Sample records for gamma camera computer

  1. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  2. Acquisition of gamma camera and physiological data by computer.

    PubMed

    Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H

    1986-11-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.

  3. A fast algorithm for computer aided collimation gamma camera (CACAO)

    NASA Astrophysics Data System (ADS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  4. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on

  5. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  6. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  8. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  9. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  10. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  11. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  12. Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.

    2017-09-01

    Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.

  13. Estimation of bone mineral content using gamma camera: A real possibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, L.M.; Hoory, S.; Bandyopadhyay, D.

    1985-05-01

    Osteopenia and Osteoporosis are the diseases related to loss of bone minerals. At present, dual photon absorptiometry using a dedicated specially built scanner along with a very high source of Gd-153 is being used as a diagnostic tool for the early detection of bone loss. The present study was undertaken to explore the possibility that gamma cameras which are widely available in all Nuclear Medicine departments could be used successfully to evaluate bone mineral content. A Siemens LFOV gamma camera equipped with a converging collimator was used for this purpose. A fixed source (100 mCi) of Gd-153 was placed atmore » the focal point of the collimator. A series of calcium chloride solutions of varying concentrations in plastic vials were placed near the center of the collimator and imaged both in air and water. Both 44 Kev and 100 Kev images were digitized in 128 x 128 matrices and processed in a CD and A Delta system attached to a VAX 11-750 computer. Uniformity corrections for each field of view were applied and the attenuation coefficients of calcium chloride for both peaks of Gd-153 were evaluated. In addition, due to the high count rate, corrections for the dead time losses were also found to be essential. An excellent concordance between the estimated Calcium contents and that actually present were obtained by this technic. In conclusion, use of gamma camera for the routine evaluation of Osteoporosis appears to be highly promising and worth pursuing.« less

  14. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  15. Development of an all-in-one gamma camera/CCD system for safeguard verification

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo

    2014-12-01

    For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.

  16. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  17. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  18. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  19. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  20. Commissioning of a new SeHCAT detector and comparison with an uncollimated gamma camera.

    PubMed

    Taylor, Jonathan C; Hillel, Philip G; Himsworth, John M

    2014-10-01

    Measurements of SeHCAT (tauroselcholic [75selenium] acid) retention have been used to diagnose bile acid malabsorption for a number of years. In current UK practice the vast majority of centres calculate uptake using an uncollimated gamma camera. Because of ever-increasing demands on gamma camera time, a new 'probe' detector was designed, assembled and commissioned. To validate the system, nine patients were scanned at day 0 and day 7 with both the new probe detector and an uncollimated gamma camera. Commissioning results were largely in line with expectations. Spatial resolution (full-width 95% of maximum) at 1 m was 36.6 cm, the background count rate was 24.7 cps and sensitivity at 1 m was 720.8 cps/MBq. The patient comparison study showed a mean absolute difference in retention measurements of 0.8% between the probe and uncollimated gamma camera, and SD of ± 1.8%. The study demonstrated that it is possible to create a simple, reproducible SeHCAT measurement system using a commercially available scintillation detector. Retention results from the probe closely agreed with those from the uncollimated gamma camera.

  1. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  2. [Results of testing of MINISKAN mobile gamma-ray camera and specific features of its design].

    PubMed

    Utkin, V M; Kumakhov, M A; Blinov, N N; Korsunskiĭ, V N; Fomin, D K; Kolesnikova, N V; Tultaev, A V; Nazarov, A A; Tararukhina, O B

    2007-01-01

    The main results of engineering, biomedical, and clinical testing of MINISKAN mobile gamma-ray camera are presented. Specific features of the camera hardware and software, as well as the main technical specifications, are described. The gamma-ray camera implements a new technology based on reconstructive tomography, aperture encoding, and digital processing of signals.

  3. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  4. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  5. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M; Spiro, A; Vogel, R

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less

  6. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  7. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  8. A small field of view camera for hybrid gamma and optical imaging

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.

    2014-12-01

    The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.

  9. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  10. Europe's space camera unmasks a cosmic gamma-ray machine

    NASA Astrophysics Data System (ADS)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce

  11. The spatial resolution of a rotating gamma camera tomographic facility.

    PubMed

    Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R

    1983-12-01

    An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.

  12. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  13. Computing camera heading: A study

    NASA Astrophysics Data System (ADS)

    Zhang, John Jiaxiang

    2000-08-01

    An accurate estimate of the motion of a camera is a crucial first step for the 3D reconstruction of sites, objects, and buildings from video. Solutions to the camera heading problem can be readily applied to many areas, such as robotic navigation, surgical operation, video special effects, multimedia, and lately even in internet commerce. From image sequences of a real world scene, the problem is to calculate the directions of the camera translations. The presence of rotations makes this problem very hard. This is because rotations and translations can have similar effects on the images, and are thus hard to tell apart. However, the visual angles between the projection rays of point pairs are unaffected by rotations, and their changes over time contain sufficient information to determine the direction of camera translation. We developed a new formulation of the visual angle disparity approach, first introduced by Tomasi, to the camera heading problem. Our new derivation makes theoretical analysis possible. Most notably, a theorem is obtained that locates all possible singularities of the residual function for the underlying optimization problem. This allows identifying all computation trouble spots beforehand, and to design reliable and accurate computational optimization methods. A bootstrap-jackknife resampling method simultaneously reduces complexity and tolerates outliers well. Experiments with image sequences show accurate results when compared with the true camera motion as measured with mechanical devices.

  14. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.

    PubMed

    Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S

    2001-04-01

    Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per

  15. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  16. Portable gamma camera guidance in sentinel lymph node biopsy: prospective observational study of consecutive cases.

    PubMed

    Peral Rubio, F; de La Riva, P; Moreno-Ramírez, D; Ferrándiz-Pulido, L

    2015-06-01

    Sentinel lymph node biopsy is the most important tool available for node staging in patients with melanoma. To analyze sentinel lymph node detection and dissection with radio guidance from a portable gamma camera. To assess the number of complications attributable to this biopsy technique. Prospective observational study of a consecutive series of patients undergoing radioguided sentinel lymph node biopsy. We analyzed agreement between nodes detected by presurgical lymphography, those detected by the gamma camera, and those finally dissected. A total of 29 patients (17 women [62.5%] and 12 men [37.5%]) were enrolled. The mean age was 52.6 years (range, 26-82 years). The sentinel node was dissected from all patients; secondary nodes were dissected from some. In 16 cases (55.2%), there was agreement between the number of nodes detected by lymphography, those detected by the gamma camera, and those finally dissected. The only complications observed were seromas (3.64%). No cases of wound dehiscence, infection, hematoma, or hemorrhage were observed. Portable gamma-camera radio guidance may be of use in improving the detection and dissection of sentinel lymph nodes and may also reduce complications. These goals are essential in a procedure whose purpose is melanoma staging. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  17. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined

  18. Investigations of Au-198 as radiotracer in laboratory porous media using gamma camera: a preliminary study

    NASA Astrophysics Data System (ADS)

    Othman, N.; Kamal, W. H. B. Wan; Yusof, N. H.; Engku Chik, E. M. F.; Yunos, M. A. S.; Adnan, M. A. K.; Shari, M. R.

    2018-01-01

    Preliminary experiment has been carried out using irradiated Au-198 as radiotracer inside the laboratory porous media. The objectives are to check the compatibility of Au-198 as the radiotracer inside the porous media as well as to provide insights of fluid hydrodynamics inside the media using gamma camera.198Au is gamma emitter isotope with half-life of 2.7 days and energy of 0.41 MeV (99%). The porous media consists of fine sandstone with grain size 850μm, lubricant as the mimic of original oil in plant (OOIP) or trapped oil and a layer of cement on top of the rig as the bed rock. Gamma camera is arranged next to the porous media in order to capture the movement of radiotracer which has been set to 1minute per frame. Initially, the gold wire which has isotope of 197Au was irradiated inside the rotary rack of Reactor Triga PUSPATI (RTP) to produce 198Au. RTP is located in Nuclear Malaysia, Bangi has energy of 750kW and neutron flux of 5 × 102 n/cm2/s. 198Au, which is in liquid form, is injected inside the porous media and monitored and recorded by gamma camera. The gamma camera gives a quantitative determination of local fluid saturations over the area of observation.

  19. Performance evaluation for pinhole collimators of small gamma camera by MTF and NNPS analysis: Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il

    2009-06-01

    Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.

  20. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  1. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  2. Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy

    PubMed Central

    Robertson, Daniel; Polf, Jerimy C; Peterson, Steve W; Gillin, Michael T; Beddar, Sam

    2011-01-01

    Prompt gamma rays emitted from biological tissues during proton irradiation carry dosimetric and spectroscopic information that can assist with treatment verification and provide an indication of the biological response of the irradiated tissues. Compton cameras are capable of determining the origin and energy of gamma rays. However, prompt gamma monitoring during proton therapy requires new Compton camera designs that perform well at the high gamma energies produced when tissues are bombarded with therapeutic protons. In this study we optimize the materials and geometry of a three-stage Compton camera for prompt gamma detection and calculate the theoretical efficiency of such a detector. The materials evaluated in this study include germanium, bismuth germanate (BGO), NaI, xenon, silicon and lanthanum bromide (LaBr3). For each material, the dimensions of each detector stage were optimized to produce the maximum number of relevant interactions. These results were used to predict the efficiency of various multi-material cameras. The theoretical detection efficiencies of the most promising multi-material cameras were then calculated for the photons emitted from a tissue-equivalent phantom irradiated by therapeutic proton beams ranging from 50 to 250 MeV. The optimized detector stages had a lateral extent of 10 × 10 cm2 with the thickness of the initial two stages dependent on the detector material. The thickness of the third stage was fixed at 10 cm regardless of material. The most efficient single-material cameras were composed of germanium (3 cm) and BGO (2.5 cm). These cameras exhibited efficiencies of 1.15 × 10−4 and 9.58 × 10−5 per incident proton, respectively. The most efficient multi-material camera design consisted of two initial stages of germanium (3 cm) and a final stage of BGO, resulting in a theoretical efficiency of 1.26 × 10−4 per incident proton. PMID:21508442

  3. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    PubMed

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halama, J.

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT

  5. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  6. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  7. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification

    NASA Astrophysics Data System (ADS)

    Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.

    2018-01-01

    The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.

  8. Sentinel node detection in early breast cancer with intraoperative portable gamma camera: UK experience.

    PubMed

    Ghosh, Debashis; Michalopoulos, Nikolaos V; Davidson, Timothy; Wickham, Fred; Williams, Norman R; Keshtgar, Mohammed R

    2017-04-01

    Access to nuclear medicine department for sentinel node imaging remains an issue in number of hospitals in the UK and many parts of the world. Sentinella ® is a portable imaging camera used intra-operatively to produce real time visual localisation of sentinel lymph nodes. Sentinella ® was tested in a controlled laboratory environment at our centre and we report our experience on the first use of this technology from UK. Moreover, preoperative scintigrams of the axilla were obtained in 144 patients undergoing sentinel node biopsy using conventional gamma camera. Sentinella ® scans were done intra-operatively to correlate with the pre-operative scintigram and to determine presence of any residual hot node after the axilla was deemed to be clear based on the silence of the hand held gamma probe. Sentinella ® detected significantly more nodes compared with CGC (p < 0.0001). Sentinella ® picked up extra nodes in 5/144 cases after the axilla was found silent using hand held gamma probe. In 2/144 cases, extra nodes detected by Sentinella ® confirmed presence of tumour cells that led to a complete axillary clearance. Sentinella ® is a reliable technique for intra-operative localisation of radioactive nodes. It provides increased nodal visualisation rates compared to static scintigram imaging and proves to be an important tool for harvesting all hot sentinel nodes. This portable gamma camera can definitely replace the use of conventional lymphoscintigrams saving time and money both for patients and the health system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.

    PubMed

    Rigamonti, D; Muraro, A; Nocente, M; Perseo, V; Boltruczyk, G; Fernandes, A; Figueiredo, J; Giacomelli, L; Gorini, G; Gosk, M; Kiptily, V; Korolczuk, S; Mianowski, S; Murari, A; Pereira, R C; Cippo, E P; Zychor, I; Tardocchi, M

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr 3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E γ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  10. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  11. Development of an LYSO based gamma camera for positron and scinti-mammography

    NASA Astrophysics Data System (ADS)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  12. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  13. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G.

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution ofmore » 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.« less

  14. Background simulations of the wide-field coded-mask camera for X-/Gamma-ray of the French-Chinese mission SVOM

    NASA Astrophysics Data System (ADS)

    Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand

    SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.

  15. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  16. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM).

    PubMed

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus

    2016-12-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.

  17. Characterization of a small CsI(Na)-WSF-SiPM gamma camera prototype using 99mTc

    NASA Astrophysics Data System (ADS)

    Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Ferreira, M. A.; Ferreira, R.; Combo, A.; Muchacho, F.; Veloso, J. F. C. A.

    2013-03-01

    A small field of view gamma camera is being developed, aiming for applications in scintimammography, sentinel lymph node detection or small animal imaging and research. The proposed wavelength-shifting fibre (WSF) gamma camera consists of two perpendicular sets of WSFs covering both sides of a CsI(Na) crystal, such that the fibres positioned at the bottom of the crystal provide the x coordinate and the ones on top the y coordinate of the gamma photon interaction point. The 2D position is given by highly sensitive photodetectors reading out each WSF and the energy information is provided by PMTs that cover the full detector area. This concept has the advantage of using N+N instead of N × N photodetectors to cover an identical imaging area, and is being applied using for the first time SiPMs. Previous studies carried out with 57Co have proved the feasibility of this concept using SiPM readout. In this work, we present experimental results from true 2D image acquisitions with a 10+10 SiPMs prototype, i.e. 10 × 10 mm2, using a parallel-hole collimator and different samples filled with 99mTc solution. The performance of the small prototype in these conditions is evaluated through the characterization of different gamma camera parameters, such as energy and spatial resolution. Ongoing advances towards a larger prototype of 100+100 SiPMs (10 × 10 cm2) are also presented.

  18. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  19. MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging

    PubMed Central

    Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2009-01-01

    Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/μCi); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864

  20. TU-H-206-01: An Automated Approach for Identifying Geometric Distortions in Gamma Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, S; Nelson, J; Samei, E

    2016-06-15

    Purpose: To develop a clinically-deployable, automated process for detecting artifacts in routine nuclear medicine (NM) quality assurance (QA) bar phantom images. Methods: An artifact detection algorithm was created to analyze bar phantom images as part of an ongoing QA program. A low noise, high resolution reference image was acquired from an x-ray of the bar phantom with a Philips Digital Diagnost system utilizing image stitching. NM bar images, acquired for 5 million counts over a 512×512 matrix, were registered to the template image by maximizing mutual information (MI). The MI index was used as an initial test for artifacts; lowmore » values indicate an overall presence of distortions regardless of their spatial location. Images with low MI scores were further analyzed for bar linearity, periodicity, alignment, and compression to locate differences with respect to the template. Findings from each test were spatially correlated and locations failing multiple tests were flagged as potential artifacts requiring additional visual analysis. The algorithm was initially deployed for GE Discovery 670 and Infinia Hawkeye gamma cameras. Results: The algorithm successfully identified clinically relevant artifacts from both systems previously unnoticed by technologists performing the QA. Average MI indices for artifact-free images are 0.55. Images with MI indices < 0.50 have shown 100% sensitivity and specificity for artifact detection when compared with a thorough visual analysis. Correlation of geometric tests confirms the ability to spatially locate the most likely image regions containing an artifact regardless of initial phantom orientation. Conclusion: The algorithm shows the potential to detect gamma camera artifacts that may be missed by routine technologist inspections. Detection and subsequent correction of artifacts ensures maximum image quality and may help to identify failing hardware before it impacts clinical workflow. Going forward, the algorithm is

  1. Novel computer-based endoscopic camera

    NASA Astrophysics Data System (ADS)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  2. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  3. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  4. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2014-11-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.

  5. Computational techniques in gamma-ray skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D.L.

    1988-12-01

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified tomore » use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs.« less

  6. SeHCAT retention values as measured with a collimated and an uncollimated gamma camera: a method comparison study.

    PubMed

    Wright, James W; Lovell, Lesley A; Gemmell, Howard G; McKiddie, Fergus; Staff, Roger T

    2013-07-01

    TauroH-23-(Se) selena-25-homocholic acid retention values are used in the diagnosis of bile acid malabsorption. The standard method for measuring values is with an uncollimated gamma camera, which can create some logistic difficulties, with other background sources of activity, which are irrelevant when a collimator is used, becoming significant. In this study we compare the retention values obtained with a collimated and an uncollimated gamma camera in phantoms and in 23 patients. Bland-Altman plots were created using the data, which showed a mean bias in retention of 0.10% in the phantom study and 0.55% in the patient study between methods. A Wilcoxon signed-rank test with the null hypothesis of zero median difference between uncollimated and collimated methods was not statistically significant to P values less than 0.05 in the patient and phantom studies. In the patient study, on using a fixed boundary of retention (10%) between positive and negative status, the status of one patient was changed from negative (12%) to positive (9%). We conclude that measurement of retention with a collimated gamma camera is similar but not identical to that of uncollimated values. The clinical significance of this shift is unclear, as the threshold of significance and the method of integrating this measure with other clinical factors into management remain unclear.

  7. Intraoperative Imaging Guidance for Sentinel Node Biopsy in Melanoma Using a Mobile Gamma Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dengel, Lynn T; Judy, Patricia G; Petroni, Gina R

    2011-04-01

    The objective is to evaluate the sensitivity and clinical utility of intraoperative mobile gamma camera (MGC) imaging in sentinel lymph node biopsy (SLNB) in melanoma. The false-negative rate for SLNB for melanoma is approximately 17%, for which failure to identify the sentinel lymph node (SLN) is a major cause. Intraoperative imaging may aid in detection of SLN near the primary site, in ambiguous locations, and after excision of each SLN. The present pilot study reports outcomes with a prototype MGC designed for rapid intraoperative image acquisition. We hypothesized that intraoperative use of the MGC would be feasible and that sensitivitymore » would be at least 90%. From April to September 2008, 20 patients underwent Tc99 sulfur colloid lymphoscintigraphy, and SLNB was performed with use of a conventional fixed gamma camera (FGC), and gamma probe followed by intraoperative MGC imaging. Sensitivity was calculated for each detection method. Intraoperative logistical challenges were scored. Cases in which MGC provided clinical benefit were recorded. Sensitivity for detecting SLN basins was 97% for the FGC and 90% for the MGC. A total of 46 SLN were identified: 32 (70%) were identified as distinct hot spots by preoperative FGC imaging, 31 (67%) by preoperative MGC imaging, and 43 (93%) by MGC imaging pre- or intraoperatively. The gamma probe identified 44 (96%) independent of MGC imaging. The MGC provided defined clinical benefit as an addition to standard practice in 5 (25%) of 20 patients. Mean score for MGC logistic feasibility was 2 on a scale of 1-9 (1 = best). Intraoperative MGC imaging provides additional information when standard techniques fail or are ambiguous. Sensitivity is 90% and can be increased. This pilot study has identified ways to improve the usefulness of an MGC for intraoperative imaging, which holds promise for reducing false negatives of SLNB for melanoma.« less

  8. Color reproduction software for a digital still camera

    NASA Astrophysics Data System (ADS)

    Lee, Bong S.; Park, Du-Sik; Nam, Byung D.

