Sample records for gamma coincidence counting

  1. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  2. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  3. Compton suppression gamma-counting: The effect of count rate

    USGS Publications Warehouse

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  4. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  5. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    PubMed

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A novel algorithm for solving the true coincident counting issues in Monte Carlo simulations for radiation spectroscopy.

    PubMed

    Guan, Fada; Johns, Jesse M; Vasudevan, Latha; Zhang, Guoqing; Tang, Xiaobin; Poston, John W; Braby, Leslie A

    2015-06-01

    Coincident counts can be observed in experimental radiation spectroscopy. Accurate quantification of the radiation source requires the detection efficiency of the spectrometer, which is often experimentally determined. However, Monte Carlo analysis can be used to supplement experimental approaches to determine the detection efficiency a priori. The traditional Monte Carlo method overestimates the detection efficiency as a result of omitting coincident counts caused mainly by multiple cascade source particles. In this study, a novel "multi-primary coincident counting" algorithm was developed using the Geant4 Monte Carlo simulation toolkit. A high-purity Germanium detector for ⁶⁰Co gamma-ray spectroscopy problems was accurately modeled to validate the developed algorithm. The simulated pulse height spectrum agreed well qualitatively with the measured spectrum obtained using the high-purity Germanium detector. The developed algorithm can be extended to other applications, with a particular emphasis on challenging radiation fields, such as counting multiple types of coincident radiations released from nuclear fission or used nuclear fuel.

  9. Digital gamma-gamma coincidence HPGe system for environmental analysis.

    PubMed

    Marković, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-08-01

    The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Digital coincidence counting

    NASA Astrophysics Data System (ADS)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  11. Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    D'Andrea, C. P.; D'Andrea, Christopher; Gress, Joseph; Race, Doran

    2003-07-01

    project GRAND is a 100m × 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-p enetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within ±5° of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7σ ) is for the event that was predicted to be the most likely to be observed (GRB 971110).

  12. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  13. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.

    1998-12-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows{reg_sign} and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium.

  14. Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET

    NASA Astrophysics Data System (ADS)

    Tetrault, M.-A.; Oliver, J. F.; Bergeron, M.; Lecomte, R.; Fontaine, R.

    2010-02-01

    Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET¿, a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.

  15. Primary Standardization of 152Eu by 4πβ(LS) – γ (Nal) coincidence counting and CIEMAT-NIST method

    NASA Astrophysics Data System (ADS)

    Ruzzarin, A.; da Cruz, P. A. L.; Ferreira Filho, A. L.; Iwahara, A.

    2018-03-01

    The 4πβ-γ coincidence counting and CIEMAT/NIST liquid scintillation method were used in the standardization of a solution of 152Eu. In CIEMAT/NIST method, measurements were performed in a Liquid Scintillation Counter model Wallac 1414. In the 4πβ-γ coincidence counting, the solution was standardized using a coincidence method with ‘‘beta-efficiency extrapolation”. A simple 4πβ-γ coincidence system was used, with acrylic scintillation cell coupled to two coincident photomultipliers at 180° each other and NaI(Tl) detector. The activity concentrations obtained were 156.934 ± 0.722 and 157.403 ± 0.113 kBq/g, respectively, for CIEMAT/NIST and 4πβ-γ coincidence counting measurement methods.

  16. High-performance reconfigurable coincidence counting unit based on a field programmable gate array.

    PubMed

    Park, Byung Kwon; Kim, Yong-Su; Kwon, Osung; Han, Sang-Wook; Moon, Sung

    2015-05-20

    We present a high-performance reconfigurable coincidence counting unit (CCU) using a low-end field programmable gate array (FPGA) and peripheral circuits. Because of the flexibility guaranteed by the FPGA program, we can easily change system parameters, such as internal input delays, coincidence configurations, and the coincidence time window. In spite of a low-cost implementation, the proposed CCU architecture outperforms previous ones in many aspects: it has 8 logic inputs and 4 coincidence outputs that can measure up to eight-fold coincidences. The minimum coincidence time window and the maximum input frequency are 0.47 ns and 163 MHz, respectively. The CCU will be useful in various experimental research areas, including the field of quantum optics and quantum information.

