Sample records for gametophytic self-incompatibility gsi

  1. Convergent Evolution at the Gametophytic Self-Incompatibility System in Malus and Prunus

    PubMed Central

    Cunha, Ana E.; Fonseca, Nuno A.; Iezzoni, Amy; van Nocker, Steve; Vieira, Cristina P.

    2015-01-01

    S-RNase-based gametophytic self-incompatibility (GSI) has evolved once before the split of the Asteridae and Rosidae. This conclusion is based on the phylogenetic history of the S-RNase that determines pistil specificity. In Rosaceae, molecular characterizations of Prunus species, and species from the tribe Pyreae (i.e., Malus, Pyrus, Sorbus) revealed different numbers of genes determining S-pollen specificity. In Prunus only one pistil and pollen gene determine GSI, while in Pyreae there is one pistil but multiple pollen genes, implying different specificity recognition mechanisms. It is thus conceivable that within Rosaceae the genes involved in GSI in the two lineages are not orthologous but possibly paralogous. To address this hypothesis we characterised the S-RNase lineage and S-pollen lineage genes present in the genomes of five Rosaceae species from three genera: M. × domestica (apple, self-incompatible (SI); tribe Pyreae), P. persica (peach, self-compatible (SC); Amygdaleae), P. mume (mei, SI; Amygdaleae), Fragaria vesca (strawberry, SC; Potentilleae), and F. nipponica (mori-ichigo, SI; Potentilleae). Phylogenetic analyses revealed that the Malus and Prunus S-RNase and S-pollen genes belong to distinct gene lineages, and that only Prunus S-RNase and SFB-lineage genes are present in Fragaria. Thus, S-RNase based GSI system of Malus evolved independently from the ancestral system of Rosaceae. Using expression patterns based on RNA-seq data, the ancestral S-RNase lineage gene is inferred to be expressed in pistils only, while the ancestral S-pollen lineage gene is inferred to be expressed in tissues other than pollen. PMID:25993016

  2. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus.

    PubMed

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Fonseca, Nuno A; Iezzoni, Amy; van Nocker, Steve; Vieira, Cristina P

    2015-01-01

    S-RNase-based gametophytic self-incompatibility (GSI) has evolved once before the split of the Asteridae and Rosidae. This conclusion is based on the phylogenetic history of the S-RNase that determines pistil specificity. In Rosaceae, molecular characterizations of Prunus species, and species from the tribe Pyreae (i.e., Malus, Pyrus, Sorbus) revealed different numbers of genes determining S-pollen specificity. In Prunus only one pistil and pollen gene determine GSI, while in Pyreae there is one pistil but multiple pollen genes, implying different specificity recognition mechanisms. It is thus conceivable that within Rosaceae the genes involved in GSI in the two lineages are not orthologous but possibly paralogous. To address this hypothesis we characterised the S-RNase lineage and S-pollen lineage genes present in the genomes of five Rosaceae species from three genera: M. × domestica (apple, self-incompatible (SI); tribe Pyreae), P. persica (peach, self-compatible (SC); Amygdaleae), P. mume (mei, SI; Amygdaleae), Fragaria vesca (strawberry, SC; Potentilleae), and F. nipponica (mori-ichigo, SI; Potentilleae). Phylogenetic analyses revealed that the Malus and Prunus S-RNase and S-pollen genes belong to distinct gene lineages, and that only Prunus S-RNase and SFB-lineage genes are present in Fragaria. Thus, S-RNase based GSI system of Malus evolved independently from the ancestral system of Rosaceae. Using expression patterns based on RNA-seq data, the ancestral S-RNase lineage gene is inferred to be expressed in pistils only, while the ancestral S-pollen lineage gene is inferred to be expressed in tissues other than pollen.

  3. Selection of sporophytic and gametophytic self-incompatibility in the absence of a superlocus.

    PubMed

    Schoen, Daniel J; Roda, Megan J

    2016-06-01

    Self-incompatibility (SI) is a complex trait that enforces outcrossing in plant populations. SI generally involves tight linkage of genes coding for the proteins that underlie self-pollen detection and pollen identity specification. Here, we develop two-locus genetic models to address the question of whether sporophytic SI (SSI) and gametophytic SI (GSI) can invade populations of self-compatible plants when there is no linkage or weak linkage of the underlying pollen detection and identity genes (i.e., no S-locus supergene). The models assume that SI evolves as a result of exaptation of genes formerly involved in functions other than SI. Model analysis reveals that SSI and GSI can invade populations even when the underlying genes are loosely linked, provided that inbreeding depression and selfing rate are sufficiently high. Reducing recombination between these genes makes conditions for invasion more lenient. These results can help account for multiple, independent evolution of SI systems as seems to have occurred in the angiosperms. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. PLC-Mediated Signaling Pathway in Pollen Tubes Regulates the Gametophytic Self-incompatibility of Pyrus Species.

    PubMed

    Qu, Haiyong; Guan, Yaqin; Wang, Yongzhang; Zhang, Shaolin

    2017-01-01

    Among the Rosaceae species, the gametophytic self-incompatibility (GSI) is controlled by a single multi-allelic S locus, which is composed of the pistil-S and pollen-S genes. The pistil-S gene encodes a polymorphic ribonuclease (S-RNase), which is essential for identifying self-pollen. However, the S-RNase system has not been fully characterized. In this study, the self-S-RNase inhibited the Ca 2+ -permeable channel activity at pollen tube apices and the selectively decreased phospholipase C ( PLC ) activity in the plasma membrane of Pyrus pyrifolia pollen tubes. Self-S-RNase decreased the Ca 2+ influx through a PLC -mediated signaling pathway. Phosphatidylinositol-specific PLC has a 26-amino acid insertion in pollen tubes of the 'Jinzhuili' cultivar, which is a spontaneous self-compatible mutant of the 'Yali' cultivar. 'Yali' plants exhibit a typical S-RNase-based GSI. Upon self-pollination, PLC gene expression is significantly higher in 'Jinzhuili' pollen tubes than that in 'Yali' pollen tubes. Moreover, the PLC in pollen tubes can only interact with one of the two types of S-RNase from the style. In the Pyrus x bretschneideri Rehd, the PLC directly interacted with the S 7 -RNase in the pollen tube, but not with the S 34 -RNase. Collectively, our results reveal that the effects of S-RNase on PLC activity are required for S-specific pollen rejection, and that PLC -IP 3 participates in the self-incompatibility reaction of Pyrus species.

  5. Proteomics approaches advance our understanding of plant self-incompatibility response.

    PubMed

    Sankaranarayanan, Subramanian; Jamshed, Muhammad; Samuel, Marcus A

    2013-11-01

    Self-incompatibility (SI) in plants is a genetic mechanism that prevents self-fertilization and promotes out-crossing needed to maintain genetic diversity. SI has been classified into two broad categories: the gametophytic self-incompatibility (GSI) and the sporophytic self-incompatibility (SSI) based on the genetic mechanisms involved in 'self' pollen rejection. Recent proteomic approaches to identify potential candidates involved in SI have shed light onto a number of previously unidentified mechanisms required for SI response. SI proteome research has progressed from the use of isoelectric focusing in early days to the latest third-generation technique of comparative isobaric tag for relative and absolute quantitation (iTRAQ) used in recent times. We will focus on the proteome-based approaches used to study self-incompatibility (GSI and SSI), recent developments in the field of incompatibility research with emphasis on SSI and future prospects of using proteomic approaches to study self-incompatibility.

  6. PLC-Mediated Signaling Pathway in Pollen Tubes Regulates the Gametophytic Self-incompatibility of Pyrus Species

    PubMed Central

    Qu, Haiyong; Guan, Yaqin; Wang, Yongzhang; Zhang, Shaolin

    2017-01-01

    Among the Rosaceae species, the gametophytic self-incompatibility (GSI) is controlled by a single multi-allelic S locus, which is composed of the pistil-S and pollen-S genes. The pistil-S gene encodes a polymorphic ribonuclease (S-RNase), which is essential for identifying self-pollen. However, the S-RNase system has not been fully characterized. In this study, the self-S-RNase inhibited the Ca2+-permeable channel activity at pollen tube apices and the selectively decreased phospholipase C (PLC) activity in the plasma membrane of Pyrus pyrifolia pollen tubes. Self-S-RNase decreased the Ca2+ influx through a PLC-mediated signaling pathway. Phosphatidylinositol-specific PLC has a 26-amino acid insertion in pollen tubes of the ‘Jinzhuili’ cultivar, which is a spontaneous self-compatible mutant of the ‘Yali’ cultivar. ‘Yali’ plants exhibit a typical S-RNase-based GSI. Upon self-pollination, PLC gene expression is significantly higher in ‘Jinzhuili’ pollen tubes than that in ‘Yali’ pollen tubes. Moreover, the PLC in pollen tubes can only interact with one of the two types of S-RNase from the style. In the Pyrus x bretschneideri Rehd, the PLC directly interacted with the S7-RNase in the pollen tube, but not with the S34-RNase. Collectively, our results reveal that the effects of S-RNase on PLC activity are required for S-specific pollen rejection, and that PLC-IP3 participates in the self-incompatibility reaction of Pyrus species. PMID:28729872

  7. Antagonism between local dispersal and self-incompatibility systems in a continuous plant population.

    PubMed

    Cartwright, Reed A

    2009-06-01

    Many self-incompatible plant species exist in continuous populations in which individuals disperse locally. Local dispersal of pollen and seeds facilitates inbreeding because pollen pools are likely to contain relatives. Self-incompatibility promotes outbreeding because relatives are likely to carry incompatible alleles. Therefore, populations can experience an antagonism between these forces. In this study, a novel computational model is used to explore the effects of this antagonism on gene flow, allelic diversity, neighbourhood sizes, and identity by descent. I confirm that this antagonism is sensitive to dispersal levels and linkage. However, the results suggest that there is little to no difference between the effects of gametophytic and sporophytic self-incompatibility systems (GSI and SSI) on unlinked loci. More importantly, both GSI and SSI affect unlinked loci in a manner similar to obligate outcrossing without mating types. This suggests that the primary evolutionary impact of self-incompatibility systems may be to prevent selfing, and prevention of biparental inbreeding might be a beneficial side-effect.

  8. Self-incompatibility in passionfruit: evidence of gametophytic-sporophytic control.

    PubMed

    Suassuna, T de M F; Bruckner, H; de Carvalho, R; Borém, A

    2003-01-01

    Self-incompatibility in passionfruit was studied in families originated from crosses among plants that presented differences in reciprocal crosses. The three families, obtained by crossing S(3) plants, exhibited one incompatible group; no reciprocal differences were observed. The phenotype of the families was the same as the parent plants, S(3). These results suggest the presence of a gene ( G), gametophytic in its action, associated to the sporophytic gene S, modifying the incompatibility reaction in passionfruit. The reciprocal difference exhibited in the crosses among the parents could be explained as a matching between plants homozygous for S, but homozygous and heterozygous for G. Actually this would be a partially compatible cross, not detectable when the evaluation is done based on fruit set data. As the family originated from this kind of cross is homozygous for S and heterozygous for G, no reciprocal differences are expected, and the phenotype should be the same as the parental plants, as observed in the present work.

  9. Lack of S-RNase-Based Gametophytic Self-Incompatibility in Orchids Suggests That This System Evolved after the Monocot-Eudicot Split.

    PubMed

    Niu, Shan-Ce; Huang, Jie; Zhang, Yong-Qiang; Li, Pei-Xing; Zhang, Guo-Qiang; Xu, Qing; Chen, Li-Jun; Wang, Jie-Yu; Luo, Yi-Bo; Liu, Zhong-Jian

    2017-01-01

    Self-incompatibility (SI) is found in approximately 40% of flowering plant species and at least 100 families. Although orchids belong to the largest angiosperm family, only 10% of orchid species present SI and have gametophytic SI (GSI). Furthermore, a majority (72%) of Dendrobium species, which constitute one of the largest Orchidaceae genera, show SI and have GSI. However, nothing is known about the molecular mechanism of GSI. The S-determinants of GSI have been well characterized at the molecular level in Solanaceae, Rosaceae, and Plantaginaceae, which use an S-ribonuclease (S-RNase)-based system. Here, we investigate the hypothesis that Orchidaceae uses a similar S-RNase to those described in Rosaceae, Solanaceae, and Plantaginaceae SI species. In this study, two SI species ( Dendrobium longicornu and D. chrysanthum ) were identified using fluorescence microscopy. Then, the S-RNase- and SLF-interacting SKP1-like1 (SSK1)-like genes present in their transcriptomes and the genomes of Phalaenopsis equestris, D. catenatum, Vanilla shenzhenica , and Apostasia shenzhenica were investigated. Sequence, phylogenetic, and tissue-specific expression analyses revealed that none of the genes identified was an S-determinant, suggesting that Orchidaceae might have a novel SI mechanism. The results also suggested that RNase-based GSI might have evolved after the split of monocotyledons (monocots) and dicotyledons (dicots) but before the split of Asteridae and Rosidae. This is also the first study to investigate S-RNase-based GSI in monocots. However, studies on gene identification, differential expression, and segregation analyses in controlled crosses are needed to further evaluate the genes with high expression levels in GSI tissues.

  10. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes.

    PubMed

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Vieira, Cristina P

    2015-06-02

    Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and

  11. The different mechanisms of sporophytic self-incompatibility.

    PubMed

    Hiscock, Simon J; Tabah, David A

    2003-06-29

    Flowering plants have evolved a multitude of mechanisms to avoid self-fertilization and promote outbreeding. Self-incompatibility (SI) is by far the most common of these, and is found in ca. 60% of flowering plants. SI is a genetically controlled pollen-pistil recognition system that provides a barrier to fertilization by self and self-related pollen in hermaphrodite (usually co-sexual) flowering plants. Two genetically distinct forms of SI can be recognized: gametophytic SI (GSI) and sporophytic SI (SSI), distinguished by how the incompatibility phenotype of the pollen is determined. GSI appears to be the most common mode of SI and can operate through at least three different mechanisms, two of which have been characterized extensively at a molecular level in the Solanaceae and Papaveraceae. Because molecular studies of SSI have been largely confined to species from the Brassicaceae, predominantly Brassica species, it is not yet known whether SSI, like GSI, can operate through different molecular mechanisms. Molecular studies of SSI are now being carried out on Ipomoea trifida (Convolvulaceae) and Senecio squalidus (Asteraceae) and are providing important preliminary data suggesting that SSI in these two families does not share the same molecular mechanism as that of the Brassicaceae. Here, what is currently known about the molecular regulation of SSI in the Brassicaceae is briefly reviewed, and the emerging data on SSI in I. trifida, and more especially in S. squalidus, are discussed.

  12. Genetical and ultrastructural aspects of self and cross incompatibility in interspecific hybrids between self-compatible Lycopersicum esculentum and self-incompatible L. peruvianum.

    PubMed

    De Nettancourt, D; Devreux, M; Laneri, U; Cresti, M; Pacini, E; Sarfatti, G

    1974-01-01

    Cytological and genetical analyses were made of the breeding system of embryo-cultured interspecific tomato hybrids between L. esculentum and L. peruvianum. It was found that fluorescence techniques and electron microscopy allowed a distinction to be made between pollen tubes inhibited by a unilateral incompatibility reaction and pollen tubes inhibited by a self-incompatibility reaction, after self-pollination of the hybrids or after reciprocal crossing between the hybrid and the parental species. The observed differences, if real and reliable, demonstrate that unilateral incompatibility in esculentum pollen tubes is governed by a single gametophytic factor which is either linked or allelic to the S-locus. This finding is discussed with reference to recent reports that unilateral incompatibility is controlled, in peruvianum styles, by a number of different dominant genes and it is concluded that these dominant genes, the S-locus of self-incompatibility and the gametophytic factor regulating the unilateral reaction in esculentum pollen belong to the same linkage group. The strong sterility barriers which prevent practically all backcrosses between the hybrid and the parental species were shown to be independent of the factors regulating stylar incompatibility. L. peruvianum is heterozygous for the sterility genes which prevent fertilization or embryo formation when the interspecific hybrid is crossed, as pistillate parent, to different accessions of L. peruvianum. One peruvianum stock was found which, as a pollinator, was highly cross-fertile with the hybrids.The presence of a concentric endoplasmic reticulum in inhibited pollen tubes was observed to be a constant feature of both the self- and the unilateral incompatibility reactions and was interpreted as an indication that incompatibility might lead to a general cessation of protein synthesis. Although incompatible tubes very much resemble, in this respect, the pollen tubes cultured in vitro, it seems probable, on

  13. Detection of Self Incompatibility Genotypes in Prunus africana: Characterization, Evolution and Spatial Analysis

    PubMed Central

    Nantongo, Judith Ssali; Eilu, Gerald; Geburek, Thomas; Schueler, Silvio; Konrad, Heino

    2016-01-01

    In flowering plants, self-incompatibility is an effective genetic mechanism that prevents self-fertilization. Most Prunus tree species exhibit a homomorphic gametophytic self-incompatibility (GSI) system, in which the pollen phenotype is encoded by its own haploid genome. To date, no identification of S-alleles had been done in Prunus africana, the only member of the genus in Africa. To identify S-RNase alleles and hence determine S-genotypes in African cherry (Prunus africana) from Mabira Forest Reserve, Uganda, primers flanking the first and second intron were designed and these amplified two bands in most individuals. PCR bands on agarose indicated 26 and 8 different S-alleles for second and first intron respectively. Partial or full sequences were obtained for all these fragments. Comparison with published S-RNase data indicated that the amplified products were S-RNase alleles with very high interspecies homology despite the high intraspecific variation. Against expectations for a locus under balancing selection, frequency and spatial distribution of the alleles in a study plot was not random. Implications of the results to breeding efforts in the species are discussed, and mating experiments are strongly suggested to finally prove the functionality of SI in P. africana. PMID:27348423

  14. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model

    PubMed Central

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E.; Fonseca, Nuno A.; Reboiro-Jato, David; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Raspé, Olivier; Vieira, Cristina P.

    2013-01-01

    S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection—those that could be involved in specificity determination—were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model. PMID:23606363

  15. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model.

    PubMed

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Fonseca, Nuno A; Reboiro-Jato, David; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Raspé, Olivier; Vieira, Cristina P

    2013-05-01

    S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection-those that could be involved in specificity determination-were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model.

  16. Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley.

    PubMed

    Kakeda, Katsuyuki; Ibuki, Toshiro; Suzuki, Junko; Tadano, Hidetaka; Kurita, Yuko; Hanai, Yosuke; Kowyama, Yasuo

    2008-12-01

    Gametophytic self-incompatibility (GSI) in the grasses is controlled by a distinct two-locus genetic system governed by the multiallelic loci S and Z. We have employed diploid Hordeum bulbosum as a model species for identifying the self-incompatibility (SI) genes and for elucidating the molecular mechanisms of the two-locus SI system in the grasses. In this study, we attempted to identify S haplotype-specific cDNAs expressed in pistils and anthers at the flowering stage in H. bulbosum, using the AFLP-based mRNA fingerprinting (AMF, also called cDNA-AFLP) technique. We used the AMF-derived DNA clones as markers for fine mapping of the S locus, and found that the locus resided in a chromosomal region displaying remarkable suppression of recombination, encompassing a large physical region. Furthermore, we identified three AMF-derived markers displaying complete linkage to the S locus, although they showed no significant homology with genes of known functions. Two of these markers showed expression patterns that were specific to the reproductive organs (pistil or anther), suggesting that they could be potential candidates for the S gene.

  17. Life history mediates mate limitation and population viability in self-incompatible plant species.

    PubMed

    Thrall, Peter H; Encinas-Viso, Francisco; Hoebee, Susan E; Young, Andrew G

    2014-03-01

    Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.

  18. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae.

    PubMed

    Zuriaga, Elena; Molina, Laura; Badenes, María Luisa; Romero, Carlos

    2012-06-01

    S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.

  19. Life history mediates mate limitation and population viability in self-incompatible plant species

    PubMed Central

    Thrall, Peter H; Encinas-Viso, Francisco; Hoebee, Susan E; Young, Andrew G

    2014-01-01

    Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue. PMID:24683451

  20. Allelic genealogies in sporophytic self-incompatibility systems in plants.

    PubMed

    Schierup, M H; Vekemans, X; Christiansen, F B

    1998-11-01

    Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.

  1. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata(Brassicaceae) with sporophytic control of self-incompatibility.

    PubMed

    Mable, B K; Schierup, M H; Charlesworth, D

    2003-06-01

    In homomorphic plant self-incompatibility (SI) systems, large numbers of alleles may be maintained at a single Mendelian locus. Most estimators of the number of alleles present in natural populations are designed for gametophytic self-incompatibility systems (GSI) in which the recognition phenotype of the pollen is determined by its own haploid genotype. In sporophytic systems (SSI), the recognition phenotype of the pollen is determined by the diploid genotype of its parent, and dominance differs among alleles. We describe research aimed at estimates of S-allele numbers in a natural population of Arabidopsis lyrata (Brassicaceae), whose SSI system has recently been described. Using a combination of pollination studies and PCR-based identification of alleles at a locus equivalent to the Brassica SRK gene, we identified and sequenced 11 putative alleles in a sample of 20 individuals from different maternal seed sets. The pollination results indicate that we have not amplified all alleles that must be present. Extensive partial incompatibility, nonreciprocal compatibility differences, and evidence of weakened expression of SI in some genotypes, prevent us from determining the exact number of missing alleles based only on cross-pollination data. Although we show that none of the theoretical models currently proposed is completely appropriate for estimating the number of alleles in this system, we estimate that there are between 13 and 16 different S-alleles in our sample, probably between 16 and 25 alleles in the population, and discuss the relative frequency of alleles in relation to dominance.

  2. Late-acting self-incompatibility--the pariah breeding system in flowering plants.

    PubMed

    Gibbs, Peter E

    2014-08-01

    It is estimated that around half of all species of flowering plants show self-incompatibility (SI). However, the great majority of species alleged to have SI simply comply with 'the inability of a fully fertile hermaphrodite plant to produce zygotes when self-pollinated'--a definition that is neutral as to cause. Surprisingly few species have been investigated experimentally to determine whether their SI has the type of genetic control found in one of the three established mechanisms, that is, homomorphic gametophytic, homomorphic sporophytic or heteromorphic SI. Furthermore, our knowledge of the molecular basis of homomorphic SI derives from a few species in just five families--a small sample that has nevertheless revealed the existence of three different molecular mechanisms. Importantly, a sizeable cohort of species are self-sterile despite the fact that self-pollen tubes reach the ovary and in most cases penetrate ovules, a phenomenon called late-acting self-incompatibility (LSI). This review draws attention to the confusion between species that show 'self-incompatibility' and those that possess one of the 'conventional SI mechanisms' and to argue the case for recognition of LSI as having a widespread occurrence and as a mechanism that inhibits selfing and promotes outbreeding in many plant species. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.

    PubMed

    Schierup, M H; Vekemans, X; Christiansen, F B

    1997-10-01

    The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model of gametophytic self-incompatibility, but the selection intensity is stronger. With dominance, dominant alleles invade the population more easily than recessive alleles and have a lower frequency at equilibrium. In the SSIdom model, recessive alleles have both a higher allele frequency and higher expected life span. In the SSIdomcod model, however, loss due to drift occurs more easily for pollen-recessive than for pollen-dominant alleles, and therefore, dominant alleles have a higher expected life span than the more recessive alleles. The process of allelic turnover in the SSIdomcod and SSIdom models is closely approximated by a random walk on a dominance ladder. Implications of the results for experimental studies of sporophytic self-incompatibility in natural populations are discussed.

  4. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus.

    PubMed

    Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro

    2012-07-01

    Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.

  5. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes.

    PubMed

    Akagi, Takashi; Henry, Isabelle M; Morimoto, Takuya; Tao, Ryutaro

    2016-06-01

    Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. How Have Self-Incompatibility Haplotypes Diversified? Generation of New Haplotypes during the Evolution of Self-Incompatibility from Self-Compatibility.

    PubMed

    Sakai, Satoki

    2016-08-01

    I developed a gametophytic self-incompatibility (SI) model to study the conditions leading to diversification in SI haplotypes. In the model, the SI system is assumed to be incomplete, and the pollen expressing a given specificity is not fully rejected by the pistils expressing the same specificity. I also assumed that mutations can occur that enhance the rejection of pollen by pistils with the same haplotype variant and reduce rejection by pistils with other variants in the same haplotype. I found that if such mutations occur, the new haplotypes (mutant variants) can stably coexist with the ancestral haplotype in which the mutant arose. This is because pollen bearing the new haplotype is most strongly rejected by pistils bearing the same new haplotype among the pistils in the population; hence, negative frequency-dependent selection prevents their fixation. I also performed simulations and found that the nearly complete SI system evolves from completely self-compatible populations and that SI haplotypes can increase to about 40-50 within a few thousand generations. On the basis of my findings, I propose that diversification of SI haplotypes occurred during the evolution of SI from self-compatibility.

  7. Identification of a Skp1-Like Protein Interacting with SFB, the Pollen S Determinant of the Gametophytic Self-Incompatibility in Prunus1[W

    PubMed Central

    Matsumoto, Daiki; Yamane, Hisayo; Abe, Kazuyuki; Tao, Ryutaro

    2012-01-01

    Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCFSLF in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus. PMID:22548785

  8. Non-additive effects of pollen limitation and self-incompatibility reduce plant reproductive success and population viability

    PubMed Central

    Young, Andrew G.; Broadhurst, Linda M.; Thrall, Peter H.

    2012-01-01

    Background and Aims Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. Methods A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Key Results Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15–25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest

  9. Non-additive effects of pollen limitation and self-incompatibility reduce plant reproductive success and population viability.

    PubMed

    Young, Andrew G; Broadhurst, Linda M; Thrall, Peter H

    2012-02-01

    Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15-25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence

  10. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management.

    PubMed

    Saumitou-Laprade, Pierre; Vernet, Philippe; Vekemans, Xavier; Billiard, Sylvain; Gallina, Sophie; Essalouh, Laila; Mhaïs, Ali; Moukhli, Abdelmajid; El Bakkali, Ahmed; Barcaccia, Gianni; Alagna, Fiammetta; Mariotti, Roberto; Cultrera, Nicolò G M; Pandolfi, Saverio; Rossi, Martina; Khadari, Bouchaïb; Baldoni, Luciana

    2017-10-01

    The olive ( Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self-incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra- and interspecific stigma tests on 89 genotypes representative of species-wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self-incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus . SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross-incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.

  11. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae.

    PubMed

    Sassa, Hidenori

    2016-01-01

    Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.

  12. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae

    PubMed Central

    Sassa, Hidenori

    2016-01-01

    Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars. PMID:27069396

  13. Is Eucalyptus Cryptically Self-incompatible?

    PubMed

    Horsley, Tasmien N; Johnson, Steven D

    2007-12-01

    The probability that seeds will be fertilized from self- versus cross-pollen depends strongly on whether plants have self-incompatibility systems, and how these systems influence the fate of pollen tubes. In this study of breeding systems in Eucalyptus urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study pollen tube growth in styles following self- and cross-pollinations. Pollen tubes from self-pollen took significantly longer than those from cross-pollen to grow to the base of the style in both E. urophylla (120 h vs. 96 h) and E. grandis (96 h vs. 72 h). In addition, both species exhibited reduced seed yields following self-pollination compared with cross-pollination. The present observations suggest that, in addition to a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a mechanism responsible for the preferential out-crossing system in these two eucalypt species.

  14. Is Eucalyptus Cryptically Self-incompatible?

    PubMed Central

    Horsley, Tasmien N.; Johnson, Steven D.

    2007-01-01

    Background and Aims The probability that seeds will be fertilized from self- versus cross-pollen depends strongly on whether plants have self-incompatibility systems, and how these systems influence the fate of pollen tubes. Methods In this study of breeding systems in Eucalyptus urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study pollen tube growth in styles following self- and cross-pollinations. Key Results Pollen tubes from self-pollen took significantly longer than those from cross-pollen to grow to the base of the style in both E. urophylla (120 h vs. 96 h) and E. grandis (96 h vs. 72 h). In addition, both species exhibited reduced seed yields following self-pollination compared with cross-pollination. Conclusions The present observations suggest that, in addition to a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a mechanism responsible for the preferential out-crossing system in these two eucalypt species. PMID:17881341

  15. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system.

    PubMed

    Matsumoto, Daiki; Tao, Ryutaro

    2016-07-01

    Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1-3 (or S locus F-box with low allelic sequence polymorphism 1-3; SLFL1-3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1-3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1-3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS(1,3,4,6)-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS(3)-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1-3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.

  16. How common is self-incompatibility across species of the herkogamous genus Ariocarpus?

    PubMed

    Martínez-Peralta, Concepción; Márquez-Guzmán, Judith; Mandujano, María C

    2014-03-01

    Self-incompatibility (SI), the most effective mechanism to prevent selfing, may limit the number of compatible mates in populations. The seven species of Ariocarpus are endangered and predominantly outcrossers but fruit set may reach 1-20% after selfing. We aimed to determine whether SI is the underlying mechanism influencing mating in Ariocarpus species. We characterized the presence/absence of SI using pollination treatments (self-pollination, cross-pollination, natural pollination) in one population per species. We assessed SI using epifluorescence and generalized linear models (GLMs) to compare the presence of pollen tubes in the stigma, stylar transmitting tissue, and ovary among self- and cross-pollinated pistils 48 h after pollination. Following the same treatments, production of fruit set was noted and related to pollen tube growth. Pollen tubes were found more frequently in the ovaries of natural and cross-pollinated flowers than in ovaries of self-pollinated. Stylar rejection of self-pollen indicated gametophytic SI, although pollen tubes reached the ovaries in six species (4-33% of pistils). Fruit set was lower after hand-pollinations than expected from pollen tube observations. The low percentages of self-compatibility in all species in pollen tube growth and pollination experiments indicated that no species had complete self-sterility, suggesting the presence of partial SI. Reduced fruit set relative to pollen tube production could result from a threshold of insufficient pollination, early-acting inbreeding depression, or resource limitation. The origin of partial SI in Ariocarpus could respond to pressures such as pollen limitation and population size.

  17. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility.

    PubMed

    Zhou, Qingyuan; Jia, Junting; Huang, Xing; Yan, Xueqing; Cheng, Liqin; Chen, Shuangyan; Li, Xiaoxia; Peng, Xianjun; Liu, Gongshe

    2014-05-26

    Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes

  18. New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model.

    PubMed

    Breton, Catherine M; Bervillé, André

    2012-09-01

    Most olive varieties are not strictly self-incompatible, nevertheless, they request foreign pollen to enhance fruit yield, and consequently orchards should contain pollinisers to ensure fruit set of the main variety. The best way to choose pollinisers is to experiment numerous crosses in a diallel design. Here, the genetic mode of inheritance of SI in the olive is deciphered and it does not correspond to the GSI type, but to the SSI type. It leaves S-allele dominance relationship expression in the male (pollen and pollen tube), but not in the female (stigma and style). Thus, a pair-wise combination of varieties may be inter-compatible in one direction (male to female, or female to male) and inter-incompatible in the other direction. Dominance relationships also explain different levels of self-pollination observed in varieties. Little efficient pollinisers were found and predicted in varieties; nevertheless, some new efficient pair-wise allele combinations are predicted and could be created. This model enables one to forecast compatibility without waiting for several years of yield records and to choose pollinisers in silico. Copyright © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  19. A Generalized Least-Squares Estimate for the Origin of Sporophytic Self-Incompatibility

    PubMed Central

    Uyenoyama, M. K.

    1995-01-01

    Analysis of nucleotide sequences that regulate the expression of self-incompatibility in flowering plants affords a direct means of examining classical hypotheses for the origin and evolution of this major feature of mating systems. Departing from the classical view of monophyly of all forms of self-incompatibility, the current paradigm for the origin of self-incompatibility postulates multiple episodes of recruitment and modification of preexisting genes. In Brassica, the S locus, which regulates sporophytic self-incompatibility, shows homology to a multigene family present both in self-compatible congeners and in groups for which this form of self-incompatibility is atypical. A phylogenetic analysis of S-allele sequences together with homologous sequences that do not cosegregate with self-incompatibility permits dating the change of function that marked the origin of self-incompatibility. A generalized least-squares method is introduced that provides closed-form expressions for estimates and standard errors for function-specific divergence rates and times of divergence among sequences. This analysis suggests that the age of the sporophytic self-incompatibility system expressed in Brassica exceeds species divergence within the genus by four- to fivefold. The extraordinarily high levels of sequence diversity exhibited by S alleles appears to reflect their ancient derivation, with the alternative hypothesis of hypermutability rejected by the analysis. PMID:7713446

  20. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control.

    PubMed

    Zhang, Cheng-Cai; Wang, Li-Yuan; Wei, Kang; Wu, Li-Yun; Li, Hai-Lin; Zhang, Fen; Cheng, Hao; Ni, De-Jiang

    2016-05-17

    Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self

  1. Evolutionary history of two pollen self-incompatibility factors reveals alternate routes to self-compatibility within Solanum.

    PubMed

    Markova, Dragomira N; Petersen, Jennifer J; Yam, Sarah E; Corral, Adryanna; Valle, Matthew J; Li, Wentao; Chetelat, Roger T

    2017-12-01

    Self-incompatibility (SI) prevents self-fertilization and reduces inbreeding. While SI is common in plants, transitions to self-compatibility (SC) occur frequently. Little is known about the genetic changes and evolutionary steps underlying these shifts. In the Solanaceae, SI is gametophytic, with specificity determined by S-RNases in the pistil and S-locus F-box proteins (SLFs) in pollen. We examined the role of two pollen factors, Cullin1 (CUL1) and SLF-23, in SI → SC transitions in wild tomato species from the Arcanum species group ( Solanum arcanum , S. neorickii , and S. chmielewskii ). Pollen compatibility was assessed on tester lines that reject pollen lacking functional SLF-23 or CUL1. Complementation tests, gene sequencing, and phylogenetic analyses were used to characterize both functional and nonfunctional alleles. We found evidence for multiple independent SI → SC transitions. In S. arcanum and S. chmielewskii , SC is caused by loss of pistil S-RNase activity, while in S. neorickii SC is associated with expression of a functional SLF-23 that recognizes the S 9 type S-RNase expressed in its pistils. Interestingly, we found identical deletion mutations in CUL1 exon 7 of S. chmielewskii as previously seen in S. habrochaites . Mating system transitions in the Arcanum group have occurred via both pistil loss-of-function and pollen gain-of-function SC mutations. Mutations common to S. chmielewskii and S. habrochaites must have arisen in a common ancestor, possibly to the entire tomato clade, then became fixed in different lineages after loss of pistil-side SI function. © 2017 Botanical Society of America.

  2. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates.

    PubMed

    Brennan, A C; Tabah, D A; Harris, S A; Hiscock, S J

    2011-01-01

    Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7-11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.

  3. Expression and inheritance of sporophytic self-incompatibility in synthetic allohexaploid Senecio cambrensis (Asteraceae).

    PubMed

    Brennan, Adrian C; Hiscock, Simon J

    2010-04-01

    Allopolyploid speciation is common in plants and is frequently associated with shifts from outcrossing, for example self-incompatibility, to inbreeding (i.e. selfing). Senecio cambrensis is a recently evolved allohexaploid species that formed following hybridization between diploid self-incompatible S. squalidus and tetraploid self-compatible S. vulgaris. Studies of reproduction in wild populations of S. cambrensis have concluded that it is self-compatible. Here, we investigated self-compatibility in synthetic lines of S. cambrensis generated via hybridization and colchicine-induced polyploidization and wild S. cambrensis using controlled crossing experiments. Synthetic F(1)S. cambrensis individuals were all self-compatible but, in F(2) and later generations, self-incompatible individuals were identified at frequencies of 6.7-9.2%. Self-incompatibility was also detected in wild sampled individuals at a frequency of 12.2%. The mechanism and genetics of self-incompatibility were tested in synthetic S. cambrensis and found to be similar to those of its paternal parent S. squalidus (i.e. sporophytic). These results show, for the first time, that functional sporophytic self-incompatibility can be inherited and expressed in allopolyploids as early as the second (F(2)) generation. Wild S. cambrensis should therefore be considered as possessing a mixed mating system with the potential for evolution towards either inbreeding or outcrossing.

  4. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates

    PubMed Central

    Brennan, A C; Tabah, D A; Harris, S A; Hiscock, S J

    2011-01-01

    Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7–11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI. PMID:20372180

  5. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.

    PubMed

    Meng, Dong; Gu, Zhaoyu; Yuan, Hui; Wang, Aide; Li, Wei; Yang, Qing; Zhu, Yuandi; Li, Tianzhong

    2014-05-01

    S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.

  6. Single gene control of postzygotic self-incompatibility in poke milkweed, Asclepias exaltata L.

    PubMed Central

    Lipow, S R; Wyatt, R

    2000-01-01

    Most individuals of Asclepias exaltata are self-sterile, but all plants lack prezygotic barriers to self-fertilization. To determine whether postzygotic rejection of self-fertilized ovules is due to late-acting self-incompatibility or to extreme, early acting inbreeding depression, we performed three diallel crosses among self-sterile plants related as full-sibs. The full-sibs segregated into four compatibility classes, suggesting that late acting self-incompatibility is controlled by a single gene (S-locus). Crosses between plants sharing one or both alleles at the S-locus are incompatible. An additional diallel cross was done among full-sib progeny from a cross of a self-sterile and a self-fertile plant. These progeny grouped into two compatibility classes, and plants within classes displayed varying levels of self-fertility. This suggests that the occasional self-fertility documented in natural pollinations is caused by pseudo-self-fertility alleles that alter the functioning of the S-locus. PMID:10655239

  7. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry

    PubMed Central

    Bošković, Radovan I.; Sargent, Daniel J.; Tobutt, Kenneth R.

    2010-01-01

    The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria. PMID:20008462

  8. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry.

    PubMed

    Bosković, Radovan I; Sargent, Daniel J; Tobutt, Kenneth R

    2010-03-01

    The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria.

  9. A general stochastic model for sporophytic self-incompatibility.

    PubMed

    Billiard, Sylvain; Tran, Viet Chi

    2012-01-01

    Disentangling the processes leading populations to extinction is a major topic in ecology and conservation biology. The difficulty to find a mate in many species is one of these processes. Here, we investigate the impact of self-incompatibility in flowering plants, where several inter-compatible classes of individuals exist but individuals of the same class cannot mate. We model pollen limitation through different relationships between mate availability and fertilization success. After deriving a general stochastic model, we focus on the simple case of distylous plant species where only two classes of individuals exist. We first study the dynamics of such a species in a large population limit and then, we look for an approximation of the extinction probability in small populations. This leads us to consider inhomogeneous random walks on the positive quadrant. We compare the dynamics of distylous species to self-fertile species with and without inbreeding depression, to obtain the conditions under which self-incompatible species can be less sensitive to extinction while they can suffer more pollen limitation. © Springer-Verlag 2011

  10. Self-pollen interference is absent in wild radish (Raphanus raphanistrum, Brassicaceae), a species with sporophytic self-incompatibility.

    PubMed

    Koelling, Vanessa A; Karoly, Keith

    2007-05-01

    Explaining the diversity of mating systems and floral forms in flowering plants is a long-standing concern of evolutionary biologists. One topic of interest is the conditions under which self-pollination can interfere with seed set for flowering plants with a self-incompatibility system. We investigated the effect of self-pollen interference for wild radish, Raphanus raphanistrum, which has sporophytic self-incompatibility. We performed pollinations and determined seed set for plants grown in the greenhouse, using pollen mixtures representing either self- with outcross-pollen or outcross-pollen alone. Stigmas were collected for a subset of pollinated flowers to determine the number of pollen grains applied. Average seed set for the self/cross (5.13 seeds/pollination) and cross treatments (5.09 seeds/pollination) did not differ significantly. Stigmatic pollen loads averaged around 700 grains, an amount close to observed natural pollen loads on R. raphanistrum. We concluded that for R. raphanistrum in natural populations, self-pollen is unlikely to interfere with outcross-pollen success. This study is the first to investigate effects of self-pollen interference on seed set for a homomorphic species with sporophytic self-incompatibility where rejection occurs at the stigmatic surface.

  11. Confocal observations of late-acting self-incompatibility in Theobroma cacao L.

    PubMed

    Ford, Caroline S; Wilkinson, Mike J

    2012-09-01

    Cocoa (Theobroma cacao) has an idiosyncratic form of late-acting self-incompatibility that operates through the non-fusion of incompatible gametes. Here, we used high-resolution confocal microscopy to define fine level changes to the embryo sac of the strongly self-incompatible cocoa genotype SCA 24 in the absence of pollination, and following compatible and incompatible pollination. All sperm nuclei had fused with the female nuclei by 48 h following compatible pollinations. However, following incompatible pollinations, we observed divergence in the behaviour of sperm nuclei following release into the embryo sac. Incomplete sperm nucleus migration occurred in approximately half of the embryo sacs, where the sperm nuclei had so far failed to reach the female gamete nuclei. Sperm nuclei reached but did not fuse with the female gamete nuclei in the residual cases. We argue that the cellular mechanisms governing sperm nucleus migration to the egg nucleus and those controlling subsequent nuclear fusion are likely to differ and should be considered independently. Accordingly, we recommend that future efforts to characterise the genetic basis of LSI in cocoa should take care to differentiate between these two events, both of which contribute to failed karyogamy. Implications of these results for continuing efforts to gain better understanding of the genetic control of LSI in cocoa are discussed.

  12. Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases.

    PubMed

    Sun, Penglin; Kao, Teh-hui

    2013-02-01

    The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF.

  13. Effect of variation in self-incompatibility on pollen limitation and inbreeding depression in Flourensia cernua (Asteraceae) scrubs of contrasting density

    PubMed Central

    Ferrer, Miriam M.; Good-Avila, Sara V.; Montaña, Carlos; Domínguez, César A.; Eguiarte, Luis E.

    2009-01-01

    Background and Aims Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes. Methods The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets. Key Results Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower. Conclusions These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate

  14. Self-Incompatibility in Petunia inflata: The Relationship between a Self-Incompatibility Locus F-Box Protein and Its Non-Self S-RNases[W

    PubMed Central

    Sun, Penglin; Kao, Teh-hui

    2013-01-01

    The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitination and degradation. Using a gain-of-function assay, we examined the relationships between S2-SLF1 (for S2-allelic product of Type-1 SLF) and four S-RNases. The results suggest that S2-SLF1 interacts with S7- and S13-RNases, and the previously identified S1- and S3-RNases, but not with S5- or S11-RNase. An artificial microRNA expressed by the S2-SLF1 promoter, but not by the vegetative cell-specific promoter, Late Anther Tomato 52, suppressed expression of S2-SLF1 in S2 pollen, suggesting that SLF1 is specific to the generative cell. The S2 pollen with S2-SLF1 suppressed was compatible with S3-, S5-, S7-, S11-, and S13-carrying pistils, confirming that other SLF proteins are responsible for detoxifying S5- and S11-RNases and suggesting that S2-SLF1 is not the only SLF in S2 pollen that interacts with S3-, S7-, and S13-RNases. Petunia may have evolved at least two types of SLF proteins to detoxify any non-self S-RNase to minimize the deleterious effects of mutation in any SLF. PMID:23444333

  15. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility.

    PubMed

    Lanaud, Claire; Fouet, Olivier; Legavre, Thierry; Lopes, Uilson; Sounigo, Olivier; Eyango, Marie Claire; Mermaz, Benoit; Da Silva, Marcos Ramos; Loor Solorzano, Rey Gaston; Argout, Xavier; Gyapay, Gabor; Ebaiarrey, Herman Ebai; Colonges, Kelly; Sanier, Christine; Rivallan, Ronan; Mastin, Géraldine; Cryer, Nicholas; Boccara, Michel; Verdeil, Jean-Luc; Efombagn Mousseni, Ives Bruno; Peres Gramacho, Karina; Clément, Didier

    2017-10-13

    Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.

    PubMed

    Bechsgaard, J; Bataillon, T; Schierup, M H

    2004-05-01

    Self-incompatibility in Arabidopsis lyrata is sporophytically controlled by the multi-allelic S-locus. Self-incompatibility alleles (S-alleles) are under strong negative frequency dependent selection because pollen carrying common S-alleles have fewer mating opportunities. Population genetics theory predicts that deleterious alleles can accumulate if linked to the S-locus. This was tested by studying segregation of S-alleles in 11 large full sib families in A. lyrata. Significant segregation distortion leading to an up to fourfold difference in transmission rates was found in six families. Differences in transmission rates were not significantly different in reciprocal crosses and the distortions observed were compatible with selection acting at the gametic stage alone. The S-allele with the largest segregation advantage is also the most recessive, and is very common in natural populations concordant with its apparent segregation advantage. These results imply that frequencies of S-alleles in populations of A. lyrata cannot be predicted based on simple models of frequency-dependent selection alone.

  17. Distinct effects of pollinator dependence and self-incompatibility on pollen limitation in South African biodiversity hotspots.

    PubMed

    Rodger, James G; Ellis, Allan G

    2016-06-01

    Global synthesis indicates that limitation of plant fecundity by pollen receipt (pollen limitation) is positively related to regional plant diversity and is higher for self-incompatible than self-compatible species. While self-incompatible species are always dependent on pollinating agents, self-compatible species may be pollinator-dependent or autofertile. This should cause variation in pollen limitation among self-compatible species, with lower pollen limitation in autofertile species because they do not depend on pollinators. We hypothesized that the intensity of pollen limitation in self-incompatible compared with pollinator-dependent self-compatible species should depend on whether pollen limitation is determined more by quantity than quality of pollen received. We compared pollen limitation between these three groups using a dataset of 70 biotically pollinated species from biodiverse regions of South Africa. Comparison with a global dataset indicated that pollen limitation in the South African biodiversity hotspots was generally comparable to other regions, despite expectations of higher pollen limitation based on the global plant diversity-pollen limitation relationship. Pollen limitation was lowest for autofertile species, as expected. It was also higher for pollinator-dependent self-compatible species than self-incompatible species, consistent with increased pollen-quality limitation in the former group due to negative consequences of pollinator-mediated self-pollination. However, there was a higher frequency of plants with zygomorphic flowers, which were also more pollen-limited, among pollinator-dependent self-compatible species. Thus, we could not attribute this difference in pollen limitation exclusively to a difference in pollen quality. Nevertheless, our results indicate that comparative studies should control for both pollinator dependence and self-incompatiblity when evaluating effects of other factors on pollen limitation. © 2016 The Author(s).

  18. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus.

    PubMed

    Liang, Mei; Yang, Wei; Su, Shiying; Fu, Lili; Yi, Hualin; Chen, Chuanwu; Deng, Xiuxin; Chai, Lijun

    2017-04-01

    S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although 'Shatian' pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of 'Shatian' pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from 'Shatian' pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from 'Shatian' pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining

  19. Development of the gametophyte of the fern Schizaea pusilla

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Swatzell, L. J.

    1996-01-01

    Schizaea pusilla is a pteridophyte with several unique developmental characteristics. In contrast to most other fern species, S. pusilla gametophytes remain filamentous throughout their development, and the gametophytes are associated with an endophytic fungus which appears to be mycorrhizal. In terms of tropistic responses, apical filament cells of young gametophytes are negatively phototropic compared with germ filaments of other ferns which exhibit positive phototropism. Cryofixation (propane jet freezing and high-pressure freezing) in conjunction with freeze substitution electron microscopy was used to study young gametophytes. The results demonstrate that apical filament cells have a distinctive structural polarity and that rhizoids also can be successfully frozen by these methods. The cytoskeleton and endomembrane system were particularly well preserved in cryofixed cells. In addition, Schizaea gametophytes were used as a test system to evaluate potential artifacts of propane jet freezing and high pressure freezing. There was little apparent difference in ultrastructure between cells cryofixed by either freezing method. These gametophytes will be useful in determining the effectiveness of cryofixation techniques and as a model system in tip growth studies.

  20. Population size and relatedness affect fitness of a self-incompatible invasive plant.

    PubMed

    Elam, Diane R; Ridley, Caroline E; Goodell, Karen; Ellstrand, Norman C

    2007-01-09

    One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future.

  1. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    PubMed Central

    2012-01-01

    Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a

  2. Contemporary pollen flow, characterization of the maternal ecological neighbourhood and mating patterns in wild cherry (Prunus avium L.).