    1998-04-01

    We have developed a color reproduction software for a digital still camera. The image taken by the camera was colorimetrically reproduced on the monitor after characterizing the camera and the monitor, and color matching between two devices. The reproduction was performed at three levels; level processing, gamma correction, and color transformation. The image contrast was increased after the level processing adjusting the level of dark and bright portions of the image. The relationship between the level processed digital values and the measured luminance values of test gray samples was calculated, and the gamma of the camera was obtained. The method for getting the unknown monitor gamma was proposed. As a result, the level processed values were adjusted by the look-up table created by the camera and the monitor gamma correction. For a color transformation matrix for the camera, 3 by 3 or 3 by 4 matrix was used, which was calculated by the regression between the gamma corrected values and the measured tristimulus values of each test color samples the various reproduced images were displayed on the dialogue box implemented in our software, which were generated according to four illuminations for the camera and three color temperatures for the monitor. An user can easily choose he best reproduced image comparing each others.

  9. Temperature resolution enhancing of commercially available IR camera using computer processing

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-09-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Using such THz camera, one can see a temperature difference on the human skin if this difference is caused by different temperatures inside the body. Because the passive THz camera is very expensive, we try to use the IR camera for observing of such phenomenon. We use a computer code that is available for treatment of the images captured by commercially available IR camera, manufactured by Flir Corp. Using this code we demonstrate clearly changing of human body skin temperature induced by water drinking. Nevertheless, in some cases it is necessary to use additional computer processing to show clearly changing of human body temperature. One of these approaches is developed by us. We believe that we increase ten times (or more) the temperature resolution of such camera. Carried out experiments can be used for solving the counter-terrorism problem and for medicine problems solving. Shown phenomenon is very important for the detection of forbidden objects and substances concealed inside the human body using non-destructive control without X-ray application. Early we have demonstrated such possibility using THz radiation.

  10. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  11. Computer methods for sampling from the gamma distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.E.; Tadikamalla, P.R.

    1978-01-01

    Considerable attention has recently been directed at developing ever faster algorithms for generating gamma random variates on digital computers. This paper surveys the current state of the art including the leading algorithms of Ahrens and Dieter, Atkinson, Cheng, Fishman, Marsaglia, Tadikamalla, and Wallace. General random variate generation techniques are explained with reference to these gamma algorithms. Computer simulation experiments on IBM and CDC computers are reported.

  12. An evolution of technologies and applications of gamma imagers in the nuclear cycle industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, R. A.; Carrel, F.; Menaa, N.

    The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to themore » USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)« less

  13. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    PubMed

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  14. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  15. A panoramic coded aperture gamma camera for radioactive hotspots localization

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  16. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  17. [Evaluation of crossing calibration of (123)I-MIBG H/M ration, with the IDW scatter correction method, on different gamma camera systems].

    PubMed

    Kittaka, Daisuke; Takase, Tadashi; Akiyama, Masayuki; Nakazawa, Yasuo; Shinozuka, Akira; Shirai, Muneaki

    2011-01-01

    (123)I-MIBG Heart-to-Mediastinum activity ratio (H/M) is commonly used as an indicator of relative myocardial (123)I-MIBG uptake. H/M ratios reflect myocardial sympathetic nerve function, therefore it is a useful parameter to assess regional myocardial sympathetic denervation in various cardiac diseases. However, H/M ratio values differ by site, gamma camera system, position and size of region of interest (ROI), and collimator. In addition to these factors, 529 keV scatter component may also affect (123)I-MIBG H/M ratio. In this study, we examined whether the H/M ratio shows correlation between two different gamma camera systems and that sought for H/M ratio calculation formula. Moreover, we assessed the feasibility of (123)I Dual Window (IDW) method, which is a scatter correction method, and compared H/M ratios with and without IDW method. H/M ratio displayed a good correlation between two gamma camera systems. Additionally, we were able to create a new H/M calculation formula. These results indicated that the IDW method is a useful scatter correction method for calculating (123)I-MIBG H/M ratios.

  18. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  19. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  20. Computational photography with plenoptic camera and light field capture: tutorial.

    PubMed

    Lam, Edmund Y

    2015-11-01

    Photography is a cornerstone of imaging. Ever since cameras became consumer products more than a century ago, we have witnessed great technological progress in optics and recording mediums, with digital sensors replacing photographic films in most instances. The latest revolution is computational photography, which seeks to make image reconstruction computation an integral part of the image formation process; in this way, there can be new capabilities or better performance in the overall imaging system. A leading effort in this area is called the plenoptic camera, which aims at capturing the light field of an object; proper reconstruction algorithms can then adjust the focus after the image capture. In this tutorial paper, we first illustrate the concept of plenoptic function and light field from the perspective of geometric optics. This is followed by a discussion on early attempts and recent advances in the construction of the plenoptic camera. We will then describe the imaging model and computational algorithms that can reconstruct images at different focus points, using mathematical tools from ray optics and Fourier optics. Last, but not least, we will consider the trade-off in spatial resolution and highlight some research work to increase the spatial resolution of the resulting images.

  1. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  2. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  3. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  4. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  5. A comparison between the use of a shadow shield whole body counter and an uncollimated gamma camera ain the assessment of the seven-day retention of SeHCAT.

    PubMed

    Hames, T K; Condon, B R; Fleming, J S; Phillips, G; Holdstock, G; Smith, C L; Howlett, P J; Ackery, D

    1984-07-01

    We have compared the 7-day retention of the radioisotope bile salt analogue SeHCAT (75Se-23-selena-25-homotaurocholate), by whole body counting and by uncollimated gamma camera measurement, in phantoms and in 25 patients with inflammatory bowel disease. The results correlate with a linear correlation coefficient of 0.96. An uncollimated gamma camera can be used to assess bile acid malabsorption when a whole body radioactivity monitor is not available.

  6. [Evaluation of the efficacy of sentinel node detection in breast cancer: chronological course and influence of the incorporation of an intra-operative portable gamma camera].

    PubMed

    Goñi Gironés, E; Vicente García, F; Serra Arbeloa, P; Estébanez Estébanez, C; Calvo Benito, A; Rodrigo Rincón, I; Camarero Salazar, A; Martínez Lozano, M E

    2013-01-01

    To define the sentinel node identification rate in breast cancer, the chronological evolution of this parameter and the influence of the introduction of a portable gamma camera. A retrospective study was conducted using a prospective database of 754 patients who had undergone a sentinel lymph node biopsy between January 2003 and December 2011. The technique was mixed in the starting period and subsequently was performed with radiotracer intra-peritumorally administered the day before of the surgery. Until October 2009, excision of the sentinel node was guided by a probe. After that date, a portable gamma camera was introduced for intrasurgical detection. The SN was biopsied in 725 out of the 754 patients studied. The resulting technique global effectiveness was 96.2%. In accordance with the year of the surgical intervention, the identification percentage was 93.5% in 2003, 88.7% in 2004, 94.3% in 2005, 95.7% in 2006, 93.3% in 2007, 98.8% in 2008, 97.1% in 2009 and 99.1% in 2010 and 2011. There was a significant difference in the proportion of identification before and after the incorporation of the portable gamma camera of 4.6% (95% CI of the difference 2-7.2%, P = 0.0037). The percentage of global identification exceeds the recommended level following the current guidelines. Chronologically, the improvement for this parameter during the study period has been observed. These data suggest that the incorporation of a portable gamma camera had an important role. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  7. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.

    PubMed

    Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A

    1985-08-01

    Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.

  8. Development of a Compton camera for prompt-gamma medical imaging

    NASA Astrophysics Data System (ADS)

    Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.

    2017-11-01

    A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.

  9. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.

    PubMed

    Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku

    2018-05-25

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.

  10. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  11. Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera

    NASA Astrophysics Data System (ADS)

    Endo, Yutaka; Wakunami, Koki; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ichihashi, Yasuyuki; Yamamoto, Kenji; Ito, Tomoyoshi

    2015-12-01

    This paper shows the process used to calculate a computer-generated hologram (CGH) for real scenes under natural light using a commercial portable plenoptic camera. In the CGH calculation, a light field captured with the commercial plenoptic camera is converted into a complex amplitude distribution. Then the converted complex amplitude is propagated to a CGH plane. We tested both numerical and optical reconstructions of the CGH and showed that the CGH calculation from captured data with the commercial plenoptic camera was successful.

  12. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    PubMed

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes

  13. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer.

    PubMed

    Shen, Bailey Y; Mukai, Shizuo

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  14. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer

    PubMed Central

    Shen, Bailey Y.

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient. PMID:28396802

  15. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typicallymore » 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  16. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  17. Development of an intraoperative gamma camera based on a 256-pixel mercuric iodide detector array

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Tornai, M. P.; Iwanczyk, J. S.; Levin, C. S.; Hoffman, E. J.

    1997-06-01

    A 256-element mercuric iodide (HgI/sub 2/) detector array has been developed which is intended for use as an intraoperative gamma camera (IOGC). The camera is specifically designed for use in imaging gamma-emitting radiopharmaceuticals (such as 99m-Tc labeled Sestamibi) incorporated into brain tumors in the intraoperative surgical environment. The system is intended to improve the success of tumor removal surgeries by allowing more complete removal of subclinical tumor cells without removal of excessive normal tissue. The use of HgI/sub 2/ detector arrays in this application facilitates construction of an imaging head that is very compact and has a high SNR. The detector is configured as a cross-grid array. Pixel dimensions are 1.25 mm squares separated by 0.25 mm. The overall dimension of the detector is 23.75 mm on a side. The detector thickness is 1 mm which corresponds to over 60% stopping at 140 keV. The array has good uniformity with average energy resolution of 5.2/spl plusmn/2.9% FWHM at 140 keV (best resolution was 1.9% FWHM). Response uniformity (/spl plusmn//spl sigma/) was 7.9%. A study utilizing realistic tumor phantoms (uptake ratio varied from 2:1 to 100:1) in background (1 mCi/l) was conducted. SNRs for the reasonably achievable uptake ratio of 50:1 were 5.61 /spl sigma/ with 1 cm of background depth ("normal tissue") and 2.74 /spl sigma/ with 4 cm of background for a 6.3 /spl mu/l tumor phantom (/spl sim/270 nCi at the time of the measurement).

  18. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  19. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  20. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at

  1. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera

    NASA Astrophysics Data System (ADS)

    Moon, Sunghwan

    2017-06-01

    A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.

  2. Compton camera study for high efficiency SPECT and benchmark with Anger system

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  3. Performance Test Data Analysis of Scintillation Cameras

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer; Mazrou, Refaat Al

    2007-10-01

    In this paper, we present a set of image analysis tools to calculate the performance parameters of gamma camera systems from test data acquired according to the National Electrical Manufacturers Association NU 1-2001 guidelines. The calculation methods are either completely automated or require minimal user interaction; minimizing potential human errors. The developed methods are robust with respect to varying conditions under which these tests may be performed. The core algorithms have been validated for accuracy. They have been extensively tested on images acquired by the gamma cameras from different vendors. All the algorithms are incorporated into a graphical user interface that provides a convenient way to process the data and report the results. The entire application has been developed in MATLAB programming environment and is compiled to run as a stand-alone program. The developed image analysis tools provide an automated, convenient and accurate means to calculate the performance parameters of gamma cameras and SPECT systems. The developed application is available upon request for personal or non-commercial uses. The results of this study have been partially presented in Society of Nuclear Medicine Annual meeting as an InfoSNM presentation.

  4. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs

  5. Computational model of gamma irradiation room at ININ

    NASA Astrophysics Data System (ADS)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  6. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  7. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    PubMed

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  8. A machine learning method for fast and accurate characterization of depth-of-interaction gamma cameras

    NASA Astrophysics Data System (ADS)

    Pedemonte, Stefano; Pierce, Larry; Van Leemput, Koen

    2017-11-01

    Measuring the depth-of-interaction (DOI) of gamma photons enables increasing the resolution of emission imaging systems. Several design variants of DOI-sensitive detectors have been recently introduced to improve the performance of scanners for positron emission tomography (PET). However, the accurate characterization of the response of DOI detectors, necessary to accurately measure the DOI, remains an unsolved problem. Numerical simulations are, at the state of the art, imprecise, while measuring directly the characteristics of DOI detectors experimentally is hindered by the impossibility to impose the depth-of-interaction in an experimental set-up. In this article we introduce a machine learning approach for extracting accurate forward models of gamma imaging devices from simple pencil-beam measurements, using a nonlinear dimensionality reduction technique in combination with a finite mixture model. The method is purely data-driven, not requiring simulations, and is applicable to a wide range of detector types. The proposed method was evaluated both in a simulation study and with data acquired using a monolithic gamma camera designed for PET (the cMiCE detector), demonstrating the accurate recovery of the DOI characteristics. The combination of the proposed calibration technique with maximum- a posteriori estimation of the coordinates of interaction provided a depth resolution of  ≈1.14 mm for the simulated PET detector and  ≈1.74 mm for the cMiCE detector. The software and experimental data are made available at http://occiput.mgh.harvard.edu/depthembedding/.

  9. Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera

    NASA Astrophysics Data System (ADS)

    Roellinghoff, F.; Benilov, A.; Dauvergne, D.; Dedes, G.; Freud, N.; Janssens, G.; Krimmer, J.; Létang, J. M.; Pinto, M.; Prieels, D.; Ray, C.; Smeets, J.; Stichelbaut, F.; Testa, E.

    2014-03-01

    Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets. Assuming improved sensitivity of this camera design by using a greater number of detectors, retrieval precisions of 1 to 2 mm (rms) are expected for a clinical pencil beam. TOF improves the contrast-to-noise ratio and the performance of the method significantly.

  10. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  11. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  12. A data reduction technique and associated computer program for obtaining vehicle attitudes with a single onboard camera

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.; Renfroe, P. G.

    1974-01-01

    A detailed discussion of the application of a previously method to determine vehicle flight attitude using a single camera onboard the vehicle is presented with emphasis on the digital computer program format and data reduction techniques. Application requirements include film and earth-related coordinates of at least two landmarks (or features), location of the flight vehicle with respect to the earth, and camera characteristics. Included in this report are a detailed discussion of the program input and output format, a computer program listing, a discussion of modifications made to the initial method, a step-by-step basic data reduction procedure, and several example applications. The computer program is written in FORTRAN 4 language for the Control Data 6000 series digital computer.

  13. The added value of a portable gamma camera for intraoperative detection of sentinel lymph node in squamous cell carcinoma of the oral cavity: A case report.

    PubMed

    Mayoral, M; Paredes, P; Sieira, R; Vidal-Sicart, S; Marti, C; Pons, F

    2014-01-01

    The use of sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity is still subject to debate although some studies have reported its feasibility. The main reason for this debate is probably due to the high false-negative rate for floor-of-mouth tumors per se. We report the case of a 54-year-old man with a T1N0 floor-of-mouth squamous cell carcinoma who underwent the sentinel lymph node procedure. Lymphoscintigraphy and SPECT/CT imaging were performed for lymphatic mapping with a conventional gamma camera. Sentinel lymph nodes were identified at right Ib, left IIa and Ia levels. However, these sentinel lymph nodes were difficult to detect intraoperatively with a gamma probe owing to the activity originating from the injection site. The use of a portable gamma camera made it possible to localize and excise all the sentinel lymph nodes. This case demonstrates the usefulness of this tool to improve sentinel lymph node detecting in floor-of-mouth tumors, especially those close to the injection area. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  14. Optimized blind gamma-ray pulsar searches at fixed computing budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, Holger J.; Clark, Colin J., E-mail: holger.pletsch@aei.mpg.de

    The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fullymore » coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.« less

  15. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  16. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  17. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woosley, Stan

    Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  18. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  19. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  20. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  1. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  2. An attentive multi-camera system

    NASA Astrophysics Data System (ADS)

    Napoletano, Paolo; Tisato, Francesco

    2014-03-01

    Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.

  3. Dual-head gamma camera system for intraoperative localization of radioactive seeds

    NASA Astrophysics Data System (ADS)

    Arsenali, B.; de Jong, H. W. A. M.; Viergever, M. A.; Dickerscheid, D. B. M.; Beijst, C.; Gilhuijs, K. G. A.

    2015-10-01

    Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm  ±  0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which

  4. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination

    PubMed Central

    Engelen, Thijs; Winkel, Beatrice MF; Rietbergen, Daphne DD; KleinJan, Gijs H; Vidal-Sicart, Sergi; Olmos, Renato A Valdés; van den Berg, Nynke S; van Leeuwen, Fijs WB

    2015-01-01

    Accurate pre- and intraoperative identification of the sentinel node (SN) forms the basis of the SN biopsy procedure. Gamma tracing technologies such as a gamma probe (GP), a 2D mobile gamma camera (MGC) or 3D freehandSPECT (FHS) can be used to provide the surgeon with radioguidance to the SN(s). We reasoned that integrated use of these technologies results in the generation of a “hybrid” modality that combines the best that the individual radioguidance technologies have to offer. The sensitivity and resolvability of both 2D-MGC and 3D-FHS-MGC were studied in a phantom setup (at various source-detector depths and using varying injection site-to-SN distances), and in ten breast cancer patients scheduled for SN biopsy. Acquired 3D-FHS-MGC images were overlaid with the position of the phantom/patient. This augmented-reality overview image was then used for navigation to the hotspot/SN in virtual-reality using the GP. Obtained results were compared to conventional gamma camera lymphoscintigrams. Resolution of 3D-FHS-MGC allowed identification of the SNs at a minimum injection site (100 MBq)-to-node (1 MBq; 1%) distance of 20 mm, up to a source-detector depth of 36 mm in 2D-MGC and up to 24 mm in 3D-FHS-MGC. A clinically relevant dose of approximately 1 MBq was clearly detectable up to a depth of 60 mm in 2D-MGC and 48 mm in 3D-FHS-MGC. In all ten patients at least one SN was visualized on the lymphoscintigrams with a total of 12 SNs visualized. 3D-FHS-MGC identified 11 of 12 SNs and allowed navigation to all these visualized SNs; in one patient with two axillary SNs located closely to each other (11 mm), 3D-FHS-MGC was not able to distinguish the two SNs. In conclusion, high sensitivity detection of SNs at an injection site-to-node distance of 20 mm-and-up was possible using 3D-FHS-MGC. In patients, 3D-FHS-MGC showed highly reproducible images as compared to the conventional lymphoscintigrams. PMID:26069857

  5. A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.

    1989-01-01

    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.

