, pollutants introduced into the marine environment by human activities may affect gametes and embryos. These xenobiotics can alter cell physiology with consequent reduction of fertilization success. Here the adverse effects on the reproductive processes of the marine invertebrate Ciona intestinalis (ascidian) of different xenobiotics: lead, zinc, an organic tin compound and a phenylurea herbicide were evaluated. By using the electrophysiological technique of whole-cell voltage clamping, the effects of these compounds on the mature oocyte plasma membrane electrical properties and the electrical events of fertilization were tested by calculating the concentration that induced 50% normal larval formation (EC50). The results demonstrated that sodium currents in mature oocytes were reduced in a concentration-dependent manner by all tested xenobiotics, with the lowest EC50 value for lead. In contrast, fertilization current frequencies were differently affected by zinc and organic tin compound. Toxicity tests on gametes demonstrated that sperm fertilizing capability and fertilization oocyte competence were not altered by xenobiotics, whereas fertilization was inhibited in zinc solution and underwent a reduction in organic tin compound solution (EC50 value of 1.7 µM). Furthermore, fertilized oocytes resulted in a low percentage of normal larvae with an EC50 value of 0.90 µM. This study shows that reproductive processes of ascidians are highly sensitive to xenobiotics suggesting that they may be considered a reliable biomarker and that ascidians are suitable model organisms to assess marine environmental quality.

  13. A structural view of egg coat architecture and function in fertilization.

    PubMed

    Monné, Magnus; Jovine, Luca

    2011-10-01

    Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.

  14. The intriguing complexity of parthenogenesis inheritance in Pilosella rubra (Asteraceae, Lactuceae).

    PubMed

    Rosenbaumová, Radka; Krahulcová, Anna; Krahulec, František

    2012-09-01

    Neither the genetic basis nor the inheritance of apomixis is fully understood in plants. The present study is focused on the inheritance of parthenogenesis, one of the basic elements of apomixis, in Pilosella (Asteraceae). A complex pattern of inheritance was recorded in the segregating F(1) progeny recovered from reciprocal crosses between the facultatively apomictic hexaploid P. rubra and the sexual tetraploid P. officinarum. Although both female and male reduced gametes of P. rubra transmitted parthenogenesis at the same rate in the reciprocal crosses, the resulting segregating F(1) progeny inherited parthenogenesis at different rates. The actual transmission rates of parthenogenesis were significantly correlated with the mode of origin of the respective F(1) progeny class. The inheritance of parthenogenesis was significantly reduced in F(1) n + n hybrid progeny from the cross where parthenogenesis was transmitted by female gametes. In F(1) n + 0 polyhaploid progeny from the same cross, however, the transmission rate of parthenogenesis was high; all fertile polyhaploids were parthenogenetic. It appeared that reduced female gametes transmitting parthenogenesis preferentially developed parthenogenetically and only rarely were fertilized in P. rubra. The fact that the determinant for parthenogenesis acts gametophytically in Pilosella and the precocious embryogenesis in parthenogenesis-transmitting megagametophytes was suggested as the most probable explanations for this observation. Furthermore, we observed the different expression of complete apomixis in the non-segregating F(1) 2n + n hybrids as compared to their apomictic maternal parent P. rubra. We suggest that this difference is a result of unspecified interactions between the parental genomes.

  15. 2015 RANZCOG Arthur Wilson Memorial Oration 'From little things, big things grow: The importance of periconception medicine'.

    PubMed

    Norman, Robert J

    2015-12-01

    The time of our conception is when we are most vulnerable to survival and growing as a healthy human being. Genetic and environmental effects on gametes and the developing embryo can be literally life-and-death events with regard to the successful outcome of pregnancy. In the past decade, we have also understood that environmental factors under which the gametes grow and the embryo develops have lifelong implications with regard to developmental origins of health and disease. We now know that parenting begins before conception in that a compromised egg or sperm from either parent can alter the trajectory of development even if the embryo and intrauterine environment is optimal. There are now a large number of factors known to impact on the gametes to adversely affect them, including obesity, nutrition, cigarette smoking and environmental pollutants. The increasing use of in vitro fertilisation across the world exposes developing embryos to less than optimal environmental conditions through altered culture media, gases and potential pollutants from plastics, air and water. Many of these environmental exposures have not undergone experimental investigation and yet widely implemented in thousands of laboratories across the world. There have been many attempts to set up periconception planning either through the health service, the print and electronic media or through government action. We as a profession, as well as our Colleges, could do much better job in this area of preventative medicine by developing better guidelines and education for professional colleagues, the health service and the community. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  16. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions.

    PubMed

    Taborsky, Michael; Schütz, Dolores; Goffinet, Olivier; van Doorn, G Sander

    2018-05-01

    Males pursuing alternative reproductive tactics have been predicted to face a trade-off between maximizing either swimming performance or endurance of their sperm. However, empirical evidence for this trade-off is equivocal, which may be due to simplistic assumptions. In the shell-brooding cichlid fish Lamprologus callipterus , two Mendelian male morphs compete for fertilization by divergent means: Bourgeois nest males ejaculate sperm, on average, about six times farther from the unfertilized ova than do parasitic dwarf males. This asymmetry is opposite to the usual situation, in which bourgeois males typically benefit from superior fertilization opportunities, suggesting that nest males' sperm should persist longer than dwarf male sperm. The assumed trade-off between sperm swimming performance and longevity predicts that, in turn, sperm of dwarf males should outperform that of nest males in swimming efficiency. Measurement of sperm performance and endurance reveals that dwarf male spermatozoa swim straighter initially than those of nest males, but their motility declines earlier and their velocity slows down more abruptly. Nest male sperm survives longer, which relates to a larger sperm head plus midpiece, implying more mitochondria. Thus, the trade-off between sperm performance and endurance is optimized in opposite directions by alternative male morphs. We argue that the relative success of alternative sperm performance strategies can be influenced strongly by environmental factors such as the time window between gamete release and fertilization, and the position of gamete release. This is an important yet little understood aspect of gametic adaptations to sperm competition.

  17. Application of EU tissue and cell directive screening protocols to anonymous oocyte donors in western Ukraine: data from an Irish IVF programme.

    PubMed

    Walsh, A P H; Omar, A B; Collins, G S; Murray, G U; Walsh, D J; Salma, U; Sills, E Scott

    2010-01-01

    Anonymous oocyte donation in the EU proceeds only after rigorous screening designed to ensure gamete safety. If anonymous donor gametes originating from outside EU territory are used by EU patients, donor testing must conform to the same standards as if gamete procurement had occurred in the EU. In Ireland, IVF recipients can be matched to anonymous donors in the Ukraine (a non-EU country). This investigation describes the evolution of anonymous oocyte donor screening methods during this period and associated results. Data were reviewed for all participants in an anonymous donor oocyte IVF programme from 2006 to 2009, when testing consistent with contemporary EU screening requirements was performed on all Ukrainian oocyte donors. HIV and hepatitis tests were aggregated from 314 anonymous oocyte donors and 265 recipients. The results included 5,524 Ukrainian women who were interviewed and 314 of these entered the programme (5.7% accession rate). Mean age of anonymous oocyte donors was 27.9 years; all had achieved at least one delivery. No case of hepatitis or HIV was detected at initial screening or at oocyte procurement. This is the first study of HIV and hepatitis incidence specifically among Ukrainian oocyte donors. We find anonymous oocyte donors to be a low-risk group, despite a high background HIV rate. Following full disclosure of the donation process, most Ukrainian women wishing to volunteer as anonymous oocyte donors do not participate. Current EU screening requirements appear adequate to maintain patient safety in the context of anonymous donor oocyte IVF.

  18. The making of an organ: RNA mediated developmental controls in mice.

    PubMed

    Rassoulzadegan, Minoo; Cuzin, François

    2010-01-01

    Based initially on the observation of inheritance patterns at variance with Mendel's first law, hereditary epigenetic variations were evidenced in the mouse. Modulating the transcription of a locus, they are induced by RNAs with sequence homology to the transcript. RNAs transferred by the gamete, including sperm, to the fertilized egg appeared to be responsible for transgenerational maintenance of the variant phenotypes. Instances of RNA-dependent variations so far analyzed in the mouse-a pathological deviation of heart development and a syndrome of gigantism initiated by hyperproliferation of embryonic stem cells-suggest a general dependence of organogenesis on epigenetic controls of gene expression. "I conclude it is impossible to say we know the limit of variation."-Charles Darwin. One of the most fascinating visions offered to the biologist is to watch the fertilized egg ingeniously unfolding a program to create a novel being. Development takes place by activating networks of gene activation that result in the proper adjustment of cell growth and functional differentiation. How is the whole process started? Thoughts are generally centered on the activation of critical genes at the early stages due to a newly acquired organization of their chromatin structures. Is the embryo induced to start a given program by molecules contributed by the maternal and paternal gametes? While genetic determinants are clearly essential, the epigenetic landscape largely dominates our current way of thinking. In this essay, we will focus on the evidence showing that RNA molecules are present in the gametes and that RNA can modulate the robust genetic program of organ formation in the mouse.

  19. Clonal structure and variable fertilization success in Florida Keys broadcast-spawning corals

    NASA Astrophysics Data System (ADS)

    Miller, M. W.; Baums, I. B.; Pausch, R. E.; Bright, A. J.; Cameron, C. M.; Williams, D. E.; Moffitt, Z. J.; Woodley, C. M.

    2018-03-01

    Keystone reef-building corals in the Caribbean are predominantly self-incompatible broadcast spawners and a majority are threatened due to both acute adult mortality and poor recruitment. As population densities decline, concerns about fertilization limitation and effective population size in these species increase and would be further exacerbated by either high clonality or gametic incompatibility of parental genotypes. This study begins to address these concerns for two Caribbean broadcasting species by characterizing clonal structure and quantifying experimental pairwise fertilization success. Orbicella faveolata showed surprisingly high and contrasting levels of clonality between two sampled sites; Acropora palmata was previously known to be highly clonal. Individual pairwise crosses of synchronously spawning genotypes of each species were conducted by combining aliquots of gamete bundles immediately after spawning, and showed high and significant variability in fertilization success. Over half of the individual crosses of O. faveolata and about one-third of A. palmata crosses yielded ≤ 40% fertilization. Total sperm concentration was quantified in only a subset of O. faveolata crosses (range of 1-6 × 107 mL-1), but showed no correlation with fertilization success. We interpret that both parental incompatibility and individual genotypes with low-quality gametes are likely to have contributed to the variable fertilization observed with important implications for conservation. Differential fertilization success implies effective population size may be considerably smaller than hoped and population enhancement efforts need to incorporate many more parental genotypes at the patch scale to ensure successful larval production than indicated by estimates based simply on preserving levels of standing genetic diversity.