    PubMed

    Cottrell, J E; Vaughan, S P; Connolly, T; Sing, L; Moodley, D J; Russell, K

    2009-08-01

    Conversion of lowland woodland to agricultural land and resulting fragmentation in Britain has been ongoing since Neolithic times. To counteract this decline, plantations of native species, often based on non-British planting stock, have been established. This may ultimately be detrimental to the integrity of the native gene pool. We explore the genetic and ecological factors influencing the success of components of the local pollen pool, including the effect of a non-native planting on an ancient woodland population of wild cherry. Wild cherry exhibits gametophytic self-incompatibility (GSI) and vegetative reproduction, both of which may be determinants of paternal success. The majority (61%) of the successful pollen originated from within the study site with a maximum pollen transfer distance of 694 m. There was a distinct departure from random mating, with over half the successful pollen originating from trees which occur within 100 m of the mother tree. Self-incompatibility, clonality, tree size and proximity to the mother tree were all found to influence paternal success. Kinship of pollen gametes within a maternal progeny was highest when a mother tree was surrounded by a large number of ramets of a single, compatible clone consisting of large, adult trees. Although the contribution from the non-native plantation is currently low, it is likely that this will increasingly contribute to the progeny of the adjacent ancient population as it matures. The results clearly show that in self-incompatible species, such as P. avium, close neighbours may be pollinated by very different components of the local pollen pool.

  3. Uncertain pollination environment promotes the evolution of a stable mixed reproductive system in the self-incompatible Hypochaeris salzmanniana (Asteraceae).

    PubMed

    Arista, M; Berjano, R; Viruel, J; Ortiz, M Á; Talavera, M; Ortiz, P L

    2017-09-01

    The transition from outcrossing to selfing is a repeated pattern in angiosperm diversification and according to general theory this transition should occur quickly and mixed reproductive systems should be infrequent. However, a large proportion of flowering plants have mixed reproductive systems, even showing inbreeding depression. Recently, several theoretical studies have shown that mixed mating systems can be stable, but empirical studies supporting these assumptions are still scarce. Hypochaeris salzmanniana, an annual species with populations differing in their self-incompatibility expression, was used as a study case to assess the stability of its mixed reproductive system. Here a descriptive study of the pollination environment was combined with measurements of the stability of the self-incompatibility system, outcrossing rate, reproductive assurance and inbreeding depression in four populations for two consecutive years. The reproductive system of populations exhibited a geographical pattern: the proportion of plants decreased from west to east. Pollinator environment also varied geographically, being less favourable from west to east. The self-incompatibility expression of some populations changed markedly in only one year. After selfing, progeny was mainly self-compatible, while after outcrossing both self-incompatible and self-compatible plants were produced. In general, both reproductive assurance and high inbreeding depression were found in all populations and years. The lowest values of inbreeding depression were found in 2014 in the easternmost populations, which experienced a marked increase in self-compatibility in 2015. The mixed reproductive system of H. salzmanniana seems to be an evolutionarily stable strategy, with selfing conferring reproductive assurance when pollinator attendance is low, but strongly limited by inbreeding depression. The fact that the highest frequencies of self-compatible plants appeared in the environments most

  4. Genetic and cellular analysis of cross-incompatibility in Zea mays.

    PubMed

    Lu, Yongxian; Kermicle, Jerry L; Evans, Matthew M S

    2014-03-01

    Three genetic systems conferring cross-incompatibility have been described in Zea mays: Teosinte crossing barrier1-strong (Tcb1-s) found in teosinte, and Gametophyte factor1-strong (Ga1-s) and Ga2-s found in maize and teosinte. The reproductive barrier between maize and some weedy teosintes is controlled by the Tcb1-s locus. Multi-generation inheritance experiments on two independent Tcb1-s lineages show that the Tcb1-s barrier is unstable in some maize lines. Reciprocal crosses between Tcb1-s tester plants and three recombinants in the Tcb1-s mapping region demonstrate that the Tcb1-s haplotype contains separable male and female components. In vivo assays of the dynamics of pollen tube growth and pollen tube morphology during rejection of incompatible pollen in silks carrying the Tcb1-s, Ga1-s, or Ga2-s barriers showed that, in all three, pollen tube growth is slower than in compatible crosses at early stages and had ceased by 24 h after pollination. In all three crossing barrier systems, incompatible pollen tubes have clustered callose plugs in contrast to pollen tubes of compatible crosses. Incompatible pollen tubes growing in the Tcb1-s, Ga1-s, and Ga2-s silks have different morphologies: straight, curved, and kinked, respectively. The distinct morphologies suggest that these crossing barriers block incompatible pollen through different mechanisms. This study lays the foundation for cloning the Tcb1 genes and provides clues about the cellular mechanisms involved in pollen rejection in the Tcb1-s, Ga1-s, and Ga2-s crossing barriers.

  5. Breakdown of Self-Incompatibility in a Natural Population of Petunia axillaris Caused by Loss of Pollen Function1

    PubMed Central

    Tsukamoto, Tatsuya; Ando, Toshio; Takahashi, Koichi; Omori, Takahiro; Watanabe, Hitoshi; Kokubun, Hisashi; Marchesi, Eduardo; Kao, Teh-hui

    2003-01-01

    Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an SC1- or an SC2-haplotype. SC1SC1 and SC2SC2 homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S1S1 through S40S40) generated from plants identified from three mixed populations, including U83. The SC1SC1 homozygote was reciprocally compatible with all the genotypes examined. The SC2SC2 homozygote accepted pollen from all but the S17S17 homozygote (identified from the U1 population), but the S17S17 homozygote accepted pollen from the SC2SC2 homozygote. cDNAs encoding SC2- and S17-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying SC1 or SC2 showed that the SI behavior of SC1 and SC2 was identical to that of SC1 and SC2 homozygotes, respectively. All these results taken together suggested that the SC2-haplotype was a mutant form of the S17-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed. PMID:12692349

  6. The impact of self-incompatibility systems on the prevention of biparental inbreeding

    PubMed Central

    Furstenau, Tara N.

    2017-01-01

    Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI). Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to

  7. Incompatibility and Mental Fatigue

    ERIC Educational Resources Information Center

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  8. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution.

    PubMed

    Onus, A Naci; Pickersgill, Barbara

    2004-08-01

    Unilateral incompatibility (UI) occurs when pollinations between species are successful in one direction but not in the other. Self-incompatible (SI) species frequently show UI with genetically related, self-compatible (SC) species, as pollen of SI species is compatible on the SC pistil, but not vice versa. Many examples of unilateral incompatibility, and all those which have been studied most intensively, are found in the Solanaceae, particularly Lycopersicon, Solanum, Nicotiana and Petunia. The genus Capsicum is evolutionarily somewhat distant from Lycopersicon and Solanum and even further removed from Nicotiana and Petunia. Unilateral incompatibility has also been reported in Capsicum; however, this is the first comprehensive study of crosses between all readily available species in the genus. All readily available (wild and domesticated) species in the genus are used as plant material, including the three genera from the Capsicum pubescens complex plus eight other species. Pollinations were made on pot-grown plants in a glasshouse. The number of pistils pollinated per cross varied (from five to 40 pistils per plant), depending on the numbers of flowers available. Pistils were collected 24 h after pollination and fixed for 3-24 h. After staining, pistils were mounted in a drop of stain, squashed gently under a cover slip and examined microscopically under ultra-violet light for pollen tube growth. Unilateral incompatibility is confirmed in the C. pubescens complex. Its direction conforms to that predominant in the Solanaceae and other families, i.e. pistils of self-incompatible species, or self-compatible taxa closely related to self-incompatible species, inhibit pollen tubes of self-compatible species. Unilateral incompatibility in Capsicum does not seem to have arisen to prevent introgression of self-compatibility into self-incompatible taxa, but as a by-product of divergence of the C. pubescens complex from the remainder of the genus.

  9. Live-Cell Imaging of Auxin and Cytokinin Signaling in Maize Female Gametophytes.

    PubMed

    Chettoor, Antony M; Evans, Matthew M S

    2017-01-01

    The plant life cycle is characterized by the alternation of generations between genetically active diploid sporophytes and haploid gametophytes. The gametophytes of flowering plants are sexually dimorphic. While the male gametophyte consists of only three cells (two sperm and a vegetative cell) and is released by the parent sporophyte, the female gametophyte (or embryo sac) is more complex and remains imbedded within diploid sporophyte tissues. In maize, the female gametophyte is embedded in a large ovule surrounded with multiple nucellar cell layers impeding live-cell imaging approaches to study embryo sac functions. Here, we describe a simple protocol to visualize embryo sacs with hormonal fluorescent reporters by increasing accessibility of the female gametophyte. The method described is applicable for visualization of any fluorescent embryo sac reporter. The embryo sacs visualization method developed for maize could be extended to facilitate visualization of embryos sac in other important cereals like wheat, rice, and oats.

  10. Introducing Object-Oriented Concepts into GSI

    NASA Technical Reports Server (NTRS)

    Guo, Jing; Todling, Ricardo

    2017-01-01

    Enhancements are now being made to the Gridpoint Statistical Interpolation (GSI) data assimilation system to expand its capabilities. This effort opens the way for broadening the scope of GSI's applications by using some standard object-oriented features in Fortran, and represents a starting point for the so-called GSI refactoring, as a part of the Joint Effort for Data-assimilationI ntegration (JEDI) project of JCSDA.

  11. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes

    PubMed Central

    Li, Xiaojie; Zhang, Zhuangzhi; Qu, Shancun; Liang, Guangjin; Sun, Juan; Zhao, Nan; Cui, Cuiju; Cao, Zengmei; Li, Yan; Pan, Jinhua; Yu, Shenhui; Wang, Qingyan; Li, Xia; Luo, Shiju; Song, Shaofeng; Guo, Li; Yang, Guanpin

    2016-01-01

    Dongfang no.7 (Saccharina japonica) was bred and maintained by hybridizing gametophytes, self-crossing the best individuals, selecting the best self-crossing line and seedling-raising from yearly reconstructed sporophytes. It increased the air dry yield by 43.2% in average over 2 widely farmed controls. Dongfang no.7 was seedling-raised from bulked sporophytes reconstructed from its representative gametophyte clones. Such strategy ensured it against variety contamination due to possible cross fertilization and occasional mixing and inbred depletion due to self-crossing number-limited sporophytes year after year. It derived from an intraspecific hybrid through 4 rounds of self-crossing and selection and retained a certain degree of genetic heterozygosity, thus being immune to inbred depletion due to purification of unknown detrimental alleles. Most importantly, it can be farmed in currently available system as the seedlings for large scale culture can be raised from reconstructed Dongfang no.7 sporophytes. Breeding and maintaining Dongfang no.7 provided a model that other varieties of kelp (S. japonica) and brown algae may follow during their domestication. PMID:26887644

  12. Inbreeding depression in self-incompatible North-American Arabidopsis lyrata: disentangling genomic and S-locus-specific genetic load

    PubMed Central

    Stift, M; Hunter, B D; Shaw, B; Adam, A; Hoebe, P N; Mable, B K

    2013-01-01

    Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO2, and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages. PMID:22892638

  13. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes.

    PubMed

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  14. Study on gametophyte vegetative growth of Undaria pinnatifida and its applications

    NASA Astrophysics Data System (ADS)

    Pang, Shao-Jun; Wu, Chao-Yuan

    1996-09-01

    When cultured under certain environmental conditions (25°C, light intensity 80 μmol/m2·s, LD 12/12, in enriched seawater medium with 7×10-4 mol/L NO3-N, 1.56×10-4 mol/L, PO4-P and supplements of other elements like Mn, Fe, I, etc.), male and female gametophytes of U. pinnatifida kept growing vegetatively and propagated fast at average daily fresh weight increase rate of about 20%. The empirical formula G m= G o·3m was established to estimate the output of vegetative gametophytes. Vigorous vegetative gametophyte cells began to form reproductive structures (oogonium and spermatangium, when the temperature was lower than 25°C and other environmental factors were kept optimal. The sufficient supply of gametophyte cells provided enough seeds for raising Undaria sporelings on production scale. Controlled cross-breeding experiments using selected male and female gametophyte clones which increase their cell number by mitosis instead of meiosis were also carried out in vitro. Juvenile sporophytes from the cross-breeding had almost the same length and width increase rates as those of the control. The fact that vegetative gametophytes can be purposely selected, propagated quickly, cross-bred, with the resulting sporophytes having almost the same characteristics leads to a new way to select desired Undaria strains for long time use without losing the desired economic characteristics.

  15. Cytomechanical properties of papaver pollen tubes are altered after self-incompatibility challenge.

    PubMed

    Geitmann, Anja; McConnaughey, William; Lang-Pauluzzi, Ingeborg; Franklin-Tong, Vernonica E; Emons, Anne Mie C

    2004-05-01

    Self-incompatibility (SI) in Papaver rhoeas triggers a ligand-mediated signal transduction cascade, resulting in the inhibition of incompatible pollen tube growth. Using a cytomechanical approach we have demonstrated that dramatic changes to the mechanical properties of incompatible pollen tubes are stimulated by SI induction. Microindentation revealed that SI resulted in a reduction of cellular stiffness and an increase in cytoplasmic viscosity. Whereas the former cellular response is likely to be the result of a drop in cellular turgor, we hypothesize that the latter is caused by as yet unidentified cross-linking events. F-actin rearrangements, a characteristic phenomenon for SI challenge in Papaver, displayed a spatiotemporal gradient along the pollen tube; this suggests that signal propagation occurs in a basipetal direction. However, unexpectedly, local application of SI inducing S-protein did not reveal any evidence for localized signal perception in the apical or subapical regions of the pollen tube. To our knowledge this represents the first mechanospatial approach to study signal propagation and cellular responses in a well-characterized plant cell system. Our data provide the first evidence for mechanical changes induced in the cytoplasm of a plant cell stimulated by a defined ligand.

  16. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses

    PubMed Central

    Dresselhaus, Thomas; Lausser, Andreas; Márton, Mihaela L.

    2011-01-01

    Background In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and require transportation to the female gametes via the vegetative pollen tube cell to achieve double fertilization. The path of the pollen tube towards the female gametophyte (embryo sac) has been intensively studied in many intra- and interspecific crossing experiments with the aim of increasing the gene pool of crop plants for greater yield, improved biotic and abiotic stress resistance, and for introducing new agronomic traits. Many attempts to hybridize different species or genotypes failed due to the difficulty for the pollen tubes in reaching the female gametophyte. Detailed studies showed that these processes are controlled by various self-incompatible (intraspecific) and cross-incompatible (interspecific) hybridization mechanisms. Scope Understanding the molecular mechanisms of crossing barriers is therefore of great interest in plant reproduction, evolution and breeding research. In particular, pre-zygotic hybridization barriers related to pollen tube germination, growth, guidance and sperm delivery, which are considered the major hybridization controls in nature and thus also contribute to species isolation and speciation, have been intensively investigated. Despite this general interest, surprisingly little is known about these processes in the most important agronomic plant family, the Gramineae, Poaceae or grasses. Small polymorphic proteins and their receptors, degradation of sterility locus proteins and general compounds such as calcium, γ-aminobutyric acid or nitric oxide have been shown to be involved in progamic pollen germination, adhesion, tube growth and guidance, as well as sperm release. Most advances have been made in the Brassicaceae, Papaveraceae, Linderniaceae and Solanaceae families including their well-understood self-incompatibility (SI) systems. Grass species evolved similar mechanisms to control

  17. The developmental basis of an evolutionary diversification of female gametophyte structure in Piper and Piperaceae

    PubMed Central

    Madrid, Eric N.; Friedman, William E.

    2009-01-01

    Background and Aims Fritillaria-type female gametophyte development is a complex, yet homoplasious developmental pattern that is interesting from both evolutionary and developmental perspectives. Piper (Piperaceae) was chosen for this study of Fritillaria-type female gametophyte development because Piperales represent a ‘hotspot’ of female gametophyte developmental evolution and have been the subject of several recent molecular phylogenetic analyses. This wealth of phylogenetic and descriptive data make Piper an excellent candidate for inferring the evolutionary developmental basis for the origin of Fritillaria-type female gametophytes. Methods Developing ovules of Piper peltatum were taken from greenhouse collections, embedded in glycol methacrylate, and serially sectioned. Light microscopy and laser scanning confocal microscopy were combined to produce three-dimensional computer reconstructions of developing female gametophytes. The ploidies of the developing embryos and endosperms were calculated using microspectrofluorometry. Key Results The data describe female gametophyte development in Piper with highly detailed three-dimensional models, and document two previously unknown arrangements of megaspore nuclei during early development. Also collected were microspectrofluorometric data that indicate that Fritillaria-type female gametophyte development in Piper results in pentaploid endosperm. Conclusions The three-dimensional models resolve previous ambiguities in developmental interpretations of Fritillaria-type female gametophytes in Piper. The newly discovered arrangements of megaspore nuclei that are described allow for the construction of explicit hypotheses of female gametophyte developmental evolution within Piperaceae, and more broadly throughout Piperales. These detailed hypotheses indicate that the common ancestor of Piperaceae minus Verhuellia had a Drusa-type female gametophyte, and that evolutionary transitions to derived tetrasporic female

  18. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles

    PubMed Central

    Pembleton, Luke W.; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25–0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  19. Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+[W

    PubMed Central

    Wu, Juyou; Wang, Su; Gu, Yuchun; Zhang, Shaoling; Publicover, Stephen J.; Franklin-Tong, Vernonica E.

    2011-01-01

    Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow “self” recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba2+ ≥ Ca2+ > Mg2+) and the monovalent ions K+ and NH4+ and is enhanced at voltages negative to −100 mV. The Ca2+ conductance is blocked by La3+ but not by verapamil; the K+ currents are tetraethylammonium chloride insensitive and do not require Ca2+. We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity. PMID:21177472

  20. Origin and Diversification Dynamics of Self-Incompatibility Haplotypes

    PubMed Central

    Gervais, Camille E.; Castric, Vincent; Ressayre, Adrienne; Billiard, Sylvain

    2011-01-01

    Self-incompatibility (SI) is a genetic system found in some hermaphrodite plants. Recognition of pollen by pistils expressing cognate specificities at two linked genes leads to rejection of self pollen and pollen from close relatives, i.e., to avoidance of self-fertilization and inbred matings, and thus increased outcrossing. These genes generally have many alleles, yet the conditions allowing the evolution of new alleles remain mysterious. Evolutionary changes are clearly necessary in both genes, since any mutation affecting only one of them would result in a nonfunctional self-compatible haplotype. Here, we study diversification at the S-locus (i.e., a stable increase in the total number of SI haplotypes in the population, through the incorporation of new SI haplotypes), both deterministically (by investigating analytically the fate of mutations in an infinite population) and by simulations of finite populations. We show that the conditions allowing diversification are far less stringent in finite populations with recurrent mutations of the pollen and pistil genes, suggesting that diversification is possible in a panmictic population. We find that new SI haplotypes emerge fastest in populations with few SI haplotypes, and we discuss some implications for empirical data on S-alleles. However, allele numbers in our simulations never reach values as high as observed in plants whose SI systems have been studied, and we suggest extensions of our models that may reconcile the theory and data. PMID:21515570

  1. Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae).

    PubMed

    Ogura-Tsujita, Yuki; Hirayama, Yumiko; Sakoda, Aki; Suzuki, Ayako; Ebihara, Atsushi; Morita, Nana; Imaichi, Ryoko

    2016-02-01

    To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.

  2. The Histone Deacetylase Inhibitor Trichostatin A Promotes Totipotency in the Male Gametophyte[W

    PubMed Central

    Li, Hui; Soriano, Mercedes; Cordewener, Jan; Muiño, Jose M.; Riksen, Tjitske; Fukuoka, Hiroyuki; Angenent, Gerco C.; Boutilier, Kim

    2014-01-01

    The haploid male gametophyte, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Plant breeding and propagation widely use haploid embryo production from in vitro–cultured male gametophytes, but this technique remains poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A (TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high-temperature stress that is normally used to induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a role in this process. TSA treatment of male gametophytes is associated with the hyperacetylation of histones H3 and H4. We propose that the totipotency of the male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress treatments used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway. PMID:24464291

  3. Fern Gametophytes in Culture--A Simple System for Studying Plant Development and Reproduction.

    ERIC Educational Resources Information Center

    Dyer, A. F.

    1983-01-01

    Discusses fern life cycle and basic techniques for culturing fern gametophytes in the classroom. Also discusses investigations into the reproductive biology of ferns and into the early development of gametophytes. (JN)

  4. NaStEP: A Proteinase Inhibitor Essential to Self-Incompatibility and a Positive Regulator of HT-B Stability in Nicotiana alata Pollen Tubes1[W][OA

    PubMed Central

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown. PMID:23150644

  5. Direction of illumination controls gametophyte orientation in seedless plants and related algae.

    PubMed

    Cardona-Correa, Christopher; Ecker, Alice; Graham, Linda E

    2015-01-01

    The environmental influences that determine dorsiventral or axial gametophyte orientation are unknown for most modern seedless plants. To fill this gap, an experimental laboratory system was employed to evaluate the relative effects of light direction and gravity on body orientation of the dorsiventral green alga Coleochaete orbicularis, and gametophytes of liverworts Blasia pusilla and Marchantia polymorpha, early-diverging moss Sphagnum compactum, and fern Ceratopteris richardii, the latter functioning as experimental control. Replicate clonal cultures were experimentally illuminated only from above, only from below, or from multiple directions, with the same near-saturation PAR level for periods brief enough to minimize nutrient limitation effects, and orientation of new growth was evaluated. For all species tested, direction of illumination exerted stronger control over gametophyte body orientation than gravity. When illuminated only from below: 1) axial Sphagnum gametophores that had initially grown into an overlying air space inverted growth by 180°, burrowing into the substrate; 2) new growth of dorsiventral Blasia, Marchantia, and Ceratopteris gametophytes-whose ventral rhizoids initially penetrated agar substrate and dorsal surfaces initially faced overlying airspace-twisted 180° so that ventral surfaces bearing rhizoids faced overlying air space and rhizoids extended into the air; and 3) Coleochaete lost typical dorsiventral organization and diagnostic dorsal hairs. Direction of illumination also exerted stronger control over orientation of liverwort new growth than surface contact did. These results indicate that early land plants likely inherited light-directed gametophyte body orientation from ancestral streptophyte algae and suggest a mechanism for reorientation of gametophyte-dominant land plants after spatial disturbance.

  6. Sporophytic self-incompatibility genes and mating system variation in Arabis alpina.

    PubMed

    Tedder, A; Ansell, S W; Lao, X; Vogel, J C; Mable, B K

    2011-09-01

    Sporophytic self-incompatibility (SI) prevents inbreeding in many members of the Brassicaceae, and has been well documented in a variety of high-profile species. Arabis alpina is currently being developed as a model system for studying the ecological genetics of arctic-alpine environments, and is the focus of numerous studies on population structure and alpine phylogeography. Although it is highly inbreeding throughout most of its range, populations in central Italy have been identified that show inbreeding coefficients (F(IS)) more typical of self-incompatible relatives. The purpose of this study was to establish whether this variation is due to a functioning SI system. Outcrossing rate estimates were calculated based on 16 allozyme loci and self-compatibility assessed based on controlled pollinations for six Italian populations that have previously been shown to vary in F(IS) values. Putative SRK alleles (the gene controlling the female component of SI in other Brassicaceae) amplified from A. alpina were compared with those published for other species. Linkage of putative SRK alleles and SI phenotypes was assessed using a diallel cross. Functional avoidance of inbreeding is demonstrated in three populations of A. alpina, corresponding with previous F(IS) values. The presence is described of 15 putative SRK-like alleles, which show high sequence identity to known alleles from Brassica and Arabidopsis and the high levels of synonymous and nonsynonymous variation typical of genes under balancing selection. Also, orthologues of two other members of the S-receptor kinase gene family, Aly8 (ARK3) and Aly9 (AtS1) are identified. Further to this, co-segregation between some of the putative S-alleles and compatibility phenotypes was demonstrated using a full-sibling cross design. The results strongly suggest that, as with other species in the Brassicaceae, A. alpina has a sporophytic SI system but shows variation in the strength of SI within and between populations.

  7. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond.

    PubMed

    Hiscock, Simon J; McInnis, Stephanie M

    2003-12-01

    Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the 'male' (pollen) and 'female' (pistil) recognition determinants of SI. In sporophytic SI (SSI) the male determinant is expressed in the diploid anther, therefore haploid pollen grains behave with a diploid S phenotype. In Brassica, the male and the female determinants of SSI have been identified as a peptide ligand and its cognate receptor, respectively, and recent studies have identified downstream signalling molecules involved in pollen rejection. It now needs to be established whether the Brassica mechanism is universal in species with SSI, or unique to the Brassicaceae.

  8. Cryopreservation of gametophytes of Laminaria japonica (Phaeophyta) using encapsulation-dehydration with two-step cooling method

    NASA Astrophysics Data System (ADS)

    Zhang, Quansheng; Cong, Yizhou; Qu, Shancun; Luo, Shiju; Yang, Guanpin

    2008-02-01

    Gametophytes of Laminaria japonica were cryopreserved in liquid nitrogen using encapsulation-dehydration with two-step cooling method. Gametophytes cultured at 10°C and under continuous irradiance of 30 μmol m-2 s-1 for 3 weeks were encapsulated in calcium alginate beads. The beads were dehydrated in 0.4 molL-1 sucrose prepared with seawater for 6 h, desiccated in an incubator set at 10°C and 70% relative humidity for 4 h, pre-frozen at either -40°C or -60°C for 30 min, and stored in liquid nitrogen for >24 h. As high as 43% of survival rate was observed when gametophytes were thawed by placing the beads in 40°C seawater and re-hydrated in 0.05 molL-1 citrate sodium prepared using 30‰ NaCl 7 d later. More cells of male gametophytes survived the whole procedure in comparison with female gametophytes. The cells of gametophytes surviving the preservation were able to grow asexually and produce morphologically normal sporophytes.

  9. Reproductive success through high pollinator visitation rates despite self incompatibility in an endangered wallflower.

    PubMed

    Melen, Miranda K; Herman, Julie A; Lucas, Jessica; O'Malley, Rachel E; Parker, Ingrid M; Thom, Aaron M; Whittall, Justen B

    2016-11-01

    Self incompatibility (SI) in rare plants presents a unique challenge-SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community. © 2016 Melen et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons

  10. Transitions between self-compatibility and self-incompatibility and the evolution of reproductive isolation in the large and diverse tropical genus Dendrobium (Orchidaceae)

    PubMed Central

    Pinheiro, Fabio; Cafasso, Donata; Cozzolino, Salvatore; Scopece, Giovanni

    2015-01-01

    Background and Aims The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus. Methods The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank. Key Results Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids. Conclusions Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this

  11. Transitions between self-compatibility and self-incompatibility and the evolution of reproductive isolation in the large and diverse tropical genus Dendrobium (Orchidaceae).

    PubMed

    Pinheiro, Fabio; Cafasso, Donata; Cozzolino, Salvatore; Scopece, Giovanni

    2015-09-01

    The evolution of interspecific reproductive barriers is crucial to understanding species evolution. This study examines the contribution of transitions between self-compatibility (SC) and self-incompatibility (SI) and genetic divergence in the evolution of reproductive barriers in Dendrobium, one of the largest orchid genera. Specifically, it investigates the evolution of pre- and postzygotic isolation and the effects of transitions between compatibility states on interspecific reproductive isolation within the genus. The role of SC and SI changes in reproductive compatibility among species was examined using fruit set and seed viability data available in the literature from 86 species and ∼2500 hand pollinations. The evolution of SC and SI in Dendrobium species was investigated within a phylogenetic framework using internal transcribed spacer sequences available in GenBank. Based on data from crossing experiments, estimations of genetic distance and the results of a literature survey, it was found that changes in SC and SI significantly influenced the compatibility between species in interspecific crosses. The number of fruits produced was significantly higher in crosses in which self-incompatible species acted as pollen donor for self-compatible species, following the SI × SC rule. Maximum likelihood and Bayesian tests did not reject transitions from SI to SC and from SC to SI across the Dendrobium phylogeny. In addition, postzygotic isolation (embryo mortality) was found to evolve gradually with genetic divergence, in agreement with previous results observed for other plant species, including orchids. Transitions between SC and SI and the gradual accumulation of genetic incompatibilities affecting postzygotic isolation are important mechanisms preventing gene flow among Dendrobium species, and may constitute important evolutionary processes contributing to the high levels of species diversity in this tropical orchid group. © The Author 2015. Published by

  12. Unique expression of a sporophytic character on the gametophytes of notholaenid ferns (Pteridaceae).

    PubMed

    Johnson, Anne K; Rothfels, Carl J; Windham, Michael D; Pryer, Kathleen M

    2012-06-01

    Not all ferns grow in moist, shaded habitats; some lineages thrive in exposed, seasonally dry environments. Notholaenids are a clade of xeric-adapted ferns commonly characterized by the presence of a waxy exudate, called farina, on the undersides of their leaves. Although some other lineages of cheilanthoid ferns also have farinose sporophytes, previous studies suggested that notholaenids are unique in also producing farina on their gametophytes. For this reason, consistent farina expression across life cycle phases has been proposed as a potential synapomorphy for the genus Notholaena. Recent phylogenetic studies have shown two species with nonfarinose sporophytes to be nested within Notholaena, with a third nonfarinose species well supported as sister to all other notholaenids. This finding raises the question: are the gametophytes of these three species farinose like those of their close relatives, or are they glabrous, consistent with their sporophytes? We sowed spores of a diversity of cheilanthoid ferns onto culture media to observe and document whether their gametophytes produced farina. To place these species within a phylogenetic context, we extracted genomic DNA, then amplified and sequenced three plastid loci. The aligned data were analyzed using maximum likelihood to generate a phylogenetic tree. Here we show that notholaenids lacking sporophytic farina also lack farina in the gametophytic phase, and notholaenids with sporophytic farina always display gametophytic farina (with a single exception). Outgroup taxa never displayed gametophytic farina, regardless of whether they displayed farina on their sporophytes. Notholaenids are unique among ferns in consistently expressing farina across both phases of the life cycle.

  13. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species

    PubMed Central

    Silva, Jose L.; Brennan, Adrian C.; Mejías, José A.

    2016-01-01

    The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6–1.0) compared to S. fragilis (ISI = 0.1–0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group. PMID:27154621

  14. Inhibition of Ageratina adenophora on spore germination and gametophyte development of Macrothelypteris torresiana.

    PubMed

    Zhang, Kai-Mei; Shi, Lei; Jiang, Chuang-Dao; Li, Zhen-Yu

    2008-05-01

    Allelopathy of Ageratina adenophora plays an important role in its invasion. However, we have little knowledge of its allelpathic effects on ferns. In Petri dish bioassays, the inhibitory potential of aqueous leachates from roots, stems and leaves of A. adenophora was studied on the spore germination and gametophyte development of Macrothelypteris torresiana. All leachates inhibited the spore germination and growth of the first rhizoid of M. torresiana and inhibitory effects increased with increasing leachate concentrations. Root leachates proved most inhibitory. Gametophyte rhizoids of M. torresiana treated with stem and leaf leachates of A. adenophora were erect, which was similar to those of the control. However, gametophyte rhizoids of M. torresiana treated with root leachates of A. adenophora were erect, but also curving or swollen. Moreover, curving and swollen rhizoids increased with increasing concentrations. As time went by, rhizoids treated with root leachates were not so curved and the swelling almost disappeared. Possible causes are discussed in the present study. The increasing concentrations of leaf leachates also delayed the stages of gametophyte development. With the treatment of root leachates, the delay was more obvious. Thus A. adenophora inhibited the spore germination and gametophyte development of M. torresiana and the root leachates were most inhibitory.

  15. Sporophytic self-incompatibility genes and mating system variation in Arabis alpina

    PubMed Central

    Tedder, A.; Ansell, S. W.; Lao, X.; Vogel, J. C.; Mable, B. K.

    2011-01-01

    Background and Aims Sporophytic self-incompatibility (SI) prevents inbreeding in many members of the Brassicaceae, and has been well documented in a variety of high-profile species. Arabis alpina is currently being developed as a model system for studying the ecological genetics of arctic–alpine environments, and is the focus of numerous studies on population structure and alpine phylogeography. Although it is highly inbreeding throughout most of its range, populations in central Italy have been identified that show inbreeding coefficients (FIS) more typical of self-incompatible relatives. The purpose of this study was to establish whether this variation is due to a functioning SI system. Methods Outcrossing rate estimates were calculated based on 16 allozyme loci and self-compatibility assessed based on controlled pollinations for six Italian populations that have previously been shown to vary in FIS values. Putative SRK alleles (the gene controlling the female component of SI in other Brassicaceae) amplified from A. alpina were compared with those published for other species. Linkage of putative SRK alleles and SI phenotypes was assessed using a diallel cross. Key Results Functional avoidance of inbreeding is demonstrated in three populations of A. alpina, corresponding with previous FIS values. The presence is described of 15 putative SRK-like alleles, which show high sequence identity to known alleles from Brassica and Arabidopsis and the high levels of synonymous and nonsynonymous variation typical of genes under balancing selection. Also, orthologues of two other members of the S-receptor kinase gene family, Aly8 (ARK3) and Aly9 (AtS1) are identified. Further to this, co-segregation between some of the putative S-alleles and compatibility phenotypes was demonstrated using a full-sibling cross design. Conclusions The results strongly suggest that, as with other species in the Brassicaceae, A. alpina has a sporophytic SI system but shows variation in the

  16. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation.

    PubMed

    Sun, Penglin; Li, Shu; Lu, Dihong; Williams, Justin S; Kao, Teh-Hui

    2015-07-01

    Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Not only in the temperate zone: independent gametophytes of two vittarioid ferns (Pteridaceae, Polypodiales) in East Asian subtropics.

    PubMed

    Kuo, Li-Yaung; Chen, Cheng-Wei; Shinohara, Wataru; Ebihara, Atsushi; Kudoh, Hiroshi; Sato, Hirotoshi; Huang, Yao-Moan; Chiou, Wen-Liang

    2017-03-01

    Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will

  18. Development of a SCAR marker for male gametophyte of Gracilariopsis lemaneiformis based on AFLP technique

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ding, Hongye; Sui, Zhenghong; Wang, Zhongxia; Wang, Jinguo

    2014-05-01

    The red alga Gracilariopsis lemaneiformis (Bory) is an economically valuable macroalgae. As a means to identify the sex of immature Gracilariopsis lemaneiformis, the amplified fragment length polymorphism (AFLP) technique was used to search for possible sex- or phase-related markers in male gametophytes, female gametophytes, and tetrasporophytes, respectively. Seven AFLP selective amplification primers were used in this study. The primer combination E-TG/M-CCA detected a specific band linked to male gametophytes. The DNA fragment was recovered and a 402-bp fragment was sequenced. However, no DNA sequence match was found in public databases. Sequence characterized amplified region (SCAR) primers were designed from the sequence to test the repeatability of the relationship to the sex, using 69 male gametophytes, 139 female gametophytes, and 47 tetrasporophytes. The test results demonstrate a good linkage and repeatability of the SCAR marker to sex. The SCAR primers developed in this study could reduce the time required for sex identification of Gracilariopsis lemaneiformis by four to six months. This can reduce both the time investment and number of specimens required in breeding experiments.

  19. Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.)

    PubMed Central

    Serrano, Irene; Romero-Puertas, María C.; Rodríguez-Serrano, María; Sandalio, Luisa M.; Olmedilla, Adela

    2012-01-01

    Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen–pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O2˙− and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O2˙− and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen–pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells. PMID:22140239

  20. SIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility1[OPEN

    PubMed Central

    2017-01-01

    In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth. PMID:28874520

  1. Direction of illumination controls gametophyte orientation in seedless plants and related algae

    PubMed Central

    Cardona-Correa, Christopher; Ecker, Alice; Graham, Linda E

    2015-01-01

    The environmental influences that determine dorsiventral or axial gametophyte orientation are unknown for most modern seedless plants. To fill this gap, an experimental laboratory system was employed to evaluate the relative effects of light direction and gravity on body orientation of the dorsiventral green alga Coleochaete orbicularis, and gametophytes of liverworts Blasia pusilla and Marchantia polymorpha, early-diverging moss Sphagnum compactum, and fern Ceratopteris richardii, the latter functioning as experimental control. Replicate clonal cultures were experimentally illuminated only from above, only from below, or from multiple directions, with the same near-saturation PAR level for periods brief enough to minimize nutrient limitation effects, and orientation of new growth was evaluated. For all species tested, direction of illumination exerted stronger control over gametophyte body orientation than gravity. When illuminated only from below: 1) axial Sphagnum gametophores that had initially grown into an overlying air space inverted growth by 180°, burrowing into the substrate; 2) new growth of dorsiventral Blasia, Marchantia, and Ceratopteris gametophytes–whose ventral rhizoids initially penetrated agar substrate and dorsal surfaces initially faced overlying airspace–twisted 180° so that ventral surfaces bearing rhizoids faced overlying air space and rhizoids extended into the air; and 3) Coleochaete lost typical dorsiventral organization and diagnostic dorsal hairs. Direction of illumination also exerted stronger control over orientation of liverwort new growth than surface contact did. These results indicate that early land plants likely inherited light-directed gametophyte body orientation from ancestral streptophyte algae and suggest a mechanism for reorientation of gametophyte-dominant land plants after spatial disturbance. PMID:26237278

  2. The genetic breakdown of sporophytic self-incompatibility in Tolpis coronopifolia (Asteraceae).

    PubMed

    Koseva, Boryana; Crawford, Daniel J; Brown, Keely E; Mort, Mark E; Kelly, John K

    2017-12-01

    Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F 2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F 2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F 2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Dissecting Pistil Responses to Incompatible and Compatible Pollen in Self-Incompatibility Brassica oleracea Using Comparative Proteomics.

    PubMed

    Zeng, Jing; Gao, Qiguo; Shi, Songmei; Lian, Xiaoping; Converse, Richard; Zhang, Hecui; Yang, Xiaohong; Ren, Xuesong; Chen, Song; Zhu, Liquan

    2017-04-01

    Angiosperms have developed self-incompatibility (SI) systems to reject self-pollen, thereby promoting outcrossing. The Brassicaceae belongs to typical sporophytic system, having a single S-locus controlled SI response, and was chosen as a model system to study SI-related intercellular signal transduction. In this regard, the downstream factor of EXO70A1 was unknown. Here, protein two-dimensional electrophoresis (2-DE) method and coupled with matrix-assisted laser desorption ionization/time of flight of flight mass spectrometry (MALDI-TOF -MS) and peptide mass fingerprinting (PMF) was used to further explore the mechanism of SI responses in Brassica oleracea L. var. capitata L. at protein level. To further confirm the time point of protein profile change, total proteins were collected from B. oleracea pistils at 0 min, 1 h, and 2 h after self-pollination. In total 902, 1088 and 1023 protein spots were separated in 0 min, 1 h and 2 h 2-DE maps, respectively. Our analyses of self-pollination profiles indicated that proteins mainly changed at 1 h post-pollination in B. oleracea. Moreover, 1077 protein spots were separated in cross-pollinated 1 h (CP) pistil 2-DE map. MALDI-TOF-MS and PMF successfully identified 34 differentially-expressed proteins (DEPs) in SP and CP 1 h 2-DE maps. Gene ontology and KEGG analysis revealed an array of proteins grouped in the following categories: stress and defense response (35%), protein metabolism (18%), carbohydrate and energy metabolism (12%), regulation of translation (9%), pollen tube development (12%), transport (9%) and cytoskeletal (6%). Sets of DEPs identified specifically in SP or only up-regulated expressed in CP pistils were chosen for funther investigating in floral organs and during the process of self- and cross-pollination. The function of these DEPs in terms of their potential involvement in SI in B. oleracea is discussed.

  4. Novel sporophyte-like plants are regenerated from protoplasts fused between sporophytic and gametophytic protoplasts of Bryopsis plumosa.

    PubMed

    Yamagishi, Takahiro; Hishinuma, Tasuku; Kataoka, Hironao

    2004-06-01

    Protoplasts of the marine coenocytic macrophyte Bryopsis plumosa (Hudson) C. Agardh. [Caulerpales] can easily be obtained by cutting gametophytes or sporophytes with sharp scissors. When a protoplast isolated from a gametophyte was fused with a protoplast isolated from a sporophyte of this alga, it germinated and developed into either one of two completely different forms. One plant form, named Type G, appeared quite similar to a gametophyte, and the other, named Type S, looked similar to a sporophyte. While the Type G plant contained many small nuclei of gametophyte origin together with a single giant nucleus of sporophyte origin, the Type S plant contained many large nuclei of uniform size. These large nuclei in the Type S plant had metamorphosed from the gametophytic nuclei, and were not formed through division of the giant nucleus of sporophyte origin. Fragments of the Type S plant, each having such a large nucleus, developed into creeping filaments that look very similar to sporophytes. While cell walls of gametophytes and Type G plants were stained by Congo-red, those of the thalli of regenerated Type S plants and sporophytes were not stained by the dye. This indicated that the large nuclei of the Type S plant did not express genes for xylan synthesis, which are characteristic of gametophytes. Two-dimensional gel electrophoretic analysis revealed that most of the proteins synthesized in the Type S plant were identical to those of sporophytes. These results strongly suggest that in the Type S plant, the gametophytic nuclei are transformed into sporophyte-like nuclei by an unknown factor(s) produced by the giant nucleus of sporophyte origin and that the transformed nuclei express the set of genes characteristic of sporophytes. Despite morphological similarity, however, the regenerated Type S plant could not produce zoospores, because its large nuclei did not divide normally. The transformed large nuclei of gametophyte origin still seemed to be in the haploid

  5. SLFL Genes Participate in the Ubiquitination and Degradation Reaction of S-RNase in Self-compatible Peach.

    PubMed

    Chen, Qiuju; Meng, Dong; Gu, Zhaoyu; Li, Wei; Yuan, Hui; Duan, Xuwei; Yang, Qing; Li, Yang; Li, Tianzhong

    2018-01-01

    It has been proved that the gametophytic self-incompatibility (GSI), mainly exists in Rosaceae and Solanaceae, is controlled by S genes, which are two tightly linked genes located at highly polymorphic S -locus: the S-RNase for pistil specificity and the F-box gene ( SFB/SLF ) for pollen specificity, respectively. However, the roles of those genes in SI of peach are still a subject of extensive debate. In our study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutated PperSFB1m, PperSFB2m, PperSFB4m , and normal PperSFB2 , and style determinant genes PperS1-RNase, PperS2-RNase, PperS2m-RNase , and PperS4-RNase . The mutated PperSFBs encode truncated SFB proteins due to a fragment insertion. The truncated PperSFBs and normal PperSFB2 interacted with PperS-RNases demonstrated by Y2H. Normal PperSFB2 was divided into four parts: box, box-V1, V1-V2, and HVa-HVb. The box domain of PperSFB2 did not interact with PperS-RNases, both of the box-V1 and V1-V2 had interactions with PperS-RNases, while the hypervariable region of PperSFB2 HVa-HVb only interacted with PperS2-RNase showed by Y2H and BiFC assay. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, named as PperSLFL1, PperSLFL2 , and PperSLFL3 , respectively. In phylogenetic analysis PperSLFLs clustered with Maloideae SFBB genes, and PperSFB genes were clustered into the other group with other SFB genes of Prunus . Protein interaction analysis revealed that the three PperSLFLs interacted with PperSSK1 and PperS-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules onto PperS-RNases. The above results suggest that three PperSLFLs are the appropriate candidates for the "general inhibitor," which would inactivate the S-RNases in

  6. SLFL Genes Participate in the Ubiquitination and Degradation Reaction of S-RNase in Self-compatible Peach

    PubMed Central

    Chen, Qiuju; Meng, Dong; Gu, Zhaoyu; Li, Wei; Yuan, Hui; Duan, Xuwei; Yang, Qing; Li, Yang; Li, Tianzhong

    2018-01-01

    It has been proved that the gametophytic self-incompatibility (GSI), mainly exists in Rosaceae and Solanaceae, is controlled by S genes, which are two tightly linked genes located at highly polymorphic S-locus: the S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen specificity, respectively. However, the roles of those genes in SI of peach are still a subject of extensive debate. In our study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutated PperSFB1m, PperSFB2m, PperSFB4m, and normal PperSFB2, and style determinant genes PperS1-RNase, PperS2-RNase, PperS2m-RNase, and PperS4-RNase. The mutated PperSFBs encode truncated SFB proteins due to a fragment insertion. The truncated PperSFBs and normal PperSFB2 interacted with PperS-RNases demonstrated by Y2H. Normal PperSFB2 was divided into four parts: box, box-V1, V1-V2, and HVa-HVb. The box domain of PperSFB2 did not interact with PperS-RNases, both of the box-V1 and V1-V2 had interactions with PperS-RNases, while the hypervariable region of PperSFB2 HVa-HVb only interacted with PperS2-RNase showed by Y2H and BiFC assay. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, named as PperSLFL1, PperSLFL2, and PperSLFL3, respectively. In phylogenetic analysis PperSLFLs clustered with Maloideae SFBB genes, and PperSFB genes were clustered into the other group with other SFB genes of Prunus. Protein interaction analysis revealed that the three PperSLFLs interacted with PperSSK1 and PperS-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules onto PperS-RNases. The above results suggest that three PperSLFLs are the appropriate candidates for the “general inhibitor,” which would inactivate the S-RNases in pollen

  7. Functional analysis of sporophytic transcripts repressed by the female gametophyte in the ovule of Arabidopsis thaliana.

    PubMed

    Armenta-Medina, Alma; Huanca-Mamani, Wilson; Sanchez-León, Nidia; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2013-01-01

    To investigate the genetic and molecular regulation that the female gametophyte could exert over neighboring sporophytic regions of the ovule, we performed a quantitative comparison of global expression in wild-type and nozzle/sporocyteless (spl) ovules of Arabidopsis thaliana (Arabidopsis), using Massively Parallel Signature Sequencing (MPSS). This comparison resulted in 1517 genes showing at least 3-fold increased expression in ovules lacking a female gametophyte, including those encoding 89 transcription factors, 50 kinases, 25 proteins containing a RNA-recognition motif (RRM), and 20 WD40 repeat proteins. We confirmed that eleven of these genes are either preferentially expressed or exclusive of spl ovules lacking a female gametophyte as compared to wild-type, and showed that six are also upregulated in determinant infertile1 (dif1), a meiotic mutant affected in a REC8-like cohesin that is also devoided of female gametophytes. The sporophytic misexpression of IOREMPTE, a WD40/transducin repeat gene that is preferentially expressed in the L1 layer of spl ovules, caused the arrest of female gametogenesis after differentiation of a functional megaspore. Our results show that in Arabidopsis, the sporophytic-gametophytic cross talk includes a negative regulation of the female gametophyte over specific genes that are detrimental for its growth and development, demonstrating its potential to exert a repressive control over neighboring regions in the ovule.

  8. Incest versus abstinence: reproductive trade-offs between mate limitation and progeny fitness in a self-incompatible invasive plant

    PubMed Central

    Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G

    2013-01-01

    Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system. PMID:24455137

  9. Incest versus abstinence: reproductive trade-offs between mate limitation and progeny fitness in a self-incompatible invasive plant.

    PubMed

    Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G

    2013-12-01

    Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.

  10. The population ecology of male gametophytes: the link between pollination and seed production.

    PubMed

    Harder, Lawrence D; Aizen, Marcelo A; Richards, Shane A

    2016-05-01

    The fate of male gametophytes after pollen reaches stigmas links pollination to ovule fertilisation, governing subsequent siring success and seed production. Although male gametophyte performance primarily involves cellular processes, an ecological analogy may expose insights into the nature and implications of male gametophyte success. We elaborate this analogy theoretically and present empirical examples that illustrate associated insights. Specifically, we consider pollen loads on stigmas as localised populations subject to density-independent mortality and density-dependent processes as they traverse complex stylar environments. Different combinations of the timing of pollen-tube access to limiting stylar resources (simultaneous or sequential), the tube distribution among resources (repulsed or random) and the timing of density-independent mortality relative to competition (before or after) create signature relations of mean pollen-tube success and its variation among pistils to pollen receipt. Using novel nonlinear regression analyses (two-moment regression), we illustrate contrasting relations for two species, demonstrating that variety in these relations is a feature of reproductive diversity among angiosperms, rather than merely a theoretical curiosity. Thus, the details of male gametophyte ecology should shape sporophyte reproductive success and hence the dynamics and structure of angiosperm populations. © 2016 John Wiley & Sons Ltd/CNRS.