  6. CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.

    PubMed

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong

    2016-09-01

    Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Developments in mercuric iodide gamma ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  8. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  9. Prompt gamma imaging of proton pencil beams at clinical dose rate

    NASA Astrophysics Data System (ADS)

    Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.

    2014-10-01

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.

  10. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    NASA Astrophysics Data System (ADS)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  11. Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.

    2011-02-01

    The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.

  12. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  13. Effects of camera location on the reconstruction of 3D flare trajectory with two cameras

    NASA Astrophysics Data System (ADS)

    Özsaraç, Seçkin; Yeşilkaya, Muhammed

    2015-05-01

    Flares are used as valuable electronic warfare assets for the battle against infrared guided missiles. The trajectory of the flare is one of the most important factors that determine the effectiveness of the counter measure. Reconstruction of the three dimensional (3D) position of a point, which is seen by multiple cameras, is a common problem. Camera placement, camera calibration, corresponding pixel determination in between the images of different cameras and also the triangulation algorithm affect the performance of 3D position estimation. In this paper, we specifically investigate the effects of camera placement on the flare trajectory estimation performance by simulations. Firstly, 3D trajectory of a flare and also the aircraft, which dispenses the flare, are generated with simple motion models. Then, we place two virtual ideal pinhole camera models on different locations. Assuming the cameras are tracking the aircraft perfectly, the view vectors of the cameras are computed. Afterwards, using the view vector of each camera and also the 3D position of the flare, image plane coordinates of the flare on both cameras are computed using the field of view (FOV) values. To increase the fidelity of the simulation, we have used two sources of error. One is used to model the uncertainties in the determination of the camera view vectors, i.e. the orientations of the cameras are measured noisy. Second noise source is used to model the imperfections of the corresponding pixel determination of the flare in between the two cameras. Finally, 3D position of the flare is estimated using the corresponding pixel indices, view vector and also the FOV of the cameras by triangulation. All the processes mentioned so far are repeated for different relative camera placements so that the optimum estimation error performance is found for the given aircraft and are trajectories.

  14. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  15. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  16. Phantom feet on digital radionuclide images and other scary computer tales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.

    1989-09-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.

  17. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET.

    PubMed

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette; Eigtved, Annika; Backer, Vibeke; Olesen, Knud P; Nielsen, Henrik W; Hansen, Hanne; Stentoft, Poul; Friberg, Lars

    2004-08-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison between foci resolved with the 2 different PET scanners and the diagnostic accuracy compared with final diagnosis determined by the combined information from all other investigations and clinical follow-up. Eighty-six patients were recruited to this study through a routine diagnostic program. They all had changes on their chest radiographs, suggesting malignant lung tumor. In addition to the standard diagnostic program, each patient had 2 PET scans that were performed on the same day. After administration of 419 MBq (range = 305-547 MBq) (18)F-FDG, patients were scanned in a dedicated PET scanner about 1 h after FDG administration and in a dual-head coincidence gamma-camera about 3 h after tracer injection. Images from the 2 scans were evaluated in a blinded set-up and compared with the final outcome. Malignant intrathoracic disease was found in 52 patients, and 47 patients had primary lung cancers. dPET detected all patients as having malignancies (sensitivity, 100%; specificity, 50%), whereas gPET missed one patient (sensitivity, 98%; specificity, 56%). For evaluating regional lymph node involvement, sensitivity and specificity rates were 78% and 84% for dPET and 61% and 90% for gPET, respectively. When comparing the 2 PET techniques with clinical tumor stage (TNM), full agreement was obtained in 64% of the patients (Cohen's kappa = 0.56). Comparing categorization of the patients into clinical relevant stages (no malignancy/malignancy suitable for treatment with curative intent/nontreatable malignancy), resulted in full agreement in 81% (Cohen's kappa = 0.71) of patients. Comparing results from a recent generation of gPET cameras obtained about 2 h later than those of d

  18. SHOK—The First Russian Wide-Field Optical Camera in Space

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  19. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  20. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  1. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  2. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS

  3. Focus collimator press for a collimator for gamma ray cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, R.N.; York, D.L.

    A focus collimator press for collimators for gamma ray cameras is described comprising a pivot arm of fixed length mounted on a travelling pivot which is movable in the plane of a spaced apart work table surface in a direction toward and away from the work table. A press plate is carried at the opposite end of the fixed length pivot arm, and is maintained in registration with the same portion of the work table for pressing engagement with each undulating radiation opaque strip as it is added to the top of a collimator stack in process by movement ofmore » the travelling pivot inward toward the work table. This enables the press plate to maintain its relative position above the collimator stack and at the same time the angle of the press plate changes, becoming less acute in relation to the work table as the travelling pivot motes inwardly toward the work table. The fixed length of the pivot arm is substantially equal to the focal point of the converging apertures formed by each pair of undulating strips stacked together. Thus, the focal point of each aperture row falls substantially on the axis of the travelling pivot, and since it moves in the plane of the work table surface the focal point of each aperture row is directed to lie in the same common plane. When one of two collimator stacks made in this way is rotated 180 degrees and the two bonded together along their respective first strips, all focal points of every aperture row lie on the central axis of the completed collimator.« less

  4. Camera Trajectory fromWide Baseline Images

    NASA Astrophysics Data System (ADS)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  5. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    NASA Astrophysics Data System (ADS)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  6. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  7. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  8. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  9. 131I activity quantification of gamma camera planar images.

    PubMed

    Barquero, Raquel; Garcia, Hugo P; Incio, Monica G; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-07

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131 I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq -1 ) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0 . The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131 I in air. Values of G and S for two GC systems-Philips Skylight and Siemens e-cam-are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq -1 to 35 cps MBq -1 , and from 6 cps MBq -1 to 29 cps MBq -1 , respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each

  10. 131I activity quantification of gamma camera planar images

    NASA Astrophysics Data System (ADS)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  11. Positron emission particle tracking using a modular positron camera

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2009-06-01

    The technique of positron emission particle tracking (PEPT), developed at Birmingham in the early 1990s, enables a radioactively labelled tracer particle to be accurately tracked as it moves between the detectors of a "positron camera". In 1999 the original Birmingham positron camera, which consisted of a pair of MWPCs, was replaced by a system comprising two NaI(Tl) gamma camera heads operating in coincidence. This system has been successfully used for PEPT studies of a wide range of granular and fluid flow processes. More recently a modular positron camera has been developed using a number of the bismuth germanate (BGO) block detectors from standard PET scanners (CTI ECAT 930 and 950 series). This camera has flexible geometry, is transportable, and is capable of delivering high data rates. This paper presents simple models of its performance, and initial experience of its use in a range of geometries and applications.

  12. Plate refractive camera model and its applications

    NASA Astrophysics Data System (ADS)

    Huang, Longxiang; Zhao, Xu; Cai, Shen; Liu, Yuncai

    2017-03-01

    In real applications, a pinhole camera capturing objects through a planar parallel transparent plate is frequently employed. Due to the refractive effects of the plate, such an imaging system does not comply with the conventional pinhole camera model. Although the system is ubiquitous, it has not been thoroughly studied. This paper aims at presenting a simple virtual camera model, called a plate refractive camera model, which has a form similar to a pinhole camera model and can efficiently model refractions through a plate. The key idea is to employ a pixel-wise viewpoint concept to encode the refraction effects into a pixel-wise pinhole camera model. The proposed camera model realizes an efficient forward projection computation method and has some advantages in applications. First, the model can help to compute the caustic surface to represent the changes of the camera viewpoints. Second, the model has strengths in analyzing and rectifying the image caustic distortion caused by the plate refraction effects. Third, the model can be used to calibrate the camera's intrinsic parameters without removing the plate. Last but not least, the model contributes to putting forward the plate refractive triangulation methods in order to solve the plate refractive triangulation problem easily in multiviews. We verify our theory in both synthetic and real experiments.

  13. Autocalibration of a projector-camera system.

    PubMed

    Okatani, Takayuki; Deguchi, Koichiro

    2005-12-01

    This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.

  14. Attitude identification for SCOLE using two infrared cameras

    NASA Technical Reports Server (NTRS)

    Shenhar, Joram

    1991-01-01

    An algorithm is presented that incorporates real time data from two infrared cameras and computes the attitude parameters of the Spacecraft COntrol Lab Experiment (SCOLE), a lab apparatus representing an offset feed antenna attached to the Space Shuttle by a flexible mast. The algorithm uses camera position data of three miniature light emitting diodes (LEDs), mounted on the SCOLE platform, permitting arbitrary camera placement and an on-line attitude extraction. The continuous nature of the algorithm allows identification of the placement of the two cameras with respect to some initial position of the three reference LEDs, followed by on-line six degrees of freedom attitude tracking, regardless of the attitude time history. A description is provided of the algorithm in the camera identification mode as well as the mode of target tracking. Experimental data from a reduced size SCOLE-like lab model, reflecting the performance of the camera identification and the tracking processes, are presented. Computer code for camera placement identification and SCOLE attitude tracking is listed.

  15. View From Camera Not Used During Curiosity's First Six Months on Mars

    NASA Image and Video Library

    2017-12-08

    This view of Curiosity's left-front and left-center wheels and of marks made by wheels on the ground in the "Yellowknife Bay" area comes from one of six cameras used on Mars for the first time more than six months after the rover landed. The left Navigation Camera (Navcam) linked to Curiosity's B-side computer took this image during the 223rd Martian day, or sol, of Curiosity's work on Mars (March 22, 2013). The wheels are 20 inches (50 centimeters) in diameter. Curiosity carries a pair of main computers, redundant to each other, in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity operated on its A-side from before the August 2012 landing until Feb. 28, when engineers commanded a switch to the B-side in response to a memory glitch on the A-side. One set of activities after switching to the B-side computer has been to check the six engineering cameras that are hard-linked to that computer. The rover's science instruments, including five science cameras, can each be operated by either the A-side or B-side computer, whichever is active. However, each of Curiosity's 12 engineering cameras is linked to just one of the computers. The engineering cameras are the Navigation Camera (Navcam), the Front Hazard-Avoidance Camera (Front Hazcam) and Rear Hazard-Avoidance Camera (Rear Hazcam). Each of those three named cameras has four cameras as part of it: two stereo pairs of cameras, with one pair linked to each computer. Only the pairs linked to the active computer can be used, and the A-side computer was active from before landing, in August, until Feb. 28. All six of the B-side engineering cameras have been used during March 2013 and checked out OK. Image Credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and

  16. Program for integrating multizonal photographs of the Earth, taken by MKF-6 camera, in a computer

    NASA Technical Reports Server (NTRS)

    Agapov, A. V.; Mosin, S. T.

    1980-01-01

    An algorithm and program are described, for integrating up to 6 simultaneously exposed photographs in different spectral ranges of the surface of the Earth, taken by MKF-6 cameras aboard Soyuz-22. Three of the reference marks are identified on 1 photograph and then are used to integrate the other photographs with the first. The program was compiled for the ES-1040 computer, as a standard subprogram in a system for computer processing of data of study of the Earth from space.

  17. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  18. Prompt-gamma monitoring in hadrontherapy: A review

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.

    2018-01-01

    Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.

  19. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2017-04-01

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.

  20. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    PubMed

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  1. General Nuclear Medicine

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  2. Lymphoscintigraphy

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  3. Hepatobiliary

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  4. Skeletal Scintigraphy (Bone Scan)

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  5. System of Programmed Modules for Measuring Photographs with a Gamma-Telescope

    NASA Technical Reports Server (NTRS)

    Averin, S. A.; Veselova, G. V.; Navasardyan, G. V.

    1978-01-01

    Physical experiments using tracking cameras resulted in hundreds of thousands of stereo photographs of events being received. To process such a large volume of information, automatic and semiautomatic measuring systems are required. At the Institute of Space Research of the Academy of Science of the USSR, a system for processing film information from the spark gamma-telescope was developed. The system is based on a BPS-75 projector in line with the minicomputer Elektronika 1001. The report describes this system. The various computer programs available to the operators are discussed.

  6. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  7. A Single Camera Motion Capture System for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  8. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  9. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  10. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  11. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  12. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.

    PubMed

    Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.

  13. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers

  14. Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

    NASA Astrophysics Data System (ADS)

    Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

    2015-08-01

    The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

  15. A neutron camera system for MAST.

    PubMed

    Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M

    2010-10-01

    A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.

  16. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  17. Color calibration of an RGB camera mounted in front of a microscope with strong color distortion.

    PubMed

    Charrière, Renée; Hébert, Mathieu; Trémeau, Alain; Destouches, Nathalie

    2013-07-20

    This paper aims at showing that performing color calibration of an RGB camera can be achieved even in the case where the optical system before the camera introduces strong color distortion. In the present case, the optical system is a microscope containing a halogen lamp, with a nonuniform irradiance on the viewed surface. The calibration method proposed in this work is based on an existing method, but it is preceded by a three-step preprocessing of the RGB images aiming at extracting relevant color information from the strongly distorted images, taking especially into account the nonuniform irradiance map and the perturbing texture due to the surface topology of the standard color calibration charts when observed at micrometric scale. The proposed color calibration process consists first in computing the average color of the color-chart patches viewed under the microscope; then computing white balance, gamma correction, and saturation enhancement; and finally applying a third-order polynomial regression color calibration transform. Despite the nonusual conditions for color calibration, fairly good performance is achieved from a 48 patch Lambertian color chart, since an average CIE-94 color difference on the color-chart colors lower than 2.5 units is obtained.

  18. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komura, S.; Takada, A.; Mizumura, Y.

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less

  19. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  20. A real-time camera calibration system based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  1. Measuring Positions of Objects using Two or More Cameras

    NASA Technical Reports Server (NTRS)

    Klinko, Steve; Lane, John; Nelson, Christopher

    2008-01-01

    An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate

  2. Processing the Viking lander camera data

    NASA Technical Reports Server (NTRS)

    Levinthal, E. C.; Tucker, R.; Green, W.; Jones, K. L.

    1977-01-01

    Over 1000 camera events were returned from the two Viking landers during the Primary Mission. A system was devised for processing camera data as they were received, in real time, from the Deep Space Network. This system provided a flexible choice of parameters for three computer-enhanced versions of the data for display or hard-copy generation. Software systems allowed all but 0.3% of the imagery scan lines received on earth to be placed correctly in the camera data record. A second-order processing system was developed which allowed extensive interactive image processing including computer-assisted photogrammetry, a variety of geometric and photometric transformations, mosaicking, and color balancing using six different filtered images of a common scene. These results have been completely cataloged and documented to produce an Experiment Data Record.

  3. Gamma-Weighted Discrete Ordinate Two-Stream Approximation for Computation of Domain Averaged Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Kato, S.; Smith, G. L.; Barker, H. W.

    2001-01-01

    An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.

  4. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  5. Real Time Eye Tracking and Hand Tracking Using Regular Video Cameras for Human Computer Interaction

    DTIC Science & Technology

    2011-01-01

    Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January...understand us. More specifically, the computer should be able to infer what we wish to see, do , and interact with through our movements, gestures, and...in depth freedom. Our system differs from the majority of other systems in that we do not use infrared, stereo-cameras, specially-constructed

  6. COBRA ATD multispectral camera response model

    NASA Astrophysics Data System (ADS)

    Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2000-08-01

    A new multispectral camera response model has been developed in support of the US Marine Corps (USMC) Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) Program. This analytical model accurately estimates response form five Xybion intensified IMC 201 multispectral cameras used for COBRA ATD airborne minefield detection. The camera model design is based on a series of camera response curves which were generated through optical laboratory test performed by the Naval Surface Warfare Center, Dahlgren Division, Coastal Systems Station (CSS). Data fitting techniques were applied to these measured response curves to obtain nonlinear expressions which estimates digitized camera output as a function of irradiance, intensifier gain, and exposure. This COBRA Camera Response Model was proven to be very accurate, stable over a wide range of parameters, analytically invertible, and relatively simple. This practical camera model was subsequently incorporated into the COBRA sensor performance evaluation and computational tools for research analysis modeling toolbox in order to enhance COBRA modeling and simulation capabilities. Details of the camera model design and comparisons of modeled response to measured experimental data are presented.

  7. Camera Layout Design for the Upper Stage Thrust Cone

    NASA Technical Reports Server (NTRS)

    Wooten, Tevin; Fowler, Bart

    2010-01-01

    Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.

  8. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  9. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  10. Advanced High-Definition Video Cameras

    NASA Technical Reports Server (NTRS)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  11. Extrinsic Calibration of Camera Networks Based on Pedestrians

    PubMed Central

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2016-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080

  12. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  13. Scale Space for Camera Invariant Features.

    PubMed

    Puig, Luis; Guerrero, José J; Daniilidis, Kostas

    2014-09-01

    In this paper we propose a new approach to compute the scale space of any central projection system, such as catadioptric, fisheye or conventional cameras. Since these systems can be explained using a unified model, the single parameter that defines each type of system is used to automatically compute the corresponding Riemannian metric. This metric, is combined with the partial differential equations framework on manifolds, allows us to compute the Laplace-Beltrami (LB) operator, enabling the computation of the scale space of any central projection system. Scale space is essential for the intrinsic scale selection and neighborhood description in features like SIFT. We perform experiments with synthetic and real images to validate the generalization of our approach to any central projection system. We compare our approach with the best-existing methods showing competitive results in all type of cameras: catadioptric, fisheye, and perspective.

  14. The Texas Thermal Interface: A real-time computer interface for an Inframetrics infrared camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storek, D.J.; Gentle, K.W.