  17. A simultaneous beta and coincidence-gamma imaging system for plant leaves

    NASA Astrophysics Data System (ADS)

    Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J.; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A.; Tai, Yuan-Chuan

    2016-05-01

    Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules. The tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ({β+} ) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the

  18. A simultaneous beta and coincidence-gamma imaging system for plant leaves.

    PubMed

    Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2016-05-07

    Positron emitting isotopes, such as (11)C, (13)N, and (18)F, can be used to label molecules. The tracers, such as (11)CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ([Formula: see text]) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed (11)CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0

  19. Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree

    Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutronmore » detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.« less

  20. 65Zn and 133Ba standardizing by photon-photon coincidence counting

    NASA Astrophysics Data System (ADS)

    Loureiro, Jamir S.; da Cruz, Paulo A. L.; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.

    2018-03-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65Zn and 133Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65Zn and 0.48 % for 133Ba samples.

  1. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; Goddard, Braden; Stewart, Scott

    2016-04-01

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 μs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. In this paper we attempt to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.

  2. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    DOE PAGES

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; ...

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g.,more » 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

  3. LaCl3:Ce Coincidence Signatures to Calibrate Gamma-ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.

    Abstract Calibrating the gamma-ray detection efficiency of radiation detectors in a field environment is difficult under most circumstances. To counter this problem we have developed a technique that uses a Cerium doped Lanthanum-Tri-Chloride (LaCl3:Ce) scintillation detector to provide gated gammas[ , ]. Exploiting the inherent radioactivity of the LaCl3:Ce due to the long-lived radioactive isotope 138La (t1/2 = 1.06 x 1011 yrs) allows the use of the 788 and 1436-keV gammas as a measure of efficiency. In this paper we explore the effectiveness of using the beta-gamma coincidences radiation LaCl3:Ce detector to calibrate the energy and efficiency of a numbermore » of gamma-ray detectors.« less

  4. Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuan-Chuan

    2016-09-30

    The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO 2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop amore » hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.« less

  5. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  6. Standardization of iodine-129 by the TDCR liquid scintillation method and 4π β-γ coincidence counting

    NASA Astrophysics Data System (ADS)

    Cassette, P.; Bouchard, J.; Chauvenet, B.

    1994-01-01

    Iodine-129 is a long-lived fission product, with physical and chemical properties that make it a good candidate for evaluating the environmental impact of the nuclear energy fuel cycle. To avoid solid source preparation problems, liquid scintillation has been used to standardize this nuclide for a EUROMET intercomparison. Two methods were used to measure the iodine-129 activity: triple-to-double-coincidence ratio liquid scintillation counting and 4π β-γ coincidence counting; the results are in good agreement.

  7. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  8. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    PubMed

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  9. An alpha–gamma coincidence spectrometer based on the Photon–Electron Rejecting Alpha Liquid Scintillation (PERALS®) system

    DOE PAGES

    Cadieux, J. R.; Fugate, G. A.; King, III, G. S.

    2015-02-07

    Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.

  10. A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos

    2016-03-01

    The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.

  11. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  12. Cosmic ray neutron background reduction using localized coincidence veto neutron counting

    DOEpatents

    Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.

    2002-01-01

    This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.

  13. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    DOE PAGES

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...