  11. Mixed pollen load and late-acting self-incompatibility flexibility in Adenocalymma peregrinum (Miers) L.G. Lohmann (Bignonieae: Bignoniaceae).

    PubMed

    Duarte, M O; Mendes-Rodrigues, C; Alves, M F; Oliveira, P E; Sampaio, D S

    2017-03-01

    Mixed cross and self-pollen load on the stigma (mixed pollination) of species with late-acting self-incompatibility system (LSI) can lead to self-fertilized seed production. This "cryptic self-fertility" may allow selfed seedling development in species otherwise largely self-sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early-acting inbreeding depression in putative selfed seeds from mixed pollinations. Experimental pollinations were carried out in a natural population. Fruit and seed set from self-, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments. Our results confirm self-incompatibility, and fruit set from cross-pollinations was three-fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self- than cross-fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross-pollinations is probably due to ovule discounting caused by self-fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross-pollinations, and the non-viable seeds from mixed pollinations showed one-third of the mass of those from cross-pollinations. The great number of empty seeds, lower germinability, lower mass of non-viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early-acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self-fertilized seedling establishment in A. peregrinum. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. A22316 Gametophyte and sporophyte (version 2.0)

    USDA-ARS?s Scientific Manuscript database

    Gametogenesis is the process of gamete formation, which includes micro- and megagametogenesis. Gametogenesis initiates after specialized cells in the sporophyte undergo meiosis, and subsequent mitotic divisions yield the gametophytic phase of the plant life cycle. In higher plants, microgametogenesi...

  13. Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco.

    PubMed

    Ma, Yuewen; Li, Qiulei; Hu, Guibing; Qin, Yonghua

    2017-04-20

    Seedlessness is an excellent economical trait, and self-incompatibility (SI) is one of important factors resulting in seedless fruit in Citrus. However, SI molecular mechanism in Citrus is still unclear. In this study, RNA-Seq technology was used to identify differentially expressed genes related to SI reaction of 'Wuzishatangju' (Citrus reticulata Blanco). A total of 35.67GB raw RNA-Seq data was generated and was de novo assembled into 50,364 unigenes with an average length of 897bp and N50 value of 1549. Twenty-three candidate unigenes related to SI were analyzed using qPCR at different tissues and stages after self- and cross-pollination. Seven pollen S genes (Unigene0050323, Unigene0001060, Unigene0004230, Unigene0004222, Unigene0012037, Unigene0048889 and Unigene0004272), three pistil S genes (Unigene0019191, Unigene0040115, Unigene0036542) and three genes (Unigene0038751, Unigene0031435 and Unigene0029897) associated with the pathway of ubiquitin-mediated proteolysis were identified. Unigene0031435, Unigene0038751 and Unigene0029897 are probably involved in SI reaction of 'Wuzishatangju' based on expression analyses. The present study provides a new insight into the molecular mechanism of SI in Citrus at the transcriptional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Environmental Influences on Kelp Performance across the Reproductive Period: An Ecological Trade-Off between Gametophyte Survival and Growth?

    PubMed Central

    Mohring, Margaret B.; Kendrick, Gary A.; Wernberg, Thomas; Rule, Michael J.; Vanderklift, Mathew A.

    2013-01-01

    Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16–22°C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16°C), yet exhibited optimum growth in higher culture temperatures (20–22°C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources. PMID:23755217

  15. Genetic variation for pseudo-self-compatibility in self-incompatible populations of Leavenworthia alabamica (Brassicaceae).

    PubMed

    Baldwin, Sarah J; Schoen, Daniel J

    2017-01-01

    Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    PubMed

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  17. Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of 'wild-type Sf ' and new self-compatibility alleles encoding inactive S-RNases.

    PubMed

    Bosković, Radovan I; Tobutt, Kenneth R; Ortega, Encarnación; Sutherland, Bruce G; Godini, Angelo

    2007-12-01

    Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele Sf, which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele Sf was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S30, the sequence of which showed it to be the wild-type of Sf so that Sf can be regarded as a stylar part mutant S30 degrees . These findings indicate Sf may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, 'Patalina', had a new self-compatibility allele lacking RNase activity, Sn5, which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.

  18. EXPORTIN1 Genes are Essential for Development and Function of the Gametophytes in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Gametes are produced in plants through mitotic divisions in the haploid gametophytes. We investigated the role of EXPORTIN1 (XPO1) genes during the development of both female and male gametophytes of Arabidopsis. Exportins exclude target proteins from the nucleus and are also part of a complex recru...

  19. Ultrastructural and cytochemical aspects of female gametophyte development in Sedum hispanicum L. (Crassulaceae).

    PubMed

    Brzezicka, Emilia; Kozieradzka-Kiszkurno, Małgorzata

    2018-01-01

    Until now, development of the female gametophyte has been investigated only in some species of Crassulaceae using a light microscope. To the best of our knowledge, this is the first report that describes the process of megasporogenesis and megagametogenesis in Crassulaceae in detail. To achieve this, we performed embryological studies on Sedum hispanicum L. (Crassulaceae). Cytochemical analysis detected the presence of proteins, lipids, and insoluble polysaccharides in individual cells of the gametophyte. The development of the embryo sac conforms to the monosporic or Polygonum-type in anatropous, crassinucellate, and bitegmic ovules. One megaspore mother cell initiates the process of megasporogenesis. Prior to the first meiotic division, the nucleus is centrally located within the meiocyte. Other organelles seem to be distributed evenly over the micropylar and chalazal parts during the development. Most storage reserves detected during megasporogenesis were observed in the megaspore mother cell. Three mitotic divisions within the chalazal functional megaspore resulted in the enlargement of the eight-nucleated embryo sac. In the seven-celled gametophyte, three chalazally located antipodes degenerated. A mature embryo sac was formed by the egg apparatus and central cell. When the antipodes degenerated, both synergids became organelle-rich and more active. The concentration of lipid droplets, starch grains, and proteins increased during megagametogenesis in the growing gametophyte. In the cellular embryo sac, the central cell can be distinguished by its largest accumulation. Our data confirm the hypothesis that plasmodesmata with electron-dense dome are formed during development of the female gametophyte in S. hispanicum and not just during the stages of embryogenesis. We observed these structures in megaspores and coenocytic embryo sac walls. Functions of observed plasmodesmata are discussed.

  20. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    PubMed

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  1. Live Imaging and Laser Disruption Reveal the Dynamics and Cell-Cell Communication During Torenia fournieri Female Gametophyte Development.

    PubMed

    Susaki, Daichi; Takeuchi, Hidenori; Tsutsui, Hiroki; Kurihara, Daisuke; Higashiyama, Tetsuya

    2015-05-01

    The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Recombinant expression of rt-PA gene (encoding Reteplase) in gametophytes of the seaweed Laminaria japonica (Laminariales, Phaeophyta).

    PubMed

    Zhang, YiChen; Jiang, Peng; Gao, JiangTao; Liao, JianMin; Sun, ShiJing; Shen, ZiLong; Qin, Song

    2008-12-01

    The life cycle of seaweed Laminaria japonica involves a generation alternation between diploid sporophyte and haploid gametophte. The expression of foreign genes in sporophte has been proved. In this research, the recombinant expression in gametophyte was investigated by particle bombardment with the rt-PA gene encoding the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction (AMI). Transgenic gametophytes were selected by their resistance to herbicide phosphiothricin (PPT), and proliferated in an established bubble column photo-bioreactor. According to the results from quantitative ELISA, Southern blotting, and fibrin agarose plate assay (FAPA) for bioactivity, it was showed that the rt-PA gene had been integrated into the genome of gametophytes of L. japonica, and the expression product showed the expected bioactivity, implying the proper post-transcript modification in haploid gametophyte.

  3. Gametophytic vs. sporophytic control of pollen aperture number: a generational conflict.

    PubMed

    Till-Bottraud, Irène; Gouyon, Pierre-Henri; Ressayre, Adrienne; Godelle, Bernard

    2012-11-01

    In flowering plants, the haploid phase is reduced to the pollen grain and embryo sac. These reproductive tissues (gametophytes) are actually distinct individuals that have a different genome from the plant (sporophyte), and are more or less independent. The morphology of pollen grains, particularly the openings permitting pollen tube germination (apertures), is crucial for determining the outcome of pollen competition. Many species of flowering plants simultaneously produce pollen grains with different aperture numbers in a single individual (heteromorphism). In this paper, we show that the heteromorphic pollen aperture pattern depends on the genetic control of pollen morphogenesis. This points out a conflict of interest between genes expressed in the sporophyte and genes expressed in the gametophyte. More generally, such a conflict should exist whenever heteromorphism is an ESS resulting from a bet-hedging strategy. For pollen aperture, heteromorphism has been observed in about 40% of angiosperm species, suggesting that conflicting situations are the rule. In this context, the sporo-gametophytic conflict could be one of the factors that led to the reduction of the haploid phase in plants. 2012 Elsevier Inc. All rights reserved

  4. Sporophyte and gametophyte development of Platycerium coronarium (Koenig) Desv. and P. grande (Fee) C. Presl. (Polypodiaceae) through in vitro propagation

    PubMed Central

    Aspiras, Reyno A.

    2009-01-01

    The sporophyte and gametophyte development of Platycerium coronarium and P. grande were compared through ex situ propagation using in vitro culture technique and under greenhouse and field conditions. The morphology of the sporophyte and gametophyte, type of spore germination and prothallial development of P. coronarium and P. grande were documented. Gametophytes of P. coronarium and P. grande were cultured in vitro using different media. The gametophytes were then transferred and potted in sterile chopped Cyathea spp. (anonotong) roots and garden soil for sporophyte formation. Sporophytes (plantlets) of the two Platycerium species were attached on the slabs of anonotong and on branches and trunks of Swietenia macrophylla (mahogany) under greenhouse and field conditions. Sporophyte morphology of P. coronarium and P. grande varies but not their gametophyte morphology. P. coronarium and P. grande exhibited rapid spore germination and gametophyte development in both spore culture medium and Knudson C culture medium containing 2% glucose. Gametophytes of P. coronarium and P. grande transferred to potting medium produced more number of sporophytes while the gametophytes inside the culture media did not produce sporophytes. Sporophytes of P. grande attached on mahogany branches produced more number of leaves with bigger leaf area than those attached on anonotong slabs. Likewise, sporophytes of P. coronarium attached on mahogany branches and anonotong slabs did not develop new leaves during two weeks monitoring and are still in a period of adjustment to its environment. Sporophytes of P. grande grown or attached on the trunk of mahogany trees in the field and under shaded environment favored their growth. PMID:23961053

  5. Sporophyte and gametophyte development of Platycerium coronarium (Koenig) Desv. and P. grande (Fee) C. Presl. (Polypodiaceae) through in vitro propagation.

    PubMed

    Aspiras, Reyno A

    2010-01-01

    The sporophyte and gametophyte development of Platycerium coronarium and P. grande were compared through ex situ propagation using in vitro culture technique and under greenhouse and field conditions. The morphology of the sporophyte and gametophyte, type of spore germination and prothallial development of P. coronarium and P. grande were documented. Gametophytes of P. coronarium and P. grande were cultured in vitro using different media. The gametophytes were then transferred and potted in sterile chopped Cyathea spp. (anonotong) roots and garden soil for sporophyte formation. Sporophytes (plantlets) of the two Platycerium species were attached on the slabs of anonotong and on branches and trunks of Swietenia macrophylla (mahogany) under greenhouse and field conditions. Sporophyte morphology of P. coronarium and P. grande varies but not their gametophyte morphology. P. coronarium and P. grande exhibited rapid spore germination and gametophyte development in both spore culture medium and Knudson C culture medium containing 2% glucose. Gametophytes of P. coronarium and P. grande transferred to potting medium produced more number of sporophytes while the gametophytes inside the culture media did not produce sporophytes. Sporophytes of P. grande attached on mahogany branches produced more number of leaves with bigger leaf area than those attached on anonotong slabs. Likewise, sporophytes of P. coronarium attached on mahogany branches and anonotong slabs did not develop new leaves during two weeks monitoring and are still in a period of adjustment to its environment. Sporophytes of P. grande grown or attached on the trunk of mahogany trees in the field and under shaded environment favored their growth.

  6. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    PubMed

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. © 2016 Phycological Society of America.

  7. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes.

    PubMed

    Kwantes, Michiel; Liebsch, Daniela; Verelst, Wim

    2012-01-01

    Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.

  8. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations

    PubMed Central

    Koelling, V A; Hamrick, J L; Mauricio, R

    2011-01-01

    Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

  9. A superconducting CW-LINAC for heavy ion acceleration at GSI

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Aulenbacher, Kurt; Basten, Markus; Dziuba, Florian; Gettmann, Viktor; Miski-Oglu, Maksym; Podlech, Holger; Yaramyshev, Stepan

    2017-03-01

    Recently the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25%) heavy ion beam accelerator for the ambitious experiment program at GSI. Beam time availability for SHE (Super Heavy Element)-research will be decreased due to the limitation of the UNILAC providing Uranium beams with an extremely high peak current for FAIR simultaneously. To keep the GSI-SHE program competitive on a high level and even beyond, a standalone superconducting continuous wave (100% duty factor) LINAC in combination with the upgraded GSI High Charge State injector is envisaged. In preparation for this, the first LINAC section (financed by HIM and GSI) will be tested with beam in 2017, demonstrating the future experimental capabilities. Further on the construction of an extended cryo module comprising two shorter Crossbar-H cavities is foreseen to test until end of 2017. As a final R&D step towards an entire LINAC three advanced cryo modules, each comprising two CH cavities, should be built until 2019, serving for first user experiments at the Coulomb barrier.

  10. Girls' Science Investigations (GSI) New Haven: Evaluating the Impact

    NASA Astrophysics Data System (ADS)

    Knodell, Claire; Fleming, Bonnie

    2009-05-01

    Girls' Science Investigations (GSI) New Haven seeks to empower the girls of today to shape the science of tomorrow. Funded by the NSF and Yale University and held at Yale, this program was designed to motivate, empower, and interest middle school girls in developing the skills required to pursue a career in science during a day-long investigation of the session's featured topic in science. Yale students and female professors act as mentors and guide younger girls through an environment for understanding and exploring various disciplines of science through hands-on activities in a laboratory setting. GSI strives to close the gap between males and females one action-packed Saturday at a time. This paper evaluates the success of the program. Student participant evaluations over the past 2 years coupled with student testimony and GSI coordinator, instructors', and volunteers' interviews allowed for an analysis of GSI's ability to inspire girls to pursue careers in science. The data indicates that a majority of girls who attended the program were more inclined to continue their study of science. The positive results are detailed in the following paper which points to the hands-on activities and enthusiasm of instructors as integral to the program's success.

  11. Breeding behaviour of Kunzea pomifera (Myrtaceae): self-incompatibility, intraspecific and interspecific cross-compatibility.

    PubMed

    Page, T; Moore, G M; Will, J; Halloran, G M

    2010-09-01

    To examine breeding system characteristics of the endemic Australian prostrate shrub Kunzea pomifera, artificial hybridisations were undertaken using thirteen different genotypes of K. pomifera, to elucidate: (1) self-incompatibility, (2) intraspecific cross-compatibility in the species and (3) interspecific cross-compatibility with each of K. ambigua and K. ericoides. K. pomifera exhibited very low self-compatibility, with the barrier to self-fertilisation being prevention of pollen-tube growth in the style or ovary. Following intraspecific pollination amongst a number of different genotypes of K. pomifera, 38.4% of pollinated flowers developed fruit; arrest of compatible pollen-tubes in the style, preventing fertilisation, contributes to the low fruit set in this species. Interspecific compatibility was examined between K. pomifera (pistillate parent) and K. ambigua (staminate parent) where seed set per pollinated flower (4.47) was not significantly different from intraspecific crosses (4.66). In crosses between K. pomifera (pistillate parent) and K. ericoides as staminate plant, 0.037% of pollinated flowers produced fruit, with 0.0075 seeds per pollinated flower. Reproductive barriers between these two species were evident in the style of K. pomifera, where the growing tips of the K. ericoides pollen-tubes swelled and ceased to grow.

  12. Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum.

    PubMed

    Karlin, Eric F; Boles, S B; Ricca, M; Temsch, E M; Greilhuber, J; Shaw, A J

    2009-04-01

    This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species (S. australe, S. falcatulum). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid (n = x) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum, the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum, with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda. In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe, possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum. Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum.

  13. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  14. Improving Incremental Balance in the GSI 3DVAR Analysis System

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Yang, Runhua; Kleist, Daryl T.; Parrish, David F.; Derber, John C.; Treadon, Russ

    2008-01-01

    The Gridpoint Statistical Interpolation (GSI) analysis system is a unified global/regional 3DVAR analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a Tangent Linear Normal Mode Constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation both at NCEP and at the NASA Global Modeling and Assimilation Office (GMAO).

  15. It takes two to tango: self incompatibility in the bromeliad Tillandsia streptophylla (Bromeliaceae) in Mexico.

    PubMed

    Ramírez Morillo, Ivón M; Chi May, Francisco; Carnevali, Germán; May Pat, Filogonio

    2009-09-01

    Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent.

  16. Changes in gametophyte physiology of Pteris multifida induced by the leaf leachate treatment of the invasive Bidens pilosa.

    PubMed

    Zhang, Kai-Mei; Shen, Yu; Fang, Yan-Ming; Liu, Ying

    2016-02-01

    In recent years, the response of fern gametophytes to environment has raised much attention. However, studies on the influence of plant invasion to fern gametophytes are scarce. Allelopathy plays an important role in biological invasion. Hence, it is necessary to study the allelopathic effects of invasive plants on fern gametophytes and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on spermatophyte growth. Field investigation shows that many ferns are threatened by the invasion of B. pilosa. The distribution of Pteris multifida overlaps with that of B. pilosa in China. To examine the potential involvement of allelopathic mechanisms of B. pilosa leaves, changes in the physiology in P. multifida gametophytes are analyzed. We found that cell membrane and antioxidant enzyme activities as well as photosynthesis pigment contents of the gametophytes were affected by B. pilosa leachates. Gametophytes of P. multifida exposed to B. pilosa had increased damages to cell membranes, expressed in thiobarbituric acid reacting substance (TBARS) concentrations, malondialdehyde (MDA), electrolyte leakage (membrane permeability), and degree of injury. Enzyme activities, assessed by superoxide dismutase (SOD) and catalase (CAT) as well as guaiacol peroxidase (GPX) enhanced with the increase in leachate concentration after 2-day exposure. Meanwhile, lower chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid (Car), and the total chlorophyll were measured as leachate concentrations increased. At day 10, leaf leachates of B. pilosa exhibited the greatest inhibition. These results suggest that the observed inhibitory or stimulatory effects on the physiology studied can have an adverse effect on P. multifida and that allelopathic interference seems to have involved in this process.

  17. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae).

    PubMed

    Friedman, William E

    2015-02-01

    The female gametophyte of Welwitschia has long been viewed as highly divergent from other members of the Gnetales and, indeed, all other seed plants. However, the formation of female gametes and the process of fertilization have never been observed. Standard histological techniques were applied to study gametophyte development and the fertilization process in Welwitschia. In Welwitschia, fertilization events occur when pollen tubes with binucleate sperm cells grow down through the nucellus and encounter prothallial tubes, free nuclear tubular extensions of the micropylar end of the female gametophyte that grow up through the nucellus. Entry of a binucleate sperm cell into a vacuolate prothallial tube appears to stimulate the rapid coagulation of cytoplasm around a single female nucleus, which differentiates into an egg cell. One sperm nucleus enters the female gamete, while the second sperm nucleus remains outside and ultimately degenerates. Only a single fertilization event occurs per mating pair of pollen tube and prothallial tube. Welwitschia lacks the gnetalean pattern of regular double fertilization, as found in Ephedra and Gnetum, involving sperm from a single pollen tube to yield two zygotes. Moreover, an analysis of character evolution indicates that the female gametophyte of Welwitschia is highly apomorphic both among seed plants, and specifically within Gnetales, but also shares several key synapomorphies with its sister taxon Gnetum. Finally, the biological role of prothallial tubes in Welwitschia is examined from the perspectives of gamete competition and kin conflict. © 2015 Botanical Society of America, Inc.

  18. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae).

    PubMed

    Wu, Chi-Chih; Diggle, Pamela K; Friedman, William E

    2011-09-01

    Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared with Balsas teosinte.

  19. Elasticity and Fluctuations of Incompatible Nanoribbons

    NASA Astrophysics Data System (ADS)

    Grossman, Doron; Sharon, Eran; Diamant, Haim

    Geometrically incompatible ribbons are ubiquitous in nature, from the growing of biological tissues, to self assemblies of peptides and lipids. These exhibit unusual characteristics such shape bifurcations, and abnormal mechanical properties. When considering nano and micro ribbons, thermal fluctuations convert these properties into nontrivial statistics. We derive a reduced quasi-one-dimensional theory, which describes a wide range of incompatible elastic ribbons, and can be integrated into statistical mechanics formalism. Using it, we compute equilibrium configurations and statistical properties of two types of incompatible ribbons, with experimental significance: ribbons with positive spontaneous curvature, and ribbons with negative spontaneous curvature. The former, above a critical width, has a continuous family of degenerate configurations. In turn this causes the ribbons to behave as a random coils. The latter, however, exhibits a twisted-to-helical transition at a critical width, and behaves as an abnormal coil. It's persistence length is non-monotonic in the ribbon width and vanishes at a critical width, with principal modes of deformation different than compatible ribbons. Measurements of twisted ribbons made of chiral peptides, confirm some predictions of the model. European Research Council SoftGrowth project and The Harvey M. Kruger Family Center of Nanoscience and Nanotechnology.

  20. Differential Expression of Rubisco in Sporophytes and Gametophytes of Some Marine Macroalgae

    PubMed Central

    Wang, Guangce; Niu, Jianfeng; Zhou, Baicheng

    2011-01-01

    Rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase), a key enzyme of photosynthetic CO2 fixation, is one of the most abundant proteins in both higher plants and algae. In this study, the differential expression of Rubisco in sporophytes and gametophytes of four seaweed species — Porphyra yezoensis, P. haitanensis, Bangia fuscopurpurea (Rhodophyte) and Laminaria japonica (Phaeophyceae) — was studied in terms of the levels of transcription, translation and enzyme activity. Results indicated that both the Rubisco content and the initial carboxylase activity were notably higher in algal gametophytes than in the sporophytes, which suggested that the Rubisco content and the initial carboxylase activity were related to the ploidy of the generations of the four algal species. PMID:21283730

  1. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates.

    PubMed

    Parker, Geoff A; Ramm, Steven A; Lehtonen, Jussi; Henshaw, Jonathan M

    2018-05-01

    Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears

  2. A Comprehensive Study of Molecular Evolution at the Self-Incompatibility Locus of Rosaceae.

    PubMed

    Ashkani, Jahanshah; Rees, D J G

    2016-03-01

    The family Rosaceae includes a range of important fruit trees, most of which have the S-RNase-based self-incompatibility (SI). Several models have been developed to explain how pollen (SLF) and pistil (S-RNase) components of the S-locus interact. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and a Collaborative Non-Self Recognition model has been proposed for SI in Solanaceae; however, the validity of such model remains to be elucidated for other species. The results of this study support the divergent evolution of the S-locus genes from two Rosaceae subfamilies, Prunoideae/Amygdaloideae and Maloideae, The difference identified in the selective pressures between the two lineages provides evidence for positive selection at specific sites in both the S-RNase and the SLF proteins. The evolutionary findings of this study support the role of multiple SLF proteins leading to a Collaborative Non-Self Recognition model for SI in the Maloideae. Furthermore, the identification of the sites responsible for SI specificity determination and the mapping of these sites onto the modelled tertiary structure of ancestor proteins provide useful information for rational functional redesign and protein engineering for the future engineering of new functional alleles providing increased diversity in the SI system in the Maloideae.

  3. Defects in Peroxisomal 6-Phosphogluconate Dehydrogenase Isoform PGD2 Prevent Gametophytic Interaction in Arabidopsis thaliana1[OPEN

    PubMed Central

    Hölscher, Christian; Meyer, Tanja; Fischer, Kerstin

    2016-01-01

    We studied the localization of 6-phosphogluconate dehydrogenase (PGD) isoforms of Arabidopsis (Arabidopsis thaliana). Similar polypeptide lengths of PGD1, PGD2, and PGD3 obscured which isoform may represent the cytosolic and/or plastidic enzyme plus whether PGD2 with a peroxisomal targeting motif also might target plastids. Reporter-fusion analyses in protoplasts revealed that, with a free N terminus, PGD1 and PGD3 accumulate in the cytosol and chloroplasts, whereas PGD2 remains in the cytosol. Mutagenesis of a conserved second ATG enhanced the plastidic localization of PGD1 and PGD3 but not PGD2. Amino-terminal deletions of PGD2 fusions with a free C terminus resulted in peroxisomal import after dimerization, and PGD2 could be immunodetected in purified peroxisomes. Repeated selfing of pgd2 transfer (T-)DNA alleles yielded no homozygous mutants, although siliques and seeds of heterozygous plants developed normally. Detailed analyses of the C-terminally truncated PGD2-1 protein showed that peroxisomal import and catalytic activity are abolished. Reciprocal backcrosses of pgd2-1 suggested that missing PGD activity in peroxisomes primarily affects the male gametophyte. Tetrad analyses in the quartet1-2 background revealed that pgd2-1 pollen is vital and in vitro germination normal, but pollen tube growth inside stylar tissues appeared less directed. Mutual gametophytic sterility was overcome by complementation with a genomic construct but not with a version lacking the first ATG. These analyses showed that peroxisomal PGD2 activity is required for guided growth of the male gametophytes and pollen tube-ovule interaction. Our report finally demonstrates an essential role of oxidative pentose-phosphate pathway reactions in peroxisomes, likely needed to sustain critical levels of nitric oxide and/or jasmonic acid, whose biosynthesis both depend on NADPH provision. PMID:26941195

  4. Transformation of Arabidopsis with a Brassica SLG/SRK region and ARC1 gene is not sufficient to transfer the self-incompatibility phenotype.

    PubMed

    Bi, Y M; Brugière, N; Cui, Y; Goring, D R; Rothstein, S J

    2000-05-01

    Self-incompatibility (SI) promotes outbreeding in flowering plants, and in Brassica SI is genetically controlled by the S locus. Self-incompatible Brassica and self-fertile Arabidopsis belong to the same crucifer family. In addition, a comparative analysis reveals a high degree of microsynteny between the B. campestris S locus and its homologous region in Arabidopsis--with the notable exception that the Brassica SI genes, SLG and SRK, are missing. Brassica ARC1 encodes a component of the SRK signal transduction pathway leading to self-pollen rejection, and no closely related ARC1 homolog has been identified in Arabidopsis. The purpose of the research reported here was to introduce Brassica SI components into Arabidopsis in an attempt to compensate for the missing genes and to investigate whether the SI phenotype can be transferred. Inserts of approximately 40 kb from the fosmid clones F20 and F22, which span the B. napus W1 SLG-SRK region, were cloned into the plant transformation vector pBIBAC2. Transgenic plants were generated that expressed the Brassica SI genes in the flower buds. In addition, the endogenous, SLG-like, gene AtS1 was not co-suppressed by the Brassica SLG transgene. No SI phenotype was observed among the T1 BIBAC2-F20 and BIBAC2-F22 transgenic plants. When the ARC1 gene was transformed into BIBAC2-F20 or BIBAC2-F22 plants, the resulting BIBAC2-F20-ARC1 and BIBAC2-F22-ARC1 plants still set seeds normally, and no rejection response was observed when self-incompatible B. napus W1 pollen was placed on BIBAC2-F20-ARC1 or BIBAC2-F22-ARC1 Arabidopsis stigmas. Taken together, our results suggest that complementing Arabidopsis genome with Brassica SLG, SRK and ARC1 genes is unlikely to be sufficient to transfer the SI phenotype.

  5. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  6. Cullin1-P is an Essential Component of Non-Self Recognition System in Self-Incompatibility in Petunia.

    PubMed

    Kubo, Ken-Ichi; Tsukahara, Mai; Fujii, Sota; Murase, Kohji; Wada, Yuko; Entani, Tetsuyuki; Iwano, Megumi; Takayama, Seiji

    2016-11-01

    Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen. Multiple SLFs collaboratively detoxify non-self S-RNases, therefore, non-self recognition is the mode of self-/non-self discrimination in Solanaceae. It is considered that SLFs function as a substrate-recognition module of the Skp1-Cullin1-F-box (SCF) complex that inactivates non-self S-RNases via their polyubiquitination, which leads to degradation by 26S proteasome. In fact, PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1) was identified as a specific component of SCF SLF and was shown to be essential for detoxification of S-RNase in Petunia However, different molecules are proposed as the candidate Cullin1, another component of SCF SLF , and there is as yet no definite conclusion. Here, we identified five Cullin1s from the expressed sequence tags (ESTs) derived from the male reproductive organ in Petunia Among them, only PhCUL1-P was co-immunoprecipitated with S 7 -SLF2. In vitro protein-binding assay suggested that PhSSK1 specifically forms a complex with PhCUL1-P in an SLF-dependent manner. Knockdown of PhCUL1-P suppressed fertility of transgenic pollen in cross-compatible pollination in the functional S-RNase-dependent manner. These results suggested that SCF SLF selectively uses PhCUL1-P. Phylogeny of Cullin1s indicates that CUL1-P is recruited into the SI machinery during the evolution of Solanaceae, suggesting that the SI components have evolved differently among species in Solanaceae and Rosaceae, despite both families sharing the S-RNase-based SI. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  7. Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Hosoda, H.; Miyazaki, S.

    2013-02-01

    The frequency distribution of habit plane variant (HPV) clusters and the deviation from twin orientation relationships (ORs) at the junction plane (JP) are investigated by transmission electron microscopy together with theoretical evaluation of the kinematic compatibility (KC) at the JP in a β-titanium shape memory alloy. Even though there are more than 10 types of possible HPV clusters, only three types are formed. V-shaped couplings of HPVs by {111} type I twins (VI: 49%) and by ⟨211⟩ type II twins (VII: 42%) are the predominant types. A triangular morphology due to coupling of {111} type I twins is observed with a frequency of only 9%. These preferred morphologies are well explained by the degree of incompatibility (the rotation necessary for compatible connection of HPVs). The exact twin OR and KC are maintained at the JP in a VI cluster instead of KC at the habit plane (HP), whereas the JP in a VII cluster is incompatible and the ⟨211⟩ type II twin OR shows slight deviation at the JP by about 0.4°. The competition between KC at the JP and KC at the HP (invariant plane) is responsible for the frequency distribution of HPV clusters and the character of the interfaces in the self-accommodation microstructure.

  8. Evolution of dominance in sporophytic self-incompatibility systems: I. Genetic load and coevolution of levels of dominance in pollen and pistil.

    PubMed

    Llaurens, Violaine; Billiard, Sylvain; Castric, Vincent; Vekemans, Xavier

    2009-09-01

    Recent theoretical advances have suggested that various forms of balancing selection may promote the evolution of dominance through an increase of the proportion of heterozygote genotypes. We test whether dominance can evolve in the sporophytic self-incompatibility (SSI) system in plants. SSI prevents mating between individuals expressing identical SI phenotypes by recognition of pollen by pistils, which avoids selfing and inbreeding depression. SI phenotypes depend on a complex network of dominance relationships between alleles at the self-incompatibility locus (S-locus). Empirical studies suggest that these relationships are not random, but the exact evolutionary processes shaping these relationships remain unclear. We investigate the expected patterns of dominance under the hypothesis that dominance is a direct target of natural selection. We follow the fate of a mutant allele at the S-locus whose dominance relationships are changed but whose specificity remains unaltered. We show that strict codominance is not evolutionarily stable in SSI, and that inbreeding depression due to deleterious mutations linked or unlinked to the S-locus exerts strong constraints on changes in relative levels of dominance in pollen and pistil. Our results provide a general adaptive explanation for most patterns of dominance relationships empirically observed in natural plant populations.

  9. Maize ROP2 GTPase provides a competitive advantage to the male gametophyte.

    PubMed

    Arthur, K M; Vejlupkova, Z; Meeley, R B; Fowler, J E

    2003-12-01

    Rop GTPases have been implicated in the regulation of plant signal transduction and cell morphogenesis. To explore ROP2 function in maize, we isolated five Mutator transposon insertions (rop2::Mu alleles). Transmission frequency through the male gametophyte, but not the female, was lower than expected in three of the rop2::Mu mutants. These three alleles formed an allelic series on the basis of the relative transmission rate of each when crossed as trans-heterozygotes. A dramatic reduction in the level of ROP2-mRNA in pollen was associated with the three alleles causing a transmission defect, whereas a rop2::Mu allele that did not result in a defect had wild-type transcript levels, thus confirming that mutation of rop2 causes the mutant phenotype. These data strongly support a role for rop2 in male gametophyte function, perhaps surprisingly, given the expression in pollen of the nearly identical duplicate gene rop9. However, the transmission defect was apparent only when a rop2::Mu heterozygote was used as the pollen donor or when a mixture of wild-type and homozygous mutant pollen was used. Thus, mutant pollen is at a competitive disadvantage compared to wild-type pollen, although mutant pollen grains lacked an obvious cellular defect. Our data demonstrate the importance in vivo of a specific Rop, rop2, in the male gametophyte.

  10. The essence of conscious conflict: subjective effects of sustaining incompatible intentions.

    PubMed

    Morsella, Ezequiel; Gray, Jeremy R; Krieger, Stephen C; Bargh, John A

    2009-10-01

    Conflict constitutes one of the fundamental "tuggings and pullings" of the human experience. Yet, the link between the various kinds of conflict in the nervous system and subjective experience remains unexplained. The authors tested a hypothesis that predicts why both the "hot" conflicts involving self-control and motivation and the "cooler" response conflicts of the laboratory lead to changes in subjective experience. From this standpoint, these changes arise automatically from the activation of incompatible skeletomotor intentions, because the primary function of consciousness is to integrate such intentions for adaptive skeletal muscle output. Accordingly, the authors demonstrated for the first time that merely sustaining incompatible intentions (to move right and left) in a motionless state produces stronger subjective effects than sustaining compatible intentions. The results held equally strongly for two different effector systems involving skeletal muscle: arm movements and finger movements. In contrast, no such effects were found with conflict in a smooth muscle effector system. Together, these findings illuminate aspects of the nature of subjective experience and the role of incompatible intentions in affect and failures of self-control.

  11. The Essence of Conscious Conflict: Subjective Effects of Sustaining Incompatible Intentions

    PubMed Central

    Morsella, Ezequiel; Gray, Jeremy R.; Krieger, Stephen C.; Bargh, John A.

    2009-01-01

    Conflict constitutes one of the fundamental ‘tuggings and pullings’ of the human experience. Yet, the link between the various kinds of conflict in the nervous system and subjective experience remains unexplained. We tested a hypothesis that predicts why both the ‘hot’ conflicts involving self-control and motivation, and the ‘cooler’ response conflicts of the laboratory, lead to changes in subjective experience. From this standpoint, these changes arise automatically from the activation of incompatible skeletomotor intentions, because the primary function of consciousness is to integrate such intentions for adaptive skeletal muscle output. Accordingly, we demonstrated for the first time that merely sustaining incompatible intentions (to move right and left) in a motionless state produces stronger subjective effects than sustaining compatible intentions. The results held equally strongly for two different effector systems involving skeletal muscle: arm movements and finger movements. In contrast, no such effects were found with conflict in a smooth muscle effector system. Together, these findings illuminate aspects of the nature of subjective experience and the role of incompatible intentions in affect and failures of self-control. PMID:19803593

  12. CENH3-GFP: a visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana.

    PubMed

    De Storme, Nico; Keçeli, Burcu Nur; Zamariola, Linda; Angenon, Geert; Geelen, Danny

    2016-01-05

    The in vivo determination of the cell-specific chromosome number provides a valuable tool in several aspects of plant research. However, current techniques to determine the endosystemic ploidy level do not allow non-destructive, cell-specific chromosome quantification. Particularly in the gametophytic cell lineages, which are physically encapsulated in the reproductive organ structures, direct in vivo ploidy determination has been proven very challenging. Using Arabidopsis thaliana as a model, we here assess the applicability of recombinant CENH3-GFP reporters for the labeling of the cell's chromocenters and for the monitoring of the gametophytic and somatic chromosome number in vivo. By modulating expression of a CENH3-GFP reporter cassette using different promoters, we isolated two reporter lines that allow for a clear and highly specific labeling of centromeric chromosome regions in somatic and gametophytic cells respectively. Using polyploid plant series and reproductive mutants, we demonstrate that the pWOX2-CENH3-GFP recombinant fusion protein allows for the determination of the gametophytic chromosome number in both male and female gametophytic cells, and additionally labels centromeric regions in early embryo development. Somatic centromere labeling through p35S-CENH3-GFP shows a maximum of ten centromeric dots in young dividing tissues, reflecting the diploid chromosome number (2x = 10), and reveals a progressive decrease in GFP foci frequency throughout plant development. Moreover, using chemical and genetic induction of endomitosis, we demonstrate that CENH3-mediated chromosome labeling provides an easy and valuable tool for the detection and characterization of endomitotic polyploidization events. This study demonstrates that the introgression of the pWOX2-CENH3-GFP reporter construct in Arabidopsis thaliana provides an easy and reliable methodology for determining the chromosome number in developing male and female gametes, and during early embryo

  13. Genetic incompatibility drives mate choice in a parasitic wasp.

    PubMed

    Thiel, Andra; Weeda, Anne C; de Boer, Jetske G; Hoffmeister, Thomas S

    2013-07-30

    Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.

  14. Growth of gametophytes and sporophytes of Grateloupia subpectinata (Rhodophyta) in culture

    NASA Astrophysics Data System (ADS)

    Adharini, Ratih Ida; Kim, Hyung Geun

    2016-09-01

    Comparison of growing thalli in alternating haploid and diploid phases of Grateloupia subpectinata (Rhodophyta) was studied. Fertile thalli from gametophyte and tetrasporophyte of G. subpectinata were collected from Yangyang, on the eastern coast of Korea. The size of the released tetraspores and carpospores was measured; the spores were then incubated at the temperature of 20°C, irradiance of 40 μmol photon m-2s-1 and photoperiod of 12L and 12D. Carpospores were also cultivated in the same conditions as the tetraspores culture. The crusts were subsequently transferred to a tank culture after six months. The specific growth rate (SGR) was measured by observing 50 crusts and 30 thalli. The released carpospores had a larger diameter (9.98 μm) than the tetraspores (9.38 μm). The crusts from the carpospores also show a higher specific growth rate (14.04% d-1) than tetraspores (13.39% d-1). After being transferred and cultured in a tank, the upright thalli grew slowly in May-June (13-15°C) and rapidly in July-September (17-22°C). The length of growing thalli of sporophyte from carpospores also revealed a higher specific growth rate (2.83% d-1) than gametophytic thalli (2.38% d-1). The specific growth rate of crusts and thalli developed from carpospores was higher than that of the crusts developed from tetraspores. This result suggests that the cultivation of sporophytes may be more profitable than gametophytes because harvesting can be done more efficiently.

  15. GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis.

    PubMed

    Wang, Si-Qi; Shi, Dong-Qiao; Long, Yan-Ping; Liu, Jie; Yang, Wei-Cai

    2012-01-01

    RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.

  16. S-LOCUS EARLY FLOWERING 3 Is Exclusively Present in the Genomes of Short-Styled Buckwheat Plants that Exhibit Heteromorphic Self-Incompatibility

    PubMed Central

    Aii, Jotaro; Abe, Tomoko; Matsumoto, Daiki; Sato, Shingo; Hayashi, Yoriko; Ohnishi, Ohmi; Ota, Tatsuya

    2012-01-01

    The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology and intra-morph incompatibility are both determined by a single genetic locus named the S-locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at the S-locus. Despite recent progress in our understanding of the molecular basis of flower development and plant SI systems, the molecular mechanisms underlying heteromorphic SI remain unresolved. By examining differentially expressed genes from the styles of the two floral morphs, we identified a gene that is expressed only in short-styled plants. The novel gene identified was completely linked to the S-locus in a linkage analysis of 1,373 plants and had homology to EARLY FLOWERING 3. We named this gene S-LOCUS EARLY FLOWERING 3 (S-ELF3). In an ion-beam-induced mutant that harbored a deletion in the genomic region spanning S-ELF3, a phenotype shift from short-styled flowers to long-styled flowers was observed. Furthermore, S-ELF3 was present in the genome of short-styled plants and absent from that of long-styled plants both in world-wide landraces of buckwheat and in two distantly related Fagopyrum species that exhibit heteromorphic SI. Moreover, independent disruptions of S-ELF3 were detected in a recently emerged self-compatible Fagopyrum species and a self-compatible line of buckwheat. The nonessential role of S-ELF3 in the survival of individuals and the prolonged evolutionary presence only in the genomes of short-styled plants exhibiting heteromorphic SI suggests that S-ELF3 is a suitable candidate gene for the control of the short-styled phenotype of buckwheat plants. PMID:22312442

  17. Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization.

    PubMed

    Rövekamp, Moritz; Bowman, John L; Grossniklaus, Ueli

    2016-07-11

    Unlike in animals, the life cycle of land plants alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte [1]. Gamete differentiation initiates the transition from the gametophyte to the sporophyte generation and, upon maturation, the egg cell establishes a quiescent state that is maintained until fertilization. This quiescence represents a hallmark of the gametophyte-sporophyte transition. The underlying molecular mechanisms are complex and best characterized in the flowering plant Arabidopsis thaliana [2-4]. However, only few genes with egg cell-specific expression or defects have been identified [5-10]. Intriguingly, ectopic expression of members of a clade of RWP-RK domain (RKD)-containing transcription factors, which are absent from animal genomes [11-13], can induce an egg cell-like transcriptome in sporophytic cells of A. thaliana. Yet, to date, loss-of-function experiments have not produced phenotypes affecting the egg cell, likely due to genetic redundancy and/or cross-regulation among the five RKD genes of A. thaliana [10]. To reduce genetic complexity, we explored the genome of Marchantia polymorpha, a liverwort belonging to the basal lineage of extant land plants [14-17]. Based on sequence homology, we identified a single M. polymorpha RKD gene, MpRKD, which is orthologous to all five A. thaliana RKD genes. Analysis of the MpRKD expression pattern and characterization of lines with reduced MpRKD activity indicate that it functions as a regulator of gametophyte development and the gametophyte-sporophyte transition. In particular, MpRKD is required to establish and/or maintain the quiescent state of the egg cell in the absence of fertilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparative glycan profiling of Ceratopteris richardii 'C-Fern' gametophytes and sporophytes links cell-wall composition to functional specialization.

    PubMed

    Eeckhout, Sharon; Leroux, Olivier; Willats, William G T; Popper, Zoë A; Viane, Ronald L L

    2014-10-01

    Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns. Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. The differences and similarities in glycan cell-wall composition between 'C-Fern' gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self-incompatibility system of Olea europaea L.

    PubMed

    Saumitou-Laprade, Pierre; Vernet, Philippe; Vekemans, Xavier; Castric, Vincent; Barcaccia, Gianni; Khadari, Bouchaïb; Baldoni, Luciana

    2017-10-01

    Bervillé et al. express concern about the existence of the diallelic self-incompatibility (DSI) system in Olea europaea , mainly because our model does not account for results from previous studies from their group that claimed to have documented asymmetry of the incompatibility response in reciprocal crosses. In this answer to their comment, we present original results based on reciprocal stigma tests that contradict conclusions from these studies. We show that, in our hands, not a single case of asymmetry was confirmed, endorsing that symmetry of incompatibility reactions seems to be the rule in Olive. We discuss three important aspects that were not taken into account in the studies cited in their comments and that can explain the discrepancy: (i) the vast uncertainty around the actual genetic identity of vernacular varieties, (ii) the risk of massive contamination associated with the pollination protocols that they used and (iii) the importance of checking for stigma receptivity in controlled crosses. These studies were thus poorly genetically controlled, and we stand by our original conclusion that Olive tree exhibits DSI.

  20. Comparative glycan profiling of Ceratopteris richardii ‘C-Fern’ gametophytes and sporophytes links cell-wall composition to functional specialization

    PubMed Central

    Eeckhout, Sharon; Leroux, Olivier; Willats, William G. T.; Popper, Zoë A.; Viane, Ronald L. L.

    2014-01-01

    Background and Aims Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns. Methods Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. Key Results While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. Conclusions The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. PMID:24699895

  1. The sheltered genetic load linked to the s locus in plants: new insights from theoretical and empirical approaches in sporophytic self-incompatibility.

    PubMed

    Llaurens, Violaine; Gonthier, Lucy; Billiard, Sylvain

    2009-11-01

    Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common genetic mechanism in angiosperm that enables hermaphrodite plants to avoid selfing and promote outcrossing. The SSI phenotype is determined by the S locus and may depend on dominance relationships among alleles. Since most individuals are heterozygous at the S locus and recombination is suppressed in the S-locus region, it has been suggested that deleterious mutations could accumulate at genes linked to the S locus, generating a "sheltered load." In this article, we first theoretically investigate the conditions generating sheltered load in SSI. We show that deleterious mutations can accumulate in linkage with specific S alleles, and particularly if those S alleles are dominant. Second, we looked for the presence of sheltered load in Arabidopsis halleri using CO(2) gas treatment to overcome self-incompatibility. By examining the segregation of S alleles and measuring the relative fitness of progeny, we found significant sheltered load associated with the most dominant S allele (S15) of three S alleles tested. This sheltered load seems to be expressed at several stages of the life cycle and to have a larger effect than genomic inbreeding depression.

  2. Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa.

    PubMed

    Zhang, Kai-Mei; Shen, Yu; Zhou, Xiao-Qi; Fang, Yan-Ming; Liu, Ying; Ma, Lena Q

    2016-05-01

    To date, the response of the fern gametophyte to its environment has received considerable attention. However, studies on the influence of plant invasion on the fern gametophyte are fewer. Allelopathy has been hypothesized to play an important role in biological invasion. Hence, it is necessary to study the allelopathy of invasive plant species to the fern gametophyte and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on the gametophytic growth of Pteris multifida. The root exudate plays an important role among various allelochemical delivery mechanisms in B. pilosa. The effect invasive plant species has on photosynthesis in native species is poorly understood. To elucidate this effect, the changes in photosynthesis in the gametophytes of P. multifida are analyzed to examine the mechanisms of the root exudates of B. pilosa. Meanwhile, a non-invasive plant, Coreopsis basalis, was also applied to investigate the effects on fluorescence and pigments in P. multifida gametophytes. We found that gametophytes exposed to both B. pilosa and C. basalis had decreased fluorescence parameters in comparison with the control, except for non-photochemical quenching. Furthermore, it was found that these parameters were markedly affected from day 2 to day 10 in the presence of both exudates at a concentration of 25% or above. B. pilosa exudate had a negative dose-dependent effect on chlorophyll a, chlorophyll b, carotenoid, and the total chlorophyll in the gametophyte. The inhibitory effects increased with increasing exudate concentrations of both species, exhibiting the greatest inhibition at day 10. In conclusion, B. pilosa irreversibly affected the photosynthesis of P. multifida on both PS I and PS II. Root exudates caused the primary damage with respect to the decrease of the acceptors and donors of photon and electron in photosynthetic units and the production and

  3. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock KW; D Honys; JM. Ward

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. About 1269 genes encoding classified transporters were collected from themore » Arabidopsis thaliana genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3 and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9); while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, were developmentally-regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::GUS analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.« less

  4. Integrating membrane transport with male gametophyte development and function through transcriptomics.

    PubMed

    Bock, Kevin W; Honys, David; Ward, John M; Padmanaban, Senthilkumar; Nawrocki, Eric P; Hirschi, Kendal D; Twell, David; Sze, Heven

    2006-04-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::beta-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  5. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata.

    PubMed

    Li, Shu; Sun, Penglin; Williams, Justin Stephen; Kao, Teh-hui

    2014-03-01

    The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.

  6. The population genetics of sporophytic self-incompatibility in three hybridizing senecio (asteraceae) species with contrasting population histories.