    1996-03-01

    The Texas Thermal Interface (TTI) offers an advantageous alternative to the conventional video path for computer analysis of infrared images from Inframetrics cameras. The TTI provides real-time computer data acquisition of 48 consecutive fields (version described here) with 8-bit pixels. The alternative requires time-consuming individual frame grabs from video tape with frequent loss of resolution in the D/A/D conversion. Within seconds after the event, the TTI temperature files may be viewed and processed to infer heat fluxes or other quantities as needed. The system cost is far less than commercial units which offer less capability. The system was developed formore » and is being used to measure heat fluxes to the plasma-facing components in a tokamak. {copyright} {ital 1996 American Institute of Physics.}« less

  15. Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachel F. Brem; Jocelyn A. Rapelyea; , Gilat Zisman

    2005-08-01

    To prospectively evaluate a high-resolution breast-specific gamma camera for depicting occult breast cancer in women at high risk for breast cancer but with normal mammographic and physical examination findings. MATERIALS AND METHODS: Institutional Review Board approval and informed consent were obtained. The study was HIPAA compliant. Ninety-four high-risk women (age range, 36-78 years; mean, 55 years) with normal mammographic (Breast Imaging Reporting and Data System [BI-RADS] 1 or 2) and physical examination findings were evaluated with scintimammography. After injection with 25-30 mCi (925-1110 MBq) of technetium 99m sestamibi, patients were imaged with a high-resolution small-field-of-view breast-specific gamma camera in craniocaudalmore » and mediolateral oblique projections. Scintimammograms were prospectively classified according to focal radiotracer uptake as normal (score of 1), with no focal or diffuse uptake; benign (score of 2), with minimal patchy uptake; probably benign (score of 3), with scattered patchy uptake; probably abnormal (score of 4), with mild focal radiotracer uptake; and abnormal (score of 5), with marked focal radiotracer uptake. Mammographic breast density was categorized according to BI-RADS criteria. Patients with normal scintimammograms (scores of 1, 2, or 3) were followed up for 1 year with an annual mammogram, physical examination, and repeat scintimammography. Patients with abnormal scintimammograms (scores of 4 or 5) underwent ultrasonography (US), and those with focal hypoechoic lesions underwent biopsy. If no lesion was found during US, patients were followed up with scintimammography. Specific pathologic findings were compared with scintimammographic findings. RESULTS: Of 94 women, 78 (83%) had normal scintimammograms (score of 1, 2, or 3) at initial examination and 16 (17%) had abnormal scintimammograms (score of 4 or 5). Fourteen (88%) of the 16 patients had either benign findings at biopsy or no focal abnormality at US

  16. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  17. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  18. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  19. Camera calibration method of binocular stereo vision based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhong, Wanzhen; Dong, Xiaona

    2015-10-01

    Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.

  20. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  1. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  2. Projector-Camera Systems for Immersive Training

    DTIC Science & Technology

    2006-01-01

    average to a sequence of 100 captured distortion corrected images. The OpenCV library [ OpenCV ] was used for camera calibration. To correct for...rendering application [Treskunov, Pair, and Swartout, 2004]. It was transposed to take into account different matrix conventions between OpenCV and...Screen Imperfections. Proc. Workshop on Projector-Camera Systems (PROCAMS), Nice, France, IEEE. OpenCV : Open Source Computer Vision. [Available

  3. Inspecting rapidly moving surfaces for small defects using CNN cameras

    NASA Astrophysics Data System (ADS)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  4. NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).

    PubMed

    Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander

    2017-10-26

    The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Directional Unfolded Source Term (DUST) for Compton Cameras.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  6. Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Goad, William K.

    2005-01-01

    Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.

  7. [Dynamics of food transit in gastrectomized patients with and without dumping syndrome studied with the gamma camera and a marked meal].

    PubMed

    Palermo, F; Boccaletto, F; Allegri, F; Tommaseo, T; Chiara, G

    1988-01-01

    Scintigraphy was performed on a group of patients following the administration of a solid radiolabelled meal. As a tracer, human albumin microspheres were used with 99mTc, mixed with fresh scrambled eggs, eaten as a sandwich in two slices of white bread. The analysis of transit and emptying-rate of the radiolabelled meal in the gastric or derivative loop areas was performed by means of a medium field (300 mm) gamma camera interfaced with a digital computer; the data were collected at 15" frames for 90'-120'. Twenty-nine patients were examined who had undergone sub-total gastrectomy: 11 of them were "dumpers" and 18 "non-dumpers"; moreover, 9 volunteers without any history of gastrointestinal diseases and 11 patients with different gastric disorders were checked. In the first group of gastrectomized patients the half-emptying time (T50) was significantly shorter than in the 11 people being checked (Md = 27.5 +/- 10.8 versus 69.6 +/- 19 minutes); in "non-dumpers" T50 was even shorter (Md = 24.2 +/- 13 min). There was no significant statistical difference between the two classes of gastroresected patients in both T50 and emptying-rate of the radioactive solid food, which excludes the accelerated transit as a factor in the functional post-prandial symptoms of the dumping syndrome. On the contrary, the dynamic selective analysis of the radiolabelled food transit through derivative afferent and efferent loops showed different patterns in the two groups of gastroresected patients: the progression of the propulsive wave was very irregular and constantly hyperperistaltic only in the dumpers.

  8. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  9. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  10. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  11. [Diagnostic use of positron emission tomography in France: from the coincidence gamma-camera to mobile hybrid PET/CT devices].

    PubMed

    Talbot, Jean-Noël

    2010-11-01

    Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.

  12. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  13. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  14. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  15. Calibration of asynchronous smart phone cameras from moving objects

    NASA Astrophysics Data System (ADS)

    Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel

    2015-04-01

    Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.

  16. Cost-effective poster and print production with digital camera and computer technology.

    PubMed

    Chen, M Y; Ott, D J; Rohde, R P; Henson, E; Gelfand, D W; Boehme, J M

    1997-10-01

    The purpose of this report is to describe a cost-effective method for producing black-and-white prints and color posters within a radiology department. Using a high-resolution digital camera, personal computer, and color printer, the average cost of a 5 x 7 inch (12.5 x 17.5 cm) black-and-white print may be reduced from $8.50 to $1 each in our institution. The average cost for a color print (8.5 x 14 inch [21.3 x 35 cm]) varies from $2 to $3 per sheet depending on the selection of ribbons for a color-capable laser printer and the paper used. For a 30-panel, 4 x 8 foot (1.2 x 2.4 m) standard-sized poster, the cost for materials and construction is approximately $100.

  17. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  18. Digital Camera Control for Faster Inspection

    NASA Technical Reports Server (NTRS)

    Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel

    2009-01-01

    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.

  19. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  20. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  1. Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    NASA Astrophysics Data System (ADS)

    Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, Joao; Wäny, Martin; Morgado-Dias, F.

    2017-01-01

    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm×1 mm×1.65 mm is used. Due to the physical properties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.

  2. ProxiScan™: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema

    Ralph James

    2017-12-09

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  3. 3-D Flow Visualization with a Light-field Camera

    NASA Astrophysics Data System (ADS)

    Thurow, B.

    2012-12-01

    Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.

  4. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    NASA Astrophysics Data System (ADS)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  5. STS-37 Breakfast / Ingress / Launch & ISO Camera Views

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. The mission was led by Commander Steven Nagel. The crew was Pilot Kenneth Cameron and Mission Specialists Jerry Ross, Jay Apt, and Linda Godwing. This videotape shows the crew having breakfast on the launch day, with the narrator introducing them. It then shows the crew's final preparations and the entry into the shuttle, while the narrator gives information about each of the crew members. The countdown and launch is shown including the shuttle separation from the solid rocket boosters. The launch is reshown from 17 different camera views. Some of the other camera views were in black and white.

  6. Beats: Video Monitors and Cameras.

    ERIC Educational Resources Information Center

    Worth, Frazier

    1996-01-01

    Presents a method to teach the concept of beats as a generalized phenomenon rather than teaching it only in the context of sound. Involves using a video camera to film a computer terminal, 16-mm projector, or TV monitor. (JRH)

  7. Express Yourself: Using Color Schemes, Cameras, and Computers

    ERIC Educational Resources Information Center

    Lott, Debra

    2005-01-01

    Self-portraiture is a great project to introduce the study of color schemes and Expressionism. Through this drawing project, students learn about identity, digital cameras, and creative art software. The lesson can be introduced with a study of Edvard Munch and Expressionism. Expressionism was an art movement in which the intensity of the artist's…

  8. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    PubMed

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.

  9. Remote hardware-reconfigurable robotic camera

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  10. Motion camera based on a custom vision sensor and an FPGA architecture

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  11. Single lens 3D-camera with extended depth-of-field

    NASA Astrophysics Data System (ADS)

    Perwaß, Christian; Wietzke, Lennart

    2012-03-01

    Placing a micro lens array in front of an image sensor transforms a normal camera into a single lens 3D camera, which also allows the user to change the focus and the point of view after a picture has been taken. While the concept of such plenoptic cameras is known since 1908, only recently the increased computing power of low-cost hardware and the advances in micro lens array production, have made the application of plenoptic cameras feasible. This text presents a detailed analysis of plenoptic cameras as well as introducing a new type of plenoptic camera with an extended depth of field and a maximal effective resolution of up to a quarter of the sensor resolution.

  12. First Test Of A New High Resolution Positron Camera With Four Area Detectors

    NASA Astrophysics Data System (ADS)

    van Laethem, E.; Kuijk, M.; Deconinck, Frank; van Miert, M.; Defrise, Michel; Townsend, D.; Wensveen, M.

    1989-10-01

    A PET camera consisting of two pairs of parallel area detectors has been installed at the cyclotron unit of VUB. The detectors are High Density Avalanche Chambers (HIDAC) wire-chambers with a stack of 4 or 6 lead gamma-electron converters, the sensitive area being 30 by 30 cm. The detectors are mounted on a commercial gantry allowing a 180 degree rotation during acquisition, as needed for a fully 3D image reconstruction. The camera has been interfaced to a token-ring computer network consisting of 5 workstations among which the various tasks (acquisition, reconstruction, display) can be distributed. Each coincident event is coded in 48 bits and is transmitted to the computer bus via a 512 kbytes dual ported buffer memory allowing data rates of up to 50 kHz. Fully 3D image reconstruction software has been developed, and includes new reconstruction algorithms allowing a better utilization of the available projection data. Preliminary measurements and imaging of phantoms and small animals (with 18FDG) have been performed with two of the four detectors mounted on the gantry. They indicate the expected 3D isotropic spatial resolution of 3.5 mm (FWHM, line source in air) and a sensitivity of 4 cps/μCi for a centred point source in air, corresponding to typical data rates of a few kHz. This latter figure is expected to improve by a factor of 4 after coupling of the second detector pair, since the coincidence sensitivity of this second detector pair is a factor 3 higher than that of the first one.

  13. A digital gigapixel large-format tile-scan camera.

    PubMed

    Ben-Ezra, M

    2011-01-01

    Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.

  14. Implementation of test for quality assurance in nuclear medicine gamma camera

    NASA Astrophysics Data System (ADS)

    Moreno, A. Montoya; Laguna, A. Rodríguez; Zamudio, Flavio E. Trujillo

    2012-10-01

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (Rin) was 4.67 ± 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (Sext), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (Urot), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 ± 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (Utomo), UI values (%) and percentage noise level (rms%) were 7.54 ± 1.53 and 4.18 ± 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to

  15. Implementation of test for quality assurance in nuclear medicine gamma camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya Moreno, A.; Rodriguez Laguna, A.; Trujillo Zamudio, Flavio E

    2012-10-23

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexicomore » (INCan). The results were: (1) The average intrinsic spatial resolution (R{sub in}) was 4.67 {+-} 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (S{sub ext}), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (U{sub rot}), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 {+-} 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (U{sub tomo}), UI values (%) and percentage noise level (rms%) were 7.54 {+-} 1.53 and 4.18 {+-} 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of

  16. Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium

    2017-12-01

    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.

  17. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.

    PubMed

    Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E

    2002-05-01

    To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK

  18. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.

    2012-07-01

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.

  19. Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask

    NASA Astrophysics Data System (ADS)

    Morel, Sébastien

    2004-09-01

    A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.

  20. Analysis of Brown camera distortion model

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  1. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  2. Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy

    PubMed Central

    Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang

    2016-01-01

    Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473

  3. Multiple window spatial registration error of a gamma camera: 133Ba point source as a replacement of the NEMA procedure.

    PubMed

    Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M

    2008-12-09

    The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.

  4. Midi-maxi computer interaction in the interpretation of nuclear medicine procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlapper, G.A.

    1977-01-01

    A study of renal function with an Anger Gamma Camera coupled with a Digital Equipment Corporation Gamma-11 System and an IBM System 370 demonstrates the potential of quantitative determinations of physiological function through the application of midi-maxi computer interaction in the interpretation of nuclear medicine procedures. It is shown that radiotracers can provide an opportunity to assess physiological processes of renal function by noninvasively following the path of a tracer as a function of time. Time-activity relationships obtained over seven anatomically defined regions are related to parameters of a seven compartment model employed to describe the renal clearance process. Themore » values obtained for clinically significant parameters agree with known renal pathophysiology. Differentiation of failure of acute, chronic, and obstructive forms is indicated.« less

  5. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  6. An image compression algorithm for a high-resolution digital still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    The Electronic Still Camera (ESC) project will provide for the capture and transmission of high-quality images without the use of film. The image quality will be superior to video and will approach the quality of 35mm film. The camera, which will have the same general shape and handling as a 35mm camera, will be able to send images to earth in near real-time. Images will be stored in computer memory (RAM) in removable cartridges readable by a computer. To save storage space, the image will be compressed and reconstructed at the time of viewing. Both lossless and loss-y image compression algorithms are studied, described, and compared.

  7. Real-time vehicle matching for multi-camera tunnel surveillance

    NASA Astrophysics Data System (ADS)

    Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.

  8. D Animation Reconstruction from Multi-Camera Coordinates Transformation

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Rau, J. Y.; Chou, C. M.

    2016-06-01

    Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  9. Camera-enabled techniques for organic synthesis

    PubMed Central

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  10. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    PubMed

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  11. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    PubMed Central

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-01-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors. PMID:21731108

  12. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    NASA Astrophysics Data System (ADS)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  13. In-vivo Diagnosis of Breast Cancer Using Gamma Stimulated Emission Computed Tomography

    DTIC Science & Technology

    2011-04-01

    2006. [9] Floyd CE, Howell CR, Harrawood BP, Crowell AS, Kapadia AJ, Macri R, Xia JQ, Pedroni R, Bowsher J, Kiser MR, Tourassi GD, Tornow W , and...spin-sequence 0-1-2), with emitted gamma-ray energy 3448keV, 2601keV, 2657.562keV. In our simulation, w take tw m jor de-excitation parts into... Walter R, "Neutron Stimulated Emission Computed Tomography of Stable Isotopes," Proceedings of SPIE Medical Imaging 2004, vol. 5368, pp. 248-254. 17

  14. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  15. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  16. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    NASA Astrophysics Data System (ADS)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain

  17. Super-Resolution in Plenoptic Cameras Using FPGAs

    PubMed Central

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-01-01

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes. PMID:24841246

  18. Super-resolution in plenoptic cameras using FPGAs.

    PubMed

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-05-16

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  19. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  20. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  1. Cloud Computing with Context Cameras

    NASA Astrophysics Data System (ADS)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  2. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  3. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  4. Camera Control and Geo-Registration for Video Sensor Networks

    NASA Astrophysics Data System (ADS)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  5. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  6. Computational Studies of X-ray Framing Cameras for the National Ignition Facility

    DTIC Science & Technology

    2013-06-01

    Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 USA Abstract The NIF is the world’s most powerful laser facility and is...a phosphor screen where the output is recorded. The x-ray framing cameras have provided excellent information. As the yields at NIF have increased...experiments on the NIF . The basic operation of these cameras is shown in Fig. 1. Incident photons generate photoelectrons both in the pores of the MCP and

  7. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  8. A Simple Spectrophotometer Using Common Materials and a Digital Camera

    ERIC Educational Resources Information Center

    Widiatmoko, Eko; Widayani; Budiman, Maman; Abdullah, Mikrajuddin; Khairurrijal

    2011-01-01

    A simple spectrophotometer was designed using cardboard, a DVD, a pocket digital camera, a tripod and a computer. The DVD was used as a diffraction grating and the camera as a light sensor. The spectrophotometer was calibrated using a reference light prior to use. The spectrophotometer was capable of measuring optical wavelengths with a…

  9. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  10. Effect of camera angulation on adaptation of CAD/CAM restorations.

    PubMed

    Parsell, D E; Anderson, B C; Livingston, H M; Rudd, J I; Tankersley, J D

    2000-01-01

    A significant concern with computer-assisted design/computer-assisted manufacturing (CAD/CAM)-produced prostheses is the accuracy of adaptation of the restoration to the preparation. The objective of this study is to determine the effect of operator-controlled camera misalignment on restoration adaptation. A CEREC 2 CAD/CAM unit (Sirona Dental Systems, Bensheim, Germany) was used to capture the optical impressions and machine the restorations. A Class I preparation was used as the standard preparation for optical impressions. Camera angles along the mesio-distal and buccolingual alignment were varied from the ideal orientation. Occlusal marginal gaps and sample height, width, and length were measured and compared to preparation dimensions. For clinical correlation, clinicians were asked to take optical impressions of mesio-occlusal preparations (Class II) on all four second molar sites, using a patient simulator. On the adjacent first molar occlusal surfaces, a preparation was machined such that camera angulation could be calculated from information taken from the optical impression. Degree of tilt and plane of tilt were compared to the optimum camera positions for those preparations. One-way analysis of variance and Dunnett C post hoc testing (alpha = 0.01) revealed little significant degradation in fit with camera angulation. Only the apical length fit was significantly degraded by excessive angulation. The CEREC 2 CAD/CAM system was found to be relatively insensitive to operator-induced errors attributable to camera misalignments of less than 5 degrees in either the buccolingual or the mesiodistal plane. The average camera tilt error generated by clinicians for all sites was 1.98 +/- 1.17 degrees.

  11. Optimising Camera Traps for Monitoring Small Mammals

    PubMed Central

    Glen, Alistair S.; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera’s field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera’s field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats ( Mustela erminea ), feral cats (Felis catus) and hedgehogs ( Erinaceus europaeus ). Trigger speeds of 0.2–2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera’s field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps. PMID:23840790

  12. Vibration extraction based on fast NCC algorithm and high-speed camera.

    PubMed

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.