    2015-11-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutronsmore » in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.« less

  14. Development of a Body Shield for Small Animal PET System to Reduce Random and Scatter Coincidences

    NASA Astrophysics Data System (ADS)

    Wada, Yasuhiro; Yamamoto, Seiichi; Watanabe, Yasuyoshi

    2015-02-01

    For small animal positron emission tomography (PET) research using high radioactivity, such as dynamic studies, the resulting high random coincidence rate of the system degrades image quality. The random coincidence rate is increased not only by the gamma photons from inside the axial-field-of-view (axial-FOV) of the PET system but also by those from outside the axial-FOV. For brain imaging in small animal studies, significant interference is observed from gamma photons emitted from the body. Single gamma photons from the body enter the axial-FOV and increase the random and scatter coincidences. Shielding against the gamma photons from outside the axial-FOV would improve the image quality. For this purpose, we developed a body shield for a small animal PET system, the microPET Primate 4-ring system, and evaluated its performance. The body shield is made of 9-mm-thick lead and it surrounds most of a rat's body. We evaluated the effectiveness of the body shield using a head phantom and a body phantom with a radioactivity concentration ratio of 1:2 and a maximum total activity of approximately 250 MBq. The random coincidence rate was dramatically decreased to 1/10, and the noise equivalent count rate (NECR) was increased 6 times with an activity of 7 MBq in the head phantom. The true count rate was increased to 35% due to the decrease in system deadtime. The average scatter fraction was decreased to 1/2.5 with the body shield. Count rate measurements of rat were also conducted with an injection activity of approximately 25 MBq of [C-11]N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([C-11]DASB) and approximately 70 and 310 MBq of 2-deoxy-2-(F-18)fluoro-D-glucose ([F-18]FDG). Using the body shield, [F-18]FDG images of rats were improved by increasing the amount of radioactivity injected. The body shield designed for small animal PET systems is a promising tool for improving image quality and quantitation accuracy in small animal molecular imaging research.

  15. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-07

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  16. Neutron coincidence counting based on time interval analysis with one- and two-dimensional Rossi-alpha distributions: an application for passive neutron waste assay

    NASA Astrophysics Data System (ADS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1996-02-01

    Neutron coincidence counting is commonly used for the non-destructive assay of plutonium bearing waste or for safeguards verification measurements. A major drawback of conventional coincidence counting is related to the fact that a valid calibration is needed to convert a neutron coincidence count rate to a 240Pu equivalent mass ( 240Pu eq). In waste assay, calibrations are made for representative waste matrices and source distributions. The actual waste however may have quite different matrices and source distributions compared to the calibration samples. This often results in a bias of the assay result. This paper presents a new neutron multiplicity sensitive coincidence counting technique including an auto-calibration of the neutron detection efficiency. The coincidence counting principle is based on the recording of one- and two-dimensional Rossi-alpha distributions triggered respectively by pulse pairs and by pulse triplets. Rossi-alpha distributions allow an easy discrimination between real and accidental coincidences and are aimed at being measured by a PC-based fast time interval analyser. The Rossi-alpha distributions can be easily expressed in terms of a limited number of factorial moments of the neutron multiplicity distributions. The presented technique allows an unbiased measurement of the 240Pu eq mass. The presented theory—which will be indicated as Time Interval Analysis (TIA)—is complementary to Time Correlation Analysis (TCA) theories which were developed in the past, but is from the theoretical point of view much simpler and allows a straightforward calculation of deadtime corrections and error propagation. Analytical expressions are derived for the Rossi-alpha distributions as a function of the factorial moments of the efficiency dependent multiplicity distributions. The validity of the proposed theory is demonstrated and verified via Monte Carlo simulations of pulse trains and the subsequent analysis of the simulated data.

  17. Improvement of sensitivity in PIGE analysis of steels by neutron-gamma coincidences measurement

    NASA Astrophysics Data System (ADS)

    Ene, Antoaneta

    2004-07-01

    In this work the sensitivities of minor elements in a standard steel sample EURONORM-CRM No. 085-1 irradiated with beams of 5.5 MeV protons and 5 MeV deuterons have been determined both by regular proton- (p-PIGE) and deuteron-induced prompt gamma-ray emission (d-PIGE) methods and with the selection of the (p, n) and (d, n) reaction channels, measuring the neutron-gamma coincidences. A check on the elemental composition of the steel standard has also been carried out using combined INAA and PIXE and quantitative determinations have been done for some elements whose concentrations were not specified by the manufacturer, such as Al, As, Cr, Mo, Na, Ni, W. This complex study has resulted in a significant improvement of the sensitivities for some minor elements in steel by reducing the background and increasing the peak-to-background ratio in the coincident prompt gamma-rays spectra as a result of the elimination of the competing nuclear reactions originating from isotopes of the adjacent elements in the periodic table, present in the steel target. This extension of the PIGE method could be adapted by any analyst with the necessary equipment for the analysis of a wide variety of matrices that are refractory enough to withstand the heating effect of the bombarding beam, taking into account that this type of experiment requires longer irradiation times.