    PubMed

    Brennan, Adrian C; Harris, Stephen A; Hiscock, Simon J

    2013-05-01

    Hybridization generates evolutionary novelty and spreads adaptive variation. By promoting outcrossing, plant self-incompatibility (SI) systems also favor interspecific hybridization because the S locus is under strong negative frequency-dependent balancing selection. This study investigates the SI mating systems of three hybridizing Senecio species with contrasting population histories. Senecio aethnensis and S. chrysanthemifolius native to Sicily, form a hybrid zone at intermediate altitudes on Mount Etna, and their neo-homoploid hybrid species, S. squalidus, has colonized disturbed urban habitats in the UK during the last 150 years. We show that all three species express sporophytic SI (SSI), where pollen incompatibility is controlled by the diploid parental genome, and that SSI is inherited and functions normally in hybrids. Large-scale crossing studies of wild sampled populations allowed direct comparison of SSI between species and found that the main impacts of colonization in S. squalidus compared to Sicilian Senecio was a reduced number of S alleles, increased S allele frequencies, and increased interpopulation S allele sharing. In general, many S alleles were shared between species and the S locus showed reduced intra- and interspecific population genetic structure compared to molecular genetic markers, indicative of enhanced effective gene flow due to balancing selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast

  8. Unraveling the origin of the Appalachian gametophyte, Vittaria appalachiana.

    PubMed

    Pinson, Jerald B; Schuettpelz, Eric

    2016-04-01

    Ferns and lycophytes are distinct among plants in producing two free-living life stages: a long-lived sporophyte phase and a (usually) short-lived gametophyte phase. Notably, however, some species have perennial, vegetatively reproducing gametophytes. Vittaria appalachiana is one of just three species in which mature sporophytes are unknown. It has a wide range throughout the Appalachian Mountains and Plateau, where it reproduces asexually via gemmae. The origin of V. appalachiana, however, has long been a mystery, with most previous studies suggesting it may have resulted from hybridization of two closely related Vittaria species (V. graminifolia and V. lineata). A four-gene plastid data set including 32 samples of six Vittaria species, plus samples of five outgroup species, was analyzed to uncover phylogenetic relationships. Additional analyses of nuclear DET1 gene sequences allowed for the examination of hypotheses involving a hybrid origin for V. appalachiana. In the plastid phylogeny, V. appalachiana is well supported as monophyletic, but is embedded within V. graminifolia. With the exception of a single aberrant allele, this result is mirrored in the nuclear tree. Through analyses of plastid and nuclear data sets, this study demonstrates that a hybrid origin for V. appalachiana is unlikely. Instead, it appears that this species emerged from within the V. graminifolia lineage. Further work is needed to fully elucidate the genetic structure within this group. © 2016 Botanical Society of America.

  9. Rock mass classification system : transition from RMR to GSI.

    DOT National Transportation Integrated Search

    2013-11-01

    The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...

  10. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells.

    PubMed

    Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung

    2016-07-01

    Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Cytoplasmic male sterility contributes to hybrid incompatibility between subspecies of Arabidopsis lyrata.

    PubMed

    Aalto, Esa A; Koelewijn, Hans-Peter; Savolainen, Outi

    2013-10-03

    In crosses between evolutionarily diverged populations, genomic incompatibilities may result in sterile hybrids, indicating evolution of reproductive isolation. In several plant families, crosses within a population can also lead to male sterile progeny because of conflict between the maternally and biparentally inherited genomes. We examined hybrid fertility between subspecies of the perennial outcrossing self-incompatible Lyrate rockcress (Arabidopsis lyrata) in large reciprocal F2 progenies and three generations of backcrosses. In one of the reciprocal F2 progenies, almost one-fourth of the plants were male-sterile. Correspondingly, almost one-half of the plants in one of the four reciprocal backcross progenies expressed male sterility. In an additional four independent F2 and backcross families, three segregated male sterility. The observed asymmetrical hybrid incompatibility is attributable to male sterility factors in one cytoplasm, for which the other population lacks effective fertility restorers. Genotyping of 96 molecular markers and quantitative trait locus mapping revealed that only 60% of the plants having the male sterile cytoplasm and lacking the corresponding restorers were phenotypically male-sterile. Genotyping data showed that there is only one restorer locus, which mapped to a 600-kb interval at the top of chromosome 2 in a region containing a cluster of pentatricopeptide repeat genes. Male fertility showed no trade-off with seed production. We discuss the role of cytoplasm and genomic conflict in incipient speciation and conclude that cytoplasmic male sterility-lowering hybrid fitness is a transient effect with limited potential to form permanent reproductive barriers between diverged populations of hermaphrodite self-incompatible species.

  12. Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs.

    PubMed

    Jakobsson, Anna; Lázaro, Amparo; Totland, Orjan

    2009-07-01

    Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance

  13. Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time

    PubMed Central

    Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela

    2016-01-01

    In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058

  14. Sporophytic control of pollen tube growth and guidance in maize.

    PubMed

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  15. Sporophytic control of pollen tube growth and guidance in maize

    PubMed Central

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  16. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    PubMed

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  17. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization.

    PubMed

    Miao, Hongxia; Qin, Yonghua; da Silva, Jaime A Teixeira; Ye, Zixing; Hu, Guibing

    2013-01-01

    Self-incompatibility (SI) is one important factor that can result in Citrus seedlessness. However, the molecular mechanism of SI in Citrus is not clear yet. To isolate the pistil's SI-related genes, a suppression subtractive hybridization library was constructed using mature pistils of 'Wuzishatangju' mandarin (SI) as the tester and mature pistils of 'Shatangju' mandarin (self-compatibility, SC) as the driver. 229 differentially expressed cDNA clones from 967 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of 'Wuzishatangju' through a regulating signaling pathway, serine/threonine phosphatase activity, receptor kinase, embryonic development, gibberellin stimulus, or transcription. 11 out of 36 SI candidate genes displayed different expression patterns in various tissues and stages after self- and cross-pollination of 'Wuzishatangju'. The expression of CaBP (WY65), a senescence-protease (WY372), an unknown gene (WY283), and a WRKY (WY17) were up-regulated in the styles of 'Wuzishatangju' while higher expression of WY190 was observed in styles of 'Shatangju'. Highest expression levels of WY65, WY372, an annexin (WY598), the zinc-finger protein (WY376), a C2-protein (WY291), and an unknown gene (WY318) were detected in styles at 3 days after self-pollination of 'Wuzishatangju' while lowest levels were observed in styles at 3 days after cross-pollination of 'Wuzishatangju' × 'Shatangju'. The potential involvement of these genes in the SI reaction is discussed.

  18. Limited mate availability decreases reproductive success of fragmented populations of Linnaea borealis, a rare, clonal self-incompatible plant

    PubMed Central

    Scobie, A. R.; Wilcock, C. C.

    2009-01-01

    Background and Aims Small populations of rare plant species are increasingly reported to have high levels of reproductive failure. The objective of this study was to understand the principal constraints on sexual reproduction in small fragmented populations of a rare clonal self-incompatible plant. Methods The pollinator spectrum, diversity of flower colour, natural pollination and fruit-set levels of L. borealis were examined in Scotland. Artificially crossed seed production was compared within and between different flower colour types and patches. Key Results Linnaea borealis was pollinated by a diverse spectrum of insect species and the principal pollinators were muscid, syrphid and empid flies which mostly moved only small distances (<0·25 m) between flowers when foraging. Natural pollination levels were high, indicating high pollinator effectiveness, but fruit set was very low in most patches. Flower colour diversity was low in most patches and only those with a diversity of flower colour types had high fruiting success. Pollination experiments showed L. borealis to be highly self-incompatible and artificial crosses within and between patches and flower colour types confirmed that low fruit success was the result of a lack of compatible mates and limited pollen movement between them. Evidence of isolation from pollen exchange was apparent at as little as 6 m and severe at 30 m and beyond. Conclusions Limited mate availability and isolation from pollen exchange compromise the reproductive success of fragmented populations of L. borealis in Scotland. A diversity of compatible mates situated within close proximity (<6 m) is the key requirement to ensure high natural fruiting success. This study emphasizes that an understanding of the breeding system, pollinator spectrum and potential for interconnectivity via pollinator movement are fundamental to identify isolation distances and to establish when conservation intervention is necessary for rare species. PMID

  19. A synteny-based draft genome sequence of the forage grass Lolium perenne.

    PubMed

    Byrne, Stephen L; Nagy, Istvan; Pfeifer, Matthias; Armstead, Ian; Swain, Suresh; Studer, Bruno; Mayer, Klaus; Campbell, Jacqueline D; Czaban, Adrian; Hentrup, Stephan; Panitz, Frank; Bendixen, Christian; Hedegaard, Jakob; Caccamo, Mario; Asp, Torben

    2015-11-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.

    PubMed

    Gray, Jeremy R; Bargh, John A; Morsella, Ezequiel

    2013-09-01

    The study of intrapsychic conflict has long been central to many key theories about the control of behavior. More recently, by focusing on the nature of conflicting processes in the brain, investigators have revealed great insights about controlled versus automatic processes and the nature of self-control. Despite these advances, many theories of cognitive control or self-control remain agnostic about the function of subjective awareness (i.e., basic consciousness). Why people consciously experience some conflicts in the nervous system but not others remains a mystery. One hypothesis is that people become conscious only of conflicts involving competition for the control of skeletal muscle. To test one aspect of this larger hypothesis, in the present study, 14 participants were trained to introspect the feeling of conflict (the urge to make an error during a Stroop color-word interference task) and then were asked to introspect in the same way while sustaining simple compatible and incompatible intentions during fMRI scanning (to move a finger left or right). As predicted, merely sustaining incompatible skeletomotor intentions prior to their execution produced stronger systematic changes in subjective experience than sustaining compatible intentions, as indicated by self-report ratings obtained in the scanner. Similar ratings held for a modified Stroop-like task when contrasting incompatible versus compatible trials also during fMRI scanning. We use subjective ratings as the basis of parametric analyses of fMRI data, focusing a priori on the brain regions involved in action-related urges (e.g., parietal cortex) and cognitive control (e.g., dorsal anterior cingulate cortex, lateral PFC). The results showed that subjective conflict from sustaining incompatible intentions was consistently related to activity in the left post-central gyrus.

  1. Physiological Aspects of Sugar Exchange between the Gametophyte and the Sporophyte of Polytrichum formosum

    PubMed Central

    Renault, Sylvie; Bonnemain, Jean Louis; Faye, Loïc; Gaudillere, Jean Pierre

    1992-01-01

    The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ. PMID:16653202

  2. Characterization of the 'Xiangshui' lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility.

    PubMed

    Zhang, Shuwei; Ding, Feng; He, Xinhua; Luo, Cong; Huang, Guixiang; Hu, Ying

    2015-02-01

    Seedlessness is a desirable character in lemons and other citrus species. Seedless fruit can be induced in many ways, including through self-incompatibility (SI). SI is widely used as an intraspecific reproductive barrier that prevents self-fertilization in flowering plants. Although there have been many studies on SI, its mechanism remains unclear. The 'Xiangshui' lemon is an important seedless cultivar whose seedlessness has been caused by SI. It is essential to identify genes involved in SI in 'Xiangshui' lemon to clarify its molecular mechanism. In this study, candidate genes associated with SI were identified using high-throughput Illumina RNA sequencing (RNA-seq). A total of 61,224 unigenes were obtained (average, 948 bp; N50 of 1,457 bp), among which 47,260 unigenes were annotated by comparison to six public databases (Nr, Nt, Swiss-Prot, KEGG, COG, and GO). Differentially expressed genes were identified by comparing the transcriptomes of no-, self-, and cross-pollinated stigmas with styles of the 'Xiangshui' lemon. Several differentially expressed genes that might be associated with SI were identified, such as those involved in pollen tube growth, programmed cell death, signal transduction, and transcription. NADPH oxidase genes associated with apoptosis were highly upregulated in the self-pollinated transcriptome. The expression pattern of 12 genes was analyzed by quantitative real-time polymerase chain reaction. A putative S-RNase gene was identified that had not been previously associated with self-pollen rejection in lemon or citrus. This study provided a transcriptome dataset for further studies of SI and seedless lemon breeding.

  3. Sporophytic control of pollen tube growth and guidance in grasses.

    PubMed

    Lausser, Andreas; Dresselhaus, Thomas

    2010-04-01

    Pollen tube growth and guidance in the female tissues of flowering plants is a long-studied and anatomically well-described process. A large number of gene products and chemical compounds involved have been identified in the last 20 years, and some underlying molecular mechanisms including self-incompatibility in the Brassicaceae, Solanaceae and Papaveraceae are now well understood. However, the largest part of the pollen tube pathway inside the transmitting tract towards the ovule harbouring the female gametophyte still requires intensive investigations. Especially in the economically most import plant family, the Poaceae or grasses, progamic pollen tube development is barely understood. Using maize as a model, we propose to divide pollen tube germination, growth and guidance towards the female gametophyte into five distinct phases. The model is adapted from Arabidopsis thaliana, taking anatomical differences and novel genetic and cellular studies into consideration. With the exception of Phase V, all phases seem to be under sporophytic control in grasses.

  4. The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.

    PubMed

    Schoen, Daniel J; Busch, Jeremiah W

    2009-08-01

    Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus (S-locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S-alleles can be dominant, recessive, or codominant, and that the dominance level of a given S-allele can depend upon whether pollen or stigma specificity is examined. Here and in the companion paper by Llaurens and colleagues, the evolution of dominance in single-locus SSI is explored using numerical models and simulation. Particular attention is directed at factors that can cause S-allele dominance to differ in pollen versus stigma. The effect of recombination between the S-locus and modifier locus is also examined. The models predict that limitation in the number of compatible mates is required for the evolution of S-allele dominance in the stigma but not in the pollen. Tight linkage between the S-locus and modifier promotes the evolution of S-allele dominance hierarchies. Model results are interpreted with respect to published information on the molecular basis of dominance in SSI systems, and reported S-allele dominance relationships in a variety of species. These studies show that dominant S-alleles are more common in the pollen than in the stigma, a pattern that when interpreted in light of model predictions, suggests that mate limitation may be relatively infrequent in natural populations with SSI.

  5. Assimilation of GPM GMI Rainfall Product with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Zavodsky, Bradley

    2015-01-01

    The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the

  6. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.

    PubMed

    Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao

    2017-01-01

    Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. All 17 S-locus F-box proteins of the S2 - and S3 -haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self-incompatibility.

    PubMed

    Li, Shu; Williams, Justin S; Sun, Penglin; Kao, Teh-Hui

    2016-09-01

    The collaborative non-self-recognition model for S-RNase-based self-incompatibility predicts that multiple S-locus F-box proteins (SLFs) produced by pollen of a given S-haplotype collectively mediate ubiquitination and degradation of all non-self S-RNases, but not self S-RNases, in the pollen tube, thereby resulting in cross-compatible pollination but self-incompatible pollination. We had previously used pollen extracts containing GFP-fused S2 -SLF1 (SLF1 with an S2 -haplotype) of Petunia inflata for co-immunoprecipitation (Co-IP) and mass spectrometry (MS), and identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (a conventional Rbx1) as components of the SCF(S) (2-) (SLF) (1) complex. Using pollen extracts containing PiSSK1:FLAG:GFP for Co-IP/MS, we identified two additional SLFs (SLF4 and SLF13) that were assembled into SCF(SLF) complexes. As 17 SLF genes (SLF1 to SLF17) have been identified in S2 and S3 pollen, here we examined whether all 17 SLFs are assembled into similar complexes and, if so, whether these complexes are unique to SLFs. We modified the previous Co-IP/MS procedure, including the addition of style extracts from four different S-genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17 SLFs and an SLF-like protein, SLFLike1 (encoded by an S-locus-linked gene), co-immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F-box proteins predicted by S2 and S3 pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co-immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest that SCF(SLF) complexes have evolved specifically to function in self-incompatibility. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Identification and bioinformatics analysis of microRNAs from the sporophyte and gametophyte of Pyropia haitanensis

    NASA Astrophysics Data System (ADS)

    Huang, Aiyou; Wang, Guangce

    2016-05-01

    Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata ( Porphyra haitanensis) is an economically important genus that is cultured widely in China. P. haitanensis is cultured on a larger scale than Pyropia yezoensis, making up an important part of the total production of cultivated Pyropia in China. However, the majority of molecular mechanisms underlying the physiological processes of P. haitanensis remain unknown. P. haitanensis could utilize inorganic carbon and the sporophytes of P. haitanensis might possess a PCK-type C4-like carbon-fixation pathway. To identify microRNAs and their probable roles in sporophyte and gametophyte development, we constructed and sequenced small RNA libraries from sporophytes and gametophytes of P. haitanensis. Five microRNAs were identified that shared no sequence homology with known microRNAs. Our results indicated that P. haitanensis might posses a complex sRNA processing system in which the novel microRNAs act as important regulators of the development of different generations of P. haitanensis.

  9. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine

    2013-08-01

    High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.

  10. The Role of Late-Acting Self-Incompatibility and Early-Acting Inbreeding Depression in Governing Female Fertility in Monkshood, Aconitum kusnezoffii

    PubMed Central

    Hao, Yi-Qi; Zhao, Xin-Feng; She, Deng-Ying; Xu, Bing; Zhang, Da-Yong; Liao, Wan-Jin

    2012-01-01

    Reduced seed yields following self-pollination have repeatedly been observed, but the underlying mechanisms remain elusive when self-pollen tubes can readily grow into ovaries, because pre-, post-zygotic late-acting self-incompatibility (LSI), or early-acting inbreeding depression (ID) can induce self-sterility. The main objective of this study was to differentiate these processes in Aconitum kusnezoffii, a plant lacking stigmatic or stylar inhibition of self-pollination. We performed a hand-pollination experiment in a natural population of A. kusnezoffii, compared seed set among five pollination treatments, and evaluated the distribution of seed size and seed set. Embryonic development suggested fertilization following self-pollination. A partial pre-zygotic LSI was suggested to account for the reduced seed set by two lines of evidence. The seed set of chase-pollination treatment significantly exceeded that of self-pollination treatment, and the proportion of unfertilized ovules was the highest following self-pollination. Meanwhile, early-acting ID, rather than post-zygotic LSI, was suggested by the findings that the size of aborted selfed seeds varied continuously and widely; and the selfed seed set both exhibited a continuous distribution and positively correlated with the crossed seed set. These results indicated that the embryos were aborted at different stages due to the expression of many deleterious alleles throughout the genome during seed maturation. No signature of post-zygotic LSI was found. Both partial pre-zygotic LSI and early-acting ID contribute to the reduction in selfed seed set in A. kusnezoffii, with pre-zygotic LSI rejecting part of the self-pollen and early-acting ID aborting part of the self-fertilized seeds. PMID:23056570

  11. Grid Computing at GSI for ALICE and FAIR - present and future

    NASA Astrophysics Data System (ADS)

    Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten

    2012-12-01

    The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE@CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.

  12. Determination of the mechanical parameters of rock mass based on a GSI system and displacement back analysis

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam

    2017-08-01

    It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.

  13. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility.

    PubMed

    Barnard-Kubow, Karen B; McCoy, Morgan A; Galloway, Laura F

    2017-02-01

    Although organelle inheritance is predominantly maternal across animals and plants, biparental chloroplast inheritance has arisen multiple times in the angiosperms. Biparental inheritance has the potential to impact the evolutionary dynamics of cytonuclear incompatibility, interactions between nuclear and organelle genomes that are proposed to be among the earliest types of genetic incompatibility to arise in speciation. We examine the interplay between biparental inheritance and cytonuclear incompatibility in Campanulastrum americanum, a plant species exhibiting both traits. We first determine patterns of chloroplast inheritance in genetically similar and divergent crosses, and then associate inheritance with hybrid survival across multiple generations. There is substantial biparental inheritance in C. americanum. The frequency of biparental inheritance is greater in divergent crosses and in the presence of cytonuclear incompatibility. Biparental inheritance helps to mitigate cytonuclear incompatibility, leading to increased fitness of F 1 hybrids and recovery in the F 2 generation. This study demonstrates the potential for biparental chloroplast inheritance to rescue cytonuclear compatibility, reducing cytonuclear incompatibility's contribution to reproductive isolation and potentially slowing speciation. The efficacy of rescue depended upon the strength of incompatibility, with a greater persistence of weak incompatibilities in later generations. These findings suggest that incompatible plastids may lead to selection for biparental inheritance. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Comparison of Dextran Perfusion and GSI-B4 Isolectin Staining in a Mouse Model of Oxygen-induced Retinopathy.

    PubMed

    Huang, Shaofen; Liang, Jiajian; Yam, Gary Hin-Fai; Lu, Zhihao; Pang, Chi Pui; Chen, Haoyu

    2015-06-01

    Oxygen-induced retinopathy (OIR) is a robust and widely used animal model for the study of retinal neovascularization (NV). Dextran perfusion and Griffonia simplicifolia isolectin B4 (GSI-B4) staining are two common methods for examining the occurrence and extent of OIR. This study provides a quantitative comparison of the two for OIR detection. At postnatal day 7 (PN7), fifteen C57BL/6J mice were exposed to a 75% hyperoxic condition for 5 days and then returned to room air conditions. At PN17, the mice received intravitreal injection of GSI-B4 Alexa Fluor 568 conjugate. After 10 hours, they were infused with FITC-dextran conjugate via the left ventricle. Retinal flat mounts were photographed by confocal microscopy. Areas with fluorescent signals and the total retinal areas were quantified by Image J software. Both GSI-B4 and dextran detected the peripheral neovascular area. The mean hyper fluorescence area was 0.33 ± 0.14% of whole retinal area determined by GSI-B4 staining and 0.25 ± 0.28% determined by dextran perfusion. The difference between the two measures was 0.08% (95% CI:-0.59%, 0.43%). The Pearson correlation coefficient between the two methods was 0.386,P =0.035. The mean coincidence rates were 14.3 ± 13.4% and 24.9 ± 18.5% for GSI-B4 and dextran staining, respectively. Both methods can complement each other in demonstrating and quantitatively evaluating retinal NV. A poor agreement was found between the two methods; GSI-B4 isolectin was more effective than FITC-dextran perfusion in evaluating the extent of retinal NV in a mouse model of OIR.

  15. Future Facility: FAIR at GSI

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2007-05-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  16. A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.

    PubMed

    Billiard, Sylvain; Castric, Vincent; Vekemans, Xavier

    2007-03-01

    We developed a general model of sporophytic self-incompatibility under negative frequency-dependent selection allowing complex patterns of dominance among alleles. We used this model deterministically to investigate the effects on equilibrium allelic frequencies of the number of dominance classes, the number of alleles per dominance class, the asymmetry in dominance expression between pollen and pistil, and whether selection acts on male fitness only or both on male and on female fitnesses. We show that the so-called "recessive effect" occurs under a wide variety of situations. We found emerging properties of finite population models with several alleles per dominance class such as that higher numbers of alleles are maintained in more dominant classes and that the number of dominance classes can evolve. We also investigated the occurrence of homozygous genotypes and found that substantial proportions of those can occur for the most recessive alleles. We used the model for two species with complex dominance patterns to test whether allelic frequencies in natural populations are in agreement with the distribution predicted by our model. We suggest that the model can be used to test explicitly for additional, allele-specific, selective forces.

  17. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  18. Resistance to the Gal-M gametophyte factor in maize: A genetic solution to an undervalued risk

    USDA-ARS?s Scientific Manuscript database

    Due to maize’s wind-driven pollination, non-target pollen contamination is problematic for producers and breeders. Maize gametophyte factors have long been used to produce selectively pollinating phenotypes. The use of these factors is the cornerstone of commercial popcorn production, and they are u...

  19. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.

    PubMed

    Frank, Margaret H; Scanlon, Michael J

    2015-02-01

    Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida.

    PubMed

    Leal, Pablo P; Hurd, Catriona L; Fernández, Pamela A; Roleda, Michael Y

    2017-06-01

    The absorption of anthropogenic CO 2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pH T 7.20, extreme OA predicted for 2300; pH T 7.65, OA predicted for 2100; pH T 8.01, ambient pH; and pH T 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pH T (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pH T (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pH T treatments, except for U. pinnatifida at pH T 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pH T treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA. © 2017 Phycological Society of America.

  1. Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.

  2. Applications of the pulsed gas stripper technique at the GSI UNILAC

    NASA Astrophysics Data System (ADS)

    Scharrer, P.; Barth, W.; Bevcic, M.; Düllmann, Ch. E.; Gerhard, P.; Groening, L.; Horn, K. P.; Jäger, E.; Khuyagbaatar, J.; Krier, J.; Vormann, H.; Yakushev, A.

    2017-08-01

    In the frame of an upgrade program for the GSI UNILAC, preparing it for the use as an injector system for FAIR, a pulsed gas stripper cell was developed. It utilizes the required low duty cycle by applying a pulsed gas injection instead of a continuous gas inlet. The resulting lower gas consumption rate enables the use of low-Z gas targets over a wide range of stripper target thicknesses. The setup enables an increased flexibility for the accelerator by allowing the gas stripper to be used in time-sharing beam operation matching the capabilities of the GSI UNILAC like the acceleration of different ion beams in quasi-parallel operation. Measured charge state distributions of 238U, 50Ti, and CH3 beams on H2 and N2 gas highlight the benefits of the pulsed gas stripper cell for the accelerator operation and performance.

  3. Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae).

    PubMed

    Saumitou-Laprade, Pierre; Vernet, Philippe; Dowkiw, Arnaud; Bertrand, Sylvain; Billiard, Sylvain; Albert, Béatrice; Gouyon, Pierre-Henri; Dufay, Mathilde

    2018-02-28

    How flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash ( Fraxinus excelsior ), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype. The reproductive system in F. excelsior that was previously viewed as polygamy (co-occurrence of unisexuals and hermaphrodites with varying degrees of allocation to the male and female functions) and thus appears to actually behave as a subdioecious system. Hermaphrodites and females belong to one SI group and functionally reproduce as females, whereas males and male-biased hermaphrodites belong to the other SI group and are functionally males. Our results offer an alternative mechanism for the evolution of sexual specialization in flowering plants. © 2018 The Author(s).

  4. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica).

    PubMed

    Minamikawa, Mai F; Koyano, Ruriko; Kikuchi, Shinji; Koba, Takato; Sassa, Hidenori

    2014-01-01

    Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.

  5. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple.

    PubMed

    Yuan, Hui; Meng, Dong; Gu, Zhaoyu; Li, Wei; Wang, Aide; Yang, Qing; Zhu, Yuandi; Li, Tianzhong

    2014-07-01

    As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Does Identity Incompatibility Lead to Disidentification? Internal Motivation to Be a Group Member Acts As Buffer for Sojourners from Independent Cultures, Whereas External Motivation Acts As Buffer for Sojourners from Interdependent Cultures

    PubMed Central

    Matschke, Christina; Fehr, Jennifer

    2017-01-01

    Most individuals possess more than one relevant social identity, but these social identities can be more or less incompatible. Research has demonstrated that incompatibility between an established social identity and a potential new social identity impedes the integration into the new group. We argue that incompatibility is a strong risk factor for disidentification, i.e., a negative self-defining relation to a relevant group. The current research investigates the impact of incompatibilities on disidentification in the acculturation context. We propose that incompatibility between one’s cultural identities increases the disidentification with the receiving society. It has, however, been shown that the motivation to be a group member serves as a buffer against negative integration experiences. Moreover, research from the intercultural domain has shown that intrinsic and extrinsic motivation has specific effects for members of cultures that differ in self-construal. In a European sample of High school exchange students (Study 1, N = 378), it was found that incompatibility was positively related to disidentification, but only for less (but not more) intrinsically motivated newcomers. In an Asian sample of international university students (Study 2, N = 74), it was found that incompatibility was also positively related to disidentification, but only for less (but not more) extrinsically motivated newcomers. Thus, the findings demonstrate that the effect of incompatibility between social identities on disidentification can be buffered by motivation. The results suggest that, depending on cultural self-construal, individuals have different resources to buffer the negative effect of incompatibility on the social identity. PMID:28326055

  7. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  8. A genomic approach to identify hybrid incompatibility genes.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2016-07-02

    Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.

  9. A genomic approach to identify hybrid incompatibility genes

    PubMed Central

    Cooper, Jacob C.; Phadnis, Nitin

    2016-01-01

    ABSTRACT Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids. PMID:27230814

  10. 40 CFR 264.257 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL FACILITIES Waste Piles § 264.257 Special requirements for incompatible wastes. (a) Incompatible... placed in the same pile, unless § 264.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in containers, other piles, open tanks, or surface...

  11. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  12. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  13. Measures of disturbance and incompatibility for quantum measurements

    NASA Astrophysics Data System (ADS)

    Mandayam, Prabha; Srinivas, M. D.

    2014-06-01

    We propose a class of incompatibility measures for quantum observables based on quantifying the effect of a measurement of one observable on the statistics of the outcomes of another. Specifically, for a pair of observables A and B with purely discrete spectra, we compare the following two probability distributions: one resulting from a measurement of A followed by a measurement of B on a given state and the other obtained from a measurement of B alone on the same state. We show that maximizing the distance between these two distributions over all states yields a valid measure of the incompatibility of observables A and B, which is zero if and only if they commute and is strictly greater than zero (and less than or equal to one) otherwise. For finite-dimensional systems, we obtain a tight upper bound on the incompatibility of any pair of observables and show that the bound is attained when the observables are totally nondegenerate and associated with mutually unbiased bases. In the process, we also establish an important relation between the incompatibility of a pair of observables and the maximal disturbances due to their measurements. Finally, we indicate how these measures of incompatibility and disturbance can be extended to the more general class of nonprojective measurements. In particular, we obtain a nontrivial upper bound on the incompatibility of one Lüders instrument with another.

  14. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

    PubMed

    Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui

    2014-07-01

    Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Specific issues in living donor kidney transplantation: ABO - incompatibility.

    PubMed

    Thaiss, Friedrich

    2009-12-29

    Pre-emptive living kidney transplantation is the best choice of therapy to treat patients with advanced renal insufficiency. Unfortunately in up to one third of all cases kidney donation was refused due to blood group incompatibility. Limitations in donor availability for kidney transplantation therefore require that ABO-incompatible transplantation is safely established. This has changed when a new protocol was introduced in Stockholm, Sweden, in 2001. Almost 400 ABO-incompatible transplantations have since been performed in more than 20 centers with this protocol in Europe. ABO-incompatible living kidney transplantation can now be offered to our patients with advanced kidney disease as a safe procedure. To get more insight into the role ABO-incompatible organ transplantation might play in the near future transplantation centers currently involved in these processes should share their data to answer the unresolved issues we are concerned. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Outcomes after ABO-incompatible heart transplantation in adults: A registry study.

    PubMed

    Bergenfeldt, Henrik; Andersson, Bodil; Bućin, Dragan; Stehlik, Josef; Edwards, Leah; Rådegran, Göran; Nilsson, Johan

    2015-07-01

    In the past, ABO incompatibility was considered an absolute contraindication to heart transplantation (HT) in adults. Advances in ABO-incompatible HT in pediatric patients and ABO-incompatible abdominal transplantation in adult patients have led to clinical exploration of intentional ABO-incompatible HT in adults. However, it is not well known how outcomes in ABO-incompatible adult heart transplant recipients compare with outcomes in ABO-compatible recipients. We analyzed International Society for Heart and Lung Transplantation transplant registry data from heart donors and recipients ≥18 years old at the time of transplant for HT performed between 1988 and 2011. We compared baseline characteristics and post-transplant outcomes in ABO-incompatible and ABO-compatible HT. Death or retransplantation was the composite primary end-point. Among 76,663 adult patients undergoing HT between 1988 and June 30, 2011, 94 ABO-incompatible heart transplants were performed. The incidence of death or retransplantation in the ABO-incompatible group was higher than in the ABO-compatible group: 21% vs 9% at 30 days (hazard ratio = 2.38, p < 0.001) and 36% vs 19% at 1 year after transplant. However, ABO-incompatible grafts surviving past the first year after transplant had a similar incidence of failure compared with the ABO-compatible group. After 2005, the rate ABO-incompatible HT in adults increased, likely as a result of planned, intentional (rather than accidental) ABO-incompatible HT. In this group of patients, short-term and long-term incidence of death or retransplantation was similar to ABO-compatible recipients (p = 0.822): 7% at 30 days and 19% at 1 year after transplantation. We found no difference in incidence of death or retransplantation between ABO-compatible and ABO-incompatible HT in patients who underwent transplantation after 2005. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Drug incompatibilities in the adult intensive care unit of a university hospital

    PubMed Central

    Marsilio, Naiane Roveda; da Silva, Daiandy; Bueno, Denise

    2016-01-01

    Objectives This study sought to identify the physical and chemical incompatibilities among the drugs administered intravenously to patients admitted to an adult intensive care unit. We also aimed to establish pharmaceutical guidelines for administering incompatible drugs. Methods This cross-sectional, prospective, and quantitative study was conducted from July to September 2015. Drug incompatibilities were identified based on an analysis of the patient prescriptions available in the hospital online management system. A pharmaceutical intervention was performed using the guidelines on the preparation and administration of incompatible drugs. Adherence to those guidelines was subsequently assessed among the nursing staff. Results A total of 100 prescriptions were analyzed; 68 were incompatible with the intravenous drugs prescribed. A total of 271 drug incompatibilities were found, averaging 4.0 ± 3.3 incompatibilities per prescription. The most commonly found drug incompatibilities were between midazolam and hydrocortisone (8.9%), between cefepime and midazolam (5.2%), and between hydrocortisone and vancomycin (5.2%). The drugs most commonly involved in incompatibilities were midazolam, hydrocortisone, and vancomycin. The most common incompatibilities occurred when a drug was administered via continuous infusion and another was administered intermittently (50%). Of the 68 prescriptions that led to pharmaceutical guidelines, 45 (66.2%) were fully adhered to by the nursing staff. Conclusion Patients under intensive care were subjected to a high rate of incompatibilities. Drug incompatibilities can be identified and eliminated by the pharmacist on the multidisciplinary team, thereby reducing undesirable effects among patients. PMID:27410410

  18. (Dis)similarity in Impulsivity and Marital Satisfaction: A Comparison of Volatility, Compatibility, and Incompatibility Hypotheses

    PubMed Central

    Derrick, Jaye L.; Houston, Rebecca J.; Quigley, Brian M.; Testa, Maria; Kubiak, Audrey; Levitt, Ash; Homish, Gregory G.; Leonard, Kenneth E.

    2016-01-01

    Impulsivity is negatively associated with relationship satisfaction, but whether relationship functioning is harmed or helped when both partners are high in impulsivity is unclear. The influence of impulsivity might be exacerbated (the Volatility Hypothesis) or reversed (the Compatibility Hypothesis). Alternatively, discrepancies in impulsivity might be particularly problematic (the Incompatibility Hypothesis). Behavioral and self-report measures of impulsivity were collected from a community sample of couples. Mixed effect polynomial regressions with response surface analysis provide evidence in favor of both the Compatibility Hypothesis and the Incompatibility Hypothesis, but not the Volatility Hypothesis. Mediation analyses suggest results for satisfaction are driven by perceptions of the partner's negative behavior and responsiveness. Implications for the study of both impulsivity and relationship functioning are discussed. PMID:26949275

  19. Genetics of Hybrid Incompatibility Between Lycopersicon esculentum and L. hirsutum

    PubMed Central

    Moyle, Leonie C.; Graham, Elaine B.

    2005-01-01

    We examined the genetics of hybrid incompatibility between two closely related diploid hermaphroditic plant species. Using a set of near-isogenic lines (NILs) representing 85% of the genome of the wild species Lycopersicon hirsutum (Solanum habrochaites) in the genetic background of the cultivated tomato L. esculentum (S. lycopersicum), we found that hybrid pollen and seed infertility are each based on 5–11 QTL that individually reduce hybrid fitness by 36–90%. Seed infertility QTL act additively or recessively, consistent with findings in other systems where incompatibility loci have largely been recessive. Genetic lengths of introgressed chromosomal segments explain little of the variation for hybrid incompatibility among NILs, arguing against an infinitesimal model of hybrid incompatibility and reinforcing our inference of a limited number of discrete incompatibility factors between these species. In addition, male (pollen) and other (seed) incompatibility factors are roughly comparable in number. The latter two findings contrast strongly with data from Drosophila where hybrid incompatibility can be highly polygenic and complex, and male sterility evolves substantially faster than female sterility or hybrid inviability. The observed differences between Lycopersicon and Drosophila might be due to differences in sex determination system, reproductive and mating biology, and/or the prevalence of sexual interactions such as sexual selection. PMID:15466436

  20. 30 CFR 57.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of incompatible substances. 57.16012 Section 57.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16012 Storage of incompatible substances. Chemical substances, including...

  1. 30 CFR 56.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of incompatible substances. 56.16012 Section 56.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16012 Storage of incompatible substances. Chemical substances, including...

  2. 30 CFR 57.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of incompatible substances. 57.16012 Section 57.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16012 Storage of incompatible substances. Chemical substances, including...

  3. 30 CFR 56.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of incompatible substances. 56.16012 Section 56.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16012 Storage of incompatible substances. Chemical substances, including...

  4. Gametophyte differentiation and imprinting control in plants: Crosstalk between RBR and chromatin.

    PubMed

    Johnston, Amal J; Gruissem, Wilhelm

    2009-01-01

    The Retinoblastoma (pRb) pathway has been implicated as a convergent regulatory unit in the control of cell cycle and disease. We have shown that a crosstalk between RETINOBLASTOMA RELATED (RBR), the Arabidopsis homologue of pRb, and the genes encoding proteins of the chromatin complexes involved in DNA or histone methylation, controls gametophytic and post-fertilization differentiation events and a subset of imprinting effects. We describe here a plausible model that incorporates several components of the plant Retinoblastoma pathway, thus offering a novel paradigm that merges the traditional cell cycle and the chromatin components in the control of cell differentiation and imprinting.

  5. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krainov, V. P., E-mail: vpkrainov@mail.ru

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeemanmore » splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.« less

  6. Perceived Self-Control is Related to Mental Distress in Patients Entering Substance Use Disorder Treatment.

    PubMed

    Abel, Kristine Fiksdal; Skjærvø, Ingeborg; Ravndal, Edle; Clausen, Thomas; Bramness, Jørgen G

    2018-01-05

    Levels of mental distress are high in patients with substance use disorders (SUD) and investigation of correlates may broaden our understanding of this comorbidity. We investigated self-reported symptoms of mental distress among individuals entering either outpatient opioid maintenance treatment (OMT) or other inpatient SUD treatment and related factors, with a particular focus on perceived self-control. A cross-sectional study including substance users (n = 548; mean age 34 years; 27% women) entering treatment at 21 different treatment-centers across Norway, interviewed between December 2012 and April 2015. Symptoms of mental distress were assessed with Global Symptom Index (GSI) score. Adjusted relative risk ratios (RRR) with 95% confidence intervals (CI) were estimated through multinomial logistic regression. More than half of the participants in both treatment groups reported mental distress (GSI) above clinical cut-off. The use of alcohol and exposure to violence were associated with increased likelihood of high GSI for both patient groups. Also, lower perceived self-control was related to high GSI in both treatment groups. Symptoms of mental distress were equally common among patients entering OMT and those entering other inpatient SUD treatment, even if the patients differed on a number of clinical characteristics. Use of alcohol and exposure to violence were associated with more mental distress in both groups. Perceived self-control also appeared to be important when explaining symptoms of mental distress among these SUD patients.

  7. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    PubMed

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  8. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub.

    PubMed

    Suarez-Gonzalez, Adriana; Good, Sara V

    2014-03-01

    A vast quantity of empirical evidence suggests that insufficient quantity or quality of pollen may lead to a reduction in fruit set, in particular for self-incompatible species. This study uses an integrative approach that combines field research with marker gene analysis to understand the factors affecting reproductive success in a widely distributed self-incompatible species, Prunus virginiana (Rosaceae). Twelve patches of P. virginiana distributed within three populations that differed in degree of disturbance were examined. Two of the sites were small (7-35 km(2)) remnants of forest in an intensively used agricultural landscape, while the third was continuous (350 km(2)) and less disturbed. Field studies (natural and hand cross-pollinations) were combined with marker gene analyses (microsatellites and S-locus) in order to explore potential factors affecting pollen delivery and consequently reproductive success at landscape (between populations) and fine scales (within populations). Reductions in reproductive output were found in the two fragments compared with the continuous population, and suggest that pollen is an important factor limiting fruit production. Genetic analyses carried out in one of the fragments and in the continuous site suggest that even though S-allele diversity is high in both populations, the fragment exhibits an increase in biparental inbreeding and correlated paternity. The increase in biparental inbreeding in the fragment is potentially attributable to variation in the density of individuals and/or the spatial distribution of genotypes among populations, both of which could alter mating dynamics. By using a novel integrative approach, this study shows that even though P. virginiana is a widespread species, fragmented populations can experience significant reductions in fruit set and pollen limitation in the field. Deatiled examination of one fragmented population suggests that these linitations may be explained by an increase in

  9. Histochemical location of key enzyme activities involved in receptivity and self-incompatibility in the olive tree (Olea europaea L.).

    PubMed

    Serrano, Irene; Olmedilla, Adela

    2012-12-01

    Stigma-surface and style enzymes are important for pollen reception, selection and germination. This report deals with the histochemical location of the activity of four basic types of enzyme involved in these processes in the olive (Olea europaea L.). The detection of peroxidase, esterase and acid-phosphatase activities at the surface of the stigma provided evidence of early receptivity in olive pistils. The stigma maintained its receptivity until the arrival of pollen. Acid-phosphatase activity appeared in the style at the moment of anthesis and continued until the fertilization of the ovule. RNase activity was detected in the extracellular matrix of the styles of flowers just before pollination and became especially evident in pistils after self-pollination. This activity gradually decreased until it practically disappeared in more advanced stages. RNase activity was also detected in pollen tubes growing in pollinated pistils and appeared after in vitro germination in the presence of self-incompatible pistils. These findings suggest that RNases may well be involved in intraspecific pollen rejection in olive flowers. To the best of our knowledge this is the first time that evidence of enzyme activity in stigma receptivity and pollen selection has been described in this species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure

    PubMed Central

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-01-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926

  11. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  12. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  13. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  14. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  15. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  16. Sporophytic self-incompatibility in Senecio squalidus L (Asteraceae)--the search for S.

    PubMed

    Hiscock, Simon J; McInnis, Stephanie M; Tabah, David A; Henderson, Catherine A; Brennan, Adrian C

    2003-01-01

    Senecio squalidus (Oxford Ragwort) is being used as a model species to study the genetics and molecular genetics of self-incompatibility (SI) in the Asteraceae. S. squalidus has a strong system of sporophytic SI (SSI) and populations within the UK contain very few S alleles probably due to a population bottleneck experienced on its introduction to the UK. The genetic control of SSI in S. squalidus is complex and may involve a second locus epistatic to S. Progress towards identifying the female determinant of SSI in S. squalidus is reviewed here. Research is focused on plants carrying two defined S alleles, S(1) and S(2). S(2) is dominant to S(1) in pollen and stigma. RT-PCR was used to amplify three SRK-like cDNAs from stigmas of S(1)S(2) heterozygotes, but the expression patterns of these cDNAs suggest that they are unlikely to be directly involved in SI or pollen-stigma interactions in contrast to SSI in the Brassicaceae. Stigma-specific proteins associated with the S(1) allele and the S(2) allele have been identified using isoelectric focusing and these proteins have been designated SSP1 (Stigma S-associated Protein 1) and SSP2. SSP1 and SSP2 cDNAs have been cloned by 3' and 5' RACE and shown to be allelic forms of the same gene, SSP. The expression of SSP and its linkage to the S locus are currently being investigated. Initial results show SSP to be expressed exclusively in stigmas and developmentally regulated, with maximal expression occurring at and just before anthesis when SI is fully functional, SSP expression being undetectable in immature buds. Together these data suggest that SSP is a strong candidate for a Senecio S-gene.

  17. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection.

    PubMed

    Indriolo, Emily; Tharmapalan, Pirashaanthy; Wright, Stephen I; Goring, Daphne R

    2012-11-01

    Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.

  18. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    PubMed

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  19. Rapid evolution of asymmetric reproductive incompatibilities in stalk-eyed flies.

    PubMed

    Rose, Emily G; Brand, Cara L; Wilkinson, Gerald S

    2014-02-01

    The steps by which isolated populations acquire reproductive incompatibilities remain poorly understood. One potentially important process is postcopulatory sexual selection because it can generate divergence between populations in traits that influence fertilization success after copulation. Here we present a comprehensive analysis of this form of reproductive isolation by conducting reciprocal crosses between variably diverged populations of stalk-eyed flies (Teleopsis dalmanni). First, we measure seven types of reproductive incompatibility between copulation and fertilization. We then compare fertilization success to hatching success to quantify hybrid inviability. Finally, we determine if sperm competition acts to reinforce or counteract any incompatibilities. We find evidence for multiple incompatibilities in most crosses, including failure to store sperm after mating, failure of sperm to reach the site of fertilization, failure of sperm to fertilize eggs, and failure of embryos to develop. Local sperm have precedence over foreign sperm, but this effect is due mainly to differences in sperm transfer and reduced hatching success. Crosses between recently diverged populations are asymmetrical with regard to the degree and type of incompatibility. Because sexual conflict in these flies is low, postcopulatory sexual selection, rather than antagonistic coevolution, likely causes incompatibilities due to mismatches between male and female reproductive traits. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Spore germination and gametophyte development of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) under different pH conditions.

    PubMed

    Rechenmacher, C; Schmitt, J L; Droste, A

    2010-12-01

    Cyathea atrovirens (Langsd. & Fisch.) Domin, an intensely exploited tree fern, is found inside forests in several succession stages, as well as in swamps, roadsides and unused fields in the Rio dos Sinos basin, in the state of Rio Grande do Sul, southern Brazil. This study evaluated the in vitro germination and gametophyte development of C. atrovirens under different pH conditions, as well as spore viability after different storage times at 7 ºC. The lowest germination rate of spores was obtained at pH 7.0. At pH 5.0 to 6.5, laminar gametophyte development started at 20 to 30 days of culture. Antheridia and archegonia were first observed at 35 and 128 days, respectively. Storage at 7 ºC did not affect germination rates. The capability of germination at different pH levels may explain the occurrence of the species in a wide range of habitats. The present study contributes to the understanding of the full life-cycle of C. atrovirens and to the analysis of the influence of abiotic components, providing information for the cultivation, management and conservation of the species.

  1. Natural variation for a hybrid incompatibility between two species of Mimulus.

    PubMed

    Sweigart, Andrea L; Mason, Amanda R; Willis, John H

    2007-01-01

    Understanding the process by which hybrid incompatibility alleles become established in natural populations remains a major challenge to evolutionary biology. Previously, we discovered a two-locus Dobzhansky-Muller incompatibility that causes severe hybrid male sterility between two inbred lines of the incompletely isolated wildflower species, Mimulus guttatus and M. nasutus. An interspecific cross between these two inbred lines revealed that the M. guttatus (IM62) allele at hybrid male sterility 1 (hms1) acts dominantly in combination with recessive M. nasutus (SF5) alleles at hybrid male sterility 2 (hms2) to cause nearly complete hybrid male sterility. In this report, we extend these genetic analyses to investigate intraspecific variation for the hms1-hms2 incompatibility in natural populations of M. nasutus and M. guttatus, performing a series of interspecific crosses between individuals collected from a variety of geographic locales. Our results suggest that hms2 incompatibility alleles are common and geographically widespread within M. nasutus, but absent or rare in M. guttatus. In contrast, the hms1 locus is polymorphic within M. guttatus and the incompatibility allele appears to be extremely geographically restricted. We found evidence for the presence of the hms1 incompatibility allele in only two M. guttatus populations that exist within a few kilometers of each other. The restricted distribution of the hms1 incompatibility allele might currently limit the potential for the hms1-hms2 incompatibility to act as a species barrier between sympatric populations of M. guttatus and M. nasutus. Extensive sampling within a single M. guttatus population revealed that the hms1 locus is polymorphic and that the incompatibility allele appears to segregate at intermediate frequency, a pattern that is consistent with either genetic drift or natural selection.