  13. Harbour surveillance with cameras calibrated with AIS data

    NASA Astrophysics Data System (ADS)

    Palmieri, F. A. N.; Castaldo, F.; Marino, G.

    The inexpensive availability of surveillance cameras, easily connected in network configurations, suggests the deployment of this additional sensor modality in port surveillance. Vessels appearing within cameras fields of view can be recognized and localized providing to fusion centers information that can be added to data coming from Radar, Lidar, AIS, etc. Camera systems, that are used as localizers however, must be properly calibrated in changing scenarios where often there is limited choice on the position on which they are deployed. Automatic Identification System (AIS) data, that includes position, course and vessel's identity, freely available through inexpensive receivers, for some of the vessels appearing within the field of view, provide the opportunity to achieve proper camera calibration to be used for the localization of vessels not equipped with AIS transponders. In this paper we assume a pinhole model for camera geometry and propose perspective matrices computation using AIS positional data. Images obtained from calibrated cameras are then matched and pixel association is utilized for other vessel's localization. We report preliminary experimental results of calibration and localization using two cameras deployed on the Gulf of Naples coastline. The two cameras overlook a section of the harbour and record short video sequences that are synchronized offline with AIS positional information of easily-identified passenger ships. Other small vessels, not equipped with AIS transponders, are localized using camera matrices and pixel matching. Localization accuracy is experimentally evaluated as a function of target distance from the sensors.

  14. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinsey, Daniel Nicholas

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid

  15. Study of the polarimetric performance of a Si/CdTe semiconductor Compton camera for the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Katsuta, Junichiro; Edahiro, Ikumi; Watanabe, Shin; Odaka, Hirokazu; Uchida, Yusuke; Uchida, Nagomi; Mizuno, Tsunefumi; Fukazawa, Yasushi; Hayashi, Katsuhiro; Habata, Sho; Ichinohe, Yuto; Kitaguchi, Takao; Ohno, Masanori; Ohta, Masayuki; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tajima, Hiroyasu; Yuasa, Takayuki; Itou, Masayoshi; SGD Team

    2016-12-01

    Gamma-ray polarization offers a unique probe into the geometry of the γ-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649-0.701 (inner part) and 0.637-0.653 (outer part) at 122.2 keV and 0.610-0.651 (inner part) and 0.564-0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ∼ 3 % .

  16. Traffic monitoring with distributed smart cameras

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert

    2012-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.

  17. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  18. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  19. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  20. Coincidence ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-01

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  1. Coincidence ion imaging with a fast frame camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less

  2. Three-camera stereo vision for intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Bergendahl, Jason; Masaki, Ichiro; Horn, Berthold K. P.

    1997-02-01

    A major obstacle in the application of stereo vision to intelligent transportation system is high computational cost. In this paper, a PC based three-camera stereo vision system constructed with off-the-shelf components is described. The system serves as a tool for developing and testing robust algorithms which approach real-time performance. We present an edge based, subpixel stereo algorithm which is adapted to permit accurate distance measurements to objects in the field of view using a compact camera assembly. Once computed, the 3D scene information may be directly applied to a number of in-vehicle applications, such as adaptive cruise control, obstacle detection, and lane tracking. Moreover, since the largest computational costs is incurred in generating the 3D scene information, multiple applications that leverage this information can be implemented in a single system with minimal cost. On-road applications, such as vehicle counting and incident detection, are also possible. Preliminary in-vehicle road trial results are presented.

  3. Performance and field tests of a handheld Compton camera using 3-D position-sensitive scintillators coupled to multi-pixel photon counter arrays

    NASA Astrophysics Data System (ADS)

    Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.

    2014-11-01

    After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.

  4. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    NASA Astrophysics Data System (ADS)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  5. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant

  6. A Major Upgrade of the H.E.S.S. Cherenkov Cameras

    NASA Astrophysics Data System (ADS)

    Lypova, Iryna; Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-03-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in Namibia. It was built to detect Very High Energy (VHE, >100 GeV) cosmic gamma rays, and consists of four 12 m diameter Cherenkov telescopes (CT1-4), built in 2003, and a larger 28 m telescope (CT5), built in 2012. The larger mirror surface of CT5 permits to lower the energy threshold of the array down to 30 GeV. The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Technical solutions forseen for the next-generation Cherenkov Telescope Array (CTA) observatory have been introduced, most notably the readout is based on the NECTAr analog memory chip. The camera control subsystems and the control software framework also pursue an innovative design, increasing the camera performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 will upgraded in Fall 2016. Together they will assure continuous operation of H.E.S.S at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded H.E.S.S. camera.

  7. Camera! Action! Collaborate with Digital Moviemaking

    ERIC Educational Resources Information Center

    Swan, Kathleen Owings; Hofer, Mark; Levstik, Linda S.

    2007-01-01

    Broadly defined, digital moviemaking integrates a variety of media (images, sound, text, video, narration) to communicate with an audience. There is near-ubiquitous access to the necessary software (MovieMaker and iMovie are bundled free with their respective operating systems) and hardware (computers with Internet access, digital cameras, etc.).…

  8. The gamma-ray Cherenkov telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Tibaldo, L.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.

  9. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  10. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.

    PubMed

    Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y

    2006-01-01

    To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.

  11. Distributed Sensing and Processing for Multi-Camera Networks

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  12. Expedition One CDR Shepherd with IMAX camera

    NASA Image and Video Library

    2001-02-11

    STS98-E-5164 (11 February 2001) --- Astronaut William M. (Bill) Shepherd documents activity onboard the newly attached Destiny laboratory using an IMAX motion picture camera. The crews of Atlantis and the International Space Station on February 11 opened the Destiny laboratory and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and Shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST). Members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station and filmed several scenes onboard the station using an IMAX camera. This scene was recorded with a digital still camera.

  13. Design and Implementation of a Novel Portable 360° Stereo Camera System with Low-Cost Action Cameras

    NASA Astrophysics Data System (ADS)

    Holdener, D.; Nebiker, S.; Blaser, S.

    2017-11-01

    The demand for capturing indoor spaces is rising with the digitalization trend in the construction industry. An efficient solution for measuring challenging indoor environments is mobile mapping. Image-based systems with 360° panoramic coverage allow a rapid data acquisition and can be processed to georeferenced 3D images hosted in cloud-based 3D geoinformation services. For the multiview stereo camera system presented in this paper, a 360° coverage is achieved with a layout consisting of five horizontal stereo image pairs in a circular arrangement. The design is implemented as a low-cost solution based on a 3D printed camera rig and action cameras with fisheye lenses. The fisheye stereo system is successfully calibrated with accuracies sufficient for the applied measurement task. A comparison of 3D distances with reference data delivers maximal deviations of 3 cm on typical distances in indoor space of 2-8 m. Also the automatic computation of coloured point clouds from the stereo pairs is demonstrated.

  14. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  15. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Dezalay, J.-P.; Houret, B.; Amoros, C.; Atteia, J.-L.; Aubaret, K.; Billot, M.; Bordon, S.; Cordier, B.; Delaigue, S.; Galliano, M.; Gevin, O.; Godet, O.; Gonzalez, F.; Guillemot, Ph.; Limousin, O.; Mercier, K.; Nasser, G.; Pons, R.; Rambaud, D.; Ramon, P.; Waegebaert, V.

    2016-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane. In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.

  16. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  17. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  18. Long-term changes in open field activity of male mice irradiated with low levels of gamma rays at late stage of development.

    PubMed

    Minamisawa, T; Hirokaga, K

    1996-06-01

    The open field activity of first generation (F1) hybrid male C57BL/6 x C3H mice irradiated with gamma-rays on the 14th day of gestation was studied at the following ages: 6-7 months, 12-13 months and 19-20 months. Doses were 0.1 Gy or 0.2 Gy. Open field activity was recorded with a camera. The camera output signal was recorded every sec through an A/D converter to a personal computer. The field was divided into 25 units of 8 cm square. All recordings were continuous for 60 min. The time which the 0.2-Gy group recorded at 6-7 months, spent in the 4 squares in the corner fields was high in comparison with the control group at the same age. The walking distance of the 0.1-Gy group recorded at 12-13 months was longer than that for the age matched control group. No effect of radiation was found on any of the behaviors observed and recorded at 19-20 months. The results demonstrate that exposure to low levels of gamma-rays on the 14th day of gestation results in behavioral changes, which occur at 6-7 and 12-13 months but not 19-20 months.

  19. A multi-criteria approach to camera motion design for volume data animation.

    PubMed

    Hsu, Wei-Hsien; Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    We present an integrated camera motion design and path generation system for building volume data animations. Creating animations is an essential task in presenting complex scientific visualizations. Existing visualization systems use an established animation function based on keyframes selected by the user. This approach is limited in providing the optimal in-between views of the data. Alternatively, computer graphics and virtual reality camera motion planning is frequently focused on collision free movement in a virtual walkthrough. For semi-transparent, fuzzy, or blobby volume data the collision free objective becomes insufficient. Here, we provide a set of essential criteria focused on computing camera paths to establish effective animations of volume data. Our dynamic multi-criteria solver coupled with a force-directed routing algorithm enables rapid generation of camera paths. Once users review the resulting animation and evaluate the camera motion, they are able to determine how each criterion impacts path generation. In this paper, we demonstrate how incorporating this animation approach with an interactive volume visualization system reduces the effort in creating context-aware and coherent animations. This frees the user to focus on visualization tasks with the objective of gaining additional insight from the volume data.

  20. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. Volumetric PIV with a Plenoptic Camera

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Tim

    2012-11-01

    Plenoptic cameras have received attention recently due to their ability to computationally refocus an image after it has been acquired. We describe the development of a robust, economical and easy-to-use volumetric PIV technique using a unique plenoptic camera built in our laboratory. The tomographic MART algorithm is used to reconstruct pairs of 3D particle volumes with velocity determined using conventional cross-correlation techniques. 3D/3C velocity measurements (volumetric dimensions of 2 . 8 ' ' × 1 . 9 ' ' × 1 . 6 ' ') of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. This work has been supported by the Air Force Office of Scientific Research,(Grant #FA9550-100100576).

  2. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Use of a color CMOS camera as a colorimeter

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Redford, Gary R.

    2006-08-01

    In radiology diagnosis, film is being quickly replaced by computer monitors as the display medium for all imaging modalities. Increasingly, these monitors are color instead of monochrome. It is important to have instruments available to characterize the display devices in order to guarantee reproducible presentation of image material. We are developing an imaging colorimeter based on a commercially available color digital camera. The camera uses a sensor that has co-located pixels in all three primary colors.

  4. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    PubMed

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  5. Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network

    PubMed Central

    Lee, Shane; Jones, Stephanie R.

    2013-01-01

    Gamma frequency rhythms have been implicated in numerous studies for their role in healthy and abnormal brain function. The frequency band has been described to encompass as broad a range as 30–150 Hz. Crucial to understanding the role of gamma in brain function is an identification of the underlying neural mechanisms, which is particularly difficult in the absence of invasive recordings in macroscopic human signals such as those from magnetoencephalography (MEG) and electroencephalography (EEG). Here, we studied features of current dipole (CD) signals from two distinct mechanisms of gamma generation, using a computational model of a laminar cortical circuit designed specifically to simulate CDs in a biophysically principled manner (Jones et al., 2007, 2009). We simulated spiking pyramidal interneuronal gamma (PING) whose period is regulated by the decay time constant of GABAA-mediated synaptic inhibition and also subthreshold gamma driven by gamma-periodic exogenous excitatory synaptic drive. Our model predicts distinguishable CD features created by spiking PING compared to subthreshold driven gamma that can help to disambiguate mechanisms of gamma oscillations in human signals. We found that gamma rhythms in neocortical layer 5 can obscure a simultaneous, independent gamma in layer 2/3. Further, we arrived at a novel interpretation of the origin of high gamma frequency rhythms (100–150 Hz), showing that they emerged from a specific temporal feature of CDs associated with single cycles of PING activity and did not reflect a separate rhythmic process. Last we show that the emergence of observable subthreshold gamma required highly coherent exogenous drive. Our results are the first to demonstrate features of gamma oscillations in human current source signals that distinguish cellular and circuit level mechanisms of these rhythms and may help to guide understanding of their functional role. PMID:24385958

  6. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Integration of USB and firewire cameras in machine vision applications

    NASA Astrophysics Data System (ADS)

    Smith, Timothy E.; Britton, Douglas F.; Daley, Wayne D.; Carey, Richard

    1999-08-01

    Digital cameras have been around for many years, but a new breed of consumer market cameras is hitting the main stream. By using these devices, system designers and integrators will be well posited to take advantage of technological advances developed to support multimedia and imaging applications on the PC platform. Having these new cameras on the consumer market means lower cost, but it does not necessarily guarantee ease of integration. There are many issues that need to be accounted for like image quality, maintainable frame rates, image size and resolution, supported operating system, and ease of software integration. This paper will describe briefly a couple of the consumer digital standards, and then discuss some of the advantages and pitfalls of integrating both USB and Firewire cameras into computer/machine vision applications.

  8. A combined microphone and camera calibration technique with application to acoustic imaging.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2013-10-01

    We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.

  9. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; hide

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  10. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    DOEpatents

    Majewski, Stanislaw [Morgantown, VA; Umeno, Marc M [Woodinville, WA

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  11. SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, D; Beddar, S; Polf, J

    2016-06-15

    Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less

  12. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  13. Imaging of a parapharyngeal hemangiopericytoma. Radioimmunoscintigraphy (SPECT) with indium-111-labeled anti-CEA antibody, and comparison to digital subtraction angiography, computed tomography, and immunohistochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kairemo, K.J.; Hopsu, E.V.; Melartin, E.J.

    1991-01-01

    A 27-year-old male patient with a parapharyngeal hemangiopericytoma was investigated radiologically with orthopantomography, computed tomography, and digital subtraction angiography before the operation. Because a malignancy was suspected, the patient was imaged with gamma camera using radiolabeled monoclonal anticarcinoembryonal antigen antibody including single photon emission computed tomography. The radioantibody accumulated strongly into the neoplasm. Tumor to background ratio was 2.2. Samples of the excised tumor were stained immunohistochemically for desmin, vimentin, muscle actin, cytokeratin, CEA (carcinoembryonic antigen), and factor VIII. They showed that the antibody uptake was of unspecific nature and not due to CEA expression in the tumor.

  14. Optimum color filters for CCD digital cameras

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  15. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Kimura, Hiroyuki; Amano, Hiroo; Nakamoto, Yuji; Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki; Kawashima, Hidekazu; Ueda, Masashi; Okada, Tomohisa; Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki; Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji; Ogawa, Koichi; Togashi, Kaori; Saji, Hideo; Tanimori, Toru

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  16. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    NASA Astrophysics Data System (ADS)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  17. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    NASA Astrophysics Data System (ADS)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  18. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less

  19. Miniaturized fundus camera

    NASA Astrophysics Data System (ADS)

    Gliss, Christine; Parel, Jean-Marie A.; Flynn, John T.; Pratisto, Hans S.; Niederer, Peter F.

    2003-07-01

    We present a miniaturized version of a fundus camera. The camera is designed for the use in screening for retinopathy of prematurity (ROP). There, but also in other applications a small, light weight, digital camera system can be extremely useful. We present a small wide angle digital camera system. The handpiece is significantly smaller and lighter then in all other systems. The electronics is truly portable fitting in a standard boardcase. The camera is designed to be offered at a compatible price. Data from tests on young rabbits' eyes is presented. The development of the camera system is part of a telemedicine project screening for ROP. Telemedical applications are a perfect application for this camera system using both advantages: the portability as well as the digital image.

  20. Improved depth estimation with the light field camera

    NASA Astrophysics Data System (ADS)

    Wang, Huachun; Sang, Xinzhu; Chen, Duo; Guo, Nan; Wang, Peng; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    Light-field cameras are used in consumer and industrial applications. An array of micro-lenses captures enough information that one can refocus images after acquisition, as well as shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. Thus, depth estimation from both defocus and correspondence are now available in a single capture. And Lytro.Inc also provides a depth estimation from a single-shot capture with light field camera, like Lytro Illum. This Lytro depth estimation containing many correct depth information can be used for higher quality estimation. In this paper, we present a novel simple and principled algorithm that computes dense depth estimation by combining defocus, correspondence and Lytro depth estimations. We analyze 2D epipolar image (EPI) to get defocus and correspondence depth maps. Defocus depth is obtained by computing the spatial gradient after angular integration and correspondence depth by computing the angular variance from EPIs. Lytro depth can be extracted from Lyrto Illum with software. We then show how to combine the three cues into a high quality depth map. Our method for depth estimation is suitable for computer vision applications such as matting, full control of depth-of-field, and surface reconstruction, as well as light filed display

  1. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  2. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy.

    PubMed

    Murray, G; Schad, N; Ladd, W; Allie, D; vander Zwagg, R; Avet, P; Rockett, J

    1992-07-01

    Fifteen patients with coronary disease and resting left ventricular ejection fractions of less than or equal to 0.35 underwent resting metabolic cardiac imaging utilizing 1 mCi [123I]iodophenylpentadecanoic acid (IPPA) intravenously and a multicrystal gamma camera. Parametric images of regional rates of IPPA clearance and accumulation were generated. Forty-two vascular territories (22 infarcted) were evaluated by metabolic imaging as well as transmural myocardial biopsy. Despite resting akinesis or dyskinesis in 20/22 (91%) infarcted territories, 16/22 (73%) of these territories were metabolically viable. Transmural myocardial biopsies in all patients (43 sites, 42 vascular territories) during coronary bypass surgery confirmed IPPA results in 39/43 patients (91%). When compared to biopsy, scan sensitivity for viability was 33/36 (92%) with a specificity of 6/7 (86%). Eighty percent of bypassed, infarcted but IPPA viable segments demonstrated improved regional systolic wall motion postoperatively as assessed by exercise radionuclide angiography. We conclude resting IPPA imaging identifies viable myocardium, thereby providing a safe, cost-effective technique for myocardial viability assessment.

  3. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. Sub-Camera Calibration of a Penta-Camera

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  5. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  6. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  7. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  8. A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.

    2015-01-01

    We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity. 