  20. Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae)

    PubMed Central

    Velo‐Suárez, Lourdes; Ralston, David K.; Fox, Sophia E.; Sehein, Taylor R.; Shalapyonok, Alexi; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2015-01-01

    Abstract Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine‐based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy‐based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture. PMID:27667858

  1. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian

    USDA-ARS?s Scientific Manuscript database

    Background: The fertility performance of animals is still a mystery and the full comprehension of mammalian gametes maturation and early embryonic development remains to be elucidated. The recent development in nanotechnology offers a new opportunity for real-time study of reproductive cells in thei...

  2. Small genomes in tetraploid Rubus L. (Rosaceae) from New Zealand and southern South America

    USDA-ARS?s Scientific Manuscript database

    About 60 to70% of Rubus species are polyploids. Ploidy in this genus ranges from diploid through tetradecaploid , with aneuploids. The gametic chromosome number is x = 7. Taxa in Rubus Subgenera Micranthobatus and Comaropsis are endemic to the Southern Hemisphere in trans-Pacific Ocean environments ...

  3. 77 FR 38774 - Marine Mammals; File No. 16193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... whole blood taken from dead or captive individuals to study reproductive physiology, including endocrinology, gamete biology, and cryophysiology. Specimens from dead animals, located solely within the... harvesting; killed incidentally to fishing or other operations; found dead at sea or beached; or that died of...

  4. Implications of gender differences for human health risk assessment and toxicology

    EPA Science Inventory

    This paper from The Human Health working group of SGOMSEC 16 examines a broad range of issues on gender effects in toxicology. Gender differences in toxicology begin at the gamete and embryo stage, continuing through development and maturation and into old age. Sex influences exp...

  5. Comparison of RAPD Linkage Maps Constructed For a Single Longleaf Pine From Both Haploid and Diploid Mapping Populations

    Treesearch

    Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine

    1996-01-01

    Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...

  6. Examining Differences in Psychological Adjustment Problems among Children Conceived by Assisted Reproductive Technologies

    ERIC Educational Resources Information Center

    Shelton, Katherine H.; Boivin, Jacky; Hay, Dale; van den Bree, Marianne B. M.; Rice, Frances J.; Harold, Gordon T.; Thapar, Anita

    2009-01-01

    The aim of this study was to examine whether there was variation in levels of psychological adjustment among children conceived through Assisted Reproductive Technologies using the parents' gametes (homologous), sperm donation, egg donation, embryo donation and surrogacy. Information was provided by parents about the psychological functioning of…

  7. HIGH INFORMATION CONTENT TOXICITY SCREENING USING MOUSE AND HUMAN STEM CELL MODELS OF ENDOCRINE DEVELOPMENT AND FUNCTION

    EPA Science Inventory

    The project will result in the rapid assessment of chemicals for adverse effects on the development of gametes, adipocytes, and islet B-cells; and on the adipocyte and B-cell endocrine signaling function in human and murine embryonic stem cells. Based on the data, hierarchical...

  8. Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells

    USDA-ARS?s Scientific Manuscript database

    In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...

  9. Psychosocial Adjustment to Unsuccessful IVF and GIFT Treatment.

    ERIC Educational Resources Information Center

    Weaver, Susan M.; Clifford, Ellen; Hay, Douglas M.; Robinson, John

    1997-01-01

    Couples for whom in vitro fertilization (IVF) or gamete intrafallopian transfer (GIFT) treatment failed (N=20) were followed up and compared with successful couples. Current mental-health status, quality of life, and marital adjustment were assessed via questionnaires; experiences were explored by interview. Results and recommendations for…

  10. Effects of vitamin C on percent neurulation, hatch, growth, and survival of hybrid catfish challenged with virulent Edwardsiella ictaluri

    USDA-ARS?s Scientific Manuscript database

    Vitamin C (ascorbic acid) is an essential micronutrient involved in several physiological processes such as growth, reproduction, and immune response. Requirements of vitamin C during gamete formation and early life stages of catfish are not known. Ascorbic acid (1 mg/mL/kg BW) was administered in...

  11. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Common Littleneck Clam.

    DTIC Science & Technology

    1986-04-01

    cells in clam (P. tenerrima) in having December and January (Quayle 1943). w , , radiating ribs more prominent than The growth of gametes reaches a...reproductive cycle levels in intertidal mollusks of of Protothaca stamine ’ using histo- California. Veliger 14(4):365-372. logical, wet weight-dry

  12. EVALUATION OF FERTILIZATION FOLLOWING OVULATORY DELAY WITH THIRAM IN THE LONG-EVANS HOODED RAT

    EPA Science Inventory

    Evaluation of fertilization following ovulatory delay with thiram in the Long-Evans Hooded Rat

    1TE Stoker, 1* S Jeffay, and 1 SD Perreault.

    1Gamete and Early Embryogenesis Biology Branch and 2 Endocrinology Branch, Reproductive Toxicology Division, NHEERL, US EPA, R...

  13. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Turning rice meiosis into mitosis

    PubMed Central

    Mieulet, Delphine; Jolivet, Sylvie; Rivard, Maud; Cromer, Laurence; Vernet, Aurore; Mayonove, Pauline; Pereira, Lucie; Droc, Gaëtan; Courtois, Brigitte; Guiderdoni, Emmanuel; Mercier, Raphael

    2016-01-01

    Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop. Successful implementation of the MiMe technology in the phylogenetically distant eudicot Arabidopsis and monocot rice opens doors for its application to any flowering plant and paves the way for introducing apomixis in crop species. PMID:27767093

  15. The zinc spark is an inorganic signature of human egg activation.

    PubMed

    Duncan, Francesca E; Que, Emily L; Zhang, Nan; Feinberg, Eve C; O'Halloran, Thomas V; Woodruff, Teresa K

    2016-04-26

    Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent "zinc spark." The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.

  16. Molecular characterization of the human microbiome from a reproductive perspective.

    PubMed

    Mor, Amir; Driggers, Paul H; Segars, James H

    2015-12-01

    The process of reproduction inherently poses unique microbial challenges because it requires the transfer of gametes from one individual to the other, meanwhile preserving the integrity of the gametes and individuals from harmful microbes during the process. Advances in molecular biology techniques have expanded our understanding of the natural organisms living on and in our bodies, including those inhabiting the reproductive tract. Over the past two decades accumulating evidence has shown that the human microbiome is tightly related to health and disease states involving the different body systems, including the reproductive system. Here we introduce the science involved in the study of the human microbiome. We examine common methods currently used to characterize the human microbiome as an inseparable part of the reproductive system. Finally, we consider a few limitations, clinical implications, and the critical need for additional research in the field of human fertility. Copyright © 2015. Published by Elsevier Inc.

  17. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  18. Bioenergetics of mammalian sperm capacitation.

    PubMed

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  19. Making families: organizational boundary work in US egg and sperm donation.

    PubMed

    Johnson, Katherine M

    2013-12-01

    Egg and sperm donation can create distinct issues for designating family boundaries. These issues come to the forefront as relations between donors, recipients, and donor-conceived children have been shifting from anonymous to more open arrangements in the US and other western countries. In this study, I address US organizational practices and family boundary construction. Fertility clinics, egg donation agencies, and sperm banks are central providers of US gamete donation services. Given the disruptive potential of gamete donation, how do they manage relationships between parties? Through a content analysis of materials from twenty fertility clinics, twenty egg donation agencies, and thirty-one sperm banks, I address three major strategies of organizational boundary work: 1) creating identity categories, 2) managing information, and 3) managing interaction. I ultimately argue that even as many organizations offer opportunities for connections between parties, they exercise social control over donation arrangements through bounded relationships. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia

    PubMed Central

    Quiroga Artigas, Gonzalo; Lapébie, Pascal; Leclère, Lucas; Takeda, Noriyo; Deguchi, Ryusaku; Jékely, Gáspár

    2018-01-01

    Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family. PMID:29303477

  1. The zinc spark is an inorganic signature of human egg activation

    PubMed Central

    Duncan, Francesca E.; Que, Emily L.; Zhang, Nan; Feinberg, Eve C.; O’Halloran, Thomas V.; Woodruff, Teresa K.

    2016-01-01

    Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent “zinc spark.” The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development. PMID:27113677

  2. [Hygienic evaluation of the total mutagenic activity of snow samples from Magnitogorsk].

    PubMed

    Legostaeva, T B; Ingel', F I; Antipanova, N A; Iurchenko, V V; Iuretseva, N A; Kotliar, N N

    2010-01-01

    The paper gives the results of 4-year monitoring of the total mutagenic activity of snow samples from different Magnitogork areas in a test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster. An association was first found between the rate of DLM and the content of some chemical compounds in the ambient air and snow samples; moreover all the substances present in the samples, which had found genotoxic effects, showed a positive correlation with the rate of DLM. Furthermore, direct correlations were first established between the rate of DLM and the air pollution index and morbidity rates in 5-7-year-old children residing in the areas under study. The findings allow the test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster to be recommended due to its unique informative and prognostic value for monitoring ambient air pollution and for extensive use in the risk assessment system.

  3. Spermatological characters of the pseudophyllidean cestode Bothriocephalus scorpii (Müller, 1776).

    PubMed

    Levron, Céline; Brunanská, Magdaléna; Poddubnaya, Larisa G

    2006-06-01

    Spermiogenesis of Bothriocephalus scorpii (Cestoda, Pseudophyllidea) includes an orthogonal development of two flagella, followed by a flagellar rotation and a proximo-distal fusion with the median cytoplasmic process. The fusion occurs at the level of four attachment zones. The presence of dense material in the apical region of the differentiation zone in the early stage of spermiogenesis appears to be a characteristic feature for the Pseudophyllidea. The mature spermatozoon possesses two axonemes of 9+"1" pattern of the Trepaxonemata, nucleus, cortical microtubules, electron-dense granules and crested body. The anterior part of the gamete exhibits a centriole surrounded by electron-dense tubular structures arranged as incomplete spiral. When the crested body disappears, the electron-dense tubular structures are arranged into a ring encircling the axoneme. The electron-dense tubular structures and their arrangement appear to be a specific feature for the clade "Bothriocephalidea". The organization of the posterior extremity of the gamete with the nucleus is described for the first time in the Pseudophyllidea.

  4. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    PubMed

    Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J

    2007-04-01

    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.

  5. THE EFFECTS OF ATRAZINE METABOLITES ON PUBERTY AND THYROID FUNCTION IN THE MALE WISTAR RAT

    EPA Science Inventory

    The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Stoker, T.E1., Guidici, D.L.2, Laws, S.C.2 and Cooper, R.L.2 Gamete and Early Embryo Biology Branch and 2 Endocrinology Branch, Reproductive Toxicology Division, National Health and Envir...

  6. Let's keep metaphysics out of medical ethics: a critique of Poplawski and Gillett.

    PubMed Central

    Leavitt, F J

    1992-01-01

    I argue that the concept of 'longitudinal form', which Poplawski and Gillett have introduced into ethical discussions about embryos and gametes, involves too many metaphysical subtleties to be a useful aid to making moral decisions. I conclude by suggesting a criterion for relevance in medical ethics. PMID:1460650

  7. [Medical eugenics: a current issue].