  2. Potential intravenous drug incompatibilities in a pediatric unit.

    PubMed

    Leal, Karla Dalliane Batista; Leopoldino, Ramon Weyler Duarte; Martins, Rand Randall; Veríssimo, Lourena Mafra

    2016-01-01

    To investigate potential intravenous drug incompatibilities and related risk factors in a pediatric unit. A cross-sectional analytical study conducted in the pediatric unit of a university hospital in Brazil. Data on prescriptions given to children aged 0-15 years from June to October 2014 were collected. Prescriptions that did not include intravenous drugs and prescriptions with incomplete dosage regimen or written in poor handwriting were excluded. Associations between variables and the risk of potential incompatibility were investigated using the Student's t test and ANOVA; the level of significance was set at 5% (p<0.05). Relative risks were calculated for each drug involved in potential incompatibility with 95% confidence interval. A total of 222 children participated in the study; 132 (59.5%) children were male and 118 (53.2%) were aged between 0 and 2 years. The mean length of stay was 7.7±2.3 days. Dipyrone, penicillin G and ceftriaxona were the most commonly prescribed drugs. At least one potential incompatibility was detected in about 85% of children (1.2 incompatibility/patient ratio). Most incompatibilities detected fell into the non-tested (93.4%), precipitation (5.5%), turbidity (0.7%) or chemical decomposition (0.4%) categories. The number of drugs and prescription of diazepam, phenytoin, phenobarbital or metronidazole were risk factors for potential incompatibility. Most pediatric prescriptions involved potential incompatibilities, with higher prevalence of non-tested incompatibilities. The number of drugs and prescription of diazepam, phenobarbital, phenytoin or metronidazole were risk factors for potential incompatibilities. Avaliar o potencial de incompatibilidade dos medicamentos intravenosos, identificando possíveis fatores de risco em uma unidade pediátrica. Trata-se de um estudo observacional analítico do tipo transversal realizado na unidade de pediatria de um hospital de ensino no Brasil. Os dados foram coletados de junho a outubro de

  3. [The kidney transplantation from the ABO-incompatible donors].

    PubMed

    Goriaĭnov, V A; Kaabak, M M; Babenko, N N; Shishlo, L A; Morozova, M M; Ragimov, A A; Dashkova, N G; Salimov, É L

    2012-01-01

    The experience of 28 allotransplantations of ABO-incompatible kidneys was compared with the treatment results of 38 ABO-compatible renal transplantations. The transplanted kidney function, morphological changes of the transplanted kidney and the comparative analysis of actuary survival in both groups showed no significant difference. The results of the study prove the validity of the kidney transplantation from the ABO-incompatible donors.

  4. Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort)

    PubMed Central

    Allen, Alexandra M.; Thorogood, Christopher J.; Hegarty, Matthew J.; Lexer, Christian; Hiscock, Simon J.

    2011-01-01

    Background Pollen–pistil interactions are an essential prelude to fertilization in angiosperms and determine compatibility/incompatibility. Pollen–pistil interactions have been studied at a molecular and cellular level in relatively few families. Self-incompatibility (SI) is the best understood pollen–pistil interaction at a molecular level where three different molecular mechanisms have been identified in just five families. Here we review studies of pollen–pistil interactions and SI in the Asteraceae, an important family that has been relatively understudied in these areas of reproductive biology. Scope We begin by describing the historical literature which first identified sporophytic SI (SSI) in species of Asteraceae, the SI system later identified and characterized at a molecular level in the Brassicaceae. Early structural and cytological studies in these two families suggested that pollen–pistil interactions and SSI were similar, if not the same. Recent cellular and molecular studies in Senecio squalidus (Oxford ragwort) have challenged this belief by revealing that despite sharing the same genetic system of SSI, the Brassicaceae and Asteraceae molecular mechanisms are different. Key cellular differences have also been highlighted in pollen–stigma interactions, which may arise as a consequence of the Asteraceae possessing a ‘semi-dry’ stigma, rather than the ‘dry’ stigma typical of the Brassicaceae. The review concludes with a summary of recent transcriptomic analyses aimed at identifying proteins regulating pollen–pistil interactions and SI in S. squalidus, and by implication the Asteraceae. The Senecio pistil transcriptome contains many novel pistil-specific genes, but also pistil-specific genes previously shown to play a role in pollen–pistil interactions in other species. Conclusions Studies in S. squalidus have shown that stigma structure and the molecular mechanism of SSI in the Asteraceae and Brassicaceae are different. The

  5. 40 CFR 264.199 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...

  6. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  7. Two non-allelic nuclear genes restore fertility in a gametophytic pattern and enhance abiotic stress tolerance in the hybrid rice plant.

    PubMed

    Huang, Wenchao; Hu, Jun; Yu, Changchun; Huang, Qi; Wan, Lei; Wang, Lili; Qin, Xiaojian; Ji, Yanxiao; Zhu, Renshan; Li, Shaoqing; Zhu, Yingguo

    2012-03-01

    In indica rice, the HongLian (HL)-type combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) is widely used for the production of commercial hybrid seeds in China, Laos, Vietnam and other Southeast Asian countries. Generally, any member of the gametophytic fertility restoration system, 50% of the pollen in hybrid F(1) plants displays recovered sterility. In this study, however, a HL-type hybrid variety named HongLian You6 had approximately 75% normal (viable) pollen rather than the expected 50%. To resolve this discrepancy, several fertility segregation populations, including F(2) and BC(1)F(1) derived from the HL-CMS line Yuetai A crossed with the restorer line 9311, were constructed and subjected to genetic analysis. A gametophytic restoration model was discovered to involve two non-allelic nuclear restorer genes, Rf5 and Rf6. The Rf5 had been previously identified using a positional clone strategy. The Rf6 gene represents a new restorer gene locus, which was mapped to the short arm of chromosome 8. The hybrid F(1) plants containing one restorer gene, either Rf5 or Rf6, displayed 50% normal pollen grains with I(2)-KI solution; however, those with both Rf5 and Rf6 displayed 75% normal pollens. We also established that the hybrid F(1) plants including both non-allelic restorer genes exhibited an increased stable seed setting when subjected to stress versus the F(1) plants with only one restorer gene. Finally, we discuss the breeding scheme for the plant gametophytic CMS/Rf system.

  8. 40 CFR 265.257 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.257 Special requirements for incompatible wastes. (a... the same pile, unless § 265.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in other containers, piles, open tanks, or surface...

  9. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub

    PubMed Central

    Suarez-Gonzalez, Adriana; Good, Sara V.

    2014-01-01

    Background and Aims A vast quantity of empirical evidence suggests that insufficient quantity or quality of pollen may lead to a reduction in fruit set, in particular for self-incompatible species. This study uses an integrative approach that combines field research with marker gene analysis to understand the factors affecting reproductive success in a widely distributed self-incompatible species, Prunus virginiana (Rosaceae). Methods Twelve patches of P. virginiana distributed within three populations that differed in degree of disturbance were examined. Two of the sites were small (7–35 km2) remnants of forest in an intensively used agricultural landscape, while the third was continuous (350 km2) and less disturbed. Field studies (natural and hand cross-pollinations) were combined with marker gene analyses (microsatellites and S-locus) in order to explore potential factors affecting pollen delivery and consequently reproductive success at landscape (between populations) and fine scales (within populations). Key Results Reductions in reproductive output were found in the two fragments compared with the continuous population, and suggest that pollen is an important factor limiting fruit production. Genetic analyses carried out in one of the fragments and in the continuous site suggest that even though S-allele diversity is high in both populations, the fragment exhibits an increase in biparental inbreeding and correlated paternity. The increase in biparental inbreeding in the fragment is potentially attributable to variation in the density of individuals and/or the spatial distribution of genotypes among populations, both of which could alter mating dynamics. Conclusions By using a novel integrative approach, this study shows that even though P. virginiana is a widespread species, fragmented populations can experience significant reductions in fruit set and pollen limitation in the field. Deatiled examination of one fragmented population suggests that these

  10. Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes.

    PubMed

    Simioni, Carmen; Schmidt, Éder C; Rover, Ticiane; dos Santos, Rodrigo; Filipin, Elisa P; Pereira, Debora T; Costa, Giulia Burle; Oliveira, Eva Regina; Chow, Fungyi; Ramlov, Fernanda; Ouriques, Luciane; Maraschin, Marcelo; Bouzon, Zenilda L

    2015-09-01

    By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 μM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 μM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 μM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 μM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.

  11. Breaking Gaussian incompatibility on continuous variable quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi; Kiukas, Jukka, E-mail: jukka.kiukas@aber.ac.uk; Schultz, Jussi, E-mail: jussi.schultz@gmail.com

    2015-08-15

    We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.

  12. Is conscientious objection incompatible with a physician's professional obligations?

    PubMed

    Wicclair, Mark R

    2008-01-01

    In response to physicians who refuse to provide medical services that are contrary to their ethical and/or religious beliefs, it is sometimes asserted that anyone who is not willing to provide legally and professionally permitted medical services should choose another profession. This article critically examines the underlying assumption that conscientious objection is incompatible with a physician's professional obligations (the "incompatibility thesis"). Several accounts of the professional obligations of physicians are explored: general ethical theories (consequentialism, contractarianism, and rights-based theories), internal morality (essentialist and non-essentialist conceptions), reciprocal justice, social contract, and promising. It is argued that none of these accounts of a physician's professional obligations unequivocally supports the incompatibility thesis.

  13. In Silico Evidence for the Horizontal Transfer of gsiB, a σΒ-Regulated Gene in Gram-Positive Bacteria, to Lactic Acid Bacteria ▿

    PubMed Central

    Asteri, Ioanna-Areti; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E.; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2011-01-01

    gsiB, coding for glucose starvation-inducible protein B, is a characteristic member of the σΒ stress regulon of Bacillus subtilis and several other Gram-positive bacteria. Here we provide in silico evidence for the horizontal transfer of gsiB in lactic acid bacteria that are devoid of the σΒ factor. PMID:21421783

  14. SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida

    PubMed Central

    Liu, Wei; Fan, Jiangbo; Li, Junhui; Song, Yanzhai; Li, Qun; Zhang, Yu'e; Xue, Yongbiao

    2014-01-01

    Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCFSLF-mediated non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida. PMID:25101113

  15. Evaluation of Reference Genes for RT qPCR Analyses of Structure-Specific and Hormone Regulated Gene Expression in Physcomitrella patens Gametophytes

    PubMed Central

    Le Bail, Aude; Scholz, Sebastian; Kost, Benedikt

    2013-01-01

    The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions. PMID:23951063

  16. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise.

    PubMed

    Kogan, Pablo; Arenas, Jorge P; Bermejo, Fernando; Hinalaf, María; Turra, Bruno

    2018-06-13

    Urban soundscapes are dynamic and complex multivariable environmental systems. Soundscapes can be organized into three main entities containing the multiple variables: Experienced Environment (EE), Acoustic Environment (AE), and Extra-Acoustic Environment (XE). This work applies a multidimensional and synchronic data-collecting methodology at eight urban environments in the city of Córdoba, Argentina. The EE was assessed by means of surveys, the AE by acoustic measurements and audio recordings, and the XE by photos, video, and complementary sources. In total, 39 measurement locations were considered, where data corresponding to 61 AE and 203 EE were collected. Multivariate analysis and GIS techniques were used for data processing. The types of sound sources perceived, and their extents make up part of the collected variables that belong to the EE, i.e. traffic, people, natural sounds, and others. Sources explaining most of the variance were traffic noise and natural sounds. Thus, a Green Soundscape Index (GSI) is defined here as the ratio of the perceived extents of natural sounds to traffic noise. Collected data were divided into three ranges according to GSI value: 1) perceptual predominance of traffic noise, 2) balanced perception, and 3) perceptual predominance of natural sounds. For each group, three additional variables from the EE and three from the AE were applied, which reported significant differences, especially between ranges 1 and 2 with 3. These results confirm the key role of perceiving natural sounds in a town environment and also support the proposal of a GSI as a valuable indicator to classify urban soundscapes. In addition, the collected GSI-related data significantly helps to assess the overall soundscape. It is noted that this proposed simple perceptual index not only allows one to assess and classify urban soundscapes but also contributes greatly toward a technique for separating environmental sound sources. Copyright © 2018 Elsevier B

  17. Differential interspecific incompatibility in Populus breeding

    Treesearch

    A. Assibi Mahama; Ronald S., Jr. Zalesny; Richard B. Hall

    2006-01-01

    Interspecific hybrids of Populus are valuable in tree production systems. Hybrid vigor is achieved for various traits and is useful for transferring disease and pest resistance. Incompatibility, however, sometimes precludes such combinations.

  18. Vegetative Incompatibility and the Mating-Type Locus in the Cellular Slime Mold DICTYOSTELIUM DISCOIDEUM

    PubMed Central

    Robson, Gillian E.; Williams, Keith L.

    1979-01-01

    The genetic basis of vegetative incompatibility in the cellular slime mold, Dictyostelium discoideum, is elucidated. Vegetatively compatible haploid strains from parasexual diploids at a frequency of between 10-6 and 10-5, whereas "escaped" diploids are formed between vegetatively incompatible strains at a frequency of ∼10-8. There is probably only a single vegetative incompatibility site, which appears to be located at, or closely linked to, the mating-type locus. The nature of the vegetative incompatibility is deduced from parasexual diploid formation between wild isolates and tester strains of each mating type, examination of the frequency of formation of "escaped" diploids formed between vegetatively incompatible strains, and examination of the mating type and vegetative incompatibility of haploid segregants obtained from "escaped" diploids. PMID:17248984

  19. [Kidney allotransplantation from the AB0-incompatible donors].

    PubMed

    Goriaĭnov, V A; Kaabak, M M; Babenko, N N; Shishlo, L A; Morozova, M M; Ragimov, A A; Dazhkova, N G; Salimov, E L

    2013-01-01

    The experience of 28 kidney allotransplantations from the AB0-incompatible donors was analyzed. The comparative group consisted of 38 patients, who received the AB0-compatible organ. The results were assessed using the following parameters: renal function, morphology of the biopsy samples of the transplanted kidney and actuary survival of the recipients with functioning transplants in both groups. The comparative analysis showed no significant difference between the two groups, giving the right to consider the kidney allotransplantation from the AB0-incompatible donors safe and effective.

  20. A molecular genetic model for the function of the Gametophyte Factor locus (ga1) in maize

    USDA-ARS?s Scientific Manuscript database

    The ga1 locus of maize confers unilateral cross incompatibility, preventing cross pollination between females carrying the incompatible allele and males not carrying a corresponding compatible allele. To characterize this system at the molecular level, we carried out a transcript profiling experime...

  1. Transfer of an implied incompatible spatial mapping to a Simon task.

    PubMed

    Luo, Chunming; Proctor, Robert W

    2016-02-01

    When location words left and right are presented in left and right locations and mapped to left and right keypress responses in the Hedge and Marsh (1975) task (Arend & Wandmacher, 1987), a compatible mapping of words to responses yields a benefit for stimulus-response location correspondence (sometimes called the Simon effect), whereas an incompatible mapping yields a benefit for noncorrespondence (called the Hedge and Marsh reversal). Experiment 1 replicated the correspondence benefit and its reversal by using Chinese location words [symbol: see text] (left) and [symbol: see text] (right) in the Hedge and Marsh task. Experiments 2 and 3 examined whether the tendency to respond with the noncorresponding response when the mapping is incompatible transfers to the task version in which the mapping is compatible, and Experiment 4 examined whether transfer similarly occurs from the compatible mapping to the task version with incompatible mapping. Transfer of the incompatible relation was apparent in a lack of correspondence benefit when the mapping was changed to compatible, but transfer of the compatible relation to the incompatible mapping did not occur. The results suggest that an association between noncorresponding stimulus-response locations is acquired when the word-response mapping is incompatible, even though this relation is only implicit, regardless of whether through misapplication of a logical recoding rule or spatial representations shared by the locations and words. These associations then continue to affect processing of location when the mapping is compatible. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  3. Conceptualizing a Genomics Software Institute (GSI)

    PubMed Central

    Gilbert, Jack A.; Catlett, Charlie; Desai, Narayan; Knight, Rob; White, Owen; Robbins, Robert; Sankaran, Rajesh; Sansone, Susanna-Assunta; Field, Dawn; Meyer, Folker

    2012-01-01

    Microbial ecology has been enhanced greatly by the ongoing ‘omics revolution, bringing half the world's biomass and most of its biodiversity into analytical view for the first time; indeed, it feels almost like the invention of the microscope and the discovery of the new world at the same time. With major microbial ecology research efforts accumulating prodigious quantities of sequence, protein, and metabolite data, we are now poised to address environmental microbial research at macro scales, and to begin to characterize and understand the dimensions of microbial biodiversity on the planet. What is currently impeding progress is the need for a framework within which the research community can develop, exchange and discuss predictive ecosystem models that describe the biodiversity and functional interactions. Such a framework must encompass data and metadata transparency and interoperation; data and results validation, curation, and search; application programming interfaces for modeling and analysis tools; and human and technical processes and services necessary to ensure broad adoption. Here we discuss the need for focused community interaction to augment and deepen established community efforts, beginning with the Genomic Standards Consortium (GSC), to create a science-driven strategic plan for a Genomic Software Institute (GSI). PMID:22675605

  4. The FIRST experiment at GSI

    NASA Astrophysics Data System (ADS)

    Pleskac, R.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, C.; Golosio, B.; Gallardo, M. I.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Piersanti, L.; Quesada, J. M.; Raciti, G.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.; Patera, V.

    2012-06-01

    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an already existing setup made of a dipole magnet (ALADiN), a time projection chamber (TP-MUSIC IV), a neutron detector (LAND) and a time of flight scintillator system (TOFWALL). This pre-existing setup has been integrated with newly designed detectors in the Interaction Region, around the carbon target placed in a sample changer. The new detectors are a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger scintillator system optimized for the detection of light fragments emitted at large angles. In this paper we review the experimental setup, then we present the simulation software, the data acquisition system and finally the trigger strategy of the experiment.

  5. N2pc is modulated by stimulus-stimulus, but not by stimulus-response incompatibilities.

    PubMed

    Cespón, J; Galdo-Álvarez, S; Díaz, F

    2013-04-01

    Studies of the N2pc in Simon-type tasks have revealed inconsistent results. That is, N2pc was only modulated when a stimulus-stimulus (S-S) overlap covaries with the stimulus-response (S-R) overlap. The present study aimed to establish whether N2pc is modulated by the S-R or by the S-S overlap. Therefore, we designed a Simon task requiring response to a colour stimulus (an arrow) with two irrelevant dimensions (position and direction). The following conditions were thus generated: compatible direction-compatible position (CDCP); incompatible direction-compatible position (IDCP); compatible direction-incompatible position (CDIP); and incompatible direction-incompatible position (IDIP). In IDCP and CDIP, both irrelevant dimensions conveyed contradictory spatial information (S-S incompatibility), while compatibility between both irrelevant dimensions occurred in CDCP and IDIP (the direction indicated was compatible with stimulus position). The N2pc amplitude was smaller in IDCP and CDIP than in CDCP and IDIP, what suggests that N2pc was modulated by S-S incompatibility and not by S-R incompatibilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Mutant selection in the self-incompatible plant radish (Raphanus sativus L. var. sativus) using two-step TILLING

    PubMed Central

    Kohzuma, Kaori; Chiba, Motoko; Nagano, Soichiro; Anai, Toyoaki; Ueda, Miki U.; Oguchi, Riichi; Shirai, Kazumasa; Hanada, Kousuke; Hikosaka, Kouki; Fujii, Nobuharu

    2017-01-01

    Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BC1M1 line, that is, progenies of M1 plants crossed with wild-type, and the second step is performed to identify BC1M1 individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six RBCS genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BC1M1 lines using our newly developed TILLING strategy and obtained six mutant lines for the six RsRBCS genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements. PMID:28744180

  7. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility.

    PubMed

    Tsuchimatsu, T; Shimizu, K K

    2013-10-01

    The evolution of self-compatibility (SC) by the loss of self-incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S-locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC-conferring mutations at the S-locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC-conferring mutations at the S-locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC-conferring mutations on the male and female specificity genes. We found that male SC-conferring mutations were indeed more likely to be fixed than were female SC-conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC-conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence-the loss of SI. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  8. Reasoning from an incompatibility: False dilemma fallacies and content effects.

    PubMed

    Brisson, Janie; Markovits, Henry; Robert, Serge; Schaeken, Walter

    2018-03-23

    In the present studies, we investigated inferences from an incompatibility statement. Starting with two propositions that cannot be true at the same time, these inferences consist of deducing the falsity of one from the truth of the other or deducing the truth of one from the falsity of the other. Inferences of this latter form are relevant to human reasoning since they are the formal equivalent of a discourse manipulation called the false dilemma fallacy, often used in politics and advertising in order to force a choice between two selected options. Based on research on content-related variability in conditional reasoning, we predicted that content would have an impact on how reasoners treat incompatibility inferences. Like conditional inferences, they present two invalid forms for which the logical response is one of uncertainty. We predicted that participants would endorse a smaller proportion of the invalid incompatibility inferences when more counterexamples are available. In Study 1, we found the predicted pattern using causal premises translated into incompatibility statements with many and few counterexamples. In Study 2A, we replicated the content effects found in Study 1, but with premises for which the incompatibility statement is a non-causal relation between classes. These results suggest that the tendency to fall into the false dilemma fallacy is modulated by the background knowledge of the reasoner. They also provide additional evidence on the link between semantic information retrieval and deduction.

  9. Incompatibility of Trellis-Based NonCoherent SOQPSK Demodulators for Use in FEC Applications

    DTIC Science & Technology

    2012-03-12

    AFFTC-PA-12071 Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications Erik Perrins AIR FORCE FLIGHT...Feb 12 – Oct 12 4. TITLE AND SUBTITLE Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications 5a...compatibility/incompatibility of trellis-based noncoherent shaped offset quadrature phase shift keying (SOQPSK) demodulators for use in forward

  10. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding.

    PubMed

    Tulchinsky, Alexander Y; Johnson, Norman A; Watt, Ward B; Porter, Adam H

    2014-11-01

    Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher

  11. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  12. Quantum measurement incompatibility does not imply Bell nonlocality

    NASA Astrophysics Data System (ADS)

    Hirsch, Flavien; Quintino, Marco Túlio; Brunner, Nicolas

    2018-01-01

    We discuss the connection between the incompatibility of quantum measurements, as captured by the notion of joint measurability, and the violation of Bell inequalities. Specifically, we explicitly present a given set of non-jointly-measurable positive-operator-value measures (POVMs) MA with the following property. Considering a bipartite Bell test where Alice uses MA, then for any possible shared entangled state ρ and any set of (possibly infinitely many) POVMs NB performed by Bob, the resulting statistics admits a local model and can thus never violate any Bell inequality. This shows that quantum measurement incompatibility does not imply Bell nonlocality in general.

  13. On the widespread capacity for, and functional significance of, extreme inbreeding in ferns.

    PubMed

    Sessa, Emily B; Testo, Weston L; Watkins, James E

    2016-08-01

    Homosporous vascular plants utilize three different mating systems, one of which, gametophytic selfing, is an extreme form of inbreeding only possible in homosporous groups. This mating system results in complete homozygosity in all progeny and has important evolutionary and ecological implications. Ferns are the largest group of homosporous land plants, and the significance of extreme inbreeding for fern evolution has been a subject of debate for decades. We cultured gametophytes in the laboratory and quantified the relative frequencies of sporophyte production from isolated and paired gametophytes, and examined associations between breeding systems and several ecological and evolutionary traits. The majority of fern species studied show a capacity for gametophytic selfing, producing sporophytes from both isolated and paired gametophytes. While we did not follow sporophytes to maturity to investigate potential detrimental effects of homozygosity at later developmental stages, our results suggest that gametophytic selfing may have greater significance for fern evolution and diversification than has previously been realized. We present evidence from the largest study of mating behavior in ferns to date that the capacity for extreme inbreeding is prevalent in this lineage, and we discuss its implications and relevance and make recommendations for future studies of fern mating systems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Maternity leave, women's employment, and marital incompatibility.

    PubMed

    Hyde, J S; Essex, M J; Clark, R; Klein, M H

    2001-09-01

    This research investigated the relationship between the length of women's maternity leave and marital incompatibility, in the context of other variables including the woman's employment, her dissatisfaction with the division of household labor, and her sense of role overload. Length of leave, work hours, and family salience were associated with several forms of dissatisfaction, which in turn predicted role overload. Role overload predicted increased marital incompatibility for experienced mothers but did not for first-time mothers, for whom discrepancies between preferred and actual child care were more important. Length of maternity leave showed significant interactions with other variables, supporting the hypothesis that a short leave is a risk factor that, when combined with another risk factor, contributes to personal and marital distress.

  15. The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells.

    PubMed

    Guermonprez, Hélène; Smertenko, Andrei; Crosnier, Marie-Thérèse; Durandet, Monique; Vrielynck, Nathalie; Guerche, Philippe; Hussey, Patrick J; Satiat-Jeunemaitre, Béatrice; Bonhomme, Sandrine

    2008-01-01

    The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.

  16. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata.

    PubMed

    Sun, Linhan; Kao, Teh-Hui

    2018-06-01

    Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2 -haplotype and S 3 -haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCF SLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3 ) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2 ) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S 3 -RNase was completely suppressed by an antisense S 3 -RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.

  17. Genetic structure and early effects of inbreeding in fragmented temperate forests of a self-incompatible tree, Embothrium coccineum.

    PubMed

    Mathiasen, Paula; Rovere, Adriana E; Premoli, Andrea C

    2007-02-01

    Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are

  18. The Use of Duplication-Generating Rearrangements for Studying Heterokaryon Incompatibility Genes in Neurospora

    PubMed Central

    Perkins, David D.

    1975-01-01

    Heterokaryon (vegetative) incompatibility, governing the fusion of somatic hyphal filaments to form stable heterokaryons, is of interest because of its widespread occurrence in fungi and its bearing on cellular recognition. Conventional investigations of the genetic basis of heterokaryon incompatibility in N. crassa are difficult because in commonly used stocks differences are present at several het loci, all with similar incompatibility phenotypes. This difficulty is overcome by using duplications (partial diploids) that are unlikely to contain more than one het locus. A phenotypically expressed incompatibility reaction occurs when unlike het alleles are present within the same somatic nucleus, and this parallels the heterokaryon incompatibility reaction that occurs when unlike alleles in different haploid nuclei are introduced into the same somatic hypha by mycelial fusion.—Nontandem duplications were used to confirm that the incompatibility reactions in heterokaryons and in duplications are alternate expressions of the same genes. This was demonstrated for three loci which had previously been established by conventional heterokaryon tests—het-e, het-c and mt. These were each obtained in duplications as recombinant meiotic segregants from crosses heterozygous for duplication-generating chromosome rearrangements. The particular method of producing the duplications is irrelevant so long as the incompatibility alleles are heterozygous.—The duplication technique has made it possible to determine easily the het-e and het-c genotypes of numerous laboratory and wild strains of unknown constitution. In laboratory strains both loci are represented simply by two alleles. Analysis of het-c is more complicated in some wild strains, where differences have been demonstrated at one or more additional het loci within the duplication used and multiple allelism is also possible.—The results show that the duplication method can be used to identify and map additional

  19. Survival Time of Cross-Match Incompatible Red Blood Cells in Adult Horses.

    PubMed

    Tomlinson, J E; Taberner, E; Boston, R C; Owens, S D; Nolen-Walston, R D

    2015-01-01

    There is a markedly reduced half-life of transfused RBCs when donor and recipient cats or humans are cross-match incompatible. Only 10-20% of horses have naturally occurring alloantibodies. Therefore, cross-match testing before blood transfusion is not always performed. Cross-match incompatibility predicts shortened RBC survival time as compared to that of compatible or autologous blood. Twenty healthy adult horses. Prospective trial. Blood type, anti-RBC antibody screen (before and 1 month after transfusion) and major and minor cross-match determined 10 donor-recipient pairs. Two pairs were cross-match compatible, the remainder incompatible. Donor blood (4 L) was collected into citrate phosphate dextrose adenine-1, labeled with NHS-biotin, and transfused into recipients. Samples were collected at 1 hour and 1, 2, 3, 5, 7, 14, 21, 28, and 35 days after transfusion, and biotinylated RBCs were detected by flow cytometry. Horses were monitored for transfusion reaction during transfusion and daily for 5 days. Cross-match incompatibility was significantly associated with decreased RBC survival time (P < .001). The half-life of transfused incompatible (cross-match >1+) allogenic equine RBCs was 4.7 (95% CI, 3.2-6.2) days versus 33.5 (24-43) days for compatible pairings. Cross-match incompatibility was associated with acute febrile transfusion reaction (P = .0083). At day 30, only 1 horse had developed novel anti-RBC antibodies. Cross-match incompatibility was predictive of febrile transfusion reaction and shortened transfused RBC survival, but did not result in production of anti-RBC antibodies at 30 days. Cross-match testing before transfusion is recommended. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II: a spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity.

    PubMed

    Brennan, A C; Harris, S A; Hiscock, S J

    2003-11-01

    We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.

  1. Geometric incompatibility in a fault system.

    PubMed Central

    Gabrielov, A; Keilis-Borok, V; Jackson, D D

    1996-01-01

    Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673

  2. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  3. RRP42, a Subunit of Exosome, Plays an Important Role in Female Gametophytes Development and Mesophyll Cell Morphogenesis in Arabidopsis.

    PubMed

    Yan, Xiaoyuan; Yan, Zongyun; Han, Yuzhen

    2017-01-01

    The exosome complex plays a central and essential role in RNA metabolism. However, current research on functions of exosome subunit in plants is limited. Here, we used an egg cell-specific promoter-controlled CRISPR/Cas9 system to knock out RRP42 which encodes a core subunit of the Arabidopsis exosome and presented evidence that RRP42 is essential for the development of female gametophytes. Next, we designed three different amiRNAs targeting RRP42 . The rrp42 knock-down mutants mainly displayed variegated and serrated leaves, especially in cauline leaves. The internal anatomy of cauline leaves displayed irregularly shaped palisade cells and a reduced density of mesophyll cells. Interestingly, we detected highly accumulated mRNAs that encode xyloglucan endotransglucosylase/hydrolases (XTHs) and expansins (EXPAs) during later growth stages in rrp42 knock-down mutants. The mRNA decay kinetics analysis for XTH19 , EXPA10 , and EXPA11 revealed that RRP42 had a role in the decay of these mRNAs in the cytoplasm. RRP42 is localized to both the nucleus and cytoplasm, and RRP42 is preferentially expressed in cauline leaves during later growth stages. Altogether, our results demonstrate that RRP42 is essential for the development of female gametophytes and plays an important role in mesophyll cell morphogenesis.

  4. Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches.

    PubMed

    Schmucki, Reto; de Blois, Sylvie

    2009-07-01

    Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant-pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant-pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions.

  5. Outcomes Following ABO-Incompatible Kidney Transplantation Performed After Desensitization by Nonantigen-Specific Immunoadsorption.

    PubMed

    Becker, Luis E; Siebert, Daniela; Süsal, Caner; Opelz, Gerhard; Leo, Albrecht; Waldherr, Rüdiger; Macher-Goeppinger, Stephan; Schemmer, Peter; Schaefer, Sebastian Markus; Klein, Katrin; Beimler, Jörg; Zeier, Martin; Schwenger, Vedat; Morath, Christian

    2015-11-01

    For desensitization of ABO-incompatible kidney transplant recipients we recently proposed nonantigen-specific immunoadsorption (IA) and rituximab. We now compared clinical outcomes of 34 ABO-incompatible living-donor kidney recipients who were transplanted using this protocol with that of 68 matched ABO-compatible patients. In addition, we analyzed efficacy and cost of nonantigen-specific as compared to blood group antigen-specific IA. Before desensitization, the median isoagglutinin titer of 34 ABO-incompatible patients was 1:64 (Coombs technique). Patients received a median of 7 preoperative IA treatments. Twenty-four patients had a median of 2 additional plasmapheresis treatments to reach the preoperative target isoagglutinin titer of 1:8 or less. After a median postoperative follow-up of 22 months, overall graft survival in the ABO-incompatible group was not significantly different from that in ABO-compatible patients (log-rank P = 0.20), whereas patient survival tended to be lower (log-rank P = 0.05). The incidence of rejection episodes was 15% in both groups. The ABO-incompatible kidney recipients had a higher incidence of BK virus replication (P = 0.04) and nephropathy (P = 0.01) and showed more often colonization with multidrug resistant bacteria (P = 0.02). In comparison to blood group antigen-specific IA, nonantigen-specific IA showed equal efficacy but was associated with reduction in cost. Clinical outcomes of ABO-incompatible patients desensitized with a nonantigen-specific IA device and rituximab do not differ from that of matched ABO-compatible patients although a trend toward reduced patient survival was noted. Special attention must be paid to the higher incidence of BK virus infection in recipients of ABO-incompatible grafts.

  6. The Evolution of Polymorphic Hybrid Incompatibilities in House Mice.

    PubMed

    Larson, Erica L; Vanderpool, Dan; Sarver, Brice A J; Callahan, Colin; Keeble, Sara; Provencio, Lorraine P; Kessler, Michael D; Stewart, Vanessa; Nordquist, Erin; Dean, Matthew D; Good, Jeffrey M

    2018-04-24

    Resolving the mechanistic and genetic bases of reproductive barriers between species is essential to understanding the evolutionary forces that shape speciation. Intrinsic hybrid incompatibilities are often treated as fixed between species, yet there can be considerable variation in the strength of reproductive isolation between populations. The extent and causes of this variation remain poorly understood in most systems. We investigated the genetic basis of variable hybrid male sterility (HMS) between two recently diverged subspecies of house mice, Mus musculus domesticus and M. m. musculus We found that polymorphic HMS has a surprisingly complex genetic basis, with contributions from at least five autosomal loci segregating between two closely related wild-derived strains of M. m. musculus One of the HMS-linked regions on Chromosome 4 also showed extensive introgression among inbred laboratory strains and transmission ratio distortion (TRD) in hybrid crosses. Using additional crosses and whole genome sequencing of sperm pools, we showed that TRD was limited to hybrid crosses and was not due to differences in sperm motility between M. m. musculus strains. Based on these results, we argue that TRD likely reflects additional incompatibilities that reduce hybrid embryonic viability. In some common inbred strains of mice, selection against deleterious interactions appears to have unexpectedly driven introgression at loci involved in epistatic hybrid incompatibilities. The highly variable genetic basis to F1 hybrid incompatibilities between closely related mouse lineages argues that a thorough dissection of reproductive isolation will require much more extensive sampling of natural variation than has been commonly utilized in mice and other model systems. Copyright © 2018, Genetics.

  7. A simple genetic incompatibility causes hybrid male sterility in mimulus.

    PubMed

    Sweigart, Andrea L; Fishman, Lila; Willis, John H

    2006-04-01

    Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in Drosophila has revealed that hybrid fertility problems often are highly polygenic and complex. In this article we investigate the genetic basis of hybrid sterility between two closely related species of monkeyflower, Mimulus guttatus and M. nasutus. In striking contrast to Drosophila systems, we demonstrate that nearly complete hybrid male sterility in Mimulus results from a simple genetic incompatibility between a single pair of heterospecific loci. We have genetically mapped this sterility effect: the M. guttatus allele at the hybrid male sterility 1 (hms1) locus acts dominantly in combination with recessive M. nasutus alleles at the hybrid male sterility 2 (hms2) locus to cause nearly complete hybrid male sterility. In a preliminary screen to find additional small-effect male sterility factors, we identified one additional locus that also contributes to some of the variation in hybrid male fertility. Interestingly, hms1 and hms2 also cause a significant reduction in hybrid female fertility, suggesting that sex-specific hybrid defects might share a common genetic basis. This possibility is supported by our discovery that recombination is reduced dramatically in a cross involving a parent with the hms1-hms2 incompatibility.

  8. On the temporal dynamics of spatial stimulus-response transfer between spatial incompatibility and Simon tasks

    PubMed Central

    Ivanoff, Jason; Blagdon, Ryan; Feener, Stefanie; McNeil, Melanie; Muir, Paul H.

    2014-01-01

    The Simon effect refers to the performance (response time and accuracy) advantage for responses that spatially correspond to the task-irrelevant location of a stimulus. It has been attributed to a natural tendency to respond toward the source of stimulation. When location is task-relevant, however, and responses are intentionally directed away (incompatible) or toward (compatible) the source of the stimulation, there is also an advantage for spatially compatible responses over spatially incompatible responses. Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect following practice with a spatial incompatibility task. One interpretation of this finding is that practicing a spatial incompatibility task disables the natural tendency to respond toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved across blocks of trials. In general, bidirectional S-R transfer was observed: while the spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R mapping of the Simon task also had a small impact on congruency effects within the spatial compatibility and incompatibility tasks. These effects were generally greater when the task contexts were similar. Moreover, the SAT analysis of performance in the Simon task demonstrated that the tendency to respond to the location of the stimulus was not eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial incompatibility task appeared to partially mask the natural tendency to respond to the source of stimulation with a conflicting inclination to respond away from it. These findings support the use of SAT methodology to quantitatively describe rapid response tendencies. PMID:25191217

  9. ABO-incompatible blood transfusion and invasive therapeutic approaches during pediatric cardiopulmonary bypass.

    PubMed

    Aliç, Yasin; Akpek, Elif A; Dönmez, Asli; Ozkan, Süleyman; Perfusionist, Güray Yener; Aslamaci, Sait

    2008-10-01

    Human error has been identified as a major source of ABO-incompatible blood transfusion which most often results from blood being given to the wrong patient. We present a case of inadvertent administration of ABO-incompatible blood to a 6-mo-old child who underwent congenital heart surgery and discuss the use of invasive therapeutic approaches. Invasive techniques included total circulatory arrest and large-volume exchange transfusion, along with conventional ultrafiltration and plasmapheresis, which could all be performed rapidly and effectively. The combination of standard pharmacologic therapies and alternative invasive techniques after a massive ABO-incompatible blood transfusion led to a favorable outcome in our patient.

  10. Incompatibility and competitive exclusion of genomic segments between sibling Drosophila species.

    PubMed

    Fang, Shu; Yukilevich, Roman; Chen, Ying; Turissini, David A; Zeng, Kai; Boussy, Ian A; Wu, Chung-I

    2012-06-01

    The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s = 0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.

  11. 30 CFR 57.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Storage and Handling § 57.16012 Storage of incompatible substances. Chemical substances, including... substances, where such contact could cause a violent reaction or the liberation of harmful fumes or gases. ...

  12. 30 CFR 56.16012 - Storage of incompatible substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Storage and Handling § 56.16012 Storage of incompatible substances. Chemical substances, including... substances, where such contact could cause a violent reaction or the liberation of harmful fumes or gases. ...

  13. Incidence of Maternal Rh Immunization by ABO Compatible and Incompatible Pregnancies

    PubMed Central

    Ascari, W. Q.; Levine, P.; Pollack, W.

    1969-01-01

    The incidence of maternal Rh immunization in Rh-negative women following a single ABO compatible Rh-positive pregnancy is about 17%. This incidence was determined by following Rh-negative women through two Rh-incompatible pregnancies and analysing their sera for anti-Rh at the time of delivery of their second observed pregnancy. Maternal Rh immunization occurs almost exclusively after delivery; however, antibodies may not be detectable in the absence of further antigenic stimulation. The incidence of maternal Rh immunization when maternal-foetal ABO incompatibility is also present is 9–13% and 17% for group O and non-group O women respectively. This study emphasizes the need to offer Rh-immune prophylaxis to Rh-negative women having Rh-positive infants whether or not ABO incompatibility exists between the mother and infant. PMID:4179167

  14. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus.

    PubMed

    Case, Andrea L; Finseth, Findley R; Barr, Camille M; Fishman, Lila

    2016-09-14

    Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS). Unlike neutral models for the evolution of hybrid incompatibility loci, selfish evolution predicts that the Rf alleles experienced strong selection in the presence of IM-CMS. Using whole-genome sequences, we compared patterns of population-genetic variation in Rf at IM to a neighbouring population that lacks IM-CMS. Consistent with local selection in the presence of IM-CMS, the Rf region shows elevated FST, high local linkage disequilibrium and a distinct haplotype structure at IM, but not at Cone Peak (CP), suggesting a recent sweep in the presence of IM-CMS. In both populations, Rf2 exhibited lower polymorphism than other regions, but the low-diversity outliers were different between CP and IM. Our results confirm theoretical predictions of ubiquitous cytonuclear conflict in plants and provide a population-genetic mechanism for the evolution of a common form of hybrid incompatibility. © 2016 The Author(s).

  15. Selfish evolution of cytonuclear hybrid incompatibility in Mimulus

    PubMed Central

    Finseth, Findley R.; Barr, Camille M.; Fishman, Lila

    2016-01-01

    Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus. In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS). Unlike neutral models for the evolution of hybrid incompatibility loci, selfish evolution predicts that the Rf alleles experienced strong selection in the presence of IM-CMS. Using whole-genome sequences, we compared patterns of population-genetic variation in Rf at IM to a neighbouring population that lacks IM-CMS. Consistent with local selection in the presence of IM-CMS, the Rf region shows elevated FST, high local linkage disequilibrium and a distinct haplotype structure at IM, but not at Cone Peak (CP), suggesting a recent sweep in the presence of IM-CMS. In both populations, Rf2 exhibited lower polymorphism than other regions, but the low-diversity outliers were different between CP and IM. Our results confirm theoretical predictions of ubiquitous cytonuclear conflict in plants and provide a population-genetic mechanism for the evolution of a common form of hybrid incompatibility. PMID:27629037

  16. A Simple Genetic Incompatibility Causes Hybrid Male Sterility in Mimulus

    PubMed Central

    Sweigart, Andrea L.; Fishman, Lila; Willis, John H.

    2006-01-01

    Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in Drosophila has revealed that hybrid fertility problems often are highly polygenic and complex. In this article we investigate the genetic basis of hybrid sterility between two closely related species of monkeyflower, Mimulus guttatus and M. nasutus. In striking contrast to Drosophila systems, we demonstrate that nearly complete hybrid male sterility in Mimulus results from a simple genetic incompatibility between a single pair of heterospecific loci. We have genetically mapped this sterility effect: the M. guttatus allele at the hybrid male sterility 1 (hms1) locus acts dominantly in combination with recessive M. nasutus alleles at the hybrid male sterility 2 (hms2) locus to cause nearly complete hybrid male sterility. In a preliminary screen to find additional small-effect male sterility factors, we identified one additional locus that also contributes to some of the variation in hybrid male fertility. Interestingly, hms1 and hms2 also cause a significant reduction in hybrid female fertility, suggesting that sex-specific hybrid defects might share a common genetic basis. This possibility is supported by our discovery that recombination is reduced dramatically in a cross involving a parent with the hms1–hms2 incompatibility. PMID:16415357

  17. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... carrying cargoes with which it is incompatible. Except as described in § 150.160, the person in charge of a... any cargo in table I with which it is incompatible by two barriers such as formed by a: (1) Cofferdam...

  18. Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.

    2015-12-01

    Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.

  19. ABO-incompatible heart transplants.

    PubMed

    Hageman, M; Michaud, N; Chinnappan, I; Klein, T; Mettler, B

    2015-04-01

    A month-old baby girl with blood type O positive received a donor heart organ from a donor with blood type B. This was the first institutional ABO-incompatible heart transplant. Infants listed for transplantation may be considered for an ABO-incompatible heart transplant based on their antibody levels and age. The United Network of Organ Sharing (UNOS) protocol is infants under 24 months with titers less than or equal to 1:4.(1) This recipient's anti-A and anti-B antibodies were monitored with titer assays to determine their levels; antibody levels less than 1:4 are acceptable pre-transplant in order to proceed with donor and transplant arrangements.1 Immediately prior to initiating cardiopulmonary bypass (CPB), a complete whole body exchange transfusion of at least two-times the patient's circulating blood volume was performed with packed red blood cells (pRBC), fresh frozen plasma (FFP) and 25% albumin. Titer assays were sent two minutes after initiation of full CPB and then hourly until the cross-clamp was removed. Institutionally, reperfusion of the donor heart is not restored until the antibody level from the titer assay is known and reported as less than 1:4; failing to achieve an immulogically tolerant recipient will provide conditions for hyperacute rejection. The blood collected during the transfusion exchange was immediately processed through a cell saver so the pRBC's could be re-infused to the patient during CPB, as necessary. The remainder of the transplant was performed in the same fashion as an ABO-compatible heart transplant. The patient has shown no signs of rejection following transplantation. © The Author(s) 2014.

  20. Outcome of ABO-incompatible adult living-donor liver transplantation for patients with hepatocellular carcinoma.

    PubMed

    Yoon, Young-In; Song, Gi-Won; Lee, Sung-Gyu; Hwang, Shin; Kim, Ki-Hun; Kim, Seok-Hwan; Kang, Woo-Hyoung; Cho, Hwui-Dong; Jwa, Eun-Kyoung; Kwon, Jae-Hyun; Tak, Eun-Young; Kirchner, Varvara A

    2018-06-01

    Living-donor liver transplantation (LDLT) can simultaneously cure hepatocellular carcinoma (HCC) and underlying liver cirrhosis, improving long-term results in patients with HCC. ABO-incompatible LDLT could expand the living-donor pool, reduce waiting times for deceased-donor liver transplantation, and improve long-term survival for some patients with HCC. We retrospectively reviewed the medical records of patients undergoing LDLT for HCC from November 2008 to December 2015 at a single institution in Korea. In total, 165 patients underwent ABO-incompatible and 753 patients underwent ABO-compatible LDLT for HCC. ABO-incompatible recipients underwent desensitization to overcome the ABO blood group barrier, including pretransplant plasma exchange and rituximab administration (300-375 mg/m 2 /body surface area). We performed 1:1 propensity score matching and included 165 patients in each group. 82.4% of ABO-incompatible and 83.0% of -compatible LDLT groups had HCC within conventional Milan criteria, respectively, and 92.1% and 92.7% of patients in each group had a Child-Pugh score of A or B. ABO-incompatible and -compatible LDLT groups were followed up for 48.0 and 48.7 months, respectively, with both groups showing comparable recurrence-free survival rates (hazard ratio [HR] 1.14; 95% CI 0.68-1.90; p = 0.630) and overall patient-survival outcomes (HR 1.10; 95% CI 0.60-2.00; p = 0.763). These findings suggested that ABO-incompatible liver transplantation is a feasible option for patients with HCC, especially for those with compensated cirrhosis with HCC within conventional Milan criteria. Despite hypothetical immunological concerns that the desensitization protocol for breaking through the ABO blood group barrier might have a negative impact on the recurrence of hepatocellular carcinoma, our experience demonstrated no significant differences in the long-term overall survival and recurrence-free survival rates between patients receiving ABO-compatible or ABO-incompatible

  1. Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: a tribute to Professor Stanley J. Peloquin (1921–2008)

    PubMed Central

    Ortiz, Rodomiro; Simon, Philipp; Jansky, Shelley; Stelly, David

    2009-01-01

    Background Emeritus Campbell-Bascom Professor Stanley J. Peloquin was an internationally renowned plant geneticist and breeder who made exceptional contributions to the quantity, quality and sustainable supply of food for the world from his innovative and extensive scientific contributions. For five decades, Dr Peloquin merged basic research in plant reproduction, cytology, cytogenetics, genetics, potato (Solanum tuberosum) improvement and education at the University of Wisconsin-Madison. Successive advances across these five decades redefined scientific comprehension of reproductive variation, its genetic control, genetic effects, evolutionary impact and utility for breeding. In concert with the International Potato Center (CIP), he and others translated the advances into application, resulting in large benefits on food production worldwide, exemplifying the importance of integrated innovative university research and graduate education to meet domestic and international needs. Scope Dr Peloquin is known to plant breeders, geneticists, international agricultural economists and potato researchers for his enthusiastic and incisive contributions to genetic enhancement of potato using haploids, 2n gametes and wild Solanum species; for his pioneering work on potato cultivation through true seed; and as mentor of a new generation of plant breeders worldwide. The genetic enhancement of potato, the fourth most important food crop worldwide, benefited significantly from expanded germplasm utilization and advanced reproductive genetic knowledge, which he and co-workers, including many former students, systematically transformed into applied breeding methods. His research on plant sexual reproduction included subjects such as haploidization and polyploidization, self- and cross-incompatibility, cytoplasmic male sterility and restorer genes, gametophytic/sporophytic heterozygosity and male fertility, as well as endosperm dosages and seed development. By defining methods of

  2. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.