  18. Recovering the triple coincidence of non-pure positron emitters in preclinical PET

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Chen, Szu-Yu; Jan, Meei-Ling

    2016-03-01

    Non-pure positron emitters, with their long half-lives, allow for the tracing of slow biochemical processes which cannot be adequately examined by the commonly used short-lived positron emitters. Most of these isotopes emit high-energy cascade gamma rays in addition to positron decay that can be detected and create a triple coincidence with annihilation photons. Triple coincidence is discarded in most scanners, however, the majority of the triple coincidence contains true photon pairs that can be recovered. In this study, we propose a strategy for recovering triple coincidence events to raise the sensitivity of PET imaging for non-pure positron emitters. To identify the true line of response (LOR) from a triple coincidence, a framework utilizing geometrical, energy and temporal information is proposed. The geometrical criterion is based on the assumption that the LOR with the largest radial offset among the three sub pairs of triple coincidences is least likely to be a true LOR. Then, a confidence time window is used to test the valid LOR among those within triple coincidence. Finally, a likelihood ratio discriminant rule based on the energy probability density distribution of cascade and annihilation gammas is established to identify the true LOR. An Inveon preclinical PET scanner was modeled with GATE (GEANT4 application for tomographic emission) Monte Carlo software. We evaluated the performance of the proposed method in terms of identification fraction, noise equivalent count rates (NECR), and image quality on various phantoms. With the inclusion of triple coincidence events using the proposed method, the NECR was found to increase from 11% to 26% and 19% to 29% for I-124 and Br-76, respectively, when 7.4-185 MBq of activity was used. Compared to the reconstructed images using double coincidence, this technique increased the SNR by 5.1-7.3% for I-124 and 9.3-10.3% for Br-76 within the activity range of 9.25-74 MBq, without compromising the spatial resolution or

  19. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  1. Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ-γ coincidence counting method.

    PubMed

    Unno, Y; Sanami, T; Sasaki, S; Hagiwara, M; Yunoki, A

    2018-04-01

    Absolute measurement by the 4πβ-γ coincidence counting method was conducted by two photomultipliers facing across a plastic scintillator to be focused on β ray counting efficiency. The detector was held with a through-hole-type NaI(Tl) detector. The results include absolutely determined activity and its uncertainty especially about extrapolation. A comparison between the obtained and known activities showed agreement within their uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operationmore » at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.« less

  3. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  4. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  5. Fast coincidence counting with active inspection systems

    NASA Astrophysics Data System (ADS)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  6. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  7. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-29

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  8. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  9. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    NASA Astrophysics Data System (ADS)

    Paschoa, Anselmo S.

    2001-06-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background.

  10. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  11. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    NASA Astrophysics Data System (ADS)

    Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.

    2017-01-01

    Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.

  12. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  13. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  14. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.

    PubMed

    Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S

    2001-04-01

    Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per

  15. Optimal measurement counting time and statistics in gamma spectrometry analysis: The time balance

    NASA Astrophysics Data System (ADS)

    Joel, Guembou Shouop Cebastien; Penabei, Samafou; Maurice, Ndontchueng Moyo; Gregoire, Chene; Jilbert, Nguelem Mekontso Eric; Didier, Takoukam Serge; Werner, Volker; David, Strivay

    2017-01-01

    The optimal measurement counting time for gamma-ray spectrometry analysis using HPGe detectors was determined in our laboratory by comparing twelve hours