    PubMed

    Testart, J

    1998-01-01

    The author begins by examining the historical background of eugenics and then ourlines with examples how it has evolved today (gamete donation, embryo selection, etc.). He concludes by discussing possible requirements to prevent the potential misuses of eugenic medicine which might result from recent advances in science and technology.

  8. Alternative Reproductive Technologies: Implications for Children and Families. Hearing before the Select Committee on Children, Youth, and Families. House of Representatives, One Hundredth Congress, First Session (May 21, 1987).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Children, Youth, and Families.

    A hearing was held for the purpose of receiving testimony about alternative reproductive technologies and their implications for children, families, and society. Testimony provided: (1) a comparison of in vitro fertilization and gamete intrafallopian transfer, and trends in in vitro fertilization; (2) a summary of definitions, statistics, and the…

  9. EXPORTIN1 Genes are Essential for Development and Function of the Gametophytes in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Gametes are produced in plants through mitotic divisions in the haploid gametophytes. We investigated the role of EXPORTIN1 (XPO1) genes during the development of both female and male gametophytes of Arabidopsis. Exportins exclude target proteins from the nucleus and are also part of a complex recru...

  10. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility.

    PubMed

    Li, X C; Barringer, B C; Barbash, D A

    2009-01-01

    Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.

  11. A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants.

    PubMed

    Antoine, A F; Faure, J E; Cordeiro, S; Dumas, C; Rougier, M; Feijó, J A

    2000-09-12

    In this paper, we report direct measurement of an influx of extracellular Ca(2+) induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca(2+)-selective vibrating probe. Ca(2+) influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca(2+) influx in the vicinity of the sperm entry site with a delay of 1.8 +/- 0.6 sec. The Ca(2+) influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 micrometer.(-1). Once established, Ca(2+) influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmol .cm(-2).(-1) and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca(2+) ((c)[Ca(2+)]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca(2+) ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca(2+) influx. In turn, (c)[Ca(2+)] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.

  12. Biotechnological approaches to the treatment of aspermatogenic men

    PubMed Central

    Aponte, Pedro Manuel; Schlatt, Stefan; de Franca, Luiz Renato

    2013-01-01

    Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity. PMID:23503966

  13. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation

    PubMed Central

    Machtinger, Ronit; Laurent, Louise C.; Baccarelli, Andrea A.

    2016-01-01

    BACKGROUND Extracellular vesicles (EVs) are membrane-bound vesicles, found in biofluids, that carry and transfer regulatory molecules, such as microRNAs (miRNAs) and proteins, and may mediate intercellular communication between cells and tissues. EVs have been isolated from a wide variety of biofluids, including plasma, urine, and, relevant to this review, seminal, follicular and uterine luminal fluid. We conducted a systematic search of the literature to review and present the currently available evidence on the possible roles of EVs in follicular growth, resumption of oocyte development and maturation (meiosis), sperm maturation, fertilization and embryo implantation. METHODS MEDLINE, Embase and Web of Science databases were searched using keywords pertaining to EVs, including ‘extracellular vesicles’, ‘microvesicles’, ‘microparticles’ and ‘exosomes’, combined with a range of terms associated with the period of development between fertilization and implantation, including ‘oocyte’, 'sperm’, 'semen’, 'fertilization’, ‘implantation’, ‘embryo’, ‘follicular fluid’, ‘epididymal fluid’ and ‘seminal fluid’. Relevant research articles published in English (both animal and human studies) were reviewed with no restrictions on publication date (i.e. from earliest database dates to July 2015). References from these articles were used to obtain additional articles. RESULTS A total of 1556 records were retrieved from the three databases. After removing duplicates and irrelevant titles, we reviewed the abstracts of 201 articles, which included 92 relevant articles. Both animal and human studies unequivocally identified various types of EVs in seminal, follicular and ULFs. Several studies provided evidence for the roles of EVs in these biofluids. In men, EVs in seminal fluid were linked with post-testicular sperm maturation, including sperm motility acquisition and reduction of oxidative stress. In women, EVs in follicular fluid were shown to contain miRNAs with potential roles in follicular growth, resumption of oocyte meiosis, steroidogenesis and prevention of polyspermy after fertilization. EVs were also detected in the media of cultured embryos, suggesting that EVs released from embryos and the uterus may mediate embryo-endometrium cross-talk during implantation. It is important to note that many of the biologically plausible functions of EVs in reproduction discussed in the current literature have not yet been substantiated by conclusive experimental evidence. CONCLUSIONS A detailed understanding of the contributions of EVs in the series of events from gametogenesis to fertilization and then on to implantation, in both normal and pathological cases, may enable the development of valuable tools to advance reproductive health. Because of the early stage of the field, it is unsurprising that the current literature includes not only growing experimental evidence, but also as-yet unproven hypotheses pertaining to the roles of EVs in key reproductive processes. In this review, we present a comprehensive survey of the rapidly expanding literature on this subject, highlighting both relevant findings and gaps in knowledge. PMID:26663221

  14. Steroid receptors and their ligands: Effects on male gamete functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors,more » may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens/AR mediate sperm death which is a novel field of investigation in sperm biology.« less

  15. Gamete donation in France: the future of the anonymity doctrine.

    PubMed

    Brunet, Laurence; Kunstmann, Jean-Marie

    2013-02-01

    In France, since the approval of the first bioethics laws in 1994, the principle of the anonymity of sperm donors has prevailed. This choice is regularly challenged, namely by children who have been conceived under these conditions and have now reached adulthood. In this paper, we will briefly describe the reasons that led practitioners of assisted reproduction to endorse the anonymity principle in 1994. Secondly, we will elaborate on the reasons why this principle is becoming so controversial today. Finally, we shall examine two possible outcomes of the debate, highlighting their respective legitimacy as well as their consequences, as far as the rights of children, the notion of the family, and medical practice are concerned.

  16. Using sea urchin gametes and zygotes to investigate centrosome duplication.

    PubMed

    Sluder, Greenfield

    2016-01-01

    Centriole structure and function in the sea urchin zygote parallel those in mammalian somatic cells. Here, I briefly introduce the properties and attributes of the sea urchin system that make it an attractive platform for the study of centrosome and centriole duplication. These attributes apply to all echinoderms readily available from commercial suppliers: sea urchins, sand dollars, and starfish. I list some of the practical aspects of the system that make it a cost- and time-effective system for experimental work and then list properties that are a "tool kit" that can be used to conduct studies that would not be practical, or in some cases not possible, with mammalian somatic cells. Since centrioles organize and localize the pericentriolar material that nucleates the astral arrays of microtubules (Bobinnec et al. in J Cell Biol 143(6):1575-1589, 1998), the pattern of aster duplication over several cell cycles can be used as a reliable measure for centriole duplication (Sluder and Rieder in J Cell Biol 100(3):887-896, 1985). Descriptions of the methods my laboratory has used to handle and image echinoderm zygotes are reviewed in Sluder et al. (Methods Cell Biol 61:439-472, 1999). Also included is a bibliography of papers that describe additional methods.

  17. Lack of response to unaligned chromosomes in mammalian female gametes

    PubMed Central

    Sebestova, Jaroslava; Danylevska, Anna; Novakova, Lucia; Kubelka, Michal; Anger, Martin

    2012-01-01

    Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which will have severe consequences for its further development. Whether spindle assembly checkpoint (SAC) in oocytes is capable of arresting cell cycle progression in response to unaligned kinetochores was discussed for a long time. It is known that abolishing SAC increases frequency of chromosome segregation errors and causes precocious entry into anaphase; SAC, therefore, seems to be essential for normal chromosome segregation in meiosis I. However, it was also reported that for anaphase-promoting complex (APC) activation, which is a prerequisite for entering anaphase; alignment of only a critical mass of kinetochores on equatorial plane is sufficient. This indicates that the function of SAC and of cooperating chromosome attachment correction mechanisms in oocytes is different from somatic cells. To analyze this phenomenon, we used live cell confocal microscopy to monitor chromosome movements, spindle formation, APC activation and polar body extrusion (PBE) simultaneously in individual oocytes at various time points during first meiotic division. Our results, using oocytes from aged animals and interspecific crosses, demonstrate that multiple unaligned kinetochores and severe congression defects are tolerated at the metaphase to anaphase transition, although such cells retain sensitivity to nocodazole. This indicates that checkpoint mechanisms, operating in oocytes at this point, are essential for accurate timing of APC activation in meiosis I, but they are insufficient in detection or correction of unaligned chromosomes, preparing thus conditions for propagation of the aneuploidy to the embryo. PMID:22871737

  18. Life and death of female gametes during oogenesis and folliculogenesis.

    PubMed

    Krysko, Dmitri V; Diez-Fraile, Araceli; Criel, Godelieve; Svistunov, Andrei A; Vandenabeele, Peter; D'Herde, Katharina

    2008-09-01

    The vertebrate ovary is an extremely dynamic organ in which excessive or defective follicles are rapidly and effectively eliminated early in ontogeny and thereafter continuously throughout reproductive life. More than 99% of follicles disappear, primarily due to apoptosis of granulosa cells, and only a minute fraction of the surviving follicles successfully complete the path to ovulation. The balance between signals for cell death and survival determines the destiny of the follicles. An abnormally high rate of cell death followed by atresia can negatively affect fertility and eventually lead irreversibly to premature ovarian failure. In this review we provide a short overview of the role of programmed cell death in prenatal differentiation of the primordial germ cells and in postnatal folliculogenesis. We also discuss the issue of neo-oogenesis. Next, we highlight molecules involved in regulation of granulosa cell apoptosis. We further discuss the potential use of scores for apoptosis in granulosa cells and characteristics of follicular fluid as prognostic markers for predicting the outcome of assisted reproduction. Potential therapeutic strategies for combating premature ovarian failure are also addressed.

  19. 50 CFR 16.13 - Importation of live or dead fish, mollusks, and crustaceans, or their eggs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and crustaceans, or their eggs. 16.13 Section 16.13 Wildlife and Fisheries UNITED STATES FISH AND... Wildlife § 16.13 Importation of live or dead fish, mollusks, and crustaceans, or their eggs. (a) Upon an... their gametes or fertilized eggs, may be imported, transported, and possessed in captivity without a...

  20. 78 FR 15338 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... (generally female) parrotfish, thereby enhancing spawning biomass and the supply of gametes (especially eggs... St. Croix parrotfish ACL and cannot mitigate for losses of landings due to discarded and not speared... would result in an estimated annual loss of parrotfish landings between 960 lb (435 kg) and 13,920 lb (6...

  1. Making the Chromosome-Gene-Protein Connection.

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    1996-01-01

    Presents an exercise that demonstrates the chromosome-gene-protein connection using sickle-cell anemia, a genetic disease with a well-characterized molecular basis. Involves connecting changes in DNA to protein outcomes and tying them into the next generation by meiosis and gamete formation with genetic crosses. Motivates students to integrate…

  2. Distribution and frequency of a gene for resistance to white pine blister rust in natural populations of sugar pine

    Treesearch

    Bohun B. Kinloch Jr.