    PubMed

    Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L

    2017-09-01

    The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.

  3. Clinico-serologic co-relation in bi-directional ABO incompatible hemopoietic stem cell transplantation.

    PubMed

    Basu, Sabita; Dhar, Supriya; Mishra, Deepak; Chandy, Mammen

    2015-01-01

    The ABO blood group system is of prime significance in red cell transfusion and organ transplantation. However, ABO compatibility is not critical in allogenic hemopoietic stem cell transplantation (HSCT) and approximately 40-50% of hemopoietic stem cell transplants are ABO incompatible. This incompatibility may be major, minor or bi-directional. Though there are descriptions of transfusion practice and protocols in ABO incompatible HSCT, there are considerable variations and transfusion support in these patients can be very challenging. The immunohematologic observations in two cases of bi-directional ABO incompatible HSCT have been described, and clinico-serologic correlation has been attempted. In both cases, peripheral blood stem cell harvests were obtained using the Cobe spectra cell separator. Immunohematologic assessments in the donor and recipient were done as a part of pre HSCT evaluation. Both the standard tube technique and column agglutination method (Ortho Biovue Micro Bead System) was used. Antibody screen was done by column agglutination method using three cell panel (Surgiscreen cells). Isoagglutinin titration was done by the master dilution method and standard validated techniques were used. The pattern of laboratory findings in the two cases was different and so were the clinical outcomes. Although there was early engraftment in the first case, the second case developed pure red cell aplasia and this was well-reflected in the immunohematologic assessments. Immunohematologic assessment correlated well with the clinical picture and could be used to predict clinical outcome and onset of complications in ABO incompatible HSCT.

  4. Facility for Antiproton and Ion Research, FAIR, at the GSI site

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2006-11-01

    FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  5. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte.

    PubMed

    Gibalová, Antónia; Steinbachová, Lenka; Hafidh, Said; Bláhová, Veronika; Gadiou, Zuzana; Michailidis, Christos; Műller, Karel; Pleskot, Roman; Dupľáková, Nikoleta; Honys, David

    2017-03-01

    KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.

  6. Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica.

    PubMed

    Li, Xiaojie; Cong, Yizhou; Yang, Guanpin; Shi, Yuanyuan; Qu, Shancun; Li, Zhiling; Wang, Guowen; Zhang, Zhuangzhi; Luo, Shiju; Dai, Hongliang; Xie, Jianzu; Jiang, Guangliang; Liu, Jialiang; Wang, Tongyong

    2007-04-01

    Direct cultivation of the first filial generation of gametophyte clones from different Laminaria species is a highly effective way of utilizing kelp heterozygous vigor (heterosis). A male gametophyte clone of L. longissima Miyabe and a female one of L. japonica Areschoug were hybridized, generating Dongfang No. 2 hybrid kelp. This hybrid kelp was used directly in trial cultivation, and its agronomical traits were evaluated. L. longissima and L. japonica are obviously different and complement each other in their morphological characteristics and ecological performances. The hybrid of their gametophyte clones, Dongfang No. 2, showed 56.8% heterozygous vigor in yield. It also showed increased yields of 41.0 and 76.4% compared to the widely used commercial kelps Variety 1 and Variety 2, respectively. In large-scale cultivation trials at different locations and in different years, Dongfang No. 2 attained significantly higher yields than Varieties 1 and 2, increasing yield by 26.4% on average over Variety 1 and by 65.0% over the other. Dongfang No. 2 has a robust holdfast and a wide, long and deep-brown uniform blade, which shows a distinct middle groove. In addition to yield, Dongfang No. 2 also demonstrates obvious heterozygous vigor in other agronomic traits. It is resistant to strong irradiance, as the two commercial varieties are, has an appropriate vegetative maturation time, and adapts well to a range of different culture conditions. The parentage analysis using AFLP of total DNA and SNP of the ITS region of ribosomal RNA transcription unit showed that Dongfang No. 2 is the real hybrid of L. japonica and L. longissima.

  7. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    PubMed

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  8. School Psychology and Projective Assessment: A Growing Incompatibility.

    ERIC Educational Resources Information Center

    Peterson, David W.; Batsche, George M.

    1983-01-01

    Issues related to an increasing incompatibility between school psychology and projective assessment are examined. These issues pertain to educational relevance, changing social and educational values, potential litigation, and technical adequacy. The authors conclude that there are few valid reasons for school psychologists to use projective…

  9. Production of high current proton beams using complex H-rich molecules at GSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  10. Analysis of the Results of ABO-Incompatible Kidney Transplantation: In Comparison with ABO-Compatible Kidney Transplantation

    PubMed Central

    Jeon, Byung Joo; Seong, Youl Keun; Han, Bo Hyun

    2010-01-01

    Purpose The number of patients waiting for kidney transplantation is incessantly increasing, but the number of cadaveric kidney transplantations or ABO-compatible donors is so insufficient that ABO-incompatible kidney transplantation is being performed as an alternative. There are overseas studies and research showing that the 5-year survival rate and 5-year graft survival rate of ABO-incompatible kidney transplantation are not much different from those of ABO-compatible kidney transplantation. However, domestic research on the subject is rare. Therefore, we report the results of 22 ABO-incompatible kidney transplantation cases performed in our hospital. Materials and Methods This research was from 22 patients in our hospital who underwent ABO-incompatible kidney transplantation from 15 February 2007 to 20 May 2010. Results As yet, there have been no donor graft losses and no deaths after transplantation. The results of the two groups were analyzed by analysis of covariance of the creatinine value of the recipients at 6 months after the operation, corrected for the preoperative value in order to statistically identify whether there were differences in renal function after the operation between ABO-compatible and ABO-incompatible kidney transplantation. The results of the analysis of covariance showed no statistical difference in renal function after the operation between the two groups. Conclusions Even though there were not many cases, our initial results for ABO-incompatible kidney transplantation were positive. Considering the increasing number of patients waiting for kidney transplantation, longer-term domestic research studies of ABO-incompatible kidney transplantation are necessary. PMID:21221208

  11. Evidence of Natural Selection Acting on a Polymorphic Hybrid Incompatibility Locus in Mimulus

    PubMed Central

    Sweigart, Andrea L.; Flagel, Lex E.

    2015-01-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. PMID:25428983

  12. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    PubMed

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  13. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species.

    PubMed

    Schumer, Molly; Cui, Rongfeng; Powell, Daniel L; Dresner, Rebecca; Rosenthal, Gil G; Andolfatto, Peter

    2014-06-04

    Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species.

  14. Facility for Antiproton and Ion Research, FAIR, at the GSI site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosner, Guenther

    FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ionmore » and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.« less

  15. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating constraints imposed by low S-allele number.

    PubMed

    Brennan, Adrian C; Harris, Stephen A; Hiscock, Simon J

    2003-06-29

    Senecio squalidus L. (Asteraceae) has been the subject of several ecological and population genetic studies due to its well-documented history of introduction, establishment and spread throughout Britain in the past 300 years. Our recent studies have focused on identifying and quantifying factors associated with the sporophytic self-incompatibility (SSI) system of S. squalidus that may have contributed to its success as a colonist. These findings are of general biological interest because they provide important insights into the short-term evolutionary dynamics of a plant mating system. The number of S-alleles in populations and their dominance interactions were investigated in eight wild British populations using cross-diallel studies. The numbers of S-alleles in British S. squalidus populations are typically low (average of 5.3 S-alleles) and the entire British population is estimated to possess no more than 7-11 S-alleles. Such low numbers of S-alleles are most probably a consequence of population bottlenecks associated with introduction and colonization. Potential evolutionary impacts on SSI caused by a paucity of S-alleles, such as restricted mate availability, are discussed, and we suggest that increased dominance interactions between S-alleles may be an important short-term means of increasing mate availability when S-allele numbers are low.

  16. Helicobacter cinaedi bacteremia with cellulitis after ABO-incompatible living-donor liver transplantation: Case report.

    PubMed

    Mishima, Kohei; Obara, Hideaki; Sugita, Kayoko; Shinoda, Masahiro; Kitago, Minoru; Abe, Yuta; Hibi, Taizo; Yagi, Hiroshi; Matsubara, Kentaro; Mori, Takehiko; Takano, Yaoko; Fujiwara, Hiroshi; Itano, Osamu; Hasegawa, Naoki; Iwata, Satoshi; Kitagawa, Yuko

    2015-07-07

    Helicobacter cinaedi (H. cinaedi), a Gram-negative spiral-shaped bacterium, is an enterohepatic non-Helicobacter pylori Helicobacter species. We report the first case of H. cinaedi bacteremia with cellulitis after liver transplantation. A 48-year-old male, who had been a dog breeder for 15 years, underwent ABO-incompatible living-donor liver transplantation for hepatitis C virus-induced decompensated cirrhosis using an anti-hepatitis B core antibody-positive graft. The patient was preoperatively administered rituximab and underwent plasma exchange twice to overcome blood type incompatibility. After discharge, he had been doing well with immunosuppression therapy comprising cyclosporine, mycophenolate mofetil, and steroid according to the ABO-incompatible protocol of our institution. However, 7 mo after transplantation, he was admitted to our hospital with a diagnosis of recurrent cellulitis on the left lower extremity, and H. cinaedi was detected by both blood culture and polymerase chain reaction analysis. Antibiotics improved his symptoms, and he was discharged at day 30 after admission. Clinicians should be more aware of H. cinaedi in immunocompromised patients, such as ABO-incompatible transplant recipients.

  17. Survival Benefit with Kidney Transplants from HLA-Incompatible Live Donors.

    PubMed

    Orandi, Babak J; Luo, Xun; Massie, Allan B; Garonzik-Wang, Jacqueline M; Lonze, Bonne E; Ahmed, Rizwan; Van Arendonk, Kyle J; Stegall, Mark D; Jordan, Stanley C; Oberholzer, Jose; Dunn, Ty B; Ratner, Lloyd E; Kapur, Sandip; Pelletier, Ronald P; Roberts, John P; Melcher, Marc L; Singh, Pooja; Sudan, Debra L; Posner, Marc P; El-Amm, Jose M; Shapiro, Ron; Cooper, Matthew; Lipkowitz, George S; Rees, Michael A; Marsh, Christopher L; Sankari, Bashir R; Gerber, David A; Nelson, Paul W; Wellen, Jason; Bozorgzadeh, Adel; Gaber, A Osama; Montgomery, Robert A; Segev, Dorry L

    2016-03-10

    A report from a high-volume single center indicated a survival benefit of receiving a kidney transplant from an HLA-incompatible live donor as compared with remaining on the waiting list, whether or not a kidney from a deceased donor was received. The generalizability of that finding is unclear. In a 22-center study, we estimated the survival benefit for 1025 recipients of kidney transplants from HLA-incompatible live donors who were matched with controls who remained on the waiting list or received a transplant from a deceased donor (waiting-list-or-transplant control group) and controls who remained on the waiting list but did not receive a transplant (waiting-list-only control group). We analyzed the data with and without patients from the highest-volume center in the study. Recipients of kidney transplants from incompatible live donors had a higher survival rate than either control group at 1 year (95.0%, vs. 94.0% for the waiting-list-or-transplant control group and 89.6% for the waiting-list-only control group), 3 years (91.7% vs. 83.6% and 72.7%, respectively), 5 years (86.0% vs. 74.4% and 59.2%), and 8 years (76.5% vs. 62.9% and 43.9%) (P<0.001 for all comparisons with the two control groups). The survival benefit was significant at 8 years across all levels of donor-specific antibody: 89.2% for recipients of kidney transplants from incompatible live donors who had a positive Luminex assay for anti-HLA antibody but a negative flow-cytometric cross-match versus 65.0% for the waiting-list-or-transplant control group and 47.1% for the waiting-list-only control group; 76.3% for recipients with a positive flow-cytometric cross-match but a negative cytotoxic cross-match versus 63.3% and 43.0% in the two control groups, respectively; and 71.0% for recipients with a positive cytotoxic cross-match versus 61.5% and 43.7%, respectively. The findings did not change when patients from the highest-volume center were excluded. This multicenter study validated single

  18. The pollination of a self-incompatible, food-mimic orchid, Coelogyne fimbriata (Orchidaceae), by female Vespula wasps

    PubMed Central

    Cheng, Jin; Shi, Jun; Shangguan, Fa-Zhi; Dafni, Amots; Deng, Zhen-Hai; Luo, Yi-Bo

    2009-01-01

    Background and Aims The study of specialized interactions between species is crucial to our understanding of processes in evolutionary ecology due to their profound effect on life cycles and diversification. Obligate pollination by a single wasp species is rare in Orchidaceae except in species with sexually deceptive flowers that are pollinated exclusively by male insects. The object of this study was to document pollination of the food-deceptive flowers of Coelogyne fimbriata, a species pollinated exclusively by female wasps. Methods Field observations and experiments were conducted in two populations of C. fimbriata. Floral phenology was recorded, and functional floral architecture was measured. Insect visitors to flowers were observed from 2005 to 2007. Bioassay experiments were conducted to check whether the floral odour attracted pollinators. Natural (insect-mediated) rates of pollinarium removal, pollinium deposition on stigmas, and fruit set were recorded. To determine the importance of cross-pollination, the breeding system was assessed via controlled, hand-pollination experiments. Key Results Two populations of C. fimbriata with fragrant, nectarless flowers are pollinated by females of the same Vespula species (Vespidae, Hymenoptera). Experiments on wasps show that they crawl towards the source of the odour. The flowering period appears to coincide with an annual peak in Vespula colony expansion when additional workers forage for carbohydrates. Rates of pollinarium removal (0·069–0·918) and pollinium deposition on stigmas (0·025–0·695) are extremely variable. However, fruit set in C. fimbriata is always low (0·014–0·069) and appears to be based on self-incompatibility coupled with intraclonal (geitonogamous) deposition of pollinia. Conclusions Coelogyne fimbriata and Steveniella satyrioides are now the only orchid species known to have food-deceptive flowers that are pollinated exclusively by eusocial, worker wasps. In C. fimbriata, floral

  19. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    NASA Astrophysics Data System (ADS)

    Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.

  20. 40 CFR 264.230 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...

  1. Hybrid incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia

    PubMed Central

    Beukeboom, Leo W.; Koevoets, Tosca; Morales, Hernán E.; Ferber, Steven; van de Zande, Louis

    2015-01-01

    Study of genome incompatibilities in species hybrids is important for understanding the genetic basis of reproductive isolation and speciation. According to Haldane's rule hybridization affects the heterogametic sex more than the homogametic sex. Several theories have been proposed that attribute asymmetry in hybridization effects to either phenotype (sex) or genotype (heterogamety). Here we investigate the genetic basis of hybrid genome incompatibility in the haplodiploid wasp Nasonia using the powerful features of haploid males and sex reversal. We separately investigate the effects of heterozygosity (ploidy level) and sex by generating sex reversed diploid hybrid males and comparing them to genotypically similar haploid hybrid males and diploid hybrid females. Hybrid effects of sterility were more pronounced than of inviability, and were particularly strong in haploid males, but weak to absent in diploid males and females, indicating a strong ploidy level but no sex specific effect. Molecular markers identified a number of genomic regions associated with hybrid inviability in haploid males that disappeared under diploidy in both hybrid males and females. Hybrid inviability was rescued by dominance effects at some genomic regions, but aggravated or alleviated by dosage effects at other regions, consistent with cytonuclear incompatibilities. Dosage effects underlying Bateson–Dobzhansky–Muller (BDM) incompatibilities need more consideration in explaining Haldane's rule in diploid systems. PMID:25926847

  2. Nudging to prevent the purchase of incompatible digital products online: An experimental study.

    PubMed

    Esposito, Gabriele; Hernández, Penélope; van Bavel, René; Vila, José

    2017-01-01

    Ensuring safe and satisfactory online shopping activity, especially among vulnerable consumers such as elderly and less educated citizens, is part of a larger set of consumer policy objectives seeking to strengthen trust in the electronic marketplace. This article contributes to that goal by testing the effectiveness of nudges intended to prevent the purchase of 'incompatible' digital products (i.e., those which cannot be used with the devices owned by consumers or the systems they operate). We ran a computerised lab experiment (n = 626) examining three types of nudges, the effects of age and education, and interaction effects between these variables and the nudges. Results show that emotive warning messages and placing incompatibility information at the checkout page rather than earlier in the purchasing process were effective in reducing the purchase of incompatible goods. Age was also a relevant factor: older participants were more likely to purchase incompatible goods. In addition, there was an interaction effect between all nudges and age: two nudges exacerbated the effect of age, while another mitigated it. These results suggest nudges can be an effective policy tool, confirm a generational gap in online behaviour, and highlight how nudges can moderate the effect of socio-demographic variables.

  3. Nudging to prevent the purchase of incompatible digital products online: An experimental study

    PubMed Central

    Esposito, Gabriele; Hernández, Penélope; van Bavel, René; Vila, José

    2017-01-01

    Ensuring safe and satisfactory online shopping activity, especially among vulnerable consumers such as elderly and less educated citizens, is part of a larger set of consumer policy objectives seeking to strengthen trust in the electronic marketplace. This article contributes to that goal by testing the effectiveness of nudges intended to prevent the purchase of 'incompatible' digital products (i.e., those which cannot be used with the devices owned by consumers or the systems they operate). We ran a computerised lab experiment (n = 626) examining three types of nudges, the effects of age and education, and interaction effects between these variables and the nudges. Results show that emotive warning messages and placing incompatibility information at the checkout page rather than earlier in the purchasing process were effective in reducing the purchase of incompatible goods. Age was also a relevant factor: older participants were more likely to purchase incompatible goods. In addition, there was an interaction effect between all nudges and age: two nudges exacerbated the effect of age, while another mitigated it. These results suggest nudges can be an effective policy tool, confirm a generational gap in online behaviour, and highlight how nudges can moderate the effect of socio-demographic variables. PMID:28282401

  4. Supervisee Incompatibility and Its Influence on Triadic Supervision: An Examination of Doctoral Student Supervisors' Perspectives

    ERIC Educational Resources Information Center

    Hein, Serge F.; Lawson, Gerard; Rodriguez, Christopher P.

    2011-01-01

    A qualitative study was conducted to explore supervisors' experiences of supervisee incompatibility in triadic supervision. In-depth interviews were completed with 9 doctoral student supervisors in a counselor education program, and a whole-text analysis generated 3 categories. Supervisee incompatibility took a wide variety of forms and negatively…

  5. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis.

    PubMed

    Kwaaitaal, M A C J; de Vries, S C; Russinova, E

    2005-10-01

    Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected in diverse cell types including the epidermis and the vascular bundles. In some cells, fluorescent receptors were seen in small vesicle-like compartments. After application of the fungal toxin Brefeldin A, the fluorescent receptors were rapidly internalized in the root meristem and root vascular tissue. We conclude that the AtSERK1 receptor functions in a common signalling pathway employed in both sporophytic and gametophytic cells.

  6. A decomposition theory for phylogenetic networks and incompatible characters.

    PubMed

    Gusfield, Dan; Bansal, Vikas; Bafna, Vineet; Song, Yun S

    2007-12-01

    Phylogenetic networks are models of evolution that go beyond trees, incorporating non-tree-like biological events such as recombination (or more generally reticulation), which occur either in a single species (meiotic recombination) or between species (reticulation due to lateral gene transfer and hybrid speciation). The central algorithmic problems are to reconstruct a plausible history of mutations and non-tree-like events, or to determine the minimum number of such events needed to derive a given set of binary sequences, allowing one mutation per site. Meiotic recombination, reticulation and recurrent mutation can cause conflict or incompatibility between pairs of sites (or characters) of the input. Previously, we used "conflict graphs" and "incompatibility graphs" to compute lower bounds on the minimum number of recombination nodes needed, and to efficiently solve constrained cases of the minimization problem. Those results exposed the structural and algorithmic importance of the non-trivial connected components of those two graphs. In this paper, we more fully develop the structural importance of non-trivial connected components of the incompatibility and conflict graphs, proving a general decomposition theorem (Gusfield and Bansal, 2005) for phylogenetic networks. The decomposition theorem depends only on the incompatibilities in the input sequences, and hence applies to many types of phylogenetic networks, and to any biological phenomena that causes pairwise incompatibilities. More generally, the proof of the decomposition theorem exposes a maximal embedded tree structure that exists in the network when the sequences cannot be derived on a perfect phylogenetic tree. This extends the theory of perfect phylogeny in a natural and important way. The proof is constructive and leads to a polynomial-time algorithm to find the unique underlying maximal tree structure. We next examine and fully solve the major open question from Gusfield and Bansal (2005): Is it true

  7. Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants.

    PubMed

    Bot, A N; Rehner, S A; Boomsma, J J

    2001-10-01

    We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf-cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant-fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Amplified fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, confirming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants. We show that incompatibility between ants and transplanted, genetically different cultivars is indeed due to active killing of the novel cultivar by the ants. This incompatibility disappears when ants are force-fed the novel cultivar for about a week, a result that is consistent with our hypothesis of recognition induced by the resident fungus and eventual replacement of incompatibility compounds during force-feeding.

  8. Identifying incompatible combinations of concrete materials: volume II, test protocol.

    DOT National Transportation Integrated Search

    2006-08-01

    Unexpected interactions between otherwise acceptable ingredients in portland cement : concrete are becoming increasingly common as cementitious systems become more complex : and demands on the systems are more rigorous. Examples of incompatibilities ...

  9. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  10. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  11. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  12. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  13. Protocol to identify incompatible combinations of concrete materials : tech brief.

    DOT National Transportation Integrated Search

    2006-07-01

    For this project, incompatibility of concrete materials is : defined as interactions between acceptable materials that result in unexpected or unacceptable performance. The most common problems are associated with premature stiffening (rapid sl...

  14. Identifying incompatible combinations of concrete materials : volume I, final report.

    DOT National Transportation Integrated Search

    2006-08-01

    Unexpected interactions between otherwise acceptable ingredients in portland cement concrete are becoming increasingly common as cementitious systems become more and more complex and demands on the systems are more rigorous. Such incompatibilities ar...

  15. The self-compatibility mechanism in Brassica napus L. is applicable to F1 hybrid breeding.

    PubMed

    Tochigi, Takahiro; Udagawa, Hisashi; Li, Feng; Kitashiba, Hiroyasu; Nishio, Takeshi

    2011-08-01

    Brassica napus, an allopolyploid species having the A genome of B. rapa and the C genome of B. oleracea, is self-compatible, although both B. rapa and B. oleracea are self-incompatible. We have previously reported that SP11/SCR alleles are not expressed in anthers, while SRK alleles are functional in the stigma in B. napus cv. 'Westar', which has BnS-1 similar to B. rapa S-47 and BnS-6 similar to B. oleracea S-15. This genotype is the most frequent S genotype in B. napus, and we hypothesized that the loss of the function of SP11 is the primary cause of the self-compatibility of 'Westar'. To verify this hypothesis, we transformed 'Westar' plants with the SP11 allele of B. rapa S-47. All the transgenic plants and their progeny were completely self-incompatible, demonstrating self-compatibility to be due to the S haplotype having the non-functional SP11 allele in the A genome, which suppresses a functional recessive SP11 allele in the C genome. An artificially synthesized B. napus line having two recessive SP11 alleles was developed by interspecific hybridization between B. rapa and B. oleracea. This line was self-incompatible, but F(1) hybrids between this line and 'Westar' were self-compatible. These results suggest that the self-compatibility mechanism of 'Westar' is applicable to F(1) seed production in B. napus.

  16. Protecting and Preserving Rail Corridors Against Encroachment of Incompatible Uses.

    DOT National Transportation Integrated Search

    2008-01-01

    Rail Corridor preservation and planning for the purpose of reducing or restricting incompatible development is an : area of growing importance. This report provides an overview regarding encroachment and the elements that : contribute to potentially ...

  17. Conditions for the Emergence of Shared Norms in Populations with Incompatible Preferences

    PubMed Central

    Helbing, Dirk; Yu, Wenjian; Opp, Karl-Dieter; Rauhut, Heiko

    2014-01-01

    Understanding norms is a key challenge in sociology. Nevertheless, there is a lack of dynamical models explaining how one of several possible behaviors is established as a norm and under what conditions. Analysing an agent-based model, we identify interesting parameter dependencies that imply when two behaviors will coexist or when a shared norm will emerge in a heterogeneous society, where different populations have incompatible preferences. Our model highlights the importance of randomness, spatial interactions, non-linear dynamics, and self-organization. It can also explain the emergence of unpopular norms that do not maximize the collective benefit. Furthermore, we compare behavior-based with preference-based punishment and find interesting results concerning hypocritical punishment. Strikingly, pressuring others to perform the same public behavior as oneself is more effective in promoting norms than pressuring others to meet one’s own private preference. Finally, we show that adaptive group pressure exerted by randomly occuring, local majorities may create norms under conditions where different behaviors would normally coexist. PMID:25166137

  18. Temperatures during flower bud development affect pollen germination, self-incompatibility reaction and early fruit development of clementine (Citrus clementina Hort. ex Tan.).

    PubMed

    Distefano, G; Gentile, A; Hedhly, A; La Malfa, S

    2018-03-01

    One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much-prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen-pistil interactions in 'Comune' clementine (Citrus clementina Hort. ex Tan.). We examine flower bud development, in vitro pollen germination and pollen-pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from 'cold' to 'hot' weather during the flowering season in many citrus-growing regions. Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis. Exposure to different temperatures during flower bud development also alters expression of the self-incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub- and supra-optimal temperatures in determining the numbers of pollen tubes reaching the ovary. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  19. Strain tensor selection and the elastic theory of incompatible thin sheets.

    PubMed

    Oshri, Oz; Diamant, Haim

    2017-05-01

    The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)JMPSA80022-509610.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.

  20. Strain tensor selection and the elastic theory of incompatible thin sheets

    NASA Astrophysics Data System (ADS)

    Oshri, Oz; Diamant, Haim

    2017-05-01

    The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009), 10.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.

  1. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.

    PubMed

    Phillips, James G; Triggs, Thomas J; Meehan, James W

    2005-05-15

    Within graphical user interfaces, an indirect relationship between display and control may lead to directional incompatibilities when a forward mouse movement codes upward cursor motions. However, this should not occur for left/right movements or direct cursor controllers (e.g. touch sensitive screens). In a four-choice reaction time task, 12 participants performed movements from a central start location to a target situated at one of four cardinal points (top, bottom, left, right). A 2 x 2 x 2 design varied directness of controller (moving cursor on computer screen or pen on graphics tablet), compatibility of orientation of cursor controller with screen (horizontal or vertical) and axis of desired cursor motion (left/right or up/down). Incompatibility between orientation of controller and motion of cursor did not affect response latencies, possibly because both forward and upward movements are away from the midline and go up the visual field. However, directional incompatibilities between display and controller led to slower movement with prolonged accelerative phases. Indirect relationships between display and control led to less efficient movements with prolonged decelerative phases and a tendency to undershoot movements along the bottom/top axis. More direct cursor control devices, such as touch sensitive screens, should enhance the efficiency of aspects of cursor trajectories.

  2. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  3. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana

    PubMed Central

    Panoli, Aneesh; Martin, Maria Victoria; Alandete-Saez, Monica; Simon, Marissa; Neff, Christina; Swarup, Ranjan; Bellido, Andrés; Yuan, Li; Pagnussat, Gabriela C.; Sundaresan, Venkatesan

    2015-01-01

    The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development. PMID:25970627

  4. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.

    PubMed

    Panoli, Aneesh; Martin, Maria Victoria; Alandete-Saez, Monica; Simon, Marissa; Neff, Christina; Swarup, Ranjan; Bellido, Andrés; Yuan, Li; Pagnussat, Gabriela C; Sundaresan, Venkatesan

    2015-01-01

    The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.

  5. The Control of Human Aggression: An Incompatible Response Strategy.

    ERIC Educational Resources Information Center

    Baron, Robert A.

    This is a brief report discussing ways of dealing with aggression in individuals. The author feels that previous approaches, such as catharsis or punishment, have proved inadequate, and that a more successful approach to reducing aggression involves the induction of incompatible reactions among aggressors. In the author's opinion, when angry…

  6. Determinism, independence, and objectivity are incompatible.

    PubMed

    Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R

    2015-02-13

    Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.

  7. Use of side-chain incompatibility for tailoring long-range p/n heterojunctions: photoconductive nanofibers formed by self-assembly of an amphiphilic donor-acceptor dyad consisting of oligothiophene and perylenediimide.

    PubMed

    Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo

    2010-07-05

    To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).

  8. [Hemorrhagic syndrome after transfusion of incompatible blood].

    PubMed

    Fedorova, Z D; Bsryshev, B A; Khanin, A Z; Chuslov, A G

    1979-11-01

    The patients were observed by a reanimation-hematological team of the Leningrad emergency service. It has been established that the hemorrhagic syndrome is the main one deterimining the unity of pathogenesis and clinical picture of the hemotransfusional complication. Phase character of the changes in the homeostasis system during the transfusion of incompatible blood was noted. The express diagnosis of the disorders and a scheme of the sequence of administration of hemostatic drugs are proposed. Mortality among such patients was reduced.

  9. Measurement incompatibility and Schrödinger-Einstein-Podolsky-Rosen steering in a class of probabilistic theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Manik, E-mail: manik11ju@gmail.com

    Steering is one of the most counter intuitive non-classical features of bipartite quantum system, first noticed by Schrödinger at the early days of quantum theory. On the other hand, measurement incompatibility is another non-classical feature of quantum theory, initially pointed out by Bohr. Recently, Quintino et al. [Phys. Rev. Lett. 113, 160402 (2014)] and Uola et al. [Phys. Rev. Lett. 113, 160403 (2014)] have investigated the relation between these two distinct non-classical features. They have shown that a set of measurements is not jointly measurable (i.e., incompatible) if and only if they can be used for demonstrating Schrödinger-Einstein-Podolsky-Rosen steering. Themore » concept of steering has been generalized for more general abstract tensor product theories rather than just Hilbert space quantum mechanics. In this article, we discuss that the notion of measurement incompatibility can be extended for general probability theories. Further, we show that the connection between steering and measurement incompatibility holds in a border class of tensor product theories rather than just quantum theory.« less

  10. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    PubMed

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  11. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species.

    PubMed

    Li, Wentao; Chetelat, Roger T

    2015-04-07

    Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.

  12. Self-compatibility is over-represented on islands.

    PubMed

    Grossenbacher, Dena L; Brandvain, Yaniv; Auld, Josh R; Burd, Martin; Cheptou, Pierre-Olivier; Conner, Jeffrey K; Grant, Alannie G; Hovick, Stephen M; Pannell, John R; Pauw, Anton; Petanidou, Theodora; Randle, April M; Rubio de Casas, Rafael; Vamosi, Jana; Winn, Alice; Igic, Boris; Busch, Jeremiah W; Kalisz, Susan; Goldberg, Emma E

    2017-07-01

    Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularly in isolated locales such as oceanic islands. Despite the intuitive appeal of this colonization filter hypothesis (known as Baker's law), more than six decades of analyses have yielded mixed findings. We assembled a dataset of island and mainland plant breeding systems, focusing on the presence or absence of self-incompatibility. Because this trait enforces outcrossing and is unlikely to re-evolve on short timescales if it is lost, breeding system is especially likely to reflect the colonization filter. We found significantly more self-compatible species on islands than mainlands across a sample of > 1500 species from three widely distributed flowering plant families (Asteraceae, Brassicaceae and Solanaceae). Overall, 66% of island species were self-compatible, compared with 41% of mainland species. Our results demonstrate that the presence or absence of self-incompatibility has strong explanatory power for plant geographical patterns. Island floras around the world thus reflect the role of a key reproductive trait in filtering potential colonizing species in these three plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. A gene block causing cross-incompatibility hidden in wild and cultivated rice.

    PubMed Central

    Matsubara, Kazuki; Khin-Thidar; Sano, Yoshio

    2003-01-01

    Unidirectional cross-incompatibility was detected in advanced generations of backcrossing between wild (Oryza rufipogon) and cultivated (O. sativa) rice strains. The near-isogenic line (NIL) of T65wx (Japonica type) carrying an alien segment of chromosome 6 from a wild strain gave a reduced seed setting only when crossed with T65wx as the male. Cytological observations showed that abortion of hybrid seeds occurred as a consequence of a failure of early endosperm development followed by abnormalities in embryo development. The genetic basis of cross-incompatibility reactions in the female and male was investigated by testcrosses using recombinant inbred lines (RILs) that were established through dissecting the introgressed segments of wild and cultivated (Indica type) strains. The results revealed that the cross-incompatibility reaction was controlled by Cif in the female and by cim in the male. When the female plant with Cif was crossed with the male plant with cim, a failure of early endosperm development was observed in the hybrid zygotes. Among cultivars of O. sativa, cim was distributed predominantly in the Japonica type but not in the Indica type. In addition, a dominant suppressor, Su-Cif, which changes the reaction in the female from incompatible to compatible was proposed to present near the centromere of chromosome 6 of the Indica type. Further, the death of young F(1) zygotes was controlled by the parental genotypes rather than by the genotype of the hybrid zygote itself since all three genes acted sporophytically, which strongly suggests an involvement of parent-of-origin effects. We discuss the results in relation to the origin of a crossing barrier as well as their maintenance within the primary gene pool. PMID:14504241

  14. Influence of short incompatible practice on the Simon effect: transfer along the vertical dimension and across vertical and horizontal dimensions.

    PubMed

    Conde, Erick F Q; Fraga-Filho, Roberto Sena; Lameira, Allan Pablo; Mograbi, Daniel C; Riggio, Lucia; Gawryszewski, Luiz G

    2015-11-01

    In spatial compatibility and Simon tasks, the response is faster when stimulus and response locations are on the same side than when they are on opposite sides. It has been shown that a spatial incompatible practice leads to a subsequent modulation of the Simon effect along the horizontal dimension. It has also been reported that this modulation occurs both along and across vertical and horizontal dimensions, but only after intensive incompatible training (600 trials). In this work, we show that this modulatory effect can be obtained with a smaller number of incompatible trials, changing the spatial arrangement of the vertical response keys to obtain a stronger dimensional overlap between the spatial codes of stimuli and response keys. The results of Experiment 1 showed that 80 incompatible vertical trials abolished the Simon effect in the same dimension. Experiment 2 showed that a modulation of the vertical Simon effect could be obtained after 80 horizontal incompatible trials. Experiment 3 explored whether the transfer effect can also occur in a horizontal Simon task after a brief vertical spatial incompatibility task, and results were similar to the previous experiments. In conclusion, we suggest that the spatial arrangement between response key and stimulus locations may be critical to establish the short-term memory links that enable the transfer of learning between brief incompatible practices and the Simon effects, both along the vertical dimension and across vertical and horizontal dimensions.

  15. Mixed mating system in the fern Asplenium scolopendrium: implications for colonization potential

    PubMed Central

    Wubs, E. R. Jasper; de Groot, G. Arjen; During, Heinjo J.; Vogel, Johannes C.; Grundmann, Michael; Bremer, Piet; Schneider, Harald

    2010-01-01

    Background and Aims Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes. Methods A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site. Key Results Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine). Conclusions The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization

  16. Error-tradeoff and error-disturbance relations for incompatible quantum measurements.

    PubMed

    Branciard, Cyril

    2013-04-23

    Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario.

  17. X-autosome incompatibilities in Drosophila melanogaster: tests of Haldane’s rule and geographic patterns within species

    PubMed Central

    Lachance, Joseph; True, John R.

    2010-01-01

    Substantial genetic variation exists in natural populations of Drosophila melanogaster. This segregating variation includes alleles at different loci that interact to cause lethality or sterility (synthetic incompatibilities). Fitness epistasis in natural populations has important implications for speciation and the rate of adaptive evolution. To assess the prevalence of epistatic fitness interactions, we placed naturally occurring X chromosomes into genetic backgrounds derived from different geographic locations. Considerable amounts of synthetic incompatibilities were observed between X chromosomes and autosomes: greater than 44% of all combinations were either lethal or sterile. Sex-specific lethality and sterility were also tested to determine whether Haldane's rule holds for within-species variation. Surprisingly, we observed an excess of female sterility in genotypes that were homozygous, but not heterozygous, for the X chromosome. The recessive nature of these incompatibilities is similar to that predicted for incompatibilities underlying Haldane’s rule. Our study also found higher levels of sterility and lethality for genomes that contain chromosomes from different geographical regions. These findings are consistent with the view that genomes are co-adapted gene complexes and that geography affects the likelihood of epistatic fitness interactions. PMID:20455929

  18. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values.

    PubMed

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.

  19. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    PubMed

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  20. Simple Y-Autosomal Incompatibilities Cause Hybrid Male Sterility in Reciprocal Crosses Between Drosophila virilis and D. americana

    PubMed Central

    Sweigart, Andrea L.

    2010-01-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F1 hybrid males are perfectly fertile. Second, later generation (backcross and F2) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana. PMID:20048051

  1. [Frequencies of blood groups, ABO and Rh D incompatibility in post-delivery women and their liveborn].

    PubMed

    Baiochi, Eduardo; Camano, Luiz; Sass, Nelson; Colas, Osmar Ribeiro

    2007-01-01

    This study aimed to assess the frequency of different blood phenotypes and to predict the risk of Rh D alloimmunization and maternal-fetal incompatibility in a Brazilian population living in the West zone of the city of São Paulo-Brazil. This descriptive study evaluated 2,372 post-delivery women and their liveborn during one year. Blood types were analyzed by means of tube agglutination tests. The blood type frequencies were: 50.67 O, 32.17 A, 13.45 B, 3.75 AB, 90.34 Rh D(+) and 9.66 Rh D(-). ABO maternal-fetal incompatibility was detected in 18.4% and Rh D incompatibility in 7%. The fraction of Rh D(-) population at high risk for Rh D alloimmunization was 82%, emphasizing the importance of Rh D alloimmunization profilaxis.

  2. Student Achievement and Differential Reinforcement of Incompatible Behavior: Hand Raising.

    ERIC Educational Resources Information Center

    Kelly, Michael Bryan; Bushell, Donald, Jr.

    1987-01-01

    Assessed reading achievement of five second-grade girls under two contingencies: (1) teacher contacts were made during on-task behavior; and (2) differential reinforcement of an incompatible behavior (DRI) with teacher contacts contingent on students' hand-raising behavior. Reading achievement and time on task were greater under the on-task…

  3. Soluble CD30 and Cd27 levels in patients undergoing HLA antibody-incompatible renal transplantation.

    PubMed

    Hamer, Rizwan; Roche, Laura; Smillie, David; Harmer, Andrea; Mitchell, Daniel; Molostvov, Guerman; Lam, For T; Kashi, Habib; Tan, Lam Chin; Imray, Chris; Fletcher, Simon; Briggs, David; Lowe, David; Zehnder, Daniel; Higgins, Rob

    2010-08-01

    HLA antibody-incompatible transplantation has a higher risk of rejection when compared to standard renal transplantation. Soluble CD30 (sCD30) has been shown in many, but not all, studies to be a biomarker for risk of rejection in standard renal transplant recipients. We sought to define the value of sCD30 and soluble CD27 (sCD27) in patients receiving HLA antibody-incompatible transplants. Serum taken at different time points from 32 HLA antibody-incompatible transplant recipients was retrospectively assessed for sCD30 and sCD27 levels by enzyme-linked immunosorbent assay (ELISA). This was compared to episodes of acute rejection, post-transplant donor-specific antibody (DSA) levels and 12 month serum creatinine levels. No association was found between sCD27 and sCD30 levels and risk of acute rejection or DSA levels. Higher sCD30 levels at 4-6 weeks post-transplantation were associated with a higher serum creatinine at 12 months. Conclusion patients undergoing HLA antibody-incompatible transplantation are at a high risk of rejection but neither sCD30 (unlike in standard transplantation) nor sCD27 was found to be a risk factor. High sCD30 levels measured at 4-6 weeks post-transplantation was associated with poorer graft function at one year. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation.

    PubMed

    Stojanovic, Jelena; Adamusiak, Anna; Kessaris, Nicos; Chandak, Pankaj; Ahmed, Zubir; Sebire, Neil J; Walsh, Grainne; Jones, Helen E; Marks, Stephen D; Mamode, Nizam

    2017-06-01

    Blood group incompatible transplantation (ABOi) in children is rare as pretransplant conditioning remains challenging and concerns persist about the potential increased risk of rejection. We describe the results of 11 ABOi pediatric renal transplant recipients in the 2 largest centers in the United Kingdom, sharing the same tailored desensitization protocol. Patients with pretransplant titers of 1 or more in 8 received rituximab 1 month before transplant; tacrolimus and mycophenolate mofetil were started 1 week before surgery. Antibody removal was performed to reduce titers to 1 or less in 8 on the day of the operation. No routine postoperative antibody removal was performed. Death-censored graft survival at last follow-up was 100% in the ABOi and 98% in 50 compatible pediatric transplants. One patient developed grade 2A rejection successfully treated with antithymocyte globulin. Another patient had a titer rise of 2 dilutions treated with 1 immunoadsorption session. There was no histological evidence of rejection in the other 9 patients. One patient developed cytomegalovirus and BK and 2 others EBV and BK viremia. Tailored desensitization in pediatric blood group incompatible kidney transplantation results in excellent outcomes with graft survival and rejection rates comparable with compatible transplants.

  5. Current indirect fitness and future direct fitness are not incompatible.

    PubMed

    Brahma, Anindita; Mandal, Souvik; Gadagkar, Raghavendra

    2018-02-01

    In primitively eusocial insects, many individuals function as workers despite being capable of independent reproduction. Such altruistic behaviour is usually explained by the argument that workers gain indirect fitness by helping close genetic relatives. The focus on indirect fitness has left open the question of whether workers are also capable of getting direct fitness in the future in spite of working towards indirect fitness in the present. To investigate this question, we recorded behavioural profiles of all wasps on six naturally occurring nests of Ropalidia marginata , and then isolated all wasps in individual plastic boxes, giving them an opportunity to initiate nests and lay eggs. We found that 41% of the wasps successfully did so. Compared to those that failed to initiate nests, those that did were significantly younger, had significantly higher frequency of self-feeding behaviour on their parent nests but were not different in the levels of work performed in the parent nests. Thus ageing and poor feeding, rather than working for their colonies, constrain individuals for future independent reproduction. Hence, future direct fitness and present work towards gaining indirect fitness are not incompatible, making it easier for worker behaviour to be selected by kin selection or multilevel selection. © 2018 The Author(s).

  6. Apple (Malus x domestica) transcriptome in response to the compatible pathogen Erwinia amylovora and the incompatible pathogen Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Infiltration of Erwinia amylovora (Ea) into host leaves induces an oxidative burst similar to that observed during incompatible reactions associated with Hypersensitive Response (HR). However, the subsequent progressive development of necrosis in apple and other hosts is unlike an incompatible reac...

  7. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.

    PubMed

    Prigoda, Nadia L; Nassuth, Annette; Mable, Barbara K

    2005-07-01

    The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene

  8. Arrow physicians: are economics and medicine philosophically incompatible?

    PubMed

    Tsang, Sandro

    2015-06-01

    Economics is en route to its further expansion in medicine, but many in the medical community remain unconvinced that its impact will be positive. Thus, a philosophical enquiry into the compatibility of economics and medicine is necessary to resolve the disagreements. The fundamental mission of medicine obliges physicians to practise science and compassion to serve the patient's best interests. Conventional (neoclassical) economics assumes that individuals are self-interested and that competitive markets will emerge optimal states. Economics is seemingly incompatible with the emphasis of putting patients' interests first. This idea is refuted by Professor Kenneth Arrow's health economics seminal paper. Arrow emphasizes that medical practice involves agency, knowledge, trust and professionalism, and physician-patient relation critically affects care quality. The term Arrow Physician is used to mean a humanistic carer who has a concern for the patient and acts on the best available evidence with health equity in mind. To make this practice sustainable, implementing appropriate motivations, constitutions and institutions to enable altruistic agency is critical. There is substantial evidence that polycentric governance can encourage building trust and reciprocity, so as to avoid depletion of communal resources. This paper proposes building trusting institutions through granting altruistic physicians adequate autonomy to direct resources based on patients' technical needs. It also summarizes the philosophy bases of medicine and economics. It, therefore, contributes to developing a shared language to facilitate intellectual dialogues, and will encourage trans-disciplinary research into medical practice. This should lead to medicine being reoriented to care for whole persons again. © 2015 John Wiley & Sons, Ltd.

  9. S-genotype identification based on allele-specific PCR in Japanese pear

    PubMed Central

    Nashima, Kenji; Terakami, Shingo; Nishio, Sogo; Kunihisa, Miyuki; Nishitani, Chikako; Saito, Toshihiro; Yamamoto, Toshiya

    2015-01-01

    Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1–S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1–S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs. PMID:26175617

  10. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    PubMed Central

    Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane

    2012-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937

  11. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.

    PubMed

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika; Nasrallah, June B; Yang, Ziheng; Nielsen, Rasmus

    2005-03-01

    Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.

  12. 49 CFR 350.335 - What are the consequences if my State has laws or regulations incompatible with the Federal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What are the consequences if my State has laws or regulations incompatible with the Federal regulations? 350.335 Section 350.335 Transportation Other... Funding § 350.335 What are the consequences if my State has laws or regulations incompatible with the...

  13. Study on Incompatibility of Traditional Chinese Medicine: Evidence from Formula Network, Chemical Space, and Metabolism Room

    PubMed Central

    Zhang, Xiao-Dong; Wu, Hong-Ying; Jin, Jin; Yu, Guang-Yun; He, Xin; Wang, Hao; Shen, Xiu; Zhou, Ze-Wei; Liu, Pei-Xun; Fan, Sai-Jun

    2013-01-01

    A traditional Chinese medicine (TCM) formula network including 362 TCM formulas was built by using complex network methodologies. The properties of this network were analyzed including network diameter, average distance, clustering coefficient, and average degree. Meanwhile, we built a TCM chemical space and a TCM metabolism room under the theory of chemical space. The properties of chemical space and metabolism room were calculated and analyzed. The properties of the medicine pairs in “eighteen antagonisms and nineteen mutual inhibitors,” an ancient rule for TCM incompatibility, were studied based on the TCM formula network, chemical space, and metabolism room. The results showed that the properties of these incompatible medicine pairs are different from those of the other TCM based on the analysis of the TCM formula network, chemical space, and metabolism room. The lines of evidence derived from our work demonstrated that the ancient rule of TCM incompatibility, “eighteen antagonisms and nineteen mutual inhibitors,” is probably scientifically based. PMID:24369478

  14. Somatic Incompatibility in Diakaryotic-monokaryotic and Dikaryotic Pairings of Echinodontium tinctorium

    Treesearch

    A. Dan Wilson

    1991-01-01

    Somatic incompatibility in dikaryotic-monokaryotic (di-mon) and dikaryotic pairings of Echinodontium tinctorium was investigated in vitro on 4.5% malt agar. Antagonistic reactions of varying intensity occurred in all pairings between 12 allopatric dikaryons from Idaho and Arizona, between 14 sib-composed dikaryons from two Idaho sites, and in over...

  15. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  16. SMT or TOFT? How the two main theories of carcinogenesis are made (artificially) incompatible.

    PubMed

    Bedessem, Baptiste; Ruphy, Stéphanie

    2015-09-01

    The building of a global model of carcinogenesis is one of modern biology's greatest challenges. The traditional somatic mutation theory (SMT) is now supplemented by a new approach, called the Tissue Organization Field Theory (TOFT). According to TOFT, the original source of cancer is loss of tissue organization rather than genetic mutations. In this paper, we study the argumentative strategy used by the advocates of TOFT to impose their view. In particular, we criticize their claim of incompatibility used to justify the necessity to definitively reject SMT. First, we note that since it is difficult to build a non-ambiguous experimental demonstration of the superiority of TOFT, its partisans add epistemological and metaphysical arguments to the debate. This argumentative strategy allows them to defend the necessity of a paradigm shift, with TOFT superseding SMT. To do so, they introduce a notion of incompatibility, which they actually use as the Kuhnian notion of incommensurability. To justify this so-called incompatibility between the two theories of cancer, they move the debate to a metaphysical ground by assimilating the controversy to a fundamental opposition between reductionism and organicism. We show here that this argumentative strategy is specious, because it does not demonstrate clearly that TOFT is an organicist theory. Since it shares with SMT its vocabulary, its ontology and its methodology, it appears that a claim of incompatibility based on this metaphysical plan is not fully justified in the present state of the debate. We conclude that it is more cogent to argue that the two theories are compatible, both biologically and metaphysically. We propose to consider that TOFT and SMT describe two distinct and compatible causal pathways to carcinogenesis. This view is coherent with the existence of integrative approaches, and suggests that they have a higher epistemic value than the two theories taken separately.