  9. New light field camera based on physical based rendering tracing

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  10. Display gamma is an important factor in Web image viewing

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Lavin, Yingmei; Silverstein, D. Amnon

    2001-06-01

    We conducted a perceptual image preference experiment over the web to find our (1) if typical computer users have significant variations in their display gamma settings, and (2) if so, do the gamma settings have significant perceptual effect on the appearance of images in their web browsers. The digital image renderings used were found to have preferred tone characteristics from a previous lab- controlled experiment. They were rendered with 4 different gamma settings. The subjects were asked to view the images over the web, with their own computer equipment and web browsers. The subjects werewe asked to view the images over the web, with their own computer equipment and web browsers. The subjects made pair-wise subjective preference judgements on which rendering they liked bets for each image. Each subject's display gamma setting was estimated using a 'gamma estimator' tool, implemented as a Java applet. The results indicated that (1) the user's gamma settings, as estimated in the experiment, span a wide range from about 1.8 to about 3.0; (2) the subjects preferred images that werewe rendered with a 'correct' gamma value matching their display setting. Subjects disliked images rendered with a gamma value not matching their displays'. This indicates that display gamma estimation is a perceptually significant factor in web image optimization.

  11. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. MCNP-based computational model for the Leksell gamma knife.

    PubMed

    Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav

    2007-01-01

    We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large

  13. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  14. Procurement specification color graphic camera system

    NASA Technical Reports Server (NTRS)

    Prow, G. E.

    1980-01-01

    The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.

  15. Hardware accelerator design for change detection in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  16. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.

    2014-12-01

    Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.

  17. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap

    PubMed Central

    Al-Widyan, Khalid

    2017-01-01

    Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE) problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX=ZB, where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B, which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0.12∘ respectively. PMID:29036905

  18. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap.

    PubMed

    Ahmad Yousef, Khalil M; Mohd, Bassam J; Al-Widyan, Khalid; Hayajneh, Thaier

    2017-10-14

    Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot-world hand-eye calibration (RWHE) problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX = ZB , where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B , which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0 . 12 ∘ respectively.

  19. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  20. Long-term effects of prenatal exposure to low levels of gamma rays on open-field activity in male mice.

    PubMed

    Minamisawa, T; Hirokaga, K

    1995-11-01

    The open-field activity of first-generation (F1) hybrid male C57BL/6 x C3H mice irradiated with gamma rays on day 14 of gestation was studied at the following ages: 6-7 months (young), 12-13 months (adult) and 19-20 months (old). Doses were 0.5 Gy or 1.0 Gy. Open-field activity was recorded with a camera. The camera output signal was recorded every second through an A/D converter to a personal computer. The field was divided into 25 8-cm2 units. All recordings were continuous for 60 min. The walking speed of the 1.0-Gy group recorded at 19-20 months was higher than that for the comparably aged control group. The time which the irradiated group, recorded at 19-20 months, spent in the corner fields was high in comparison with the control group at the same age. Conversely, the time spent by the irradiated group in the middle fields when recorded at 19-20 months was shorter than in the comparably aged control group. No effect of radiation was shown for any of the behaviors observed and recorded at 6-7 and 12-13 months. The results demonstrate that such exposure to gamma rays on day 14 of gestation results in behavioral changes which occur at 19-20 months but not at 6-7 or 12-13 months.

  1. The gamma cycle.

    PubMed

    Fries, Pascal; Nikolić, Danko; Singer, Wolf

    2007-07-01

    Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  2. Gamma-ray detector guidance of breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth

    2009-12-01

    . One method to provide intraoperative seed localization is through the use of a gamma-camera system. Monte Carlo simulations were conducted of a Cadmium Zinc Telluride (CZT) gamma-camera system and a realistic model of a breast with 3 layers of seeds distributed according to the pre-implant treatment plan of a typical patient. The simulations showed that a gamma-camera was able to localize the seeds with a maximum error of 2.0 mm within 20 seconds. An experimental prototype was designed and constructed to validate these promising Monte Carlo results. Using a 64 pixel linear array CZT detector fitted with a custom built brass collimator, images were acquired of a physical phantom similar to the model used in the Monte Carlo simulations. The experimental prototype was able to reliably detect the seeds within 30 seconds with a median error in localization of 1 mm. The results from this thesis suggest that gamma-ray detecting technology may be able to provide significant improvements in guidance of breast cancer therapies and, thus, potentially improved therapeutic outcomes.

  3. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    2017-01-05

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  4. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  5. Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe Compton camera.

    PubMed

    Suzuki, Yoshiyuki; Yamaguchi, Mitsutaka; Odaka, Hirokazu; Shimada, Hirofumi; Yoshida, Yukari; Torikai, Kota; Satoh, Takahiro; Arakawa, Kazuo; Kawachi, Naoki; Watanabe, Shigeki; Takeda, Shin'ichiro; Ishikawa, Shin-nosuke; Aono, Hiroyuki; Watanabe, Shin; Takahashi, Tadayuki; Nakano, Takashi

    2013-06-01

    To develop a silicon (Si) and cadmium telluride (CdTe) imaging Compton camera for biomedical application on the basis of technologies used for astrophysical observation and to test its capacity to perform three-dimensional (3D) imaging. All animal experiments were performed according to the Animal Care and Experimentation Committee (Gunma University, Maebashi, Japan). Flourine 18 fluorodeoxyglucose (FDG), iodine 131 ((131)I) methylnorcholestenol, and gallium 67 ((67)Ga) citrate, separately compacted into micro tubes, were inserted subcutaneously into a Wistar rat, and the distribution of the radioisotope compounds was determined with 3D imaging by using the Compton camera after the rat was sacrificed (ex vivo model). In a separate experiment, indium 111((111)In) chloride and (131)I-methylnorcholestenol were injected into a rat intravenously, and copper 64 ((64)Cu) chloride was administered into the stomach orally just before imaging. The isotope distributions were determined with 3D imaging after sacrifice by means of the list-mode-expectation-maximizing-maximum-likelihood method. The Si/CdTe Compton camera demonstrated its 3D multinuclear imaging capability by separating out the distributions of FDG, (131)I-methylnorcholestenol, and (67)Ga-citrate clearly in a test-tube-implanted ex vivo model. In the more physiologic model with tail vein injection prior to sacrifice, the distributions of (131)I-methylnorcholestenol and (64)Cu-chloride were demonstrated with 3D imaging, and the difference in distribution of the two isotopes was successfully imaged although the accumulation on the image of (111)In-chloride was difficult to visualize because of blurring at the low-energy region. The Si/CdTe Compton camera clearly resolved the distribution of multiple isotopes in 3D imaging and simultaneously in the ex vivo model.

  6. Scalar wave-optical reconstruction of plenoptic camera images.

    PubMed

    Junker, André; Stenau, Tim; Brenner, Karl-Heinz

    2014-09-01

    We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.

  7. An evolution of image source camera attribution approaches.

    PubMed

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    researchers, are also critically analysed and further categorised into four different classes, namely, optical aberrations based, sensor camera fingerprints based, processing statistics based and processing regularities based, to present a classification. Furthermore, this paper aims to investigate the challenging problems, and the proposed strategies of such schemes based on the suggested taxonomy to plot an evolution of the source camera attribution approaches with respect to the subjective optimisation criteria over the last decade. The optimisation criteria were determined based on the strategies proposed to increase the detection accuracy, robustness and computational efficiency of source camera brand, model or device attribution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the

  9. Investigation of attenuation correction in SPECT using textural features, Monte Carlo simulations, and computational anthropomorphic models.

    PubMed

    Spirou, Spiridon V; Papadimitroulas, Panagiotis; Liakou, Paraskevi; Georgoulias, Panagiotis; Loudos, George

    2015-09-01

    To present and evaluate a new methodology to investigate the effect of attenuation correction (AC) in single-photon emission computed tomography (SPECT) using textural features analysis, Monte Carlo techniques, and a computational anthropomorphic model. The GATE Monte Carlo toolkit was used to simulate SPECT experiments using the XCAT computational anthropomorphic model, filled with a realistic biodistribution of (99m)Tc-N-DBODC. The simulated gamma camera was the Siemens ECAM Dual-Head, equipped with a parallel hole lead collimator, with an image resolution of 3.54 × 3.54 mm(2). Thirty-six equispaced camera positions, spanning a full 360° arc, were simulated. Projections were calculated after applying a ± 20% energy window or after eliminating all scattered photons. The activity of the radioisotope was reconstructed using the MLEM algorithm. Photon attenuation was accounted for by calculating the radiological pathlength in a perpendicular line from the center of each voxel to the gamma camera. Twenty-two textural features were calculated on each slice, with and without AC, using 16 and 64 gray levels. A mask was used to identify only those pixels that belonged to each organ. Twelve of the 22 features showed almost no dependence on AC, irrespective of the organ involved. In both the heart and the liver, the mean and SD were the features most affected by AC. In the liver, six features were affected by AC only on some slices. Depending on the slice, skewness decreased by 22-34% with AC, kurtosis by 35-50%, long-run emphasis mean by 71-91%, and long-run emphasis range by 62-95%. In contrast, gray-level non-uniformity mean increased by 78-218% compared with the value without AC and run percentage mean by 51-159%. These results were not affected by the number of gray levels (16 vs. 64) or the data used for reconstruction: with the energy window or without scattered photons. The mean and SD were the main features affected by AC. In the heart, no other feature was

  10. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  11. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    PubMed Central

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network. PMID:22319371

  12. Secure chaotic map based block cryptosystem with application to camera sensor networks.

    PubMed

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  13. Integrated multi sensors and camera video sequence application for performance monitoring in archery

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Arif Mat-Jizat, Jessnor; Amirul Abdullah, Muhammad; Muazu Musa, Rabiu; Razali Abdullah, Mohamad; Fauzi Ibrahim, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2018-03-01

    This paper explains the development of a comprehensive archery performance monitoring software which consisted of three camera views and five body sensors. The five body sensors evaluate biomechanical related variables of flexor and extensor muscle activity, heart rate, postural sway and bow movement during archery performance. The three camera views with the five body sensors are integrated into a single computer application which enables the user to view all the data in a single user interface. The five body sensors’ data are displayed in a numerical and graphical form in real-time. The information transmitted by the body sensors are computed with an embedded algorithm that automatically transforms the summary of the athlete’s biomechanical performance and displays in the application interface. This performance will be later compared to the pre-computed psycho-fitness performance from the prefilled data into the application. All the data; camera views, body sensors; performance-computations; are recorded for further analysis by a sports scientist. Our developed application serves as a powerful tool for assisting the coach and athletes to observe and identify any wrong technique employ during training which gives room for correction and re-evaluation to improve overall performance in the sport of archery.

  14. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.

    PubMed

    Su, Po-Chang; Shen, Ju; Xu, Wanxin; Cheung, Sen-Ching S; Luo, Ying

    2018-01-15

    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds.

  15. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  16. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  17. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    PubMed Central

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  18. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  19. Poor Man's Virtual Camera: Real-Time Simultaneous Matting and Camera Pose Estimation.

    PubMed

    Szentandrasi, Istvan; Dubska, Marketa; Zacharias, Michal; Herout, Adam

    2016-03-18

    Today's film and advertisement production heavily uses computer graphics combined with living actors by chromakeying. The matchmoving process typically takes a considerable manual effort. Semi-automatic matchmoving tools exist as well, but they still work offline and require manual check-up and correction. In this article, we propose an instant matchmoving solution for green screen. It uses a recent technique of planar uniform marker fields. Our technique can be used in indie and professional filmmaking as a cheap and ultramobile virtual camera, and for shot prototyping and storyboard creation. The matchmoving technique based on marker fields of shades of green is very computationally efficient: we developed and present in the article a mobile application running at 33 FPS. Our technique is thus available to anyone with a smartphone at low cost and with easy setup, opening space for new levels of filmmakers' creative expression.

  20. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  1. Cloud photogrammetry with dense stereo for fisheye cameras

    NASA Astrophysics Data System (ADS)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  2. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energymore » resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.« less

  3. Cost effective system for monitoring of fish migration with a camera

    NASA Astrophysics Data System (ADS)

    Sečnik, Matej; Brilly, Mitja; Vidmar, Andrej

    2016-04-01

    Within the European LIFE project Ljubljanica connects (LIFE10 NAT/SI/000142) we have developed a cost-effective solution for the monitoring of fish migration through the fish passes with the underwater camera. In the fish pass at Ambrožev trg and in the fish pass near the Fužine castle we installed a video camera called "Fishcam" to be able to monitor the migration of fish through the fish passes and success of its reconstruction. Live stream from fishcams installed in the fishpassesis available on our project website (http://ksh.fgg.uni-lj.si/ljubljanicaconnects/ang/12_camera). The system for the fish monitoring is made from two parts. First is the waterproof box for the computer with charger and the second part is the camera itself. We used a high sensitive Sony analogue camera. The advantage of this camera is that it has very good sensitivity in low light conditions, so it can take good quality pictures even at night with a minimum additional lighting. For the night recording we use additional IR reflector to illuminate passing fishes. The camera is connected to an 8-inch tablet PC. We decided to use a tablet PC because it is quite small, cheap, it is relatively fast and has a low power consumption. On the computer we use software which has advanced motion detection capabilities, so we can also detect the small fishes. When the fish is detected by a software, its photograph is automatically saved to local hard drive and for backup also on Google drive. The system for monitoring of fish migration has turned out to work very well. From the beginning of monitoring in June 2015 to end of the year there were more than 100.000 photographs produced. The first analysis of them was already prepared estimating fish species and their frequency in passing the fish pass.

  4. Differences in gamma frequencies across visual cortex restrict their possible use in computation.

    PubMed

    Ray, Supratim; Maunsell, John H R

    2010-09-09

    Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. 2010 Elsevier Inc. All rights reserved.

  5. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  6. Breathing synchronized assessment of the chest hemodynamics: application to gamma and MR angiography

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Demangeat, Jean-Louis; Germain, Philippe; Baruthio, Joseph

    2003-05-01

    The project was to assess by gamma and MR angiography the bulk variations of chest blood volume related to deep and slow breathing movements. The acquisitions were performed at constant intervals on the widely moving system, without cardiac gating. Two fast enough modalities were used: a gamma-stethoscope working at 30 msec intervals for bulk volumic detection (of 99Tc labelled red cells), and MR imaging at 0.5 sec intervals well depicting displacements but not yet performing true angiography. The third modality yielding quantitative imaging was the scintillation gamma camera, but which required 30 sec signal acquisitions for each image. Frames were acquired at 1 sec intervals for up to 30 breathing cycles, and later sorted with double (inspiration and expiration) synchronization for the reconstruction of an average breathing cycle. Convergent results were obtained from the three angiographic modalities, confirming that the deep breathing movements produced inspiratory increases in bulk blood volume and caudal-median displacement of heart and great vessels, and expiratory decreases in blood volume and cranial-left displacement of heart and great vessels. Deep and slow breathing contributed effectively to thoracic blood pumping. The design of a 64x64 channels collimator has been undertaken to speed up the scintillation camera imaging acquisitions.

  7. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  8. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  9. Accurate and cost-effective MTF measurement system for lens modules of digital cameras

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-01-01

    For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.

  10. A comparison of select image-compression algorithms for an electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.

  11. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    NASA Astrophysics Data System (ADS)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  12. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  13. Ambient-Light-Canceling Camera Using Subtraction of Frames

    NASA Technical Reports Server (NTRS)

    Morookian, John Michael

    2004-01-01

    The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light

  14. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  15. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  16. Expedition One crewmembers with IMAX camera

    NASA Image and Video Library

    2001-02-11

    STS98-E-5167 (11 February 2001) --- Astronaut William M. (Bill) Shepherd (left), Expedition One commander, with the help of cosmonaut Sergei K. Krikalev, films activity onboard the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station on February 11 opened the Destiny laboratory and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and Shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST). Members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station and filmed several scenes onboard the station using an IMAX camera. This scene was recorded with a digital still camera.

  17. A single pixel camera video ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Lochocki, B.; Gambin, A.; Manzanera, S.; Irles, E.; Tajahuerce, E.; Lancis, J.; Artal, P.

    2017-02-01

    There are several ophthalmic devices to image the retina, from fundus cameras capable to image the whole fundus to scanning ophthalmoscopes with photoreceptor resolution. Unfortunately, these devices are prone to a variety of ocular conditions like defocus and media opacities, which usually degrade the quality of the image. Here, we demonstrate a novel approach to image the retina in real-time using a single pixel camera, which has the potential to circumvent those optical restrictions. The imaging procedure is as follows: a set of spatially coded patterns is projected rapidly onto the retina using a digital micro mirror device. At the same time, the inner product's intensity is measured for each pattern with a photomultiplier module. Subsequently, an image of the retina is reconstructed computationally. Obtained image resolution is up to 128 x 128 px with a varying real-time video framerate up to 11 fps. Experimental results obtained in an artificial eye confirm the tolerance against defocus compared to a conventional multi-pixel array based system. Furthermore, the use of a multiplexed illumination offers a SNR improvement leading to a lower illumination of the eye and hence an increase in patient's comfort. In addition, the proposed system could enable imaging in wavelength ranges where cameras are not available.

  18. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  19. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  20. Compression of CCD raw images for digital still cameras

    NASA Astrophysics Data System (ADS)

    Sriram, Parthasarathy; Sudharsanan, Subramania

    2005-03-01

    Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.

  1. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation

  2. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  3. A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications

    PubMed Central

    Fu, Bo; Pitter, Mark C.; Russell, Noah A.

    2011-01-01

    Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps. PMID:22028852

  4. An intelligent space for mobile robot localization using a multi-camera system.

    PubMed

    Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel

    2014-08-15

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  5. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    PubMed Central

    Rampinelli, Mariana.; Covre, Vitor Buback.; de Queiroz, Felippe Mendonça.; Vassallo, Raquel Frizera.; Bastos-Filho, Teodiano Freire.; Mazo, Manuel.

    2014-01-01

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization. PMID:25196009

  6. A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks †

    PubMed Central

    Shen, Ju; Xu, Wanxin; Luo, Ying

    2018-01-01

    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds. PMID:29342968

  7. Refocusing distance of a standard plenoptic camera.

    PubMed

    Hahne, Christopher; Aggoun, Amar; Velisavljevic, Vladan; Fiebig, Susanne; Pesch, Matthias

    2016-09-19

    Recent developments in computational photography enabled variation of the optical focus of a plenoptic camera after image exposure, also known as refocusing. Existing ray models in the field simplify the camera's complexity for the purpose of image and depth map enhancement, but fail to satisfyingly predict the distance to which a photograph is refocused. By treating a pair of light rays as a system of linear functions, it will be shown in this paper that its solution yields an intersection indicating the distance to a refocused object plane. Experimental work is conducted with different lenses and focus settings while comparing distance estimates with a stack of refocused photographs for which a blur metric has been devised. Quantitative assessments over a 24 m distance range suggest that predictions deviate by less than 0.35 % in comparison to an optical design software. The proposed refocusing estimator assists in predicting object distances just as in the prototyping stage of plenoptic cameras and will be an essential feature in applications demanding high precision in synthetic focus or where depth map recovery is done by analyzing a stack of refocused photographs.