    1992-01-01

    The gametic frequency of a dominant allcle (R) for resistance to white pine blister rust, a disease caused by an introduced pathogen (Cronartium ribicola), in natural populations of sugar pine was estimated by the kind of leaf symptom expressed after artificial inoculation of wind-pollinated seedlings from susceptible seed-parent...

  3. A new electron microscope technique for the study of living materials.

    PubMed

    Kálmán, E

    1979-07-01

    In order to gain informations on the real structure of biological specimens the "wet technique" for electron microscopy has been developed. The construction and the working principle of a special microchamber are described. Applications of this technique for the investigation of blood cells, gametes and various bacteries are demonstrated by micrographs.

  4. Parents Dilemmas in Sharing Donor Insemination Conception Stories with Their Children

    ERIC Educational Resources Information Center

    Hargreaves, Katrina; Daniels, Ken

    2007-01-01

    Parents of children conceived by gamete (sperm or egg) donation often find it challenging to share donor conception stories with their children. This study reports findings of a qualitative study of families with children conceived by donor insemination in New Zealand, a country where the policy and practice of sharing information in donor…

  5. Mapping Eight Male-Sterile, Female-Sterile Soybean Mutants

    USDA-ARS?s Scientific Manuscript database

    In soybean, mutations in genes involved in meiosis can lead to altered chromosome pairing and result in non-functional gametes.Mutability of the w4 flower color locus in soybean is due to an unstable allele designated w4-m (mutable). Several germinal revertant studies using the w4-m system resulted ...

  6. 9 CFR 93.901 - General restrictions; exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cultures of SVC virus, preserved SVC virus viral RNA or DNA, tissue samples containing viable SVC virus, or... live fish, fertilized eggs, and gametes are handled as follows: (1) They are maintained under... with paragraph (b)(4) of this section as adequate to prevent the spread within the United States of any...

  7. 9 CFR 93.901 - General restrictions; exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cultures of SVC virus, preserved SVC virus viral RNA or DNA, tissue samples containing viable SVC virus, or... live fish, fertilized eggs, and gametes are handled as follows: (1) They are maintained under... with paragraph (b)(4) of this section as adequate to prevent the spread within the United States of any...

  8. 9 CFR 93.901 - General restrictions; exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cultures of SVC virus, preserved SVC virus viral RNA or DNA, tissue samples containing viable SVC virus, or... live fish, fertilized eggs, and gametes are handled as follows: (1) They are maintained under... with paragraph (b)(4) of this section as adequate to prevent the spread within the United States of any...

  9. 9 CFR 93.901 - General restrictions; exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cultures of SVC virus, preserved SVC virus viral RNA or DNA, tissue samples containing viable SVC virus, or... live fish, fertilized eggs, and gametes are handled as follows: (1) They are maintained under... with paragraph (b)(4) of this section as adequate to prevent the spread within the United States of any...

  10. 9 CFR 93.901 - General restrictions; exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cultures of SVC virus, preserved SVC virus viral RNA or DNA, tissue samples containing viable SVC virus, or... live fish, fertilized eggs, and gametes are handled as follows: (1) They are maintained under... with paragraph (b)(4) of this section as adequate to prevent the spread within the United States of any...

  11. Molecular Genetic Features of Polyploidization and Aneuploidization Reveal Unique Patterns for Genome Duplication in Diploid Malus

    PubMed Central

    Considine, Michael J.; Wan, Yizhen; D'Antuono, Mario F.; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man

    2012-01-01

    Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F1 seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of

  12. Novel sex cells and evidence for sex pheromones in diatoms.

    PubMed

    Sato, Shinya; Beakes, Gordon; Idei, Masahiko; Nagumo, Tamotsu; Mann, David G

    2011-01-01

    Diatoms belong to the stramenopiles, one of the largest groups of eukaryotes, which are primarily characterized by a presence of an anterior flagellum with tubular mastigonemes and usually a second, smooth flagellum. Based on cell wall morphology, diatoms have historically been divided into centrics and pennates, of which only the former have flagella and only on the sperm. Molecular phylogenies show the pennates to have evolved from among the centrics. However, the timing of flagellum loss--whether before the evolution of the pennate lineage or after--is unknown, because sexual reproduction has been so little studied in the 'araphid' basal pennate lineages, to which Pseudostaurosira belongs. Sexual reproduction of an araphid pennate, Pseudostaurosira trainorii, was studied with light microscopy (including time lapse observations and immunofluorescence staining observed under confocal scanning laser microscopy) and SEM. We show that the species produces motile male gametes. Motility is mostly associated with the extrusion and retrieval of microtubule-based 'threads', which are structures hitherto unknown in stramenopiles, their number varying from one to three per cell. We also report experimental evidence for sex pheromones that reciprocally stimulate sexualization of compatible clones and orientate motility of the male gametes after an initial 'random walk'. The threads superficially resemble flagella, in that both are produced by male gametes and contain microtubules. However, one striking difference is that threads cannot beat or undulate and have no motility of their own, and they do not bear mastigonemes. Threads are sticky and catch and draw objects, including eggs. The motility conferred by the threads is probably crucial for sexual reproduction of P. trainorii, because this diatom is non-motile in its vegetative stage but obligately outbreeding. Our pheromone experiments are the first studies in which gametogenesis has been induced in diatoms by cell

  13. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span.

    PubMed

    Li, Wei; Wang, Xiaoru; Li, Yue

    2011-01-01

    Coniferous seed orchards require a long period from initial seed harvest to stable seed production. Differential reproductive success and asynchrony are among the main factors for orchard crops year-to-year variation in terms of parental gametic contribution and ultimately the genetic gain. It is fundamental in both making predictions about the genetic composition of the seed crop and decisions about orchard roguing and improved seed orchard establishment. In this paper, a primary Chinese pine seed orchard with 49 clones is investigated for stability, variation and correlation analysis of factors which influence genetic quality of the seed lots from initial seed harvest to the stable seed production over a 12 years span. Results indicated that the reproductive synchrony index of pollen shedding has shown to be higher than that of the strobili receptivity, and both can be drastically influenced by the ambient climate factors. Reproductive synchrony index of the clones has certain relative stability and it could be used as an indication of the seed orchard status during maturity stage; clones in the studied orchard have shown extreme differences in terms of the gametic and genetic contribution to the seed crop at the orchard's early production phase specifically when they severe as either female or male parents. Those differences are closely related to clonal sex tendency at the time of orchard's initial reproduction. Clonal gamete contribution as male and female parent often has a negative correlation. Clone utilization as pollen, seed or both pollen and seed donors should consider the role it would play in the seed crop; due to numerous factors influencing on the mating system in seed orchards, clonal genetic contribution as male parent is uncertain, and it has major influence on the genetic composition in the seed orchard during the initial reproductive and seed production phase.

  14. Endocrine control of sexual behavior in teleost fish.

    PubMed

    Munakata, Arimune; Kobayashi, Makito

    2010-02-01

    Sexual behavior is one of the most profound events during the life cycle of animals that reproduce sexually. After completion of gonadal development that is mediated by various hormones, oviparous teleosts perform a suite of behaviors, often termed as spawning behavior. This is particularly important for teleosts that have their gametes fertilized externally as the behavior patterns ensures the close proximity of both sexes for gamete release, fusion and ultimately the production of offspring. As in other vertebrates, sexual behavior of fish is also under the control of hormones. Testicular androgen is a requirement for male sexual behavior to occur in most fish species that have been studied. Unlike tetrapods, however, ovarian estrogen does not appear to be essential for the occurrence of female sexual behavior for fish that have their gametes fertilized externally. Prostaglandins produced in the ovary after ovulation act as a trigger in some teleosts to induce female sexual behavior. Potentiating effects of gonadotropin-releasing hormone in the brain on sexual behavior are reported in some species. Under endocrine regulation, male and female fish exhibit gender-typical behavior during spawning, but in some fish species there is also some plasticity in their sexual behavior. Sex changing fish can perform both male-typical and female-typical sexual behaviors during their lifetime and this sexual plasticity can also be observed in non-sex changing fish when undergoing hormonal treatment. Although the neuroanatomical basis is not clear in fish, results of field and laboratory observations suggest that some teleosts possess a sexually bipotential brain which can regulate two types of behaviors unlike most other vertebrates which have a discrete sex differentiation of their brain and can only perform gender-typical sexual behavior. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Age-dependent trade-offs between immunity and male, but not female, reproduction.

    PubMed

    McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W

    2013-01-01

    Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the

  16. [Description of biological elements involved in new organism beginning. Review of contemporary investigations about early embryonary development].

    PubMed

    Huerta Zepeda, Alejandra; Torres Padilla, María Elena; Guerra López, Rodrigo

    2008-01-01

    The development of the mammalian embryo begins with the fertilization of the mature oocyte by the sperm. However, many processes that lead to the production of functional gametes precede this event. First of all, both male and female germ cells form during gametogenesis. The gametogenesis comprises four different steps: a) the specification and migration of primordial germ cells, b) the increase in the number of germ cells through mitotic divisions, c) the reduction in chromosomal number through meiosis, and d) a final structural and functional maturation of the oocyte and the sperm. Once the oocyte and the sperm have matured, the newly formed gametes are released from the gonads upon the appropriate hormonal stimulus and are subsequently transported to the oviduct, where the oocyte awaits to be fertilized by the sperm. The fertilized oocyte, now called zygote, undergoes the maternal-to-zygotic transition, characterized by the degradation of maternal transcripts and the concomitant synthesis of transcripts by the newly formed zygote. The production of these new transcripts is the result of the genome activation of the zygote. At the same time, the sperm and egg's chromatin experience a series of changes that will result in the formation of the male and female pronuclei. In the male pronucleus an exchange of protamines for histones takes place. Furthermore, the parental genomes are subject to modification through DNA demethylation, and the proteins, around which the DNA is 'packed', the histones, are also subject to covalent modifications. These modifications constitute some of the most prominent changes involved in the epigenetic reprogramming of the two gametes. Finally, the animal-vegetal poles that will begin the first divisions or 'cleavage' to give rise to the blastocyst, where we can already distinguish an embryonic-abembryonic axis. The blastocyst will then implant in the uterus previously prepared for implantation.

  17. Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)

    PubMed Central

    Da Ros, Vanina G.; Maldera, Julieta A.; Willis, William D.; Cohen, Débora J.; Goulding, Eugenia H.; Gelman, Diego M.; Rubinstein, Marcelo; Eddy, Edward M.; Cuasnicu, Patricia S.