  17. 48 CFR 970.0371-6 - Incompatibility between regular duties and private interests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Incompatibility between regular duties and private interests. 970.0371-6 Section 970.0371-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Improper...

  18. 48 CFR 970.0371-6 - Incompatibility between regular duties and private interests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Improper Business Practices and Personal Conflicts of Interest 970.0371-6 Incompatibility between regular duties and private interests. (a) Employees of a management and operating contractor shall not be permitted to make...

  19. Genotype × environment interactions in populations possessing Ga1-s and ga1 alleles for cross incompatibility in maize

    USDA-ARS?s Scientific Manuscript database

    Pop corn (Zea mays L.) inbred lines with genotype Ga1S/Ga1S are normally cross incompatible to dent corn (Z. mays L.) pollen with genotype ga1/ga1 but the reciprocal cross is fully receptive resulting in full seed set. However, in previous studies the incompatibility reaction of heterozygous plants ...

  20. Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Du, X. N.; Groening, L.

    2018-04-01

    Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.

  1. A man-made disease: Fetal neonatal alloimmune thrombocytopenia due to incompatibility between oocyte donor and gestational mother.

    PubMed

    Barg, Assaf Arie; Ifrah, Aviya Dvir; Strauss, Tzipi; Simchen, Michal J; Orvieto, Raoul; Rosenberg, Nurit; Kenet, Gili

    2017-08-01

    The incompatibility causing fetal and neonatal alloimmune thrombocytopenia (FNAIT) results from a fetus inheriting a paternal human platelet antigen (HPA), which is different from the maternal HPA. We present a unique case of FNAIT in a pregnancy involving an oocyte recipient mother with Turner syndrome. This is the first report of FNAIT in which the suggested mechanism involves antibodies produced by a gestational mother against the incompatible HPA of the oocyte donor. © 2017 Wiley Periodicals, Inc.

  2. Pervasive antagonistic interactions among hybrid incompatibility loci

    PubMed Central

    Josway, Sarah

    2017-01-01

    Species barriers, expressed as hybrid inviability and sterility, are often due to epistatic interactions between divergent loci from two lineages. Theoretical models indicate that the strength, direction, and complexity of these genetic interactions can strongly affect the expression of interspecific reproductive isolation and the rates at which new species evolve. Nonetheless, empirical analyses have not quantified the frequency with which loci are involved in interactions affecting hybrid fitness, and whether these loci predominantly interact synergistically or antagonistically, or preferentially involve loci that have strong individual effects on hybrid fitness. We systematically examined the prevalence of interactions between pairs of short chromosomal regions from one species (Solanum habrochaites) co-introgressed into a heterospecific genetic background (Solanum lycopersicum), using lines containing pairwise combinations of 15 chromosomal segments from S. habrochaites in the background of S. lycopersicum (i.e., 95 double introgression lines). We compared the strength of hybrid incompatibility (either pollen sterility or seed sterility) expressed in each double introgression line to the expected additive effect of its two component single introgressions. We found that epistasis was common among co-introgressed regions. Interactions for hybrid dysfunction were substantially more prevalent in pollen fertility compared to seed fertility phenotypes, and were overwhelmingly antagonistic (i.e., double hybrids were less unfit than expected from additive single introgression effects). This pervasive antagonism is expected to attenuate the rate at which hybrid infertility accumulates among lineages over time (i.e., giving diminishing returns as more reproductive isolation loci accumulate), as well as decouple patterns of accumulation of sterility loci and hybrid incompatibility phenotypes. This decoupling effect might explain observed differences between pollen and

  3. A systematic review of validated methods for identifying transfusion-related ABO incompatibility reactions using administrative and claims data.

    PubMed

    Carnahan, Ryan M; Kee, Vicki R

    2012-01-01

    This paper aimed to systematically review algorithms to identify transfusion-related ABO incompatibility reactions in administrative data, with a focus on studies that have examined the validity of the algorithms. A literature search was conducted using PubMed, Iowa Drug Information Service database, and Embase. A Google Scholar search was also conducted because of the difficulty identifying relevant studies. Reviews were conducted by two investigators to identify studies using data sources from the USA or Canada because these data sources were most likely to reflect the coding practices of Mini-Sentinel data sources. One study was found that validated International Classification of Diseases (ICD-9-CM) codes representing transfusion reactions. None of these cases were ABO incompatibility reactions. Several studies consistently used ICD-9-CM code 999.6, which represents ABO incompatibility reactions, and a technical report identified the ICD-10 code for these reactions. One study included the E-code E8760 for mismatched blood in transfusion in the algorithm. Another study reported finding no ABO incompatibility reaction codes in the Healthcare Cost and Utilization Project Nationwide Inpatient Sample database, which contains data of 2.23 million patients who received transfusions, raising questions about the sensitivity of administrative data for identifying such reactions. Two studies reported perfect specificity, with sensitivity ranging from 21% to 83%, for the code identifying allogeneic red blood cell transfusions in hospitalized patients. There is no information to assess the validity of algorithms to identify transfusion-related ABO incompatibility reactions. Further information on the validity of algorithms to identify transfusions would also be useful. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle

    PubMed Central

    Takano, Shun-ichiro; Tuda, Midori; Takasu, Keiji; Furuya, Naruto; Imamura, Yuya; Kim, Sangwan; Tashiro, Kosuke; Iiyama, Kazuhiro; Tavares, Matias; Amaral, Acacio Cardoso

    2017-01-01

    Maternally inherited bacterial endosymbionts in arthropods manipulate host reproduction to increase the fitness of infected females. Cytoplasmic incompatibility (CI) is one such manipulation, in which uninfected females produce few or no offspring when they mate with infected males. To date, two bacterial endosymbionts, Wolbachia and Cardinium, have been reported as CI inducers. Only Wolbachia induces complete CI, which causes 100% offspring mortality in incompatible crosses. Here we report a third CI inducer that belongs to a unique clade of Alphaproteobacteria detected within the coconut beetle, Brontispa longissima. This beetle comprises two cryptic species, the Asian clade and the Pacific clade, which show incompatibility in hybrid crosses. Different bacterial endosymbionts, a unique clade of Alphaproteobacteria in the Pacific clade and Wolbachia in the Asian clade, induced bidirectional CI between hosts. The former induced complete CI (100% mortality), whereas the latter induced partial CI (70% mortality). Illumina MiSeq sequencing and denaturing gradient gel electrophoresis patterns showed that the predominant bacterium detected in the Pacific clade of B. longissima was this unique clade of Alphaproteobacteria alone, indicating that this endosymbiont was responsible for the complete CI. Sex distortion did not occur in any of the tested crosses. The 1,160 bp of 16S rRNA gene sequence obtained for this endosymbiont had only 89.3% identity with that of Wolbachia, indicating that it can be recognized as a distinct species. We discuss the potential use of this bacterium as a biological control agent. PMID:28533374

  5. Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean

    PubMed Central

    Atyame, Célestine M.; Pasteur, Nicole; Dumas, Emilie; Tortosa, Pablo; Tantely, Michaël Luciano; Pocquet, Nicolas; Licciardi, Séverine; Bheecarry, Ambicadutt; Zumbo, Betty; Weill, Mylène; Duron, Olivier

    2011-01-01

    The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands. PMID:22206033

  6. Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey.

    PubMed

    Altinli, Mine; Gunay, Filiz; Alten, Bulent; Weill, Mylene; Sicard, Mathieu

    2018-03-20

    Wolbachia are maternally transmitted bacteria that can manipulate their hosts' reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each

  7. Acute Cellular Rejection in ABO-Incompatible Renal Transplant Recipients Receiving Rituximab Is Associated with Delayed-Onset Neutropenia.

    PubMed

    Uchida, Junji; Iwai, Tomoaki; Nishide, Shunji; Kabei, Kazuya; Kuwabara, Nobuyuki; Yamasaki, Takeshi; Naganuma, Toshihide; Kumada, Norihiko; Takemoto, Yoshiaki; Nakatani, Tatsuya

    2017-07-25

    BACKGROUND Rituximab induces long-lasting B cell depletion in the peripheral blood and increases the levels of proinflammatory cytokines associated with regulatory B cell depletion. Previous reports showed that B cell-related cytokine release after administration of rituximab may induce acute cellular rejection (ACR) and delayed-onset neutropenia. The present study was conducted to investigate the correlation between acute rejection and delayed-onset neutropenia in ABO-incompatible renal transplant recipients who underwent administration of rituximab for 1 year after transplantation. MATERIAL AND METHODS From June 2006 to July 2015, 47 patients with chronic renal failure received ABO-incompatible renal transplant with rituximab induction at Osaka City University Hospital. All 47 patients underwent plasmapheresis due to removal of anti-A/B antibodies and administration of rituximab, and their transplants were carried out successfully. We investigated the correlation between ACR and delayed-onset neutropenia in ABO-incompatible renal transplant recipients who underwent administration of rituximab for 1 year after transplantation. RESULTS Fourteen patients (29.8%) experienced ACR (group A), and 33 recipients did not develop ACR (group B). The frequency of delayed-onset neutropenia was higher in group A than in group B (p=0.0503). Multivariate logistic regression analysis revealed that the frequency of ACR correlated significantly with the prevalence of delayed-onset neutropenia. CONCLUSIONS Our results indicated that ACR in ABO-incompatible renal transplant recipients receiving rituximab was associated with delayed-onset neutropenia.

  8. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  9. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible

    PubMed Central

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated. PMID:26783525

  10. The Context Matters: Outcome Probability and Expectation Mismatch Modulate the Feedback Negativity When Self-Evaluation of Response Correctness Is Possible.

    PubMed

    Leue, Anja; Cano Rodilla, Carmen; Beauducel, André

    2015-01-01

    Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated.

  11. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  12. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny.

    PubMed

    Wang, Aiming; Xia, Qun; Xie, Wenshuang; Dumonceaux, Tim; Zou, Jitao; Datla, Raju; Selvaraj, Gopalan

    2002-06-01

    Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen-pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general.

  13. Differential interspecific incompatibility among Populus hybrids in sections Aigeiros Duby and Tacamahaca Spach

    Treesearch

    Assiti A. Mahama; Richard B. Hall; Ronald S. Zalesny

    2011-01-01

    In our previous Populus breeding, compatible crosses between P. maximowiczii A. Henry and P. deltoides Bartr. ex Marsh corroborated the potential of interspecific hybrids, despite low seed set. Our current objective was to test the range of incompatibility among intraspecific and interspecific crosses using...

  14. NLR mutations suppressing immune hybrid incompatibility and their effects on disease resistance.

    PubMed

    Atanasov, Kostadin Evgeniev; Liu, Changxin; Erban, Alexander; Kopka, Joachim; Parker, Jane E; Alcázar, Rubén

    2018-05-23

    Genetic divergence between populations can lead to reproductive isolation. Hybrid incompatibilities (HI) represent intermediate points along a continuum towards speciation. In plants, genetic variation in disease resistance (R) genes underlies several cases of HI. The progeny of a cross between Arabidopsis (Arabidopsis thaliana) accessions Landsberg (Ler, Poland) and Kashmir-2 (Kas-2, central Asia) exhibits immune-related HI. This incompatibility is due to a genetic interaction between a cluster of eight TNL (TOLL/INTERLEUKIN1 RECEPTOR- NUCLEOTIDE BINDING - LEUCINE RICH REPEAT) RPP1 (RECOGNITION OF PERONOSPORA PARASITICA 1)- like genes (R1- R8) from Ler and central Asian alleles of a Strubbelig-family receptor-like kinase (SRF3) from Kas-2. In characterizing mutants altered in Ler/Kas-2 HI, we mapped multiple mutations to the RPP1-like Ler locus. Analysis of these suppressor of Ler/Kas-2 incompatibility (sulki) mutants reveals complex, additive and epistatic interactions underlying RPP1-like Ler locus activity. The effects of these mutations were measured on basal defense, global gene expression, primary metabolism, and disease resistance to a local Hyaloperonospora arabidopsidis isolate (Hpa Gw) collected from Gorzów (Gw), where the Landsberg accession originated. Gene expression sectors and metabolic hallmarks identified for HI are both dependent and independent of RPP1-like Ler members. We establish that mutations suppressing immune-related Ler/Kas-2 HI do not compromise resistance to Hpa Gw. QTL mapping analysis of Hpa Gw resistance point to RPP7 as the causal locus. This work provides insight into the complex genetic architecture of the RPP1-like Ler locus and immune-related HI in Arabidopsis and into the contributions of RPP1-like genes to HI and defense. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  15. Desensitization protocol enabling pediatric crossmatch-positive renal transplantation: successful HLA-antibody-incompatible renal transplantation of two highly sensitized children.

    PubMed

    Adamusiak, Anna M; Stojanovic, Jelena; Shaw, Olivia; Vaughan, Robert; Sebire, Neil J; Drage, Martin; Kessaris, Nicos; Marks, Stephen D; Mamode, Nizam

    2017-02-01

    Renal transplantation improves quality of life (QoL) and survival in children requiring renal replacement therapy (RRT). Sensitization with development of a broad-spectrum of anti-HLA antibodies as a result of previous transplantation or after receiving blood products is an increasing problem. There are no published reports of desensitization protocols in children allowing renal transplantation from HLA-antibody-incompatible living donors. We adopted our well-established adult desensitization protocol for this purpose and undertook HLA antibody-incompatible living donor renal transplants in two children: a 14-year-old girl and a 13-year-old boy. After 2 and 1.5 years of follow-up, respectively, both patients have stable renal allograft function despite a rise in donor-specific antibodies in one case. HLA-incompatible transplantation should be considered in selected cases for sensitized children.

  16. Objective Work-Nonwork Conflict: From Incompatible Demands to Decreased Work Role Performance

    ERIC Educational Resources Information Center

    Haun, Sascha; Steinmetz, Holger; Dormann, Christian

    2011-01-01

    Research on work-nonwork conflict (WNC) is based on the assumption that incompatible demands from the work and the nonwork domain hamper role performance. This assumption implies that role demands from both domains interact in predicting role performance, but research has been largely limited to main effects. In this multi-source study, we analyze…

  17. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci

    PubMed Central

    Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W

    2012-01-01

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F1 hybrid females suffer less from hybridization than haploid F2 hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F2 male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition. PMID:21878985

  18. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci.

    PubMed

    Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W

    2012-03-01

    The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.

  19. Donor- and recipient-derived immunity in ABO incompatible living-related liver transplantation.

    PubMed

    Schumann, Alexandra; Fiedler, Melanie; Beckebaum, Susanne; Cicinnati, Vito R; Herzer, Kerstin; Lenz, Veronika; Witzke, Oliver; Paul, Andreas; Roggendorf, Michael; Horn, Peter A; Lindemann, Monika

    2015-09-01

    This report describes how donor- and recipient-derived immunity was influenced by immunosuppressive treatment of ABO incompatibility (rituximab and immunoadsorption/plasmaphereses) in the long-term. We present an 8-year course of Hepatitis B virus (HBV) immunity, isohemagglutinins and B cell numbers. Whereas cellular HBV immunity was transferred from the HBV vaccinated donor (blood group A1) to the HBV naïve recipient (blood group 0), humoral HBV specific immune transfer was lacking. Starting at month 17 after transplantation, the recipient was vaccinated six times against HBV. Anti-HBs did not appear until the sixth vaccination at month 44. Immunoadsorption prior to transplantation reduced anti-A1 IgG titers from 256 to 2. Titers after transplantation remained low (⩽64). B cell numbers were below standard values up to month 26, then normalized and exceeded normal values from year 7 to 8 post transplantation. In conclusion, donor-derived B cell immunity was lost but recipient-derived immunity persisted after ABO incompatible transplantation. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  20. On peaceful coexistence: is the collapse postulate incompatible with relativity?

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    In this paper, it is argued that the prima facie conflict between special relativity and the quantum-mechanical collapse postulate is only apparent, and that the seemingly incompatible accounts of entangled systems undergoing collapse yielded by different reference frames can be regarded as no more than differing accounts of the same processes and events. Attention to the transformation properties of quantum-mechanical states undergoing unitary, non-collapse evolution points the way to a treatment of collapse evolution consistent with the demands of relativity.

  1. The Pace of Hybrid Incompatibility Evolution in House Mice.

    PubMed

    Wang, Richard J; White, Michael A; Payseur, Bret A

    2015-09-01

    Hybrids between species are often sterile or inviable. This form of reproductive isolation is thought to evolve via the accumulation of mutations that interact to reduce fitness when combined in hybrids. Mathematical formulations of this "Dobzhansky-Muller model" predict an accelerating buildup of hybrid incompatibilities with divergence time (the "snowball effect"). Although the Dobzhansky-Muller model is widely accepted, the snowball effect has only been tested in two species groups. We evaluated evidence for the snowball effect in the evolution of hybrid male sterility among subspecies of house mice, a recently diverged group that shows partial reproductive isolation. We compared the history of subspecies divergence with patterns of quantitative trait loci (QTL) detected in F2 intercrosses between two pairs of subspecies (Mus musculus domesticus with M. m. musculus and M. m. domesticus with M. m. castaneus). We used a recently developed phylogenetic comparative method to statistically measure the fit of these data to the snowball prediction. To apply this method, QTL were partitioned as either shared or unshared in the two crosses. A heuristic partitioning based on the overlap of QTL confidence intervals produced unambiguous support for the snowball effect. An alternative approach combining data among crosses favored the snowball effect for the autosomes, but a linear accumulation of incompatibilities for the X chromosome. Reasoning that the X chromosome analyses are complicated by low mapping resolution, we conclude that hybrid male sterility loci have snowballed in house mice. Our study illustrates the power of comparative genetic mapping for understanding mechanisms of speciation. Copyright © 2015 by the Genetics Society of America.

  2. The Pace of Hybrid Incompatibility Evolution in House Mice

    PubMed Central

    Wang, Richard J.; White, Michael A.; Payseur, Bret A.

    2015-01-01

    Hybrids between species are often sterile or inviable. This form of reproductive isolation is thought to evolve via the accumulation of mutations that interact to reduce fitness when combined in hybrids. Mathematical formulations of this “Dobzhansky–Muller model” predict an accelerating buildup of hybrid incompatibilities with divergence time (the “snowball effect”). Although the Dobzhansky–Muller model is widely accepted, the snowball effect has only been tested in two species groups. We evaluated evidence for the snowball effect in the evolution of hybrid male sterility among subspecies of house mice, a recently diverged group that shows partial reproductive isolation. We compared the history of subspecies divergence with patterns of quantitative trait loci (QTL) detected in F2 intercrosses between two pairs of subspecies (Mus musculus domesticus with M. m. musculus and M. m. domesticus with M. m. castaneus). We used a recently developed phylogenetic comparative method to statistically measure the fit of these data to the snowball prediction. To apply this method, QTL were partitioned as either shared or unshared in the two crosses. A heuristic partitioning based on the overlap of QTL confidence intervals produced unambiguous support for the snowball effect. An alternative approach combining data among crosses favored the snowball effect for the autosomes, but a linear accumulation of incompatibilities for the X chromosome. Reasoning that the X chromosome analyses are complicated by low mapping resolution, we conclude that hybrid male sterility loci have snowballed in house mice. Our study illustrates the power of comparative genetic mapping for understanding mechanisms of speciation. PMID:26199234

  3. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range.

    PubMed

    Brennan, Adrian C; Harris, Stephen A; Hiscock, Simon J

    2006-02-01

    Sporophytic self-incompatibility (SSI) was studied in 11 British Senecio squalidus populations to quantify mating system variation and determine how its recent colonization of the United Kingdom has influenced its mating behavior. S allele number, frequency, and dominance interactions in populations were assessed using full diallels of controlled pollinations. A mean of 5.1 S alleles per population was observed, and no population contained more than six S alleles. Numbers of S alleles within populations of S. squalidus declined with increasing distance from the center of its introduction (Oxford). Cross-classification of S alleles allowed an estimate of approximately seven and no more than 11 S alleles for the entire British S. squalidus population. The low number of S alleles observed in British S. squalidus compared to other SI species is consistent with the population bottleneck associated with S. squalidus' introduction to the Oxford Botanic Garden and subsequent colonization of Britain. Extensive S allele dominance interactions were observed to be a feature of the S. squalidus SSI system and may represent an adaptive response to improve limited mate availability imposed by the presence of so few S alleles. Multilocus allozyme genotypes were also identified for individuals in all populations and geographic patterns of S locus and allozyme loci variation investigated. Less interpopulation structure was observed for the S locus than for allozyme diversity--a finding indicative of the effects of negative frequency-dependent selection at the S locus maintaining equal S phenotypes within populations and enhancing effective migration between populations.

  4. Measuring Incompatible Observables by Exploiting Sequential Weak Values.

    PubMed

    Piacentini, F; Avella, A; Levi, M P; Gramegna, M; Brida, G; Degiovanni, I P; Cohen, E; Lussana, R; Villa, F; Tosi, A; Zappa, F; Genovese, M

    2016-10-21

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  5. Measuring Incompatible Observables by Exploiting Sequential Weak Values

    NASA Astrophysics Data System (ADS)

    Piacentini, F.; Avella, A.; Levi, M. P.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; Zappa, F.; Genovese, M.

    2016-10-01

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  6. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids.

    PubMed

    Flachs, Petr; Bhattacharyya, Tanmoy; Mihola, Ondřej; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2014-01-01

    PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.

  7. Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses.

    PubMed

    Moyle, Leonie C; Nakazato, Takuya

    2008-07-01

    The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.

  8. Through the looking glass: counter-mirror activation following incompatible sensorimotor learning.

    PubMed

    Catmur, Caroline; Gillmeister, Helge; Bird, Geoffrey; Liepelt, Roman; Brass, Marcel; Heyes, Cecilia

    2008-09-01

    The mirror system, comprising cortical areas that allow the actions of others to be represented in the observer's own motor system, is thought to be crucial for the development of social cognition in humans. Despite the importance of the human mirror system, little is known about its origins. We investigated the role of sensorimotor experience in the development of the mirror system. Functional magnetic resonance imaging was used to measure neural responses to observed hand and foot actions following one of two types of training. During training, participants in the Compatible (control) group made mirror responses to observed actions (hand responses were made to hand stimuli and foot responses to foot stimuli), whereas the Incompatible group made counter-mirror responses (hand to foot and foot to hand). Comparison of these groups revealed that, after training to respond in a counter-mirror fashion, the relative action observation properties of the mirror system were reversed; areas that showed greater responses to observation of hand actions in the Compatible group responded more strongly to observation of foot actions in the Incompatible group. These results suggest that, rather than being innate or the product of unimodal visual or motor experience, the mirror properties of the mirror system are acquired through sensorimotor learning.

  9. An Indel Polymorphism in the Hybrid Incompatibility Gene Lethal Hybrid Rescue of Drosophila Is Functionally Relevant

    PubMed Central

    Maheshwari, Shamoni; Barbash, Daniel A.

    2012-01-01

    Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr2, we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr1 or Hmr1, respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr2 is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr2. This indel is thus a polymorphism that can affect the HI function of Lhr. PMID:22865735

  10. Rheumatoid arthritis response to treatment across IgG1 allotype - anti-TNF incompatibility: a case-only study.

    PubMed

    Montes, Ariana; Perez-Pampin, Eva; Navarro-Sarabia, Federico; Moreira, Virginia; de la Serna, Arturo Rodríguez; Magallares, Berta; Vasilopoulos, Yiannis; Sarafidou, Theologia; Fernández-Nebro, Antonio; Ordóñez, María Del Carmen; Narváez, Javier; Cañete, Juan D; Marquez, Ana; Pascual-Salcedo, Dora; Joven, Beatriz; Carreira, Patricia; Moreno-Ramos, Manuel J; Caliz, Rafael; Ferrer, Miguel Angel; Garcia-Portales, Rosa; Blanco, Francisco J; Magro, Cesar; Raya, Enrique; Valor, Lara; Alegre-Sancho, Juan J; Balsa, Alejandro; Martin, Javier; Plant, Darren; Isaacs, John; Morgan, Ann W; Barton, Anne; Wilson, Anthony G; Gómez-Reino, Juan J; Gonzalez, Antonio

    2015-03-18

    We have hypothesized that incompatibility between the G1m genotype of the patient and the G1m1 and G1m17 allotypes carried by infliximab (INX) and adalimumab (ADM) could decrease the efficacy of these anti-tumor necrosis factor (anti-TNF) antibodies in the treatment of rheumatoid arthritis (RA). The G1m genotypes were analyzed in three collections of patients with RA totaling 1037 subjects. The first, used for discovery, comprised 215 Spanish patients. The second and third were successively used for replication. They included 429 British and Greek patients and 393 Spanish and British patients, respectively. Two outcomes were considered: change in the Disease Activity Score in 28 joint (ΔDAS28) and the European League Against Rheumatism (EULAR) response criteria. An association between less response to INX and incompatibility of the G1m1,17 allotype was found in the discovery collection at 6 months of treatment (P = 0.03). This association was confirmed in the replications (P = 0.02 and 0.08, respectively) leading to a global association (P = 0.001) that involved a mean difference in ΔDAS28 of 0.4 units between compatible and incompatible patients (2.3 ± 1.5 in compatible patients vs. 1.9 ± 1.5 in incompatible patients) and an increase in responders and decrease in non-responders according to the EULAR criteria (P = 0.03). A similar association was suggested for patients treated with ADM in the discovery collection, but it was not supported by replication. Our results suggest that G1m1,17 allotypes are associated with response to INX and could aid improved therapeutic targeting in RA.

  11. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L.

    PubMed

    Yang, Yong; Liu, Zhiquan; Zhang, Tong; Zhou, Guilong; Duan, Zhiqiang; Li, Bing; Dou, Shengwei; Liang, Xiaomei; Tu, Jinxing; Shen, Jinxiong; Yi, Bin; Fu, Tingdong; Dai, Cheng; Ma, Chaozhi

    2018-06-03

    Self-incompatibility (SI) in plants genetically prevents self-fertilization to promote outcrossing and genetic diversity. Its hybrids in Brassica have been widely cultivated due to the propagation of SI lines by spraying a salt solution. We demonstrated that suppression of Brassica napus SI from edible salt solution treatment was ascribed to sodium chloride and independent of S haplotypes, but it did not obviously change the expression of SI - related genes. Using the isobaric tags for relative and absolute quantitation (iTRAQ) technique, we identified 885 differentially accumulated proteins (DAPs) in Brassica napus stigmas of un-pollinated (UP), pollinated with compatible pollen (PC), pollinated with incompatible pollen (PI), and pollinated with incompatible pollen after edible salt solution treatment (NA). Of the 307 DAPs in NA/UP, 134 were unique and 94 were shared only with PC/UP. In PC and NA, some salt stress protein species, such as glyoxalase I , were induced, and these protein species were likely to participate in the self-compatibility (SC) pathway. Most of the identified protein species were related to metabolic pathways, biosynthesis of secondary metabolites, ribosome, and so on. A systematic analysis implied that salt treatment-overcoming SI in B. napus was likely conferred by at least five different physiological mechanisms: (i) the use of Ca 2+ as signal molecule; (ii) loosening of the cell wall to allow pollen tube penetration; (iii) synthesis of compatibility factor protein species for pollen tube growth; (iv) depolymerization of microtubule networks to facilitate pollen tube movement; and (v) inhibition of protein degradation pathways to restrain the SI response.

  12. RNA Sequencing Analysis of the Gametophyte Transcriptome from the Liverwort, Marchantia polymorpha

    PubMed Central

    Sharma, Niharika; Jung, Chol-Hee; Bhalla, Prem L.; Singh, Mohan B.

    2014-01-01

    The liverwort Marchantia polymorpha is a member of the most basal lineage of land plants (embryophytes) and likely retains many ancestral morphological, physiological and molecular characteristics. Despite its phylogenetic importance and the availability of previous EST studies, M. polymorpha’s lack of economic importance limits accessible genomic resources for this species. We employed Illumina RNA-Seq technology to sequence the gametophyte transcriptome of M. polymorpha. cDNA libraries from 6 different male and female developmental tissues were sequenced to delineate a global view of the M. polymorpha transcriptome. Approximately 80 million short reads were obtained and assembled into a non-redundant set of 46,533 transcripts (> = 200 bp) from 46,070 loci. The average length and the N50 length of the transcripts were 757 bp and 471 bp, respectively. Sequence comparison of assembled transcripts with non-redundant proteins from embryophytes resulted in the annotation of 43% of the transcripts. The transcripts were also compared with M. polymorpha expressed sequence tags (ESTs), and approximately 69.5% of the transcripts appeared to be novel. Twenty-one percent of the transcripts were assigned GO terms to improve annotation. In addition, 6,112 simple sequence repeats (SSRs) were identified as potential molecular markers, which may be useful in studies of genetic diversity. A comparative genomics approach revealed that a substantial proportion of the genes (35.5%) expressed in M. polymorpha were conserved across phylogenetically related species, such as Selaginella and Physcomitrella, and identified 580 genes that are potentially unique to liverworts. Our study presents an extensive amount of novel sequence information for M. polymorpha. This information will serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the isolation and characterization of functional genes that are involved in

  13. Nuclear-mitochondrial incompatibility in interorder rhesus monkey-cow embryos derived from somatic cell nuclear transfer.

    PubMed

    Kwon, Daekee; Koo, Ok-Jae; Kim, Min-Jung; Jang, Goo; Lee, Byeong Chun

    2016-10-01

    Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Formation of reactive oxygen species (ROS) is an indirect indicator of ETC activity of cells. The ROS levels of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Collectively, rhesus monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.

  14. Pollen Acceptance or Rejection: A Tale of Two Pathways.

    PubMed

    Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R

    2016-12-01

    While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Implementing of lognormal humidity and cloud-related control variables for the NCEP GSI hybrid EnVAR Assimilation scheme.

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kleist, D.; Ide, K.

    2017-12-01

    As the resolution of operational global numerical weather prediction system approach the meso-scale, then the assumption of Gaussianity for the errors at these scales may not valid. However, it is also true that synoptic variables that are positive definite in behavior, for example humidity, cannot be optimally analyzed with a Gaussian error structure, where the increment could force the full field to go negative. In this presentation we present the initial work of implementing a mixed Gaussian-lognormal approximation for the temperature and moisture variable in both the ensemble and variational component of the NCEP GSI hybrid EnVAR. We shall also lay the foundation for the implementation of the lognormal approximation to cloud related control variables to allow for a possible more consistent assimilation of cloudy radiances.

  16. Incompatible type A plasma transfusion in patients requiring massive transfusion protocol: Outcomes of an Eastern Association for the Surgery of Trauma multicenter study.

    PubMed

    Stevens, W Tait; Morse, Bryan C; Bernard, Andrew; Davenport, Daniel L; Sams, Valerie G; Goodman, Michael D; Dumire, Russell; Carrick, Matthew M; McCarthy, Patrick; Stubbs, James R; Pritts, Timothy A; Dente, Christopher J; Luo-Owen, Xian; Gregory, Jason A; Turay, David; Gomaa, Dina; Quispe, Juan C; Fitzgerald, Caitlin A; Haddad, Nadeem N; Choudhry, Asad; Quesada, Jose F; Zielinski, Martin D

    2017-07-01

    With a relative shortage of type AB plasma, many centers have converted to type A plasma for resuscitation of patients whose blood type is unknown. The goal of this study is to determine outcomes for trauma patients who received incompatible plasma transfusions as part of a massive transfusion protocol (MTP). As part of an Eastern Association for the Surgery of Trauma multi-institutional trial, registry and blood bank data were collected from eight trauma centers for trauma patients (age, ≥ 15 years) receiving emergency release plasma transfusions as part of MTPs from January 2012 to August 2016. Incompatible type A plasma was defined as transfusion to patient blood type B or type AB. Of the 1,536 patients identified, 92% received compatible plasma transfusions and 8% received incompatible type A plasma. Patient characteristics were similar except for greater penetrating injuries (48% vs 36%; p = 0.01) in the incompatible group. In the incompatible group, patients were transfused more plasma units at 4 hours (median, 9 vs. 5; p < 0.001) and overall for stay (11 vs. 9; p = 0.03). No hemolytic transfusion reactions were reported. Two transfusion-related acute lung injury events were reported in the compatible group. Between incompatible and compatible groups, there was no difference in the rates of acute respiratory distress syndrome (6% vs. 8%; p = 0.589), thromboembolic events (9% vs. 7%; p = 0.464), sepsis (6% vs. 8%; p = 0.589), or acute renal failure (8% vs. 8%, p = 0.860). Mortality at 6 (17% vs. 15%, p = 0.775) and 24 hours (25% vs. 23%, p = 0.544) and at 28 days or discharge (38% vs. 35%, p = 0.486) were similar between groups. Multivariate regression demonstrated that Injury Severity Score, older age and more red blood cell transfusion at 4 hours were independently associated with death at 28 days or discharge; Injury Severity Score and more red blood cell transfusion at 4 hours were predictors for morbidity. Incompatible transfusion was not an independent

  17. Interallelic and Intergenic Incompatibilities of the Prdm9 (Hst1) Gene in Mouse Hybrid Sterility

    PubMed Central

    Flachs, Petr; Mihola, Ondřej; Šimeček, Petr; Gregorová, Soňa; Schimenti, John C.; Matsui, Yasuhisa; Baudat, Frédéric; de Massy, Bernard; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2012-01-01

    The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F1 males of certain strains from two Mus musculus subspecies, e.g., PWD from M. m. musculus and C57BL/6J (henceforth B6) from M. m. domesticus. Hst1 has been identified as a meiotic PR-domain gene (Prdm9) encoding histone 3 methyltransferase in the male offspring of PWD females and B6 males, (PWD×B6)F1. To characterize the incompatibilities underlying hybrid sterility, we phenotyped reproductive and meiotic markers in males with altered copy numbers of Prdm9. A partial rescue of fertility was observed upon removal of the B6 allele of Prdm9 from the azoospermic (PWD×B6)F1 hybrids, whereas removing one of the two Prdm9 copies in PWD or B6 background had no effect on male reproduction. Incompatibility(ies) not involving Prdm9B6 also acts in the (PWD×B6)F1 hybrids, since the correction of hybrid sterility by Prdm9B6 deletion was not complete. Additions and subtractions of Prdm9 copies, as well as allelic replacements, improved meiotic progression and fecundity also in the progeny-producing reciprocal (B6×PWD)F1 males. Moreover, an increased dosage of Prdm9 and reciprocal cross enhanced fertility of other sperm-carrying male hybrids, (PWD×B6-C3H.Prdm9)F1, harboring another Prdm9 allele of M. m. domesticus origin. The levels of Prdm9 mRNA isoforms were similar in the prepubertal testes of all types of F1 hybrids of PWD with B6 and B6-C3H.Prdm9 despite their different prospective fertility, but decreased to 53% after removal of Prdm9B6. Therefore, the Prdm9B6 allele probably takes part in posttranscriptional dominant-negative hybrid interaction(s) absent in the parental strains. PMID:23133405

  18. Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility.

    PubMed

    Flachs, Petr; Mihola, Ondřej; Simeček, Petr; Gregorová, Soňa; Schimenti, John C; Matsui, Yasuhisa; Baudat, Frédéric; de Massy, Bernard; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2012-01-01

    The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F(1) males of certain strains from two Mus musculus subspecies, e.g., PWD from M. m. musculus and C57BL/6J (henceforth B6) from M. m. domesticus. Hst1 has been identified as a meiotic PR-domain gene (Prdm9) encoding histone 3 methyltransferase in the male offspring of PWD females and B6 males, (PWD×B6)F(1). To characterize the incompatibilities underlying hybrid sterility, we phenotyped reproductive and meiotic markers in males with altered copy numbers of Prdm9. A partial rescue of fertility was observed upon removal of the B6 allele of Prdm9 from the azoospermic (PWD×B6)F(1) hybrids, whereas removing one of the two Prdm9 copies in PWD or B6 background had no effect on male reproduction. Incompatibility(ies) not involving Prdm9(B6) also acts in the (PWD×B6)F(1) hybrids, since the correction of hybrid sterility by Prdm9(B6) deletion was not complete. Additions and subtractions of Prdm9 copies, as well as allelic replacements, improved meiotic progression and fecundity also in the progeny-producing reciprocal (B6×PWD)F(1) males. Moreover, an increased dosage of Prdm9 and reciprocal cross enhanced fertility of other sperm-carrying male hybrids, (PWD×B6-C3H.Prdm9)F(1), harboring another Prdm9 allele of M. m. domesticus origin. The levels of Prdm9 mRNA isoforms were similar in the prepubertal testes of all types of F(1) hybrids of PWD with B6 and B6-C3H.Prdm9 despite their different prospective fertility, but decreased to 53% after removal of Prdm9(B6). Therefore, the Prdm9(B6) allele probably takes part in posttranscriptional dominant-negative hybrid interaction(s) absent in the parental strains.

  19. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.

    PubMed

    Li, Yubin; Harris, Linda; Dooner, Hugo K

    2013-09-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.

  20. Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds.

    PubMed

    Qin, Xike; Liu, Bolin; Soulard, Jonathan; Morse, David; Cappadocia, Mario

    2006-01-01

    A method for the quantification of S-RNase levels in single styles of self-incompatible Solanum chacoense was developed and applied toward an experimental determination of the S-RNase threshold required for pollen rejection. It was found that, when single style values are averaged, accumulated levels of the S(11)- and S(12)-RNases can differ up to 10-fold within a genotype, while accumulated levels of the S(12)-RNase can differ by over 3-fold when different genotypes are compared. Surprisingly, the amount of S(12)-RNase accumulated in different styles of the same plant can differ by over 20-fold. A low level of 160 ng S-RNase in individual styles of fully incompatible plants, and a high value of 68 ng in a sporadic self-compatible (SSC) line during a bout of complete compatibility was measured, suggesting that these values bracket the threshold level of S-RNase needed for pollen rejection. Remarkably, correlations of S-RNase values to average fruit sets in different plant lines displaying sporadic self-compatibility (SSC) to different extents as well as to fruit set in immature flowers, are all consistent with a threshold value of 80 ng S(12)-RNase. Taken together, these results suggest that S-RNase levels alone are the principal determinant of the incompatibility phenotype. Interestingly, while the S-RNase threshold required for rejection of S(12)-pollen from a given genetic background is the same in styles of different genetic backgrounds, it is different when pollen donors of different genetic backgrounds are used. These results reveal a previously unsuspected level of complexity in the incompatibility reaction.

  1. Nearly two decades using the check-type to prevent ABO incompatible transfusions: one institution's experience.

    PubMed

    Figueroa, Priscila I; Ziman, Alyssa; Wheeler, Christine; Gornbein, Jeffrey; Monson, Michael; Calhoun, Loni

    2006-09-01

    To detect miscollected (wrong blood in tube [WBIT]) samples, our institution requires a second independently drawn sample (check-type [CT]) on previously untyped, non-group O patients who are likely to require transfusion. During the 17-year period addressed by this report, 94 WBIT errors were detected: 57% by comparison with a historic blood type, 7% by the CT, and 35% by other means. The CT averted 5 potential ABO-incompatible transfusions. Our corrected WBIT error rate is 1 in 3,713 for verified samples tested between 2000 and 2003, the period for which actual number of CTs performed was available. The estimated rate of WBIT for the 17-year period is 1 in 2,262 samples. ABO-incompatible transfusions due to WBIT-type errors are avoided by comparison of current blood type results with a historic type, and the CT is an effective way to create a historic type.

  2. ABO-Incompatible Adult Living Donor Liver Transplantation Under the Desensitization Protocol With Rituximab.

    PubMed

    Song, G-W; Lee, S-G; Hwang, S; Kim, K-H; Ahn, C-S; Moon, D-B; Ha, T-Y; Jung, D-H; Park, G-C; Kim, W-J; Sin, M-H; Yoon, Y-I; Kang, W-H; Kim, S-H; Tak, E-Y

    2016-01-01

    ABO incompatibility is no longer considered a contraindication for adult living donor liver transplantation (ALDLT) due to various strategies to overcome the ABO blood group barrier. We report the largest single-center experience of ABO-incompatible (ABOi) ALDLT in 235 adult patients. The desensitization protocol included a single dose of rituximab and total plasma exchange. In addition, local graft infusion therapy, cyclophosphamide, or splenectomy was used for a certain time period, but these treatments were eventually discontinued due to adverse events. There were three cases (1.3%) of in-hospital mortality. The cumulative 3-year graft and patient survival rates were 89.2% and 92.3%, respectively, and were comparable to those of the ABO-compatible group (n = 1301). Despite promising survival outcomes, 17 patients (7.2%) experienced antibody-mediated rejection that manifested as diffuse intrahepatic biliary stricture; six cases required retransplantation, and three patients died. ABOi ALDLT is a feasible method for expanding a living liver donor pool, but the efficacy of the desensitization protocol in targeting B cell immunity should be optimized. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model

    PubMed Central

    Bank, Claudia; Bürger, Reinhard; Hermisson, Joachim

    2012-01-01

    How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability. PMID:22542972

  4. Impact Of Selfing On The Inference Of Demographic History From Whole Genomes In Theobroma cacao L.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao L (cacao: Malvaceae) is a small tree found naturally in the Amazonian rain forest. An interesting feature of cacao is that it persists in populations of naturally outcrossing and inbreeding plants, as it is a species with a complex system of self-incompatibility, where a fraction of...

  5. Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus.

    PubMed

    Kundu, Subrata; Chakraborty, Dipjyoti; Kundu, Anirban; Pal, Amita

    2013-01-01

    Vigna mungo, a tropical leguminous plant, highly susceptible to yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus (MYMIV) resulting in high yield penalty. The molecular events occurring during compatible and incompatible interactions between V. mungo and MYMIV pathosystem are yet to be explored. In this study biochemical analyses in conjunction with proteomics of MYMIV-susceptible and -resistant V. mungo genotypes were executed to get an insight in the molecular events during compatible and incompatible plant-virus interactions. Biochemical analysis revealed an increase in phenolics, hydrogen peroxide and carbohydrate contents in both compatible and incompatible interactions; but the magnitudes were higher during incompatible interaction. In the resistant genotype the activities of superoxide dismutase and ascorbate peroxidase increased significantly, while catalase activity decreased. Comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified 109 differentially abundant proteins at 3, 7 and 14 days post MYMIV-inoculation. Proteins of several functional categories were differentially changed in abundance during both compatible and incompatible interactions. Among these, photosynthesis related proteins were mostly affected in the susceptible genotype resulting in reduced photosynthesis rate under MYMIV-stress. Differential intensities of chlorophyll fluorescence and chlorophyll contents are in congruence with proteomics data. It was revealed that Photosystem II electron transports are the primary targets of MYMIV during pathogenesis. Quantitative real time PCR analyses of selected genes corroborates with respective protein abundance during incompatible interaction. The network of various cellular pathways that are involved in inducing defense response contains several conglomerated cores of nodal proteins, of which ascorbate peroxidase, rubisco activase and serine/glycine hydroxymethyl

  6. Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize.

    PubMed

    Conrad, Liza J; Brutnell, Thomas P

    2005-12-01

    We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.

  7. Gibbs Ensembles for Nearly Compatible and Incompatible Conditional Models

    PubMed Central

    Chen, Shyh-Huei; Wang, Yuchung J.

    2010-01-01

    Gibbs sampler has been used exclusively for compatible conditionals that converge to a unique invariant joint distribution. However, conditional models are not always compatible. In this paper, a Gibbs sampling-based approach — Gibbs ensemble —is proposed to search for a joint distribution that deviates least from a prescribed set of conditional distributions. The algorithm can be easily scalable such that it can handle large data sets of high dimensionality. Using simulated data, we show that the proposed approach provides joint distributions that are less discrepant from the incompatible conditionals than those obtained by other methods discussed in the literature. The ensemble approach is also applied to a data set regarding geno-polymorphism and response to chemotherapy in patients with metastatic colorectal PMID:21286232

  8. 14 CFR 420.67 - Separation distance requirements for handling incompatible energetic liquids that are co-located.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance requirements for handling incompatible energetic liquids that are co-located. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING...

  9. 14 CFR 420.67 - Separation distance requirements for handling incompatible energetic liquids that are co-located.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance requirements for handling incompatible energetic liquids that are co-located. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING...

  10. TED, an Autonomous and Rare Maize Transposon of the Mutator Superfamily with a High Gametophytic Excision Frequency[W

    PubMed Central

    Li, Yubin; Harris, Linda; Dooner, Hugo K.

    2013-01-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor. PMID:24038653

  11. The colour of paternity: extra-pair paternity in the wild Gouldian finch does not appear to be driven by genetic incompatibility between morphs.

    PubMed

    Bolton, P E; Rollins, L A; Brazill-Boast, J; Kim, K-W; Burke, T; Griffith, S C

    2017-01-01

    In socially monogamous species, individuals can use extra-pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra-pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed-morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Early Development in Fern Gametophytes: Interpreting the Transition to Prothallial Architecture in Terms of Coordinated Photosynthate Production and Osmotic Ion Uptake

    PubMed Central

    RACUSEN, RICHARD H.

    2002-01-01

    Gametophytes of Onoclea sensiblis L. were grown under various light and media‐ion conditions to gain a better understanding of the source/sink relationships between photosynthetic and ion‐absorbing cells. There was a clear interdependency between green cell and rhizoid functions, such that the growth and development of the rhizoids was completely dependent on the internal delivery of photosynthates from green cells, and conversion of the one‐dimensional filament into the two‐dimensional prothallus required monovalent cations that could only be provided by rhizoid uptake. The need for monovalent cations was related to osmotic demands of dividing and expanding cells; prothallial development was blocked by monovalent cation deficiency, and the system resorted to Na+ uptake to support cell expansion when K+ was absent. Surgical excisions of filament cells further demonstrated the high degree of coordinated growth between the light‐absorbing and ion‐absorbing regions. It was also learned that excised sub‐apical cells of the protonemata, like the intensively studied apical cell, were capable of remodelling remnants of the filament into a normal prothallus. PMID:12099354

  13. Clinical evaluation of the endothelial tie-2 crossmatch in ABO compatible and ABO incompatible renal transplants.

    PubMed

    Kafetzi, Maria L; Boletis, John N; Melexopoulou, Christine A; Tsakris, Athanassios; Iniotaki, Aliki G; Doxiadis, Ilias I N

    2013-11-01

    The necessity of detection of other than the classical major histocompatibility complex (MHC) and MHC class I-related chain A (MICA) directed antibodies prior to organ transplantation has already been repeatedly reported. A commercial flow cytometric endothelial crossmatch (CM) using isolated peripheral blood tie-2 positive cells provides a tool to detect non-MHC antibodies in addition to antibodies directed to MHC class I and II. The vast majority of circulating tie-2 positive cells expresses HLA-DR but not the A, B blood group antigens. Tie-2 cells are circulating surrogate endothelial cells. In this retrospective study we evaluated the endothelial CM in 51 renal transplantations, 30 with ABO compatible grafts and 21 with ABO incompatible grafts. Fifteen of the ABO compatible recipients (group A) developed unexplained rejection episodes (RE) while the remaining 15 had no RE (group B). Five cases of group A and none of group B had a positive tie-2 CM before transplantation (p=0.042). A positive tie-2 CM was also correlated with graft failure in ABO compatible transplants (p=0.02). No significant correlation was found between a positive pre-transplant tie-2 CM and RE in the ABO incompatible group. This study strongly suggest that a positive tie-2 CM may predict post-transplantation complications in ABO compatible grafts while negative reactions are not predictive. The test is not significantly correlated with RE in ABO incompatible grafts possibly due to applied desensitization. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  14. Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Gnutek, P.