  8. A new high-speed IR camera system

    NASA Technical Reports Server (NTRS)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  9. Scalable software architecture for on-line multi-camera video processing

    NASA Astrophysics Data System (ADS)

    Camplani, Massimo; Salgado, Luis

    2011-03-01

    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.

  10. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  11. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.

    2008-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.

  12. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  13. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  14. Improved neutron-gamma discrimination for a {sup 6}Li-glass neutron detector using digital signal analysis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C. L., E-mail: wangc@ornl.gov; Riedel, R. A.

    2016-01-15

    A {sup 6}Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10{sup 4}. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a{sub 1}, b{submore » 0}) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.« less

  15. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  16. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  17. Image Intensifier Modules For Use With Commercially Available Solid State Cameras

    NASA Astrophysics Data System (ADS)

    Murphy, Howard; Tyler, Al; Lake, Donald W.

    1989-04-01

    A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be

  18. Gamma-ray detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  19. Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.

    2017-01-01

    We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.

  20. Evaluation of the MSFC facsimile camera system as a tool for extraterrestrial geologic exploration

    NASA Technical Reports Server (NTRS)

    Wolfe, E. W.; Alderman, J. D.

    1971-01-01

    Utility of the Marshall Space Flight (MSFC) facsimile camera system for extraterrestrial geologic exploration was investigated during the spring of 1971 near Merriam Crater in northern Arizona. Although the system with its present hard-wired recorder operates erratically, the imagery showed that the camera could be developed as a prime imaging tool for automated missions. Its utility would be enhanced by development of computer techniques that utilize digital camera output for construction of topographic maps, and it needs increased resolution for examining near field details. A supplementary imaging system may be necessary for hand specimen examination at low magnification.

  1. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  2. Camera-pose estimation via projective Newton optimization on the manifold.

    PubMed

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  3. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource

    PubMed Central

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E.; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data. PMID:21045053

  4. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource.

    PubMed

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.

  5. Kernel analysis in TeV gamma-ray selection

    NASA Astrophysics Data System (ADS)

    Moriarty, P.; Samuelson, F. W.

    2000-06-01

    We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .

  6. Highlights of recent results from the VERITAS gamma-ray observatory

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-05-01

    VERITAS is a major ground-based gamma-ray observatory comprising an array of four 12 meter air Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory near Tucson, Arizona. Data taking has continued from 2007 with a major camera upgrade completed in 2012 resulting in the current sensitivity to very-high-energy (VHE) gamma rays between 85 GeV and 30 TeV. VERITAS has detected 54 sources (half of which have been discoveries) leading to many significant contributions to the field of VHE astronomy. These proceedings highlight some of the more recent VERITAS results from the blazar and galactic observing programs as well as measurements of the cosmic-ray electron spectrum, constraints on dark matter and a follow-up program for astrophysical neutrinos.

  7. Research on a solid state-streak camera based on an electro-optic crystal

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Liu, Baiyu; Bai, Yonglin; Bai, Xiaohong; Tian, Jinshou; Yang, Wenzheng; Xian, Ouyang

    2006-06-01

    With excellent temporal resolution ranging from nanosecond to sub-picoseconds, a streak camera is widely utilized in measuring ultrafast light phenomena, such as detecting synchrotron radiation, examining inertial confinement fusion target, and making measurements of laser-induced discharge. In combination with appropriate optics or spectroscope, the streak camera delivers intensity vs. position (or wavelength) information on the ultrafast process. The current streak camera is based on a sweep electric pulse and an image converting tube with a wavelength-sensitive photocathode ranging from the x-ray to near infrared region. This kind of streak camera is comparatively costly and complex. This paper describes the design and performance of a new-style streak camera based on an electro-optic crystal with large electro-optic coefficient. Crystal streak camera accomplishes the goal of time resolution by direct photon beam deflection using the electro-optic effect which can replace the current streak camera from the visible to near infrared region. After computer-aided simulation, we design a crystal streak camera which has the potential of time resolution between 1ns and 10ns.Some further improvements in sweep electric circuits, a crystal with a larger electro-optic coefficient, for example LN (γ 33=33.6×10 -12m/v) and the optimal optic system may lead to better time resolution less than 1ns.

  8. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes (IACT) located in Namibia. In order to assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA, the older cameras, installed in 2003, are currently undergoing an extensive upgrade. Its goals are reducing the system failure rate, reducing the dead time and improving the overall performance of the array. All camera components have been upgraded, except the mechanical structure and the photo-multiplier tubes (PMTs). Novel technical solutions have been introduced: the upgraded readout electronics is based on the NECTAr analog memory chip; the control of the hardware is carried out by an FPGA coupled to an embedded ARM computer; the control software was re-written from scratch and it is based on modern C++ open source libraries. These hardware and software solutions offer very good performance, robustness and flexibility. The first camera was fielded in July 2015 and has been successfully commissioned; the rest is scheduled to be upgraded in September 2016. The present contribution describes the design, the testing and the performance of the new H.E.S.S. camera and its components.

  9. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    DOE PAGES

    Wang, Cai -Lin; Riedel, Richard A.

    2016-01-14

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10 4. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a 1, b 0) obtained from Wiener filter; iv). anmore » effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.« less

  10. Process simulation in digital camera system

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  11. Cerebral perfusion imaging in Alzheimer's disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.A.; Mueller, S.T.; Walshe, T.M.

    1987-02-01

    We used single photon emission computed tomography (SPECT) to study 15 patients with Alzheimer's disease and nine controls. Iofetamine hydrochloride I 123 uptake data were recorded from the entire brain using a rotating gamma camera. Activity ratios were measured for the frontal, posterior parietal, posterior, medial, and lateral cortical temporal regions and striate cortex and were normalized by the activity in the cerebellum. Abnormalities in iofetamine hydrochloride I 123 activity were similar to the abnormalities in glucose metabolism observed with positron emission tomography. Cortical tracer activity was globally depressed in patients with Alzheimer's disease, with the greatest reduction in themore » posterior parietal cortex.« less

  12. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    NASA Astrophysics Data System (ADS)

    Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.

    2006-12-01

    The diagnosis of diabetic foot osteomyelitis is often difficult. 99mTc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7×25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99mTc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  13. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  14. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  15. ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  17. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  18. Low Statistics Reconstruction of the Compton Camera Point Spread Function in 3D Prompt-γ Imaging of Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Lojacono, Xavier; Richard, Marie-Hélène; Ley, Jean-Luc; Testa, Etienne; Ray, Cédric; Freud, Nicolas; Létang, Jean Michel; Dauvergne, Denis; Maxim, Voichiţa; Prost, Rémy

    2013-10-01

    The Compton camera is a relevant imaging device for the detection of prompt photons produced by nuclear fragmentation in hadrontherapy. It may allow an improvement in detection efficiency compared to a standard gamma-camera but requires more sophisticated image reconstruction techniques. In this work, we simulate low statistics acquisitions from a point source having a broad energy spectrum compatible with hadrontherapy. We then reconstruct the image of the source with a recently developed filtered backprojection algorithm, a line-cone approach and an iterative List Mode Maximum Likelihood Expectation Maximization algorithm. Simulated data come from a Compton camera prototype designed for hadrontherapy online monitoring. Results indicate that the achievable resolution in directions parallel to the detector, that may include the beam direction, is compatible with the quality control requirements. With the prototype under study, the reconstructed image is elongated in the direction orthogonal to the detector. However this direction is of less interest in hadrontherapy where the first requirement is to determine the penetration depth of the beam in the patient. Additionally, the resolution may be recovered using a second camera.

  19. Nonholonomic camera-space manipulation using cameras mounted on a mobile base

    NASA Astrophysics Data System (ADS)

    Goodwine, Bill; Seelinger, Michael J.; Skaar, Steven B.; Ma, Qun

    1998-10-01

    The body of work called `Camera Space Manipulation' is an effective and proven method of robotic control. Essentially, this technique identifies and refines the input-output relationship of the plant using estimation methods and drives the plant open-loop to its target state. 3D `success' of the desired motion, i.e., the end effector of the manipulator engages a target at a particular location with a particular orientation, is guaranteed when there is camera space success in two cameras which are adequately separated. Very accurate, sub-pixel positioning of a robotic end effector is possible using this method. To date, however, most efforts in this area have primarily considered holonomic systems. This work addresses the problem of nonholonomic camera space manipulation by considering the problem of a nonholonomic robot with two cameras and a holonomic manipulator on board the nonholonomic platform. While perhaps not as common in robotics, such a combination of holonomic and nonholonomic degrees of freedom are ubiquitous in industry: fork lifts and earth moving equipment are common examples of a nonholonomic system with an on-board holonomic actuator. The nonholonomic nature of the system makes the automation problem more difficult due to a variety of reasons; in particular, the target location is not fixed in the image planes, as it is for holonomic systems (since the cameras are attached to a moving platform), and there is a fundamental `path dependent' nature of nonholonomic kinematics. This work focuses on the sensor space or camera-space-based control laws necessary for effectively implementing an autonomous system of this type.

  20. Selective population rate coding: a possible computational role of gamma oscillations in selective attention.

    PubMed

    Masuda, Naoki

    2009-12-01

    Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.

  1. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  2. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    NASA Astrophysics Data System (ADS)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  3. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  4. Real-time optimizations for integrated smart network camera

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois

    2005-02-01

    We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.

  5. A technical innovation for improving identification of the trackers by the LED cameras in navigation-assisted total knee arthroplasty.

    PubMed

    Darmanis, Spyridon; Toms, Andrew; Durman, Robert; Moore, Donna; Eyres, Keith

    2007-07-01

    To reduce the operating time in computer-assisted navigated total knee replacement (TKR), by improving communication between the infrared camera and the trackers placed on the patient. The innovation involves placing a routinely used laser pointer on top of the camera, so that the infrared cameras focus precisely on the trackers located on the knee to be operated on. A prospective randomized study was performed involving 40 patients divided into two groups, A and B. Both groups underwent navigated TKR, but for group B patients a laser pointer was used to improve the targeting capabilities of the cameras. Without the laser pointer, the camera had to move a mean 9.2 times in order to identify the trackers. With the introduction of the laser pointer, this was reduced to 0.9 times. Accordingly, the additional mean time required without the laser pointer was 11.6 minutes. Time delays are a major problem in computer-assisted surgery, and our technical suggestion can contribute towards reducing the delays associated with this particular application.

  6. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  7. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    NASA Astrophysics Data System (ADS)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  8. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes

    NASA Astrophysics Data System (ADS)

    Pagnutti, Mary; Ryan, Robert E.; Cazenavette, George; Gold, Maxwell; Harlan, Ryan; Leggett, Edward; Pagnutti, James

    2017-01-01

    A comprehensive radiometric characterization of raw-data format imagery acquired with the Raspberry Pi 3 and V2.1 camera module is presented. The Raspberry Pi is a high-performance single-board computer designed to educate and solve real-world problems. This small computer supports a camera module that uses a Sony IMX219 8 megapixel CMOS sensor. This paper shows that scientific and engineering-grade imagery can be produced with the Raspberry Pi 3 and its V2.1 camera module. Raw imagery is shown to be linear with exposure and gain (ISO), which is essential for scientific and engineering applications. Dark frame, noise, and exposure stability assessments along with flat fielding results, spectral response measurements, and absolute radiometric calibration results are described. This low-cost imaging sensor, when calibrated to produce scientific quality data, can be used in computer vision, biophotonics, remote sensing, astronomy, high dynamic range imaging, and security applications, to name a few.

  9. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  10. A survey of camera error sources in machine vision systems

    NASA Astrophysics Data System (ADS)

    Jatko, W. B.

    In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.

  11. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  12. Optical photometric monitoring of gamma -ray loud blazars. II. Observations from November 1995 to June 1996

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.

    1998-02-01

    New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  13. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  14. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  15. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  16. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    PubMed

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  17. Evaluation of a Fluorochlorozirconate Glass-Ceramic Storage Phosphor Plate for Gamma-Ray Computed Radiography

    DOE PAGES

    Leonard, Russell L.; Gray, Sharon K.; Alvarez, Carlos J.; ...

    2015-05-21

    In this paper, a fluorochlorozirconate (FCZ) glass-ceramic containing orthorhombic barium chloride crystals doped with divalent europium was evaluated for use as a storage phosphor in gamma-ray imaging. X-ray diffraction and phosphorimetry of the glass-ceramic sample showed the presence of a significant amount of orthorhombic barium chloride crystals in the glass matrix. Transmission electron microscopy and scanning electron microscopy were used to identify crystal size, structure, and morphology. The size of the orthorhombic barium chloride crystals in the FCZ glass matrix was very large, ~0.5–0.7 μm, which can limit image resolution. The FCZ glass-ceramic sample was exposed to 1 MeV gammamore » rays to determine its photostimulated emission characteristics at high energies, which were found to be suitable for imaging applications. Test images were made at 2 MeV energies using gap and step wedge phantoms. Gaps as small as 101.6 μm in a 440 stainless steel phantom were imaged using the sample imaging plate. Analysis of an image created using a depleted uranium step wedge phantom showed that emission is proportional to incident energy at the sample and the estimated absorbed dose. Finally, the results showed that the sample imaging plate has potential for gamma-ray-computed radiography and dosimetry applications.« less

  18. Implicit multiplane 3D camera calibration matrices for stereo image processing

    NASA Astrophysics Data System (ADS)

    McKee, James W.; Burgett, Sherrie J.

    1997-12-01

    By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time

  19. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  20. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  1. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  2. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  3. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  4. Single isotope evaluation of pulmonary capillary protein leak (ARDS model) using computerized gamma scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatum, J.L.; Strash, A.M.; Sugerman, H.J.

    Using a canine oleic acid model, a computerized gamma scintigraphic technique was evaluated to determine 1) ability to detect pulmonary capillary protein leak in a model temporally consistent with clinical adult respiratory distress syndrome (ARDS), 2) the possibility of providing a quantitative index of leak, and 3) the feasibility of closely spaced repeat evaluations. Study animals received oleic acid (controls, n . 10; 0.05 ml/kg, n . 10; 0.10 ml/kg, n . 12; 0.15 ml/kg, n . 6) 3 hours prior to a tracer dose of technetium-99m (/sup 99/mTc) HSA. One animal in each dose group also received two repeatmore » tracer injections spaced a minimum of 45 minutes apart. Digital images were obtained with a conventional gamma camera interfaced to a dedicated medical computer. Lung: heart ratio versus time curves were generated, and a slope index was calculated for each curve. Slope index values for all doses were significantly greater than control values (P(t) less than 0.0001). Each incremental dose increase was also significantly greater than the previous dose level. Oleic acid dose versus slope index fitted a linear regression model with r . 0.94. Repeat dosing produced index values with standard deviations less than the group sample standard deviations. We feel this technique may have application in the clinical study of pulmonary permeability edema.« less

  5. Accurate estimation of camera shot noise in the real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  6. A multi-camera system for real-time pose estimation

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  7. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  8. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  9. Evaluation of multispectral plenoptic camera

    NASA Astrophysics Data System (ADS)

    Meng, Lingfei; Sun, Ting; Kosoglow, Rich; Berkner, Kathrin

    2013-01-01

    Plenoptic cameras enable capture of a 4D lightfield, allowing digital refocusing and depth estimation from data captured with a compact portable camera. Whereas most of the work on plenoptic camera design has been based a simplistic geometric-optics-based characterization of the optical path only, little work has been done of optimizing end-to-end system performance for a specific application. Such design optimization requires design tools that need to include careful parameterization of main lens elements, as well as microlens array and sensor characteristics. In this paper we are interested in evaluating the performance of a multispectral plenoptic camera, i.e. a camera with spectral filters inserted into the aperture plane of the main lens. Such a camera enables single-snapshot spectral data acquisition.1-3 We first describe in detail an end-to-end imaging system model for a spectrally coded plenoptic camera that we briefly introduced in.4 Different performance metrics are defined to evaluate the spectral reconstruction quality. We then present a prototype which is developed based on a modified DSLR camera containing a lenslet array on the sensor and a filter array in the main lens. Finally we evaluate the spectral reconstruction performance of a spectral plenoptic camera based on both simulation and measurements obtained from the prototype.

  10. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOEpatents

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  11. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    NASA Astrophysics Data System (ADS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (<= 25 e- read noise and <= 10 e- /sec/pixel dark current), in addition to maintaining a stable gain of ≍ 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.

  12. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  13. The soft gamma-ray detector (SGD) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  14. Integration of multispectral face recognition and multi-PTZ camera automated surveillance for security applications

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi

    2013-06-01

    Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially

  15. WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research.

    PubMed

    Nazir, Sajid; Newey, Scott; Irvine, R Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; Wal, René van der

    2017-01-01

    The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named 'WiseEye', designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management.

  16. A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Yuan, Fuh-Gwo

    2017-04-01

    In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.

  17. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping.

    PubMed

    Kang, Han Gyu; Lee, Ho-Young; Kim, Kyeong Min; Song, Seong-Hyun; Hong, Gun Chul; Hong, Seong Jong

    2017-01-01

    The aim of this study is to integrate NIR, gamma, and visible imaging tools into a single endoscopic system to overcome the limitation of NIR using gamma imaging and to demonstrate the feasibility of endoscopic NIR/gamma/visible fusion imaging for sentinel lymph node (SLN) mapping with a small animal. The endoscopic NIR/gamma/visible imaging system consists of a tungsten pinhole collimator, a plastic focusing lens, a BGO crystal (11 × 11 × 2 mm 3 ), a fiber-optic taper (front = 11 × 11 mm 2 , end = 4 × 4 mm 2 ), a 122-cm long endoscopic fiber bundle, an NIR emission filter, a relay lens, and a CCD camera. A custom-made Derenzo-like phantom filled with a mixture of 99m Tc and indocyanine green (ICG) was used to assess the spatial resolution of the NIR and gamma images. The ICG fluorophore was excited using a light-emitting diode (LED) with an excitation filter (723-758 nm), and the emitted fluorescence photons were detected with an emission filter (780-820 nm) for a duration of 100 ms. Subsequently, the 99m Tc distribution in the phantom was imaged for 3 min. The feasibility of in vivo SLN mapping with a mouse was investigated by injecting a mixture of 99m Tc-antimony sulfur colloid (12 MBq) and ICG (0.1 mL) into the right paw of the mouse (C57/B6) subcutaneously. After one hour, NIR, gamma, and visible images were acquired sequentially. Subsequently, the dissected SLN was imaged in the same way as the in vivo SLN mapping. The NIR, gamma, and visible images of the Derenzo-like phantom can be obtained with the proposed endoscopic imaging system. The NIR/gamma/visible fusion image of the SLN showed a good correlation among the NIR, gamma, and visible images both for the in vivo and ex vivo imaging. We demonstrated the feasibility of the integrated NIR/gamma/visible imaging system using a single endoscopic fiber bundle. In future, we plan to investigate miniaturization of the endoscope head and simultaneous NIR/gamma/visible imaging with

  18. Easily Accessible Camera Mount

    NASA Technical Reports Server (NTRS)

    Chalson, H. E.