    2008-01-01

    Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. Epididymal protein CRISP1, a member of the Cysteine-RIch Secretory Protein (CRISP) family, was identified by our laboratory and postulated to participate in both sperm-zona pellucida (ZP) interaction and gamete fusion by binding to egg-complementary sites. To elucidate the functional role of CRISP1 in vivo, we disrupted the Crisp1 gene and evaluated the effect on animal fertility and several sperm parameters. Male and female Crisp1−/− animals exhibited no differences in fertility compared to controls. Sperm motility and the ability to undergo a spontaneous or progesterone-induced acrosome reaction were neither affected in Crisp1−/− mice. However, the level of protein tyrosine phosphorylation during capacitation was clearly lower in mutant sperm than in controls. In vitro fertilization assays showed that Crisp1−/− sperm also exhibited a significantly reduced ability to penetrate both ZP-intact and ZP-free eggs. Moreover, when ZP-free eggs were simultaneously inseminated with Crisp1+/+ and Crisp1−/− sperm in a competition assay, the mutant sperm exhibited a greater disadvantage in their fusion ability. Finally, the finding that the fusion ability of Crisp1−/− sperm was further inhibited by the presence of CRISP1 or CRISP2 during gamete co-incubation, supports that another CRISP cooperates with CRISP1 during fertilization and might compensate for its lack in the mutant mice. Together, these results indicate that CRISP proteins are players in the mammalian fertilization process. To our knowledge this is the first knockout mice generated for a CRISP protein. The information obtained might have important functional implications for other members of the widely distributed and evolutionarily conserved CRISP family. PMID:18571638

  18. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus.

    PubMed

    Considine, Michael J; Wan, Yizhen; D'Antuono, Mario F; Zhou, Qian; Han, Mingyu; Gao, Hua; Wang, Man

    2012-01-01

    Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of

  19. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis

    NASA Astrophysics Data System (ADS)

    Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong

    2015-06-01

    Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.

  20. [Molecules involved in sperm-zona pellucida interaction in mammals. Role in human fertility].

    PubMed

    Serres, Catherine; Auer, Jana; Petit, François; Patrat, Catherine; Jouannet, Pierre

    2008-01-01

    Fertilization in mammals requires an initial interaction of sperm with the oocyte envelope, the zona pellucida (ZP), before it reaches the oocyte. ZP is a highly glycosylated structure, composed of three (mouse) or four (rabbit, boar, bovine, humans...) glycoproteins. The presence of ZP around the oocyte does not allow heterospecific fertilization. This barrier is principally due to the presence of species-specific glycosylations on ZP proteins. Sperm bind ZP by means of membrane receptors which recognize carbohydrate moieties on ZP glycoproteins according to a well-precised sequential process. Upon initial attachment, spermatozoa bind ZP3/ZP4 which induces the sperm acrosome exocytosis followed by a secondary binding of acrosome reacted spermatozoa to ZP2 and by ZP penetration. The sperm receptors are adhesive proteins or integral plasma membrane proteins linked to intraspermatic signalling pathways activating the acrosome reaction. Over the last twenty years, numerous studies have been carried out to identify sperm receptors to ZP in several species, but the data in humans are still incomplete. Work initiated in our research group has identified several proteins interacting with recombinant human ZP2, ZP3 and ZP4, among which are glycolytic enzymes. These enzymes are involved in the gamete interaction by means of their affinity to sugars and not by their catalytic properties. From a clinical point of view, an observed lack or weak expression of some sperm receptors to ZP3 in cases of idiopathic infertility associated with in vitro fertilization failure suggests that knowing the molecular mechanism driving the gamete recognition can be important at the diagnostic level. Furthermore, it has been shown that proteins that mediate gamete recognition diverge rapidly, as a result of positive darwinian selection. A sexual conflict can drive co-evolution of reproductive molecules in both sexes resulting in reproductive isolation and species emergence.

  1. Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization.

    PubMed

    Gómez-Torres, María José; García, Eva María; Guerrero, Jaime; Medina, Sonia; Izquierdo-Rico, María José; Gil-Izquierdo, Ángel; Orduna, Jesús; Savirón, María; González-Brusi, Leopoldo; Ten, Jorge; Bernabeu, Rafael; Avilés, Manuel

    2015-11-09

    Fertilization is a key physiological process for the preservation of the species. Consequently, different mechanisms affecting the sperm and the oocyte have been developed to ensure a successful fertilization. Thus, sperm acrosome reaction is necessary for the egg coat penetration and sperm-oolema fusion. Several molecules are able to induce the sperm acrosome reaction; however, this process should be produced coordinately in time and in the space to allow the success of fertilization between gametes. The goal of this study was to analyze the metabolites secreted by cumulus-oocyte-complex (COC) to find out new components that could contribute to the induction of the human sperm acrosome reaction and other physiological processes at the time of gamete interaction and fertilization. For the metabolomic analysis, eighteen aliquots of medium were used in each group, containing: a) only COC before insemination and after 3 h of incubation; b) COC and capacitated spermatozoa after insemination and incubated for 16-20 hours; c) only capacitated sperm after 16-20 h in culture and d) only fertilization medium as control. Six patients undergoing assisted reproduction whose male partners provided normozoospermic samples were included in the study. Seventy-two COC were inseminated. The metabolites identified were monoacylglycerol (MAG), lysophosphatidylcholine (LPC) and phytosphingosine (PHS). Analysis by PCR and in silico of the gene expression strongly suggests that the cumulus cells contribute to the formation of the PHS and LPC. LPC and PHS are secreted by cumulus cells during in vitro fertilization and they could be involved in the induction of human acrosome reaction (AR). The identification of new molecules with a paracrine effect on oocytes, cumulus cells and spermatozoa will provide a better understanding of gamete interaction.

  2. Fertilization Mechanisms in Flowering Plants

    PubMed Central

    Dresselhaus, Thomas; Sprunck, Stefanie; Wessel, Gary M.

    2016-01-01

    Compared to the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells they interact and fuse with two dimorphic female gametes (egg and central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca2+ is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes including mammals. PMID:26859271

  3. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    PubMed

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  4. Testing the limits of freedom of contract: the commercialization of reproductive materials and services.

    PubMed

    Trebilcock, M; Martin, M; Lawson, A; Lewis, P

    1994-01-01

    This article examines the cases for and against commercializing, or "commodifying," reproductive materials and services. Using a supply/demand third-party framework, three basic scenarios in which commercial-exchange relationships may be possible--exchange of gametes and zygotes, exchange of gestational services, and exchange of fetal material--and the major parties of interest, or stakeholders, are identified. The study sketches the liberal, essentialist, and radical contingency theories that shape the debate over the commercialization of reproductive materials and services. The article then attempts to derive some basic governing principles that reflect as much common ground as possible amongst these various normative perspectives, while recognizing that complete reconciliation is impossible. Taken together, these principles are designed to reflect a strategy of "constrained commodification," where commercialization or commodification, that is, financial remuneration, plays a relatively neutral role in the utilization of reproductive materials and services. In light of these principles, the article concludes by sketching legal and regulatory regimes with respect to the exchange of gametes and zygotes, gestational services, and fetal tissue.

  5. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.

  6. In vitro eugenics.

    PubMed

    Sparrow, Robert

    2014-11-01

    A series of recent scientific results suggest that, in the not-too-distant future, it will be possible to create viable human gametes from human stem cells. This paper discusses the potential of this technology to make possible what I call 'in vitro eugenics': the deliberate breeding of human beings in vitro by fusing sperm and egg derived from different stem-cell lines to create an embryo and then deriving new gametes from stem cells derived from that embryo. Repeated iterations of this process would allow scientists to proceed through multiple human generations in the laboratory. In vitro eugenics might be used to study the heredity of genetic disorders and to produce cell lines of a desired character for medical applications. More controversially, it might also function as a powerful technology of 'human enhancement' by allowing researchers to use all the techniques of selective breeding to produce individuals with a desired genotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Barriers for domestic surrogacy and challenges of transnational surrogacy in the context of Australians undertaking surrogacy in India.

    PubMed

    Johnson, Louise; Blyth, Eric; Hammarberg, Karin

    2014-09-01

    The ethical, social, psychological, legal and financial complexities associated with cross-border travel for reproductive services are gaining attention internationally. Travel abroad for surrogacy, and the transfer of gametes or embryos between countries for use in a surrogacy arrangement, can create conflict in relation to the rights of the parties involved: commissioning parents, surrogates and their families, gamete and embryo donors, and children born as a result of the arrangement. Australian surrogacy laws are restrictive and limit access to domestic surrogacy. Despite the introduction of laws in some Australian jurisdictions that penalise residents entering into international commercial surrogacy arrangements, hundreds of Australians resort to surrogacy arrangements in India and other countries each year. This article discusses legislation, policy and practice as they relate to Australians' use of surrogacy in India. It reviews current surrogacy-related legislation and regulation in Australia and India and existing evidence about the challenges posed by transnational surrogacy, and considers how restrictive Australian legislation may contribute to the number of Australians undertaking surrogacy in India.

  8. TROPICAL COLLECTOR URCHIN, TRIPNEUSTES ...

    EPA Pesticide Factsheets

    This document describes a fertilization method to estimate the chronic toxicity of effluents and receiving waters to the gametes of the tropical sea urchin (Tripneustes gratilla). This toxicity test measures the fertilizing capacity of sperm following a static, non-renewal 60-minute exposure and a subsequent 20-minute exposure period following the addition of eggs. The purpose of the test is to determine the concentrations of a test substance diluted in sea water that reduce fertilization of exposed gametes relative to that of the control. This method was developed to provide an assessment of the toxicity of materials discharged into the marine environment, using biota indigenous to tropical Pacific regions, including Hawaii. This method provides an assessment of the toxicity to indigenous biota of materials discharged into the tropical Pacific marine environment. The use of this method contributes to risk based determinations, and the scientific foundation they provide for regulatory criteria at the state, regional or national levels. General impacts from this contribution include improved understanding by managers and scientists of links between human activities, natural dynamics, ecological stressors and ecosystem condition.

  9. The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta).

    PubMed

    Gauthey, Zoé; Freychet, Marine; Manicki, Aurélie; Herman, Alexandre; Lepais, Olivier; Panserat, Stéphane; Elosegi, Arturo; Tentelier, Cédric; Labonne, Jacques

    2015-06-01

    In wild populations, measuring energy invested in the reproduction and disentangling investment in gametes versus investment in reproductive behavior (such as intrasexual competition or intersexual preference) remain challenging. In this study, we investigated the energy expenditure in brown trout reproductive behavior by using two proxies: variation in weight and variation of plasma metabolites involved in energy production, over the course of reproductive season in a semi natural experimental river. We estimated overall reproductive success using genetic assignment at the end of the reproductive season. Results show that triglycerides and free fatty acid concentrations vary negatively during reproduction, while amino-acids and glucose concentrations remain stable. Decrease in triglyceride and free fatty acid concentrations during reproduction is not related to initial concentration levels or to weight variation. Both metabolite concentration variations and weight variations are correlated to the number of offspring produced, which could indicate that gametic and behavioral reproductive investments substantially contribute to reproductive success in wild brown trout. This study opens a path to further investigate variations in reproductive investment in wild populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Social security survivors benefits: the effects of reproductive pathways and intestacy law on attitudes.