    2010-01-01

    Central quantities in spectroscopy and magnetism of transition ions in crystals are crystal (ligand) field parameters (CFPs). For orthorhombic, monoclinic, and triclinic site symmetry CF analysis is prone to misinterpretations due to large number of CFPs and existence of correlated sets of alternative CFPs. In this review, we elucidate the intrinsic features of orthorhombic and lower symmetry CFPs and their implications. The alternative CFP sets, which yield identical energy levels, belong to different regions of CF parameter space and hence are intrinsically incompatible. Only their ‘images’ representing CFP sets expressed in the same region of CF parameter space may be directly compared. Implications of these features for fitting procedures and meaning of fitted CFPs are categorized into negative: pitfalls and positive: blessings. As a case study, the CFP sets for Tm 3+ ions in KLu(WO 4) 2 are analysed and shown to be intrinsically incompatible. Inadvertent, so meaningless, comparisons of incompatible CFP sets result in various pitfalls, e.g., controversial claims about the values of CFPs obtained by other researchers as well as incorrect structural conclusions or faulty systematics of CF parameters across rare-earth ion series based on relative magnitudes of incompatible CFPs. Such pitfalls bear on interpretation of, e.g., optical spectroscopy, inelastic neutron scattering, and magnetic susceptibility data. An extensive survey of pertinent literature was carried out to assess recognition of compatibility problems. Great portion of available orthorhombic and lower symmetry CFP sets are found intrinsically incompatible, yet these problems and their implications appear barely recognized. The considerable extent and consequences of pitfalls revealed by our survey call for concerted remedial actions of researchers. A general approach based on the rhombicity ratio standardization may solve compatibility problems. Wider utilization of alternative CFP sets in the

  15. Exogenous selection rather than cytonuclear incompatibilities shapes asymmetrical fitness of reciprocal Arabidopsis hybrids.

    PubMed

    Muir, Graham; Ruiz-Duarte, Paola; Hohmann, Nora; Mable, Barbara K; Novikova, Polina; Schmickl, Roswitha; Guggisberg, Alessia; Koch, Marcus A

    2015-04-01

    Reciprocal crosses between species often display an asymmetry in the fitness of F1 hybrids. This pattern, referred to as isolation asymmetry or Darwin's corollary to Haldane's rule, is a general feature of reproductive isolation in plants, yet factors determining its magnitude and direction remain unclear. We evaluated reciprocal species crosses between two naturally hybridizing diploid species of Arabidopsis to assess the degree of isolation asymmetry at different postmating life stages. We found that pollen from Arabidopsis arenosa will usually fertilize ovules from Arabidopsis lyrata; the reverse receptivity being less complete. Maternal A. lyrata parents set more F1 hybrid seed, but germinate at lower frequency, reversing the asymmetry. As predicted by theory, A. lyrata (the maternal parent with lower seed viability in crosses) exhibited accelerated chloroplast evolution, indicating that cytonuclear incompatibilities may play a role in reproductive isolation. However, this direction of asymmetrical reproductive isolation is not replicated in natural suture zones, where delayed hybrid breakdown of fertility at later developmental stages, or later-acting selection against A. arenosa maternal hybrids (unrelated to hybrid fertility, e.g., substrate adaptation) may be responsible for an excess of A. lyrata maternal hybrids. Exogenous selection rather than cytonuclear incompatibilities thus shapes the asymmetrical postmating isolation in nature.

  16. Evolution Controversy: A Phenomenon Prompted by the Incompatibility between Science and Religious Beliefs.

    PubMed

    Paz-Y-Miño-C, Guillermo; Espinosa, Avelina

    2015-06-01

    The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists' rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism.

  17. Evolution Controversy: A Phenomenon Prompted by the Incompatibility between Science and Religious Beliefs

    PubMed Central

    Paz-y-Miño-C, Guillermo; Espinosa, Avelina

    2016-01-01

    The incompatibility between science and the belief in supernatural causation helps us understand why people do not accept evolution. Belief disrupts, distorts, delays, or stops (3Ds + S) the acceptance of scientific evidence. Here we examine the evolution controversy under three predictions of the incompatibility hypothesis. First, chronological-conflict-and-accommodation, which explains the historical re-emergence of antagonism between evolution and religion when advances in science continue to threaten the belief in supernatural causation; in such situations, creationists’ rejection of and subsequent partial acceptance of the new scientific discoveries are expected. Second, change in evolution's acceptance as function of educational attainment, which explains the positive association between acceptance of evolution and level of education. And third, change in evolution's acceptance as function of religiosity, which explains the negative association between acceptance of evolution and level of religious beliefs. We rely on an ample assessment of the attitudes toward evolution by highly-educated audiences (i.e. research faculty, educators of prospective teachers, and college students in the United States) to characterize the associations among the understanding of science and evolution, personal religious convictions, and conservative ideology. We emphasize that harmonious coexistence between science and religion is illusory. If co-persisting in society, their relationship will fluctuate from moderate to intense antagonism. PMID:26877774

  18. Percolation on fitness landscapes: effects of correlation, phenotype, and incompatibilities

    PubMed Central

    Gravner, Janko; Pitman, Damien; Gavrilets, Sergey

    2009-01-01

    We study how correlations in the random fitness assignment may affect the structure of fitness landscapes, in three classes of fitness models. The first is a phenotype space in which individuals are characterized by a large number n of continuously varying traits. In a simple model of random fitness assignment, viable phenotypes are likely to form a giant connected cluster percolating throughout the phenotype space provided the viability probability is larger than 1/2n. The second model explicitly describes genotype-to-phenotype and phenotype-to-fitness maps, allows for neutrality at both phenotype and fitness levels, and results in a fitness landscape with tunable correlation length. Here, phenotypic neutrality and correlation between fitnesses can reduce the percolation threshold, and correlations at the point of phase transition between local and global are most conducive to the formation of the giant cluster. In the third class of models, particular combinations of alleles or values of phenotypic characters are “incompatible” in the sense that the resulting genotypes or phenotypes have zero fitness. This setting can be viewed as a generalization of the canonical Bateson-Dobzhansky-Muller model of speciation and is related to K- SAT problems, prominent in computer science. We analyze the conditions for the existence of viable genotypes, their number, as well as the structure and the number of connected clusters of viable genotypes. We show that analysis based on expected values can easily lead to wrong conclusions, especially when fitness correlations are strong. We focus on pairwise incompatibilities between diallelic loci, but we also address multiple alleles, complex incompatibilities, and continuous phenotype spaces. In the case of diallelic loci, the number of clusters is stochastically bounded and each cluster contains a very large sub-cube. Finally, we demonstrate that the discrete NK model shares some signature properties of models with high

  19. The role of dialyzer membrane flux in bio-incompatibility.

    PubMed

    Davenport, Andrew

    2008-10-01

    Dialyzer membrane flux is currently defined according to beta(2)-microglobulin (a middle molecule) clearance. Traditionally, high flux membranes were synthetic, and caused less inflammatory reaction in the extracorporeal circuit, compared with standard low-flux cuprophan bio-incompatible dialyzers. Initial reports suggested improved patient outcomes in acute renal failure when noncuprophan dialyzer membranes were used. However, over time these positive observations have not been substantiated. As the price differential between these dialyzer membrane types has become marginal, more high-flux dialyzers are now used in routine clinical practice. Two multicenter trials have recently reported a survival advantage for high-flux dialyzers. Whether this is directly consequent upon the choice of dialyzer membrane, or related to improvements in dialysate water quality, or changes in other clinical practices remains to be determined.

  20. Method for applying photographic resists to otherwise incompatible substrates

    NASA Technical Reports Server (NTRS)

    Fuhr, W. (Inventor)

    1981-01-01

    A method for applying photographic resists to otherwise incompatible substrates, such as a baking enamel paint surface, is described wherein the uncured enamel paint surface is coated with a non-curing lacquer which is, in turn, coated with a partially cured lacquer. The non-curing lacquer adheres to the enamel and a photo resist material satisfactorily adheres to the partially cured lacquer. Once normal photo etching techniques are employed the lacquer coats can be easily removed from the enamel leaving the photo etched image. In the case of edge lighted instrument panels, a coat of uncured enamel is placed over the cured enamel followed by the lacquer coats and the photo resists which is exposed and developed. Once the etched uncured enamel is cured, the lacquer coats are removed leaving an etched panel.

  1. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees.

    PubMed

    Huang, Jian; Zhang, Chunmei; Zhao, Xing; Fei, Zhangjun; Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo; Li, Xingang

    2016-12-01

    Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar 'Junzao' and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of 'Dongzao', a fresh jujube, was ~86.5 Mb larger than that of the 'Junzao', partially due to the recent insertions of transposable elements in the 'Dongzao' genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication.

  2. Mechanism of self-sterility in a hermaphroditic chordate.

    PubMed

    Harada, Yoshito; Takagaki, Yuhei; Sunagawa, Masahiko; Saito, Takako; Yamada, Lixy; Taniguchi, Hisaaki; Shoguchi, Eiichi; Sawada, Hitoshi

    2008-04-25

    Hermaphroditic organisms avoid inbreeding by a system of self-incompatibility (SI). A primitive chordate (ascidian) Ciona intestinalis is an example of such an organism, but the molecular mechanism underlying its SI system is not known. Here, we show that the SI system is governed by two gene loci that act cooperatively. Each locus contains a tightly linked pair of polycystin 1-related receptor (s-Themis) and fibrinogen-like ligand (v-Themis) genes, the latter of which is located in the first intron of s-Themis but transcribed in the opposite direction. These genes may encode male- and female-side self-recognition molecules. The SI system of C. intestinalis has a similar framework to that of flowering plants but utilizing different molecules.

  3. 49 CFR 350.335 - What are the consequences if my State has laws or regulations incompatible with the Federal...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal regulations? (a) A State that currently has compatible CMV safety laws and regulations pertaining... enforcement practice pertaining to CMV safety, in either interstate or intrastate commerce, is incompatible...

  4. 49 CFR 350.335 - What are the consequences if my State has laws or regulations incompatible with the Federal...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal regulations? (a) A State that currently has compatible CMV safety laws and regulations pertaining... enforcement practice pertaining to CMV safety, in either interstate or intrastate commerce, is incompatible...

  5. 49 CFR 350.335 - What are the consequences if my State has laws or regulations incompatible with the Federal...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal regulations? (a) A State that currently has compatible CMV safety laws and regulations pertaining... enforcement practice pertaining to CMV safety, in either interstate or intrastate commerce, is incompatible...

  6. 49 CFR 350.335 - What are the consequences if my State has laws or regulations incompatible with the Federal...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal regulations? (a) A State that currently has compatible CMV safety laws and regulations pertaining... enforcement practice pertaining to CMV safety, in either interstate or intrastate commerce, is incompatible...

  7. On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1985-01-01

    Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.

  8. Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio bias.

    PubMed

    Tech, C

    2006-11-01

    I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.

  9. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  10. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  11. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  12. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  13. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  14. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    PubMed

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  15. Relationships among North American and Japanese Laetiporus isolates inferred from molecular phylogenetics and single-spore incompatibility reactions

    Treesearch

    Mark T. Banik; Daniel L. Lindner; Yuko Ota; Tsutomu Hattori

    2010-01-01

    Relationships were investigated among North American and Japanese isolates of Laetiporus using phylogenetic analysis of ITS sequences and single-spore isolate incompatibility. Single-spore isolate pairings revealed no significant compatibility between North American and Japanese isolates. ITS analysis revealed 12 clades within the core ...

  16. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases.

    PubMed

    Rotsch, Alexander H; Kopka, Joachim; Feussner, Ivo; Ischebeck, Till

    2017-10-01

    While changes in the transcriptome and proteome of developing pollen have been investigated in tobacco and other species, the metabolic consequences remain rather unclear. Here, a broad range of metabolites was investigated in close succession of developmental stages. Thirteen stages of tobacco male gametophyte development were collected, ranging from tetrads to pollen tubes. Subsequently, the central metabolome and sterol composition were analyzed by GC-mass spectrometry (MS), monitoring 77 metabolites and 29 non-identified analytes. The overall results showed that development and tube growth could be divided into eight metabolic phases with the phase including mitosis I being most distinct. During maturation, compounds such as sucrose and proline accumulated. These were degraded after rehydration, while γ-aminobutyrate transiently increased, possibly deriving from proline breakdown. Sterol analysis revealed that tetrads harbor similar sterols as leaves, but throughout maturation unusual sterols increased. Lastly, two further sterols exclusively accumulated in pollen tubes. This study allows a deeper look into metabolic changes during the development of a quasi-single cell type. Metabolites accumulating during maturation might accelerate pollen germination and tube growth, protect from desiccation, and feed pollinators. Future studies of the underlying processes orchestrating the changes in metabolite levels might give valuable insights into cellular regulation of plant metabolism. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. 16 CFR 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... is based upon the fact that package choice is limited by a new drug application filed with the FDA, the petition shall state the limitation of package choice and a description of a time schedule to revise the NDA in order to allow additional package choice. (c) If the allegation of incompatibility is...

  18. 16 CFR 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... is based upon the fact that package choice is limited by a new drug application filed with the FDA, the petition shall state the limitation of package choice and a description of a time schedule to revise the NDA in order to allow additional package choice. (c) If the allegation of incompatibility is...

  19. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    PubMed

    Jiménez-Fernández, Daniel; Landa, Blanca B; Kang, Seogchan; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A

    2013-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  20. Semiosis stems from logical incompatibility in organic nature: Why biophysics does not see meaning, while biosemiotics does.

    PubMed

    Kull, Kalevi

    2015-12-01

    We suggest here a model of the origin of the phenomenal world via the naturalization of logical conflict or incompatibility (which is broader than, but includes logical contradiction). Physics rules out the reality of meaning because of the method of formalization, which requires that logical conflicts cannot be part of the model. We argue that (a) meaning-making requires a logical conflict; (b) logical conflict assumes a phenomenal present; (c) phenomenological specious present occurs in living systems as widely as meaning-making; (d) it is possible to provide a physiological description of a system in which the phenomenal present appears and choices are made; (e) logical conflict, or incompatibility itself, is the mechanism of intentionality; (f) meaning-making is assured by scaffolding, which is a product of earlier choices, or decision-making, or interpretation. This model can be seen as a model of semiosis. It also allows putting physiology and phenomenology (or physics and semiotics) into a natural connection. Copyright © 2015. Published by Elsevier Ltd.

  1. Self-assembly concepts for multicompartment nanostructures

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Müller, Axel H. E.

    2015-07-01

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  2. Allelic incompatibility can explain female biased sex ratios in dioecious plants.

    PubMed

    Pucholt, Pascal; Hallingbäck, Henrik R; Berlin, Sofia

    2017-03-23

    Biased sex ratios are common among dioecious plant species despite the theoretical prediction of selective advantage of even sex ratios. Albeit the high prevalence of deviations from even sex ratios, the genetic causes to sex biases are rarely known outside of a few model species. Here we present a mechanism underlying the female biased sex ratio in the dioecious willow species Salix viminalis. We compared the segregation pattern of genome-wide single nucleotide polymorphism markers in two contrasting bi-parental pedigree populations, the S3 with even sex ratio and the S5 with a female biased sex ratio. With the segregation analysis and comparison between the two populations, we were able to demonstrate that sex determination and sex ratio distortion are controlled by different genetic mechanisms. We furthermore located the sex ratio distorter locus to a Z/W-gametologous region on chromosome 15, which was in close linkage with the sex determination locus. Interestingly, all males in the population with biased sex ratio have in this sex ratio distorter locus the same genotype, meaning that males with the Z 1 /Z 3 -genotype were missing from the population, thereby creating the 2:1 female biased sex ratio. We attribute the absence of Z 1 /Z 3 males to an allelic incompatibility between maternally and paternally inherited alleles in this sex ratio distorter locus. Due to the tight linkage with the sex determination locus only male individuals are purged from the population at an early age, presumably before or during seed development. We showed that such allelic incompatibility could be stably maintained over evolutionary times through a system of overdominant or pseudooverdominant alleles. Thus, it is possible that the same mechanism generates the female biased sex ratio in natural willow populations.

  3. Religiousness and aggression in adolescents: The mediating roles of self-control and compassion.

    PubMed

    Shepperd, James A; Miller, Wendi A; Smith, Colin Tucker

    2015-01-01

    Although people have used religion to justify aggression, evidence suggests that greater religiousness corresponds with less aggression. We explored two explanations for the religion-aggression link. First, most major religions teach self-control (e.g., delaying gratification, resisting temptation), which diminishes aggression. Second, most major religions emphasize compassionate beliefs and behavior (i.e., perspective taking, forgiveness, a broader love of humanity) that are incompatible with aggression. We tested whether self-control and compassion mediated the relationship between religion and aggression (direct and indirect) in a longitudinal study of 1,040 adolescents in the United States. Structural equation analyses revealed that self-control and compassion together completely mediated the religion-aggression relationship for both types of aggression. © 2015 Wiley Periodicals, Inc.

  4. Automated red blood cell depletion in ABO incompatible grafts in the pediatric setting.

    PubMed

    Del Fante, Claudia; Scudeller, Luigia; Recupero, Santina; Viarengo, Gianluca; Boghen, Stella; Gurrado, Antonella; Zecca, Marco; Seghatchian, Jerard; Perotti, Cesare

    2017-12-01

    Bone marrow ABO incompatible transplantations require graft manipulation prior to infusion to avoid potentially lethal side effects. We analyzed the influence of pre-manipulation factors (temperature at arrival, transit time, time of storage at 4°C until processing and total time from collection to red blood cell depletion) on the graft quality of 21 red blood cell depletion procedures in ABO incompatible pediatric transplants. Bone marrow collections were processed using the Spectra Optia ® (Terumo BCT) automated device. Temperature at arrival ranged between 4°C and 6°C, median transit time was 9.75h (range 0.33-28), median time of storage at 4°-6°C until processing was 1.8h (range 0.41-18.41) and median time from collection to RBC depletion was 21h (range1-39.4). Median percentage of red blood cell depletion was 97.7 (range 95.4-98.5), median mononuclear cells recovery was 92.2% (range 40-121.2), median CD34+ cell recovery was 93% (range 69.9-161.2), median cell viability was 97.7% (range 94-99.3) and median volume reduction was 83.9% (range 82-92). Graft quality was not significantly different between BM units median age. Our preliminary data show that when all good manifacturing practices are respected the post-manipulation graft quality is excellent also for those units processed after 24h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races

    PubMed Central

    Jiménez-Fernández, Daniel; Landa, Blanca B.; Kang, Seogchan; Jiménez-Díaz, Rafael M.; Navas-Cortés, Juan A.

    2013-01-01

    Background Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. Methodology We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. Findings The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. Conclusions The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms. PMID:23613839

  6. 16 CFR § 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... is based upon the fact that package choice is limited by a new drug application filed with the FDA, the petition shall state the limitation of package choice and a description of a time schedule to revise the NDA in order to allow additional package choice. (c) If the allegation of incompatibility is...

  7. Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides.

    PubMed Central

    He, C; Rusu, A G; Poplawski, A M; Irwin, J A; Manners, J M

    1998-01-01

    Two biotypes (A and B) of Colletotrichum gloeosporioides infect the tropical legumes Stylosanthes spp. in Australia. These biotypes are asexual and vegetatively incompatible. However, field isolates of biotype B carrying a supernumerary 2-Mb chromosome, thought to originate from biotype A, have been reported previously. We tested the hypothesis that the 2-Mb chromosome could be transferred from biotype A to biotype B under laboratory conditions. Selectable marker genes conferring resistance to hygromycin and phleomycin were introduced into isolates of biotypes A and B, respectively. A transformant of biotype A, with the hygromycin resistance gene integrated on the 2-Mb chromosome, was cocultivated with phleomycin-resistant transformants of biotype B. Double antibiotic-resistant colonies were obtained from conidia of these mixed cultures at a frequency of approximately 10(-7). Molecular analysis using RFLPs, RAPDs, and electrophoretic karyotypes showed that these colonies contained the 2-Mb chromosome in a biotype B genetic background. In contrast, no double antibiotic colonies developed from conidia obtained from mixed cultures of phleomycin-resistant transformants of biotype B with biotype A transformants carrying the hygromycin resistance gene integrated in chromosomes >2 Mb in size. The results demonstrated that the 2-Mb chromosome was selectively transferred from biotype A to biotype B. The horizontal transfer of specific chromosomes across vegetative incompatibility barriers may explain the origin of supernumerary chromosomes in fungi. PMID:9832523

  8. Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajing; Liu, Yongguo; Zhang, Yun; Liu, Xiaofeng; Xiao, Yonghua; Wang, Shidong; Wu, Xindong

    2017-11-01

    Community structure is one of the most important properties in networks, in which a node shares its most connections with the others in the same community. On the contrary, the anti-community structure means the nodes in the same group have few or no connections with each other. In Traditional Chinese Medicine (TCM), the incompatibility problem of herbs is a challenge to the clinical medication safety. In this paper, we propose a new anti-community detection algorithm, Random non-nEighboring nOde expansioN (REON), to find anti-communities in networks, in which a new evaluation criterion, anti-modularity, is designed to measure the quality of the obtained anti-community structure. In order to establish anti-communities in REON, we expand the node set by non-neighboring node expansion and regard the node set with the highest anti-modularity as an anti-community. Inspired by the phenomenon that the node with higher degree has greater contribution to the anti-modularity, an improved algorithm called REONI is developed by expanding node set by the non-neighboring node with the maximum degree, which greatly enhances the efficiency of REON. Experiments on synthetic and real-world networks demonstrate the superiority of the proposed algorithms over the existing methods. In addition, by applying REONI to the herb network, we find that it can discover incompatible herb combinations.

  9. [Clinical study on aconite prescriptions with incompatible herbs in different areas based on association rules and analysis on compatibility features].

    PubMed

    Zuo, Ting; Fan, Xin-sheng; Tian, Shuo; Jiang, Chen-xue; Chen, Fei

    2015-03-01

    To explore the current application and features of Aconite prescriptions with incompatible herbs in grade A class three hospitals in east China and central China through a clinical study and comparative analysis. Clinical prescriptions containing Aconite with incompatible herbs were collected. Association rules were utilized to analyze the compatible features of these herbs. This analysis found that the frequently used incompatible herba; pairs are Aconiti Lateralis Radix Praeparata-Pinelliae Rhizoma, with the support rate of 44.45%, occupying nearly half of the surveyed prescriptions; Pinelliae Rhizoma is the most frequently used herb in the two areas, with support rate up to 76.24%. Among the top 10 herbal pairs in the support rate, except for Aconiti Lateralis Radix Praeparata and Pinelliae Rhizoma, the top 10 herbs in Central China were mostly for warming the middle jiao and tonifying qi, such as Zingiberis Rhizoma, Atractylodis Macrocephalae Rhizoma and Codonopsis Radix; Whereas those in east China were mostly for activating and nourishing blood, such as Angelicae Sinensis Radix, Chuanxiong Rhizoma, and Salviae Miltiorrhizae Radix et Rhizoma. Among the top 10 herbal pairs in the support rate, except for Aconiti Lateralis Radix Praeparata-Pinelliae Rhizoma, the core herbal pairs applied in central China were mainly for resolving phlegm and warming the middle jiao, such as Pinelliae Rhizoma-Glycyrrhizae Radix et Rhizoma, Pinelliae Rhizoma-Zingiberis Rhizoma; Whereas those in east China were principally for activating blood and tonifying qi, like Atractylodis Macrocephalae Rhizoma and Pinelliae Rhizoma, Angelicae Sinensis Radix and Pinelliae Rhizoma. Among the core herbal groups in the two areas, the most frequently used herbal groups in the two areas are Aconiti Lateralis Radix Praeparata, Glycyrrhizae Radix et Rhizoma and Pinelliae Rhizoma with the support rate of 59.73%, accounting for the highest proportion among all of herbal groups. There are the combined

  10. M6: A diploid potato inbred line for use in breeding and genetics research

    USDA-ARS?s Scientific Manuscript database

    M6 is a vigorous, homozygous breeding line derived by self-pollinating the diploid wild potato relative Solanum chacoense for seven generations. While most wild Solanum species are self-incompatible, this clone is homozygous for the dominant self-incompatibility inhibitor gene Sli. It is homozygous ...

  11. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa

    PubMed Central

    2014-01-01

    Background Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions Apis mellifera’s high rate of self-pollination may have significant negative effects on both male

  12. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    PubMed

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes

  13. Absence of intrinsic post-zygotic incompatibilities in artificial crosses between sympatric coregonid species from upper Lake Constance.

    PubMed

    Eckmann, R

    2015-05-01

    A full factorial crossing experiment with five females and five males of each of two coregonid species from upper Lake Constance was used to test for intrinsic post-zygotic incompatibilities during early ontogeny. Up until shortly before hatching, there was no difference in embryo mortality between homo and heterologous crosses. A maternal effect on mortality was found in both species, but paternal effects and female-male interactions were absent. Thus, genetic incompatibility during early ontogeny does not appear to prevent introgressive hybridization, suggesting that genetic divergence between these species is maintained primarily by pre-zygotic barriers. The recent genetic homogenizations of coregonid species flocks in European alpine lakes may have been caused by a flattening of adaptive landscapes through eutrophication, but intensive stocking with larvae obtained in hatcheries from artificially fertilized eggs is also likely to be a contributing factor. To safeguard diversity among sympatric coregonids, it is important to re-establish ecological conditions conducive to species divergence and to revise traditional management strategies. © 2015 The Fisheries Society of the British Isles.

  14. Supervisor-employee power distance incompatibility, gender similarity, and relationship conflict: A test of interpersonal interaction theory.

    PubMed

    Graham, Katrina A; Dust, Scott B; Ziegert, Jonathan C

    2018-03-01

    According to interpersonal interaction theory, relational harmony surfaces when two individuals have compatible interaction styles. Building from this theory, we propose that supervisor-employee power distance orientation incompatibility will be related to employees' experience of higher levels of relationship conflict with their supervisors. Additionally, we propose an asymmetrical incongruence effect such that relationship conflict will be highest when supervisors are high in power distance and employees are low in power distance. Furthermore, we address calls in interpersonal interaction research for more direct attention to the social context of the dyadic interaction and explore the moderating effects of supervisor-employee gender (dis)similarity on the relationship between this incompatibility and conflict. We propose that supervisor-employee gender dissimilarity (e.g., male-female or female-male pairs) acts as a conditional moderator, neutralizing the power distance incongruence effect and the asymmetrical incongruence effect. Using 259 supervisor-employee dyads in the physical therapy industry, the hypotheses were generally supported. Theoretical and practical implications regarding the unique benefits of power distance compatibility and gender diversity in supervisor-employee dyads are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Cryogenic System for the New International Accelerator Facility for Research with Ions and Antiprotons at GSI

    NASA Astrophysics Data System (ADS)

    Kauschke, M.; Schroeder, C. H.

    2004-06-01

    The Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, is planning an extension of the existing heavy ion accelerator. The new facilities will contain two synchrotrons, four storage rings and approximately 1.4 km of beam transport, requiring different types of magnets and cooling regimes. As the magnets for the synchrotrons have to be fast-ramped magnets, the cryogenic system heat loads will be dominated by the AC-losses of the magnets. Our approach is to adopt and modify existing magnet designs to achieve a short development time for the facility. The cryogenic system has to provide 7.5 kW at 4.4 K in the two-phase cooling regime, 3 kW at 0.4 MPa and 4.2 K in forced-flow cooling for the synchrotrons. The storage ring magnets will be placed in bath cryostats and require a refrigeration capacity of 5 kW at 4.5 K. As the project will be commissioned in several steps, an economic plan for the cryogenic infrastructure is needed, which will be sufficient for every phase of the build-up and allow experiments in some parts of the facilities as well as the testing of the components for the later parts of the facility.

  16. Emergency ABO-incompatible liver transplant secondary to fulminant hepatic failure: outcome, role of TPE and review of the literature.

    PubMed

    Maitta, Robert W; Choate, Jacquelyn; Emre, Sukru H; Luczycki, Stephen M; Wu, Yanyun

    2012-01-01

    The increasing demand for solid organ transplants has brought to light the need to utilize organs in critical situations despite ABO-incompatibility. However, these transplantations are complicated by pre-existing ABO antibodies which may be potentially dangerous and makes the transplantation prone to failure due to rejection with resulting necrosis or intrahepatic biliary complications. We report the clinical outcome of an emergency ABO-incompatible liver transplant (due to fulminant hepatic failure with sudden and rapidly deteriorating mental status) using a modified therapeutic plasma exchange (TPE) protocol. The recipient was O-positive with an initial anti-B titer of 64 and the cadaveric organ was from a B-positive donor. The patient underwent initial TPE during the peri-operative period, followed by a series of postoperative daily TPE, and later a third series of TPE for presumptive antibody-mediated rejection. The latter two were performed in conjunction with the use of IVIg and rituximab. The recipient's anti-B titer was reduced and maintained at 8 or less 8 months post-op. However, an elevation of transaminases 3 months post-transplant triggered a biopsy which was consistent with cellular rejection and with weak C4d positive staining suggestive of antibody mediated rejection. Additional plasma exchange procedures were performed. The patient improved rapidly after modification of her immunosuppression regimen and treatment with plasma exchange. This case illustrates that prompt and aggressive plasma exchange, in conjunction with immunosuppression, is a viable approach to prevent and treat antibody mediated transplant rejection in emergency ABO-incompatible liver transplant. Copyright © 2012 Wiley Periodicals, Inc.

  17. Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids

    USDA-ARS?s Scientific Manuscript database

    Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...

  18. Nuclear-matter radius studies from 58Ni(α ,α ) experiments at the GSI Experimental Storage Ring with the EXL facility

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.

    2017-09-01

    A novel method for measuring nuclear reactions in inverse kinematics with stored ion beams was successfully used to extract the nuclear-matter radius of 58Ni. The experiment was performed at the experimental heavy-ion storage ring at the GSI facility using a stored 58Ni beam at energies of 100 and 150 MeV/u and an internal helium gas-jet target. Elastically scattered α -recoils at low momentum transfers were measured with an in-ring detector system compatible with ultrahigh vacuum. Experimental angular distributions were fitted using density-dependent optical model potentials within the eikonal approximation. This permitted the extraction of the point-matter root-mean-square radius of 58Ni with an average value of 3.70(7) fm. Results from this work are in good agreement with several experiments performed in the past in normal kinematics. This pioneering experiment demonstrates a major breakthrough towards future investigations with far-from-stability stored beams using the present technique.

  19. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees

    PubMed Central

    Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo

    2016-01-01

    Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar ‘Junzao’ and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of ‘Dongzao’, a fresh jujube, was ~86.5 Mb larger than that of the ‘Junzao’, partially due to the recent insertions of transposable elements in the ‘Dongzao’ genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication. PMID:28005948

  20. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bariola, P.A.; MacIntosh, G.C.; Green, P.J.

    1999-01-01

    The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T{sub 2} ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In this study the authors examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular.more » By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for NS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.« less

  1. Oral administration of Chinese herbal medicine during gestation period for preventing hemolytic disease of the newborn due to ABO incompatibility: A systematic review of randomized controlled trials.

    PubMed

    Cao, Huijuan; Wu, Ruohan; Han, Mei; Caldwell, Patrina Ha Yuen; Liu, Jian-Ping

    2017-01-01

    About 85.3% of hemolytic disease of the newborn (HDN) is caused by maternal-fetal ABO blood group incompatibility. However, there is currently no recommended "best" therapy for ABO incompatibility during pregnancy. To systematically assess the safety and effectiveness of oral Chinese herbal medicine (CHM) for preventing HDN due to ABO incompatibility. The protocol of this review was registered on the PROSPERO website (No. CRD42016038637).Six databases were searched from inception to April 2016. Randomized controlled trials (RCTs) of CHM for maternal-fetal ABO incompatibility were included. The primary outcome was incidence of HDN. The Cochrane risk of bias tool was used to assess the methodological quality of included trials. Risk ratios (RR) and mean differences with 95% confidence interval were used as effect measures. Meta-analyses using Revman 5.3 software were conducted if there were sufficient trials without obvious clinical or statistical heterogeneity available. Totally 28 RCTs involving3413 women were included in the review. The majority of the trials had unclear or high risk of bias. Our study found that the rate of HDN and the incidence of neonatal jaundice might be 70% lower in the herbal medicine group compared with the usual care group (RR from 0.25 to 0.30).After treatment with herbal medicine, women were twice as likely to have antibody titers lower than 1:64 compared with women who received usual care(RR from 2.15 to 3.14) and the umbilical cord blood bilirubin level in the herbal medicine group was 4umol/L lower than in those receiving usual care. There was no difference in Apgar scores or birthweights between the two groups. This review found very low-quality evidence that CHM prevented HDN caused by maternal-fetal ABO incompatibility. No firm conclusions can be drawn regarding the effectiveness or safety of CHM for this condition.

  2. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.

    PubMed

    Power, J B; Berry, S F; Chapman, J V; Cocking, E C

    1980-01-01

    Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.

  3. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    PubMed

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  4. Pollen-Stigma Adhesion in Kale Is Not Dependent on the Self-(In)Compatibility Genotype.

    PubMed Central

    Luu, D. T.; Heizmann, P.; Dumas, C.

    1997-01-01

    The adhesion of pollen on the stigmas of flowering plants is a critical step for the success of reproduction in angiosperms, long considered to present some specificity in terms of self-incompatibility. We carried out quantitative measurements of the pollen-stigma adhesion (expressed in Newtons) in kale (Brassica oleracea), using the flotation force of Archimedes exerted by dense sucrose solutions (50%, w/v) to release pollen grains fixed on the surface of stigmas. We demonstrate that pollen adhesion varies with the genotypes of the plants used as partners, but increases with time in all cases for about 30 to 60 min after pollination. There is no correlation with the self- or cross-status of the pollinations, nor with the self-compatible or -incompatible genotypes of the parents. Only late events of pollination, after the germination or arrest of the pollen tube, depend on compatibility type. Biochemical and physiological dissection of pollen-stigma adhesion points to major components of this interaction: among male components, the pollen coating, eliminated by delipidation (or modified by mutation in the case of the cer mutants of the related species Arabidopsis thaliana), plays a major role in adhesion; the genetic background of the pollen parent is also of some importance. On the female side, the developmental stage of the stigma and the protein constituents of the stigmatic pellicle are critical for pollen capture. The SLG and SLR1 proteins are not involved in the initial stages of pollen adhesion on the stigma but one or both may be involved in the later stages. PMID:12223868

  5. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.

    PubMed

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-12-01

    Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily.

  6. Wind-Dragged Corolla Enhances Self-Pollination: A New Mechanism of Delayed Self-Pollination

    PubMed Central

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-01-01

    Background and Aims Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Methods Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Key Results Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. Conclusions This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect

  7. Sociocultural Theories, Academic Achievement, and African American Adolescents in a Multicultural Context: A Review of the Cultural Incompatibility Perspective

    ERIC Educational Resources Information Center

    Whaley, Arthur L.; Noel, La

    2011-01-01

    Some theories have posited that African American youth are academic underachievers because of sociocultural factors. We label this point of view the cultural incompatibility perspective. Ogbu's oppositional culture theory and Steele's stereotype threat theory are selected as popular examples of this viewpoint. A critical review of the literature…

  8. Summary of the HypHI Phase 0 experiment and future plans with FRS at GSI (FAIR Phase 0)

    NASA Astrophysics Data System (ADS)

    Saito, T. R.; Rappold, C.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Geissel, H.; Kavatsyuk, M.; Kim, E.; Ma, Y.; Maas, F.; Minami, S.; Nakajima, D.; Nociforo, C.; Özel-Tashenov, B.; Pochodzalla, J.; Scheidenberger, C.; Yoshida, K.

    2016-10-01

    Results of the HypHI Phase 0 experiment with the reaction of 6Li+12C at 2 A GeV are summarised. Invariant mass distributions as well as the lifetime measurements for 3ΛH and 4ΛH are discussed. The lifetime values for both the hypernuclei are respectively observed to be 183+42-32 ps and 140+48-33 ps, being significantly shorter than those of the Λ-hyperon. Statistical analyses of existing lifetime data for 3ΛH up to 2014 confirm a significantly short lifetime of 3ΛH, which is not explained by present models. Observed hypernuclear production cross section values for 3ΛH and 4ΛH are also summarised. In addition, observed signals for the final states of d +π- and t +π- are discussed. All the discussions on the results of the HypHI Phase 0 experiment in this article are based on [1-4]. We also present a new proposed experiment with the FRS (FRagment Separator) at GSI (FAIR Phase 0) to improve the precision of the hypernuclear spectroscopy with peripheral heavy ion induced reactions.

  9. Spatially heterogeneous environmental selection strengthens evolution of reproductively isolated populations in a Dobzhansky-Muller system of hybrid incompatibility

    Treesearch

    Samuel A. Cushman; Erin L. Landguth

    2016-01-01

    Within-species hybrid incompatibility can arise when combinations of alleles at more than one locus have low fitness but where possession of one of those alleles has little or no fitness consequence for the carriers. Limited dispersal with small numbers of mate potentials alone can lead to the evolution of clusters of reproductively isolated genotypes despite...

  10. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  11. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE PAGES

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji; ...

    2018-03-28

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  12. The Armadillo Repeat Gene ZAK IXIK Promotes Arabidopsis Early Embryo and Endosperm Development through a Distinctive Gametophytic Maternal Effect[C][W][OA

    PubMed Central

    Ngo, Quy A.; Baroux, Celia; Guthörl, Daniela; Mozerov, Peter; Collinge, Margaret A.; Sundaresan, Venkatesan; Grossniklaus, Ueli

    2012-01-01

    The proper balance of parental genomic contributions to the fertilized embryo and endosperm is essential for their normal growth and development. The characterization of many gametophytic maternal effect (GME) mutants affecting seed development indicates that there are certain classes of genes with a predominant maternal contribution. We present a detailed analysis of the GME mutant zak ixik (zix), which displays delayed and arrested growth at the earliest stages of embryo and endosperm development. ZIX encodes an Armadillo repeat (Arm) protein highly conserved across eukaryotes. Expression studies revealed that ZIX manifests a GME through preferential maternal expression in the early embryo and endosperm. This parent-of-origin–dependent expression is regulated by neither the histone and DNA methylation nor the DNA demethylation pathways known to regulate some other GME mutants. The ZIX protein is localized in the cytoplasm and nucleus of cells in reproductive tissues and actively dividing root zones. The maternal ZIX allele is required for the maternal expression of MINISEED3. Collectively, our results reveal a reproductive function of plant Arm proteins in promoting early seed growth, which is achieved through a distinct GME of ZIX that involves mechanisms for maternal allele-specific expression that are independent of the well-established pathways. PMID:23064319

  13. Differences in bio-incompatibility among four biocompatible dialyzer membranes using in maintenance hemodialysis patients.

    PubMed

    Zhang, Dong-Liang; Liu, Jing; Cui, Wen-Ying; Ji, Dan-Ying; Zhang, Yue; Liu, Wen-Hu

    2011-01-01

    Following the introduction of modified cellulosic and then synthetic membrane dialyzers, it was realized that the dialyzer bio-incompatibility depends on the membrane composition. We designed a prospective, randomized, cohort study of 6 months to determine several parameters of biocompatibility in maintenance hemodialysis (MHD) patients treated with four different membrane dialyzers. There were 60 MHD patients enrolled in the study. In baseline, synthetic low-flux dialyzer, polysulfone (PS) membrane was used in all patients for at least 3 months. Then the patients were randomly divided into three groups according to different dialyzer membranes. Synthetic high-flux dialyzer group, polyethersulfone membrane, cellulose triacetate (CTA) high-flux membrane, and synthetic low-flux dialyzer, polymethylmethacrylate (PMMA) membrane were used in 6 months. A new dialyzer was used for each study treatment, and there was no dialyzer reuse. The biocompatibility markers and solutes removal markers were detected repeatedly at different time points. The blood levels of highly sensitive C reactive protein, interleukin (IL)-1β, and interleukin (IL)-13 showed no difference among different groups at al time points. However, the blood complement levels and white blood cell counts were significantly different among three groups. When the dialyzers changed from PS to PMMA membrane, C3a levels and white blood cell counts changed significantly (p < 0.05). Moreover, the changes of C5a levels were significantly different between group CTA and group PMMA in month 3 (p < 0.05). There were much more differences on bio-incompatibility among different dialyzer membranes.

  14. Creationism and intelligent design are incompatible with scientific progress: A response to Shanta and Vêdanta.

    PubMed

    Caetano-Anollés, Gustavo

    2016-01-01

    In a recent opinion paper, B.K. Shanta claims science leaves no room for the subjective aspect of consciousness, and in doing so, attacks both origin of life and evolutionary research. He claims Vêdanta, one of the 6 orthodox schools of Hindu philosophy, offers an explanation: "the origin of everything material and nonmaterial is sentient and absolute." Here I discuss how the pseudoscience of these creationist views, which are aligned with Intelligent Design, are incompatible with scientific progress and should not be published in scientific journals.

  15. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

    PubMed

    Kofuji, Rumiko; Hasebe, Mitsuyasu

    2014-02-01

    Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A and B antigen levels acquired by group O donor-derived erythrocytes following ABO-non-identical transfusion or minor ABO-incompatible haematopoietic stem cell transplantation.

    PubMed

    Hult, A K; Dykes, J H; Storry, J R; Olsson, M L

    2017-06-01

    ABO-incompatible haematopoietic stem cell transplantation (HSCT) presents a challenge to blood component transfusion. The aim of this study was to investigate the weak blood group A or B antigen expression by donor-derived group O red blood cells (RBC) observed following transfusion or minor ABO-incompatible HSCT. In addition, in vitro experiments were performed to elucidate possible mechanisms underlying this phenomenon. A sensitive flow cytometry assay for the semi-quantification of RBC A/B antigen levels was used to assess patient samples and evaluate in vitro experiments. Analysis of blood samples from patients, originally typed as A, B and AB but recently transplanted or transfused with cells from group O donors, revealed the A antigen expression on donor-derived RBC, ranging from very low levels in non-secretor individuals to almost subgroup A x -like profiles in group A secretors. The B antigen expression was less readily detectable. In vitro experiments, in which group O donor RBC were incubated with (i) group A/B secretor/non-secretor donor plasma or (ii) group A/B donor RBC in the absence of plasma, supported the proposed adsorption of A/B antigen-bearing glycolipids from secretor plasma but also indicated a secretor-independent mechanism for A/B antigen acquisition as well as direct cell-to-cell transfer of ABO antigens. The in vivo conversion of donor-derived blood group O RBC to ABO subgroup-like RBC after transfusion or minor ABO-incompatible HSCT raises the question of appropriate component selection. Based on these data, AB plasma should be transfused following ABO-incompatible HSCT. © 2017 British Blood Transfusion Society.

  17. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration.

    PubMed

    Sage, Tammy L; Price, Mary V; Waser, Nickolas M

    2006-02-01

    Based on previous studies, extreme (>99%) self-sterility in scarlet gilia (Ipomopsis aggregata) appears to be involved in late-acting ovarian self-incompatibility (OSI). Here, we confirm this suggestion by comparing structural events that follow from cross- vs. self-pollinations of I. aggregata. Growth of cross- and self-pollen tubes in the style at 11 h and growth in the ovary at 24 h was equivalent. Nonetheless, by 24 h, cross-pollen effected a significantly higher percentage of both ovule penetration and fertilization. Ovules in self-pollinated flowers showed pronounced changes, including an absence of embryo sac expansion and reduced starch in the integument, by 11 h post-pollination, well before pollen tube entry into the ovary. In addition, the integumentary tapetum and adjacent 1-3 cell layers exhibited abnormal cell division, pronounced deposition of thick, pectin-rich cell walls, and cellular collapse. Ovules and embryo sacs from cross-pollinated flowers rarely showed such features. Developmental changes in ovules from self-pollinated flowers eventually resulted in integument and embryo sac collapse, a process not observed in ovules of unpollinated flowers. We suggest that OSI involves long-distance signaling between self-pollen or self-pollen tubes and carpel tissue that reduces availability of receptive ovules for fertilization before pollen tubes arrive in the ovary.

  18. Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa

    PubMed Central

    Marsh, Rachel; Steinglass, Joanna E.; Gerber, Andrew J.; O’Leary, Kara Graziano; Wang, Zhishun; Murphy, David; Walsh, B. Timothy; Peterson, Bradley S.

    2009-01-01

    Context Disturbances in neural systems that mediate voluntary self-regulatory processes may contribute to bulimia nervosa (BN) by releasing feeding behaviors from regulatory control. Objective To study the functional activity in neural circuits that subserve self-regulatory control in women with BN. Design We compared functional magnetic resonance imaging blood oxygenation level–dependent responses in patients with BN with healthy controls during performance of the Simon Spatial Incompatibility task. Setting University research institute. Participants Forty women: 20 patients with BN and 20 healthy control participants. Main Outcome Measure We used general linear modeling of Simon Spatial Incompatibility task–related activations to compare groups on their patterns of brain activation associated with the successful or unsuccessful engagement of self-regulatory control. Results Patients with BN responded more impulsively and made more errors on the task than did healthy controls; patients with the most severe symptoms made the most errors. During correct responding on incongruent trials, patients failed to activate frontostriatal circuits to the same degree as healthy controls in the left inferolateral prefrontal cortex (Brodmann area [BA] 45), bilateral inferior frontal gyrus (BA 44), lenticular and caudate nuclei, and anterior cingulate cortex (BA 24/32). Patients activated the dorsal anterior cingulate cortex (BA 32) more when making errors than when responding correctly. In contrast, healthy participants activated the anterior cingulate cortex more during correct than incorrect responses, and they activated the striatum more when responding incorrectly, likely reflecting an automatic response tendency that, in the absence of concomitant anterior cingulate cortex activity, produced incorrect responses. Conclusions Self-regulatory processes are impaired in women with BN, likely because of their failure to engage frontostriatal circuits appropriately. These

  19. Incompatible blood transfusion: Challenging yet lifesaving in the management of acute severe autoimmune hemolytic anemia.

    PubMed

    Das, Sudipta Sekhar; Zaman, Rafiq Uz; Safi, Mohammad

    2014-07-01

    Autoimmune hemolytic anemia (AIHA) is characterized by the production of autoantibodies directed against red cell antigens. Most patients of AIHA arrive in the emergency or out-patient department (OPD) with severe anemia requiring urgent blood transfusion. Here we share our experience of managing these patients with incompatible blood transfusions and suggest the minimal test required to assure patient safety. A total of 14 patients admitted with severe anemia, diagnosed with AIHA and requiring blood transfusion urgently were included in the study. A series of immunohematological investigations were performed to confirm the diagnosis and issue best match packed red blood cells (PRBC) to these patients. A total of 167 PRBC units were crossmatched for 14 patients of which 46 units (28%) were found to be best match ones and 26 (56.5%) of these units were transfused. A mean turn around time of 222 min was observed in issuing the "best match" blood. Severe hemolysis was observed in all patients with a median hemoglobin increment of 0.88 g/dl after each unit PRBC transfusion. Decision to transfuse in AIHA should be based on the clinical condition of the patient. No critical patient should be denied blood transfusion due to serological incompatibility. Minimum investigations such as direct antiglobulin test (DAT), antibody screening and autocontrol should be performed to ensure transfusion safety in patients. All transfusion services should be capable of issuing "best match" PRBCs in AIHA.

  20. Incompatible blood transfusion: Challenging yet lifesaving in the management of acute severe autoimmune hemolytic anemia

    PubMed Central

    Das, Sudipta Sekhar; Zaman, Rafiq Uz; Safi, Mohammad

    2014-01-01

    Background and Aim: Autoimmune hemolytic anemia (AIHA) is characterized by the production of autoantibodies directed against red cell antigens. Most patients of AIHA arrive in the emergency or out-patient department (OPD) with severe anemia requiring urgent blood transfusion. Here we share our experience of managing these patients with incompatible blood transfusions and suggest the minimal test required to assure patient safety. Materials and Methods: A total of 14 patients admitted with severe anemia, diagnosed with AIHA and requiring blood transfusion urgently were included in the study. A series of immunohematological investigations were performed to confirm the diagnosis and issue best match packed red blood cells (PRBC) to these patients. Results: A total of 167 PRBC units were crossmatched for 14 patients of which 46 units (28%) were found to be best match ones and 26 (56.5%) of these units were transfused. A mean turn around time of 222 min was observed in issuing the “best match” blood. Severe hemolysis was observed in all patients with a median hemoglobin increment of 0.88 g/dl after each unit PRBC transfusion. Conclusion: Decision to transfuse in AIHA should be based on the clinical condition of the patient. No critical patient should be denied blood transfusion due to serological incompatibility. Minimum investigations such as direct antiglobulin test (DAT), antibody screening and autocontrol should be performed to ensure transfusion safety in patients. All transfusion services should be capable of issuing “best match” PRBCs in AIHA. PMID:25161349