    1986-01-01

    Modified mount enables fast alinement of movie cameras in explosionproof housings. Screw on side and readily reached through side door of housing. Mount includes right-angle drive mechanism containing two miter gears that turn threaded shaft. Shaft drives movable dovetail clamping jaw that engages fixed dovetail plate on camera. Mechanism alines camera in housing and secures it. Reduces installation time by 80 percent.

  19. Electronic still camera

    NASA Astrophysics Data System (ADS)

    Holland, S. Douglas

    1992-09-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  20. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  1. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  2. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  3. Mixel camera--a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging.

    PubMed

    Høye, Gudrun; Fridman, Andrei

    2013-05-06

    Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.

  4. Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras.

    PubMed

    Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh

    2008-04-01

    This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.

  5. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  6. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  7. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  8. Video-Camera-Based Position-Measuring System

    NASA Technical Reports Server (NTRS)

    Lane, John; Immer, Christopher; Brink, Jeffrey; Youngquist, Robert

    2005-01-01

    A prototype optoelectronic system measures the three-dimensional relative coordinates of objects of interest or of targets affixed to objects of interest in a workspace. The system includes a charge-coupled-device video camera mounted in a known position and orientation in the workspace, a frame grabber, and a personal computer running image-data-processing software. Relative to conventional optical surveying equipment, this system can be built and operated at much lower cost; however, it is less accurate. It is also much easier to operate than are conventional instrumentation systems. In addition, there is no need to establish a coordinate system through cooperative action by a team of surveyors. The system operates in real time at around 30 frames per second (limited mostly by the frame rate of the camera). It continuously tracks targets as long as they remain in the field of the camera. In this respect, it emulates more expensive, elaborate laser tracking equipment that costs of the order of 100 times as much. Unlike laser tracking equipment, this system does not pose a hazard of laser exposure. Images acquired by the camera are digitized and processed to extract all valid targets in the field of view. The three-dimensional coordinates (x, y, and z) of each target are computed from the pixel coordinates of the targets in the images to accuracy of the order of millimeters over distances of the orders of meters. The system was originally intended specifically for real-time position measurement of payload transfers from payload canisters into the payload bay of the Space Shuttle Orbiters (see Figure 1). The system may be easily adapted to other applications that involve similar coordinate-measuring requirements. Examples of such applications include manufacturing, construction, preliminary approximate land surveying, and aerial surveying. For some applications with rectangular symmetry, it is feasible and desirable to attach a target composed of black and white

  9. 1920x1080 pixel color camera with progressive scan at 50 to 60 frames per second

    NASA Astrophysics Data System (ADS)

    Glenn, William E.; Marcinka, John W.

    1998-09-01

    For over a decade, the broadcast industry, the film industry and the computer industry have had a long-range objective to originate high definition images with progressive scan. This produces images with better vertical resolution and much fewer artifacts than interlaced scan. Computers almost universally use progressive scan. The broadcast industry has resisted switching from interlace to progressive because no cameras were available in that format with the 1920 X 1080 resolution that had obtained international acceptance for high definition program production. The camera described in this paper produces an output in that format derived from two 1920 X 1080 CCD sensors produced by Eastman Kodak.

  10. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  11. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but theirmore » level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c

  12. Data transmission protocol for Pi-of-the-Sky cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, J.; Kasprowicz, G.; Mankiewicz, M.; Nawrocki, K.; Sitek, P.; Sokolowski, M.; Sulej, R.; Tlaczala, W.

    2006-10-01

    The large amount of data collected by the automatic astronomical cameras has to be transferred to the fast computers in a reliable way. The method chosen should ensure data streaming in both directions but in nonsymmetrical way. The Ethernet interface is very good choice because of its popularity and proven performance. However it requires TCP/IP stack implementation in devices like cameras for full compliance with existing network and operating systems. This paper describes NUDP protocol, which was made as supplement to standard UDP protocol and can be used as a simple-network protocol. The NUDP does not need TCP protocol implementation and makes it possible to run the Ethernet network with simple devices based on microcontroller and/or FPGA chips. The data transmission idea was created especially for the "Pi of the Sky" project.

  13. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  14. LSST Camera Optics Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V J; Olivier, S; Bauman, B

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics willmore » meet their performance goals.« less

  15. Clinical trials of the prototype Rutherford Appleton Laboratory MWPC positron camera at the Royal Marsden Hospital

    NASA Astrophysics Data System (ADS)

    Flower, M. A.; Ott, R. J.; Webb, S.; Leach, M. O.; Marsden, P. K.; Clack, R.; Khan, O.; Batty, V.; McCready, V. R.; Bateman, J. E.

    1988-06-01

    Two clinical trials of the prototype RAL multiwire proportional chamber (MWPC) positron camera were carried out prior to the development of a clinical system with large-area detectors. During the first clinical trial, the patient studies included skeletal imaging using 18F, imaging of brain glucose metabolism using 18F FDG, bone marrow imaging using 52Fe citrate and thyroid imaging with Na 124I. Longitudinal tomograms were produced from the limited-angle data acquisition from the static detectors. During the second clinical trial, transaxial, coronal and sagittal images were produced from the multiview data acquisition. A more detailed thyroid study was performed in which the volume of the functioning thyroid tissue was obtained from the 3D PET image and this volume was used in estimating the radiation dose achieved during radioiodine therapy of patients with thyrotoxicosis. Despite the small field of view of the prototype camera, and the use of smaller than usual amounts of activity administered, the PET images were in most cases comparable with, and in a few cases visually better than, the equivalent planar view using a state-of-the-art gamma camera with a large field of view and routine radiopharmaceuticals.

  16. The MKID Camera

    NASA Astrophysics Data System (ADS)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  17. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.

    PubMed

    Qian, Shuo; Sheng, Yang

    2011-11-01

    Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

  18. MicroCameras and Photometers (MCP) on board the TARANIS satellite

    NASA Astrophysics Data System (ADS)

    Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.

    2017-12-01

    TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the

  19. New camera-based microswitch technology to monitor small head and mouth responses of children with multiple disabilities.

    PubMed

    Lancioni, Giulio E; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Furniss, Fred

    2014-06-01

    Assessing a new camera-based microswitch technology, which did not require the use of color marks on the participants' face. Two children with extensive multiple disabilities participated. The responses selected for them consisted of small, lateral head movements and mouth closing or opening. The intervention was carried out according to a multiple probe design across responses. The technology involved a computer with a CPU using a 2-GHz clock, a USB video camera with a 16-mm lens, a USB cable connecting the camera and the computer, and a special software program written in ISO C++ language. The new technology was satisfactorily used with both children. Large increases in their responding were observed during the intervention periods (i.e. when the responses were followed by preferred stimulation). The new technology may be an important resource for persons with multiple disabilities and minimal motor behavior.

  20. A Distributed Wireless Camera System for the Management of Parking Spaces

    PubMed Central

    Melničuk, Petr

    2017-01-01

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces. PMID:29283371

  1. A Distributed Wireless Camera System for the Management of Parking Spaces.

    PubMed

    Vítek, Stanislav; Melničuk, Petr

    2017-12-28

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces.

  2. Viability after myocardial infarction: can it be assessed within five minutes by low-dose dynamic iodine-123-iodophenylpentadecanoic acid imaging with a multicrystal gamma camera?

    PubMed

    Murray, G L; Schad, N; Bush, A J

    1997-04-01

    Although positron emission tomography (PET) assesses myocardial viability (V) accurately, a rapid, inexpensive substitute is needed. Therefore, the authors developed a low-dose (1 mCi) Iodine-123-Iodophenylpentadecanoic Acid (IPPA) myocardial viability scan requiring analysis of only the first three minutes of data acquired at rest with a standard multicrystal gamma camera. Twenty-one patients > 2 weeks after myocardial infarction (MI) (24 MIs, 10 anterior, 14 inferoposterior, 21 akinetic or dyskinetic) had cardiac catheterization and resting IPPA imaging. V was determined by either transmural myocardial biopsy during coronary bypass surgery (12 patients, 14 MIs) or reinjection tomographic thallium scan (9 patients, 10 MIs), and 50% of MIs were viable. The IPPA variables analyzed were: time to initial left ventricular (LV) uptake in the region of interest (ROI), the ratio of three-minute uptake in the ROI to three-minute LV uptake, three-minute clearing (counts/pixel) in the ROI (decrease in IPPA after initial uptake), and three-minute accumulation (increase in IPPA after initial uptake) in the ROI. Rules for detecting V were generated and applied to 10 healthy volunteers to determine normalcy. While three-minute uptake in nonviable MIs was only 67% of volunteers (P < 0.0001) and 75% of viable MIs, uptake alone identified only 50% of viable MIs and 75% of nonviable MIs. IPPA clearing, however, was > or = 13.5 counts/pixel in 10/12 (83%) of viable MIs, and IPPA accumulation > or = 6.75 counts/pixel identified one more viable MI, for a sensitivity for V of 11/12 (92%), with a specificity of 11/12 (92%), and a 100% normalcy rate. The authors conclude low-dose IPPA (five-minute acquisition with analysis of the first three minutes of data) has potential for providing rapid, inexpensive V data after MI. Since newer multicrystal cameras are mobile, IPPA scans can be done in emergency rooms or coronary care units generating information that might be useful in decisions

  3. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  4. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    PubMed Central

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-01-01

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field. PMID:29419782

  5. A Robotic arm for optical and gamma radwaste inspection

    NASA Astrophysics Data System (ADS)

    Russo, L.; Cosentino, L.; Pappalardo, A.; Piscopo, M.; Scirè, C.; Scirè, S.; Vecchio, G.; Muscato, G.; Finocchiaro, P.

    2014-12-01

    We propose Radibot, a simple and cheap robotic arm for remote inspection, which interacts with the radwaste environment by means of a scintillation gamma detector and a video camera representing its light (< 1 kg) payload. It moves vertically thanks to a crane, while the other three degrees of freedom are obtained by means of revolute joints. A dedicated algorithm allows to automatically choose the best kinematics in order to reach a graphically selected position, while still allowing to fully drive the arm by means of a standard videogame joypad.

  6. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Iaroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  7. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  8. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  9. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  10. WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research

    PubMed Central

    Nazir, Sajid; Newey, Scott; Irvine, R. Justin; Verdicchio, Fabio; Davidson, Paul; Fairhurst, Gorry; van der Wal, René

    2017-01-01

    The widespread availability of relatively cheap, reliable and easy to use digital camera traps has led to their extensive use for wildlife research, monitoring and public outreach. Users of these units are, however, often frustrated by the limited options for controlling camera functions, the generation of large numbers of images, and the lack of flexibility to suit different research environments and questions. We describe the development of a user-customisable open source camera trap platform named ‘WiseEye’, designed to provide flexible camera trap technology for wildlife researchers. The novel platform is based on a Raspberry Pi single-board computer and compatible peripherals that allow the user to control its functions and performance. We introduce the concept of confirmatory sensing, in which the Passive Infrared triggering is confirmed through other modalities (i.e. radar, pixel change) to reduce the occurrence of false positives images. This concept, together with user-definable metadata, aided identification of spurious images and greatly reduced post-collection processing time. When tested against a commercial camera trap, WiseEye was found to reduce the incidence of false positive images and false negatives across a range of test conditions. WiseEye represents a step-change in camera trap functionality, greatly increasing the value of this technology for wildlife research and conservation management. PMID:28076444

  11. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  12. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  13. Electronic camera-management system for 35-mm and 70-mm film cameras

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan

    1993-01-01

    Military and commercial test facilities have been tasked with the need for increasingly sophisticated data collection and data reduction. A state-of-the-art electronic control system for high speed 35 mm and 70 mm film cameras designed to meet these tasks is described. Data collection in today's test range environment is difficult at best. The need for a completely integrated image and data collection system is mandated by the increasingly complex test environment. Instrumentation film cameras have been used on test ranges to capture images for decades. Their high frame rates coupled with exceptionally high resolution make them an essential part of any test system. In addition to documenting test events, today's camera system is required to perform many additional tasks. Data reduction to establish TSPI (time- space-position information) may be performed after a mission and is subject to all of the variables present in documenting the mission. A typical scenario would consist of multiple cameras located on tracking mounts capturing the event along with azimuth and elevation position data. Corrected data can then be reduced using each camera's time and position deltas and calculating the TSPI of the object using triangulation. An electronic camera control system designed to meet these requirements has been developed by Photo-Sonics, Inc. The feedback received from test technicians at range facilities throughout the world led Photo-Sonics to design the features of this control system. These prominent new features include: a comprehensive safety management system, full local or remote operation, frame rate accuracy of less than 0.005 percent, and phase locking capability to Irig-B. In fact, Irig-B phase lock operation of multiple cameras can reduce the time-distance delta of a test object traveling at mach-1 to less than one inch during data reduction.

  14. Using DSLR cameras in digital holography

    NASA Astrophysics Data System (ADS)

    Hincapié-Zuluaga, Diego; Herrera-Ramírez, Jorge; García-Sucerquia, Jorge

    2017-08-01

    In Digital Holography (DH), the size of the bidimensional image sensor to record the digital hologram, plays a key role on the performance of this imaging technique; the larger the size of the camera sensor, the better the quality of the final reconstructed image. Scientific cameras with large formats are offered in the market, but their cost and availability limit their use as a first option when implementing DH. Nowadays, DSLR cameras provide an easy-access alternative that is worthwhile to be explored. The DSLR cameras are a wide, commercial, and available option that in comparison with traditional scientific cameras, offer a much lower cost per effective pixel over a large sensing area. However, in the DSLR cameras, with their RGB pixel distribution, the sampling of information is different to the sampling in monochrome cameras usually employed in DH. This fact has implications in their performance. In this work, we discuss why DSLR cameras are not extensively used for DH, taking into account the problem reported by different authors of object replication. Simulations of DH using monochromatic and DSLR cameras are presented and a theoretical deduction for the replication problem using the Fourier theory is also shown. Experimental results of DH implementation using a DSLR camera show the replication problem.

  15. On the performances of computer vision algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.

    2012-01-01

    Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.

  16. GCT, the Gamma-ray Cherenkov Telescope for multi-TeV science with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sol, H.; Dournaux, J.-L.; Laporte, P.

    2016-12-01

    GCT is a gamma-ray telescope proposed for the high-energy section of the Cherenkov Telescope Array (CTA). A GCT prototype telescope has been designed, built and installed at the Observatoire de Paris in Meudon. Equipped with the first GCT prototype camera developed by an international collaboration, the complete GCT prototype was inaugurated in December 2015, after getting its first Cherenkov light on the night sky in November. The phase of tests, assessment, and optimisation is now coming to an end. Pre-production of the first GCT telescopes and cameras should start in 2017, for an installation on the Chilean site of CTA in 2018.

  17. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    NASA Astrophysics Data System (ADS)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced

  18. Selecting a digital camera for telemedicine.

    PubMed

    Patricoski, Chris; Ferguson, A Stewart

    2009-06-01

    The digital camera is an essential component of store-and-forward telemedicine (electronic consultation). There are numerous makes and models of digital cameras on the market, and selecting a suitable consumer-grade camera can be complicated. Evaluation of digital cameras includes investigating the features and analyzing image quality. Important features include the camera settings, ease of use, macro capabilities, method of image transfer, and power recharging. Consideration needs to be given to image quality, especially as it relates to color (skin tones) and detail. It is important to know the level of the photographer and the intended application. The goal is to match the characteristics of the camera with the telemedicine program requirements. In the end, selecting a digital camera is a combination of qualitative (subjective) and quantitative (objective) analysis. For the telemedicine program in Alaska in 2008, the camera evaluation and decision process resulted in a specific selection based on the criteria developed for our environment.

  19. STARS: a software application for the EBEX autonomous daytime star cameras

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel; Didier, Joy; Hanany, Shaul; Hillbrand, Seth; Limon, Michele; Miller, Amber; Reichborn-Kjennerud, Britt; Tucker, Greg; Vinokurov, Yury

    2014-07-01

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.

  20. Routine 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) myocardial tomography using a normal large field of view gamma-camera.

    PubMed

    Höflin, F; Ledermann, H; Noelpp, U; Weinreich, R; Rösler, H

    1989-12-01

    There is a recent need to study glucose metabolism of the heart in ischemic, as well as in "hibernating or stunned" myocardium, and compare it with that in perfusion studies. In non-positron emission tomography centers, positron imaging is possible with a standard Anger-type camera if proper collimation and adequate shielding of the camera crystal can be achieved. For the study with fast-decaying isotopes, seven-pinhole tomography (7PHT), a limited-angle method designed for transaxial tomography of the left ventricle using a nonrotating camera, is well suited, because projections are acquired simultaneously. Individual adjustment (patient supine) of the camera's view axis (CAx) with the left ventricular axis (LVAx) gives excellent results: sensitivity for CHD 82%, specificity 72% in a prospective 201TI study (48 patients, x-ray coronarography as reference). Good alignment of CAx with LVAx is also achieved with the patient prone in LAO in a hammock above the camera surface. In this setting additional lead shielding of the camera is possible using a table reinforced with 5 cm of lead with a central hole for the 7PH-collimator, which has a special lead inlay. This allows utilization of the 511 KeV emitter 18F-FDG, which with a half-life of 109 minutes, can be transported a reasonable distance from the production site. System sensitivity and resolution for 18F was found comparable to 201Tl, 99mTc, and 123I using a phantom. First clinical examinations after 201Tl stress/redistribution studies showed increased 18F-FDG uptake in ischemic heart segments, as well as in "hibernating" nonperfused or "stunned" myocardium.