    PubMed

    Hans, Jason D; Gillen, Martie

    2013-01-01

    Most minor children are eligible for Social Security survivors benefits if a wage-earning parent dies, but eligibility of children not in utero at the time of death is more nuanced. The purpose of this study was to examine attitudes concerning access to Social Security survivors benefits in the context of posthumous reproduction. A probability sample of 540 Florida households responded to a multiple-segment factorial vignette designed to examine the effects of state intestacy laws and five reproductive pathways - normative, posthumous birth, cryopreserved embryo, cryopreserved gametes, and posthumous gamete retrieval - on attitudes toward eligibility for the Social Security survivors benefits. Broad support was found for the survivors benefits following normative and posthumous birth pathways, but attitudes were decidedly less favorable when the child was not in utero at the time of parental death. In addition, in stark contrast to the recent U.S. Supreme Court decision in Astrue v. Capato, the vast majority of respondents did not believe state intestacy laws should determine eligibility for Social Security survivors benefits. © 2013 American Society of Law, Medicine & Ethics, Inc.

  11. Epigenetics of reproductive infertility.

    PubMed

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  12. Toxicity of TFM lampricide to early life stages of walleye

    USGS Publications Warehouse

    Seelye, J.G.; Marking, L.L.; King, E.L.; Hanson, L.H.; Bills, T.D.

    1987-01-01

    The authors studied the effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on gametes, newly fertilized eggs, eyed eggs, larvae, and swim-up fry of the walleye Stizostedion vitreum . When gametes from sexually mature walleyes were stripped into solutions of TFM, no effects were observed during the fertilization process at concentrations up to 3.0 mg/L - three times the concentration lethal to 99.9% of larval sea lampreys Petromyzon marinus held 12 h (LC99.9) under the same test conditions. Newly fertilized eggs likewise were unaffected during water hardening by concentrations of TFM that were lethal to sea lamprey ammocoetes. Eyed eggs, sac fry, and swim-up fry yielded LC25 values that were 2.5 to 5 times greater than the 12-h LC99.9 for sea lamprey ammocoetes. The data thus indicated that all of the early life stages of walleyes tested were considerably more resistant than sea lamprey ammocoetes to TFM, and that it is unlikely they would be adversely affected by standard stream treatments to kill sea lamprey ammocoetes.

  13. The differentiation of mammalian ovarian granulosa cells – living in the shadow of cellular developmental capacity.

    PubMed

    Chachuła, A; Kranc, W; Budna, J; Bryja, A; Ciesiólka, S; Wojtanowicz-Markiewicz, K; Piotrowska, H; Bukowska, D; Krajecki, M; Antosik, P; Brüssow, K P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The mammalian cumulus-oocyte complex (COCs) promotes oocyte growth and development during long stages of folliculogenesis and oogenesis. Before ovulation, the follicle is formed by a variety of fully differentiated cell populations; cumulus cells (CCs) that tightly surround the female gamete, granulosa cells (GCs) and theca cells (TCs) which build the internal and external mass of the follicular wall. It is well documented that CCs surrounding the oocyte are necessary for resumption of meiosis and full maturation of the gamete. However, the role of the granulosa cells in acquisition of MII stage and/or full fertilization ability is not yet entirely known. In this article, we present an overview of mammalian oocytes and their relationship to the surrounding cumulus and granulosa cells. We also describe the processes of GCs differentiation and developmental capacity. Finally, we describe several markers of mammalian GCs, which could be used for positive identification of isolated cells. The developmental capacity of oocytes and surrounding somatic cells – a “fingerprint” of folliculogenesis and oogenesis.

  14. An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation.

    PubMed

    Naro, Chiara; Jolly, Ariane; Di Persio, Sara; Bielli, Pamela; Setterblad, Niclas; Alberdi, Antonio J; Vicini, Elena; Geremia, Raffaele; De la Grange, Pierre; Sette, Claudio

    2017-04-10

    Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Can Metabolic Mechanisms of Stem Cell Maintenance Explain Aging and the Immortal Germline?

    PubMed

    Snoeck, Hans-Willem

    2015-06-04

    The mechanisms underlying the aging process are not understood. Even tissues endowed with somatic stem cells age while the germline appears immortal. I propose that this paradox may be explained by the pervasive use of glycolysis by somatic stem cells as opposed to the predominance of mitochondrial respiration in gametes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Detecting population recovery using gametic disequilibrium-based effective population size estimates

    Treesearch

    David A. Tallmon; Robin S. Waples; Dave Gregovich; Michael K. Schwartz

    2012-01-01

    Recovering populations often must meet specific growth rate or abundance targets before their legal status can be changed from endangered or threatened. While the efficacy, power, and performance of population metrics to infer trends in declining populations has received considerable attention, how these same metrics perform when populations are increasing is less...

  17. Holy Mitosis Batman, It's a Gamete: Blending (Bending) the Research Genre.

    ERIC Educational Resources Information Center

    Barton, Fred

    Ken Macrorie coined the term "I Search," which puts the writer at the center of the paper and seeks to put a human face on the data collected. Looking for a way to use the research writing assignment to help students learn to adjust their ideas to different formats by becoming more aware of how different structures can be shaped around…

  18. Full-sibling embryos created by anonymous gamete donation in unrelated recipients.

    PubMed

    Dicken, Cary L; Zapantis, Athena; Illions, Edward; Pollack, Staci; Lieman, Harry J; Bevilacqua, Kris; Jindal, Sangita K

    2011-09-01

    To report the rare occurrence of full-sibling embryos in unrelated women using independently chosen donor sperm and donor oocytes in two different cycles unintentionally created at our IVF program, and to discuss the concept of disclosure to the patients. Case report. Academic IVF program. Two women independently undergoing donor recipient cycles with anonymous donor oocytes and donor sperm. Both women received oocytes from the same donor several months apart and then by coincidence selected the same anonymous sperm donor to create anonymous full-sibling embryos. Clinical pregnancy after donor-recipient IVF cycle. Both women conceived using the same donor sperm and donor oocytes in independent cycles, resulting in simultaneous pregnancy of full siblings. As providers with the knowledge that anonymous full sibling embryos have been created, we may have an obligation to disclose this information to the patients. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Complex regulation of sister kinetochore orientation in meiosis-I.

    PubMed

    Bardhan, Amit

    2010-09-01

    Kinetochores mediate chromosome movement during cell division by interacting with the spindle microtubules. Sexual reproduction necessitates the daunting task of reducing ploidy (number of chromosome sets) in the gametes, which depends upon the specialized properties of meiosis. Kinetochores have a central role in the reduction process. In this review, we discuss the complexity of this role of kinetochores in meiosis-I.

  20. Sperm chemotaxis promotes individual fertilization success in sea urchins.

    PubMed

    Hussain, Yasmeen H; Guasto, Jeffrey S; Zimmer, Richard K; Stocker, Roman; Riffell, Jeffrey A

    2016-05-15

    Reproductive success fundamentally shapes an organism's ecology and evolution, and gamete traits mediate fertilization, which is a critical juncture in reproduction. Individual male fertilization success is dependent on the ability of sperm from one male to outcompete the sperm of other males when searching for a conspecific egg. Sperm chemotaxis, the ability of sperm to navigate towards eggs using chemical signals, has been studied for over a century, but such studies have long assumed that this phenomenon improves individual male fitness without explicit evidence to support this claim. Here, we assessed fertilization changes in the presence of a chemoattractant-digesting peptidase and used a microfluidic device coupled with a fertilization assay to determine the effect of sperm chemotaxis on individual male fertilization success in the sea urchin Lytechinus pictus We show that removing chemoattractant from the gametic environment decreases fertilization success. We further found that individual male differences in chemotaxis to a well-defined gradient of attractant correlate with individual male differences in fertilization success. These results demonstrate that sperm chemotaxis is an important contributor to individual reproductive success. © 2016. Published by The Company of Biologists Ltd.

  1. Paving the way for a gold standard of care for infertility treatment: improving outcomes through standardization of laboratory procedures.

    PubMed

    Schoolcraft, William; Meseguer, Marcos

    2017-10-01

    Infertility affects over 70 million couples globally. Access to, and interest in, assisted reproductive technologies is growing worldwide, with more couples seeking medical intervention to conceive, in particular by IVF. Despite numerous advances in IVF techniques since its first success in 1978, almost half of the patients treated remain childless. The multifactorial nature of IVF treatment means that success is dependent on many variables. Therefore, it is important to examine how each variable can be optimized to achieve the best possible outcomes for patients. The current approach to IVF is fragmented, with various protocols in use. A systematic approach to establishing optimum best practices may improve IVF success and live birth rates. Our vision of the future is that technological advancements in the laboratory setting are standardized and universally adopted to enable a gold standard of care. Implementation of best practices for laboratory procedures will enable clinicians to generate high-quality gametes, and to produce and identify gametes and embryos of maximum viability and implantation potential, which should contribute to improving take-home healthy baby rates. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  3. Predictive value of sperm-FISH analysis on the outcome of preimplantation genetic diagnosis (PGD) for a pericentric inversion inv5(p15.3q11.2) carrier.

    PubMed

    Bernicot, I; Dechanet, C; Mace, A; Hedon, B; Hamamah, S; Pellestor, F; Anahory, T

    2010-07-01

    Pericentric inversions (PIs) are structural chromosomal abnormalities, potentially associated with infertility or multiple miscarriages. More rarely, at meiosis, odd numbers of genetic recombinations within the inversion loop produce recombinant gametes which may lead to aneusomy of recombination in the offspring. We report a FISH segregation analysis of an inv5(p15.3q11.2) carrier, both in sperm and blastomeres. In sperm, we directly evaluated the proportion of recombinant gametes and compared the results with chromosomal abnormalities found in blastomeres collected from embryos obtained following a preimplantation genetic diagnosis (PGD) procedure. A total of 7006 sperm nuclei were analyzed. The size of the inverted segment represented 27% of the total length of chromosome 5. The frequencies of balanced chromosomes (normal or inverted), recombinant chromosomes and unbalanced combinations were 97.1, 0.17 and 2.73%, respectively. Of six embryos, PGD FISH analysis revealed that one was a balanced embryo, whereas five were unbalanced and there were no recombinants. This study demonstrated the value of sperm-FISH analysis in providing reproductive genetic counseling for PI carriers. Our study also highlights the clinical relevance of performing PGD instead of prenatal diagnosis.

  4. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae).

    PubMed

    Qu, L; Hancock, J; Whallon, J

    1998-05-01

    The genomic relationship between V. darrowi Camp (2n = 2x = 24) and V. corymbosum L. (2n = 4x = 48) was examined using an interspecific tetraploid hybrid, US 75, and representatives of the parental species. Two features in the background of US 75 led to the prediction that it was an allopolyploid: (1) the parental species are quite distinct morphologically and geographically, and (2) the diploid genome was incorporated into US 75 via an unreduced gamete. However, US 75 recently was shown to display tetrasomic inheritance using molecular markers. In the present cytological study, US 75 was found to have a lower than expected number of multivalents for an autopolyploid, although it had a significantly higher number of quadrivalents than its autotetraploid parent, V. corymbosum. Normal chromosome distributions were observed at anaphase I and II, and pollen viability was high. Our findings suggest that little genomic divergence has developed between the Vaccinium species and that the polyploids may freely exchange genes with sympatric diploid species via unreduced gametes. This pattern of hybridization could be an important component of evolution in all autopolyploid groups, making them much more dynamic than traditionally assumed.

  5. Sexual difference in PCB concentrations of lake trout (Salvelinus namaycush) from Lake Ontario

    USGS Publications Warehouse

    Madenjian, Charles P.; Keir, Michael J.; Whittle, D. Michael; Noguchi, George E.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 61 female lake trout (Salvelinus namaycush) and 71 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). To estimate the expected change in PCB concentration due to spawning, PCB concentrations in gonads and in somatic tissue of lake trout were also determined. In addition, bioenergetics modeling was applied to investigate whether gross growth efficiency (GGE) differed between the sexes. Results showed that, on average, males were 22% higher in PCB concentration than females in Lake Ontario. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 3% and 14% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in male lake trout. According to the bioenergetics modeling results, GGE of males was about 2% higher than adult female GGE, on average. Thus, bioenergetics modeling could not explain the higher PCB concentrations exhibited by the males. Nevertheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations of the lake trout.

  6. Sexual difference in PCB concentrations of walleyes (Sander vitreus) from a pristine lake

    USGS Publications Warehouse

    Madenjian, C.P.; Hanchin, P.A.; Chernyak, S.M.; Begnoche, L.J.

    2009-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 15 adult female walleyes (Sander vitreus) and 15 adult male walleyes from South Manistique Lake (Michigan, United States), a relatively pristine lake with no point source inputs of PCBs. By measuring PCB concentration in gonads and in somatic tissue of the South Manistique Lake fish, we also estimated the expected change in PCB concentration due to spawning for both sexes. To determine whether gross growth efficiency differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, adult males were 34% higher in PCB concentration than adult females in South Manistique Lake. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 1% and 5% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in adult male walleyes. Bioenergetics modeling results indicated that the sexual difference in PCB concentrations of South Manistique Lake walleyes was attributable, at least in part, to a sexual difference in gross growth efficiency (GGE). Adult female GGE was estimated to be up to 17% greater than adult male GGE.

  7. Modification of spermatozoa quality in mature small ruminants.

    PubMed

    Martin, G B; de St Jorre, T Jorre; Al Mohsen, F A; Malecki, I A

    2011-01-01

    This review is based largely, but not entirely, on the assumption that gamete quality is directly linked to sperm output and thus testicular mass, an approach made necessary by the absence of a large body of data on factors that affect gamete quality in ruminants. On the other hand, there is a change in the efficiency of sperm production per gram of testicular tissue when the testis is growing or shrinking, a clear indicator of changes in the rates of cell loss during the process of spermatogenesis, probably through apoptosis. We therefore postulate that the spermatozoa that do survive when the testis is shrinking are of a lower quality than those that are produced when the testis is growing and the rate of sperm survival is increasing. In adult small ruminants in particular, testicular mass and sperm production are highly labile and can be manipulated by management of photoperiod (melatonin), nutrition, genetics and behaviour ('mating pressure'). Importantly, these factors do not act independently of each other - rather, the outcomes in terms of sperm production are dictated by interactions. It therefore seems likely that spermatozoa quality will be affected by these same factors, but definitive answers await detailed studies.

  8. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  9. Scaffolding as an effort for thinking process optimization on heredity

    NASA Astrophysics Data System (ADS)

    Azizah, N. R.; Masykuri, M.; Prayitno, B. A.

    2018-04-01

    Thinking is an activity and process of manipulating and transforming data or information into memory. Thinking process is different between one and other person. Thinking process can be developed by interaction between student and their environment, such as scaffolding. Given scaffolding is based on each student necessity. There are 2 level on scaffolding such as explaining, reviewing, and restructuring; and developing conceptual thinking. This research is aimed to describe student’s thinking process on heredity especially on inheritance that is before and after scaffolding. This research used descriptive qualitative method. There were three kinds of subject degree such as the students with high, middle, and low achieving students. The result showed that subjects had some difficulty in dihybrid inheritance question in different place. Most difficulty was on determining the number of different characteristic, parental genotype, gamete, and ratio of genotype and phenotype F2. Based on discussed during scaffolding showed that the subjects have some misunderstanding terms and difficulty to determine parental, gamete, genotype, and phenotype. Final result in this research showed that the subjects develop thinking process higher after scaffolding. Therefore the subjects can solve question properly.

  10. Dynamics of DNA replication during premeiosis and early meiosis in wheat.

    PubMed

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.

  11. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    PubMed

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  12. Dynamics of DNA Replication during Premeiosis and Early Meiosis in Wheat

    PubMed Central

    Rey, María-Dolores; Prieto, Pilar

    2014-01-01

    Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat. PMID:25275307

  13. Research on reproduction is essential for captive breeding of endangered carnivore species.

    PubMed

    Jewgenow, K; Braun, B C; Dehnhard, M; Zahmel, J; Goeritz, F

    2017-04-01

    Assisted reproductive technology (ART) has great potential for conservation, but its successful application in captive breeding programmes of endangered species is often compromised by limited background on species' biology. Although carnivore species benefit from knowledge obtained in domesticated species (dogs, cats and ferrets), the focus of research is different. In pet animals, research in reproduction has mainly been focused on ovarian function and contraception, although substantial progress has also been made in the field of in vitro embryo production, transgenic embryos and cloning to aid relevant medical models. In endangered species, however, research should focus on characterizing reproductive traits (cyclicity and seasonality) to unravel species-specific endocrine principles of reproduction physiology. Based on this knowledge, it is crucial to enhance the ability to manipulate female reproductive cycles, especially those of embryo recipients. Furthermore, research conducted on molecular and cellular mechanisms of gamete and embryo development, as well as on cryopreservation protocols of gametes and embryos, is required for successful implementation of advanced ART to wild carnivores. This review will provide a summary on the state of the art with focus on ART contributing to conservation breeding of endangered carnivores. © 2016 Blackwell Verlag GmbH.

  14. No evidence of conpopulation sperm precedence between allopatric populations of house mice.

    PubMed

    Firman, Renée C; Simmons, Leigh W

    2014-01-01

    Investigations into the evolution of reproductive barriers have traditionally focused on closely related species, and the prevalence of conspecific sperm precedence. The effectiveness of conspecific sperm precedence at limiting gene exchange between species suggests that gametic isolation is an important component of reproductive isolation. However, there is a paucity of tests for evidence of sperm precedence during the earlier stages of divergence, for example among isolated populations. Here, we sourced individuals from two allopatric populations of house mice (Mus domesticus) and performed competitive in vitro fertilisation assays to test for conpopulation sperm precedence specifically at the gametic level. We found that ova population origin did not influence the outcome of the sperm competitions, and thus provide no evidence of conpopulation or heteropopulation sperm precedence. Instead, we found that males from a population that had evolved under a high level of postcopulatory sexual selection consistently outcompeted males from a population that had evolved under a relatively lower level of postcopulatory sexual selection. We standardised the number of motile sperm of each competitor across the replicate assays. Our data therefore show that competitive fertilizing success was directly attributable to differences in sperm fertilizing competence.

  15. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.

    PubMed Central

    Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W

    2002-01-01

    Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055

  16. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  17. A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss.

    PubMed

    Ghosh, S; Das, P J; Avila, F; Thwaits, B K; Chowdhary, B P; Raudsepp, T

    2016-02-01

    Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals. © 2015 Blackwell Verlag GmbH.

  18. Protecting and Diversifying the Germline

    PubMed Central

    Gleason, Ryan J.; Anand, Amit; Kai, Toshie; Chen, Xin

    2018-01-01

    Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development—a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development. PMID:29378808

  19. Medically assisted reproduction and ethical challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaeaeriaeinen, Helena; Evers-Kiebooms, Gerry; Coviello, Domenico

    2005-09-01

    Many of the ethical challenges associated with medically assisted reproduction are societal. Should the technique be restricted to only ordinary couples or could it be used also to single females or couples of same sex? Should the future child be entitled to know the identity of the gamete donor? Should there be age limits? Can embryos or gametes be used after the death of the donor? Can surrogate mothers be part of the process? Can preimplantation diagnostics be used to select the future baby's sex? In addition, there are several clearly medical questions that lead to difficult ethical problems. Ismore » it safe to use very premature eggs or sperms? Is the risk for some rare syndromes caused by imprinting errors really increased when using these techniques? Do we transfer genetic infertility to the offspring? Is the risk for multiple pregnancies too high when several embryos are implanted? Does preimplantation diagnosis cause some extra risks for the future child? Should the counselling of these couples include information of all these potential but unlikely risks? The legislation and practices differ in different countries and ethical discussion and professional guidelines are still needed.« less

  20. Offspring telomere length in the long lived Alpine swift is negatively related to the age of their biological father and foster mother.

    PubMed

    Criscuolo, François; Zahn, Sandrine; Bize, Pierre

    2017-09-01

    A growing body of studies is showing that offspring telomere length (TL) can be influenced by the age of their parents. Such a relationship might be explained by variation in TL at conception (gamete effect) and/or by alteration of early growth conditions in species providing parental care. In a long-lived bird with bi-parental care, the Alpine swift ( Apus melba ), we exchanged an uneven number of 2 to 4-day-old nestlings between pairs as part of a brood size manipulation. Nestling TL was measured at 50 days after hatching, which allowed investigation of the influence of the age of both their biological and foster parents on offspring TL, after controlling for the manipulation. Nestling TL was negatively related to the age of their biological father and foster mother. Nestling TL did not differ between enlarged and reduced broods. These findings suggest that offspring from older males were fertilized by gametes with shorter telomeres, presumably due to a greater cell division history or a longer accumulation of damage, and that older females may have provided poorer parental care to their offspring. © 2017 The Author(s).

  1. Psychological study of in vitro fertilization-embryo transfer participants' attitudes toward the destiny of their supernumerary embryos.

    PubMed

    Laruelle, C; Englert, Y

    1995-05-01

    To study the motivations underlying IVF-ET participants' choice to donate or destroy their supernumerary embryos. Couples' opinions are studied through a questionnaire and a psychological interview. Two hundred couples about to undergo IVF-ET. The fertility unit of an academic hospital. Couples' choice for supernumerary embryos' destiny; opinions on embryo status, on importance of genetic lineage in the filial bonding, on gamete donation, and on multiple pregnancy risk. Donation is the most frequent choice but destruction is tolerated by almost all the couples (92%). Couples considering the embryo as a child choose destruction as frequently as donation but refuse experimentation on the embryo. Donation is highest among couples who stress education more than genetic lineage in parental bonding. This is confirmed by the choice of the couples requiring donor gametes. Couples express differing attitudes toward risks of twins and risks of triplets: twins are much more desired than triplets, which are frequently refused. Couples' opinions on the respective importance of genetic lineage and education in defining parental bonding are more determinant in their decision to destroy or to donate their supernumerary embryos than their opinions on the in vitro embryo status, which only determines their attitude toward experimentation.

  2. Effective nutrition from conception to adulthood.

    PubMed

    Leese, Henry J

    2014-12-01

    This article summarises presentations at the plenary session of the Annual Meeting of the British Fertility Society, on Effective nutrition from conception to adulthood, held in Sheffield, UK in January 2014. It highlights the pivotal role of the late David Barker (1938-2014) in revolutionising our understanding of the influence of maternal, gamete, embryo, foetal and infant nutrition on the health of the offspring in later life.

  3. Reproductive semi-cloning respecting biparental origin. A biologically unsound principle.

    PubMed

    Tateno, H; Latham, K E; Yanagimachi, R

    2003-03-01

    The original debate article proposed the use of "semi-cloning" as a viable method for assisted reproduction. This debate counters the proposal as being biologically unsound. Given the fundamental limitations of chromosomal segregation and genomic imprinting, the notion of using the MII oocyte to drive haploidization of a somatic cell genome and thereby obtain a substitute for authentic gametes is ill-conceived and untenable.

  4. JPRS Report, Science & Technology, Europe

    DTIC Science & Technology

    1992-03-12

    the Chemical Industry Fund. However, the recent successes of this privately- sponsored research do present an ecological problem. Although the...SAMW issued medical- ethical guidelines prohibiting the manip- ulation of the genotype of gametes and embryos. In 1986, the Swiss Academies for...Concerning Large Fuel Burning Plants which took effect in 1983 triggered an " ecological renewal program" with mandatory limits based on state- of-the

  5. Being fruitful: genetics of reproduction in Arabidopsis.

    PubMed

    Preuss, D

    1995-04-01

    Reproduction in flowering plants requires a series of interactions between the haploid and diploid phases of the life cycle of the plant. Mutations that affect these interactions have been identified in Arabidopsis, thus giving insight into the processes of gamete development and pollination. These studies promise to yield new information on diverse topics in plant biology, from cell-cell recognition to the evolution of mating interactions.

  6. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites.

    PubMed

    Ramiro, Ricardo S; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E

    2011-03-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction - that host immune responses have differential effects on the mating ability of males and females - have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be 'evolution

  7. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater

    PubMed Central

    Grueneberg, Jan; Engelen, Aschwin H.; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in

  8. Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites

    PubMed Central

    Ramiro, Ricardo S.; Alpedrinha, João; Carter, Lucy; Gardner, Andy; Reece, Sarah E.

    2011-01-01

    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be

  9. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (North Atlantic): Softshell Clam.

    DTIC Science & Technology

    1986-06-01

    positively correlated with Gseasonal changes in biochemical.- GROWTH CHARACTERISTICS ( glycogen ) levels and condition indices (measurements of shellfishThe...softshell clam grows rapidly "fatness"). Glycogen levels and meat in a favorable environment. Clams yields are high in the spring; the usually reach...market size (2 inches glycogen is converted to gametes with long) in 1.5 years in Chesapeake Bay, a subsequent drop in meat yields (Pfitzenmeyer 1972

  10. Eggs: The role of gravity in the establishment of the dorso-ventral axis in the amphibian embryo (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Ubbels, Geertje A.

    1992-01-01

    The purpose of this experiment is to fertilize frog (Xenopus laevis) eggs under microgravity, to perform histological fixations at two different programmed times, and after return to Earth, to determine whether timing and pattern of egg cleavages and axis formation are normal. Because of the limited viability of the gametes, this experiment will be the very first to be activated in the Biorack. Various aspects of this investigation are discussed.

  11. Protocol for Large-Scale Collection, Processing, and Storage of Seeds of Two Mesohaline Submerged Aquatic Plant Species

    DTIC Science & Technology

    2006-08-01

    and the regulation of the timing of initial seedling growth. The evolution of flowering plants extended the potential for regu- lating growth and...improved the efficiency of gamete transfer via pollination (Willis and Figure 1. A one-gram plant sample of R. maritima seeds Report Documentation...uniformity of plant growth and development is contrary to the goals of ecological restoration where the objective is the successful establishment of

  12. INCREASED NUMBER OF COFFEE BEANS PRODUCED FROM IRRADIATED SEEDS (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monge, F.

    1962-10-01

    A genetic analysis of coffee plants from neutron and x-irradiated seed reveals that peaberry percent increased with radiation dose applied. The response for neutron irradiated plants was linear whereas for the x ray treatments it was exponential. This suggests that the high frequency of peaberries obtained from irradiated plants is due to chromosomal aberration; that cause gamete elimination and thus, a high production of one-seeded fruits. (auth)

  13. Environmental Effects on the Adhesion of Entermorpha clathrata.

    DTIC Science & Technology

    1979-04-18

    rhizoidal outgrowth (holdfast) at the base (Figure 1). The cells of the thallus are rectangular and in distinct longitudi- nal series. There is a single...parthenogenetic gametes differentiate into a thalli cell and a rhizoidal cell after the first cellular division. All cells which originate from the... rhizoidal cell contribute to the holdfast attachment system while cells which developed from the thalli cell contribute to the erect, photosynthetic

  14. ESHRE's good practice guide for cross-border reproductive care for centers and practitioners.

    PubMed

    Shenfield, F; Pennings, G; De Mouzon, J; Ferraretti, A P; Goossens, V

    2011-07-01

    This paper outlines ESHRE's guidance for centers and physicians providing fertility treatment to foreign patients. This guide aims to ensure high-quality and safe assisted reproduction treatment, taking into account the patients, their future child and the interests of third-party collaborators such as gametes donors and surrogates. This is achieved by including considerations of equity, safety, efficiency, effectiveness (including evidence-based care), timeliness and patient centeredness.

  15. Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells.

    PubMed

    Ribalta, F M; Croser, J S; Ochatt, S J

    2012-01-01

    Flow cytometry was used to quantify the effect of individual and combined stress treatments on elicitation of androgenesis by analyzing the relative nuclear DNA content of in vitro cultured microspores of Pisum sativum L. Differences in relative nuclear DNA content of microspores within anthers after stress treatments were clearly evident from the flow cytometry profiles, and permitted us to predict whether a combination of stresses were elicitors or enhancers of androgenesis. This is the first report to assess the effect of various stress treatments in a plant species based on relative nuclear DNA content and to use this information to categorize them as 'elicitors' or 'enhancers'. Flow cytometry represents a simple, quick and reliable way to analyze and discriminate the effect of various stress treatments on elicitation of androgenesis. These results form a solid basis for further efforts designed to enhance responses and to extend double haploid technology to other legumes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Assisted reproduction with gametes and embryos: what research is needed and fundable?

    PubMed

    Seidel, George E

    2016-01-01

    Principles for selecting future research projects include interests of investigators, fundability, potential applications, ethical considerations, being able to formulate testable hypotheses and choosing the best models, including selection of the most appropriate species. The following 10 areas of assisted reproduction seem especially appropriate for further research: efficacious capacitation of bovine spermatozoa in vitro; improved in vitro bovine oocyte maturation; decreasing variability and increasing efficacy of bovine superovulation; improved fertility of sexed semen; improving equine IVF; improving cryopreservation of rooster spermatozoa; understanding differences between males in success of sperm cryopreservation and reasons for success in competitive fertilisation; mechanisms of reprogramming somatic cell nuclei after nuclear transfer; regulation of differentiation of ovarian primordial follicles; and means by which spermatozoa maintain fertility during storage in the epididymis. Issues are species specific for several of these topics, in most cases because the biology is species specific.

  17. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    PubMed

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Religious aspects of assisted reproduction

    PubMed Central

    Sallam, HN; Sallam, NH

    2016-01-01

    Abstract Human response to new developments regarding birth, death, marriage and divorce is largely shaped by religious beliefs. When assisted reproduction was introduced into medical practice in the last quarter of the twentieth century, it was fiercely attacked by some religious groups and highly welcomed by others. Today, assisted reproduction is accepted in nearly all its forms by Judaism, Hinduism and Buddhism, although most Orthodox Jews refuse third party involvement. On the contrary assisted reproduction is totally unacceptable to Roman Catholicism, while Protestants, Anglicans, Coptic Christians and Sunni Muslims accept most of its forms, which do not involve gamete or embryo donation. Orthodox Christians are less strict than Catholic Christians but still refuse third party involvement. Interestingly, in contrast to Sunni Islam, Shi’a Islam accepts gamete donation and has made provisions to institutionalize it. Chinese culture is strongly influenced by Confucianism, which accepts all forms of assisted reproduction that do not involve third parties. Other communities follow the law of the land, which is usually dictated by the religious group(s) that make(s) the majority of that specific community. The debate will certainly continue as long as new developments arise in the ever-evolving field of assisted reproduction. PMID:27822349

  19. Improving porcine in vitro fertilization output by simulating the oviductal environment

    PubMed Central

    Soriano-Úbeda, Cristina; García-Vázquez, Francisco A.; Romero-Aguirregomezcorta, Jon; Matás, Carmen

    2017-01-01

    Differences between the in vitro and in vivo environment in which fertilization occurs seem to play a key role in the low efficiency of porcine in vitro fertilization (IVF). This work proposes an IVF system based on the in vivo oviductal periovulatory environment. The combined use of an IVF medium at the pH found in the oviduct in the periovulatory stage (pHe 8.0), a mixture of oviductal components (cumulus-oocyte complex secretions, follicular fluid and oviductal periovulatory fluid, OFCM) and a device that interposes a physical barrier between gametes (an inverted screw cap of a Falcon tube, S) was compared with the classical system at pHe 7.4, in a 4-well multidish (W) lacking oviduct biological components. The results showed that the new IVF system reduced polyspermy and increased the final efficiency by more than 48%. This higher efficiency seems to be a direct consequence of a reduced sperm motility and lower capacitating status and it could be related to the action of OFCM components over gametes and to the increase in the sperm intracellular pH (pHi) caused by the higher pHe used. In conclusion, a medium at pH 8.0 supplemented with OFCM reduces polyspermy and improves porcine IVF output.

  20. How should we assess the safety of IVF technologies?

    PubMed

    Brison, Daniel R; Roberts, Stephen A; Kimber, Susan J

    2013-12-01

    Clinical IVF treatment was established over 30 years ago through pioneering work by Edwards and Steptoe and other teams around the world and is now considered routine treatment. However, the pace of scientific and technological advances means that IVF practitioners can now access an increasing array of new and invasive technologies. The examples are many but include: extended embryo culture, development of media to include growth factors, developments in genetic screening, use of time-lapse technology and the advent of vitrification of embryos and oocytes. In parallel, wider scientific and medical advances are raising our awareness of the potential impact of assisted reproduction technology on areas such as embryonic development, gene expression and genomic imprinting and the developmental origins of health and disease. A recently suggested paradigm for assessing new technologies in IVF includes development in animal models such as rodents and large animals, preclinical research with human gametes and embryos donated to research, prospective clinical trials in IVF and, finally, follow-up studies of IVF children. In this paper, we describe efforts to address key areas of this pathway, namely preclinical research using human gametes/embryos and long-term, follow-up studies of the health of assisted reproduction children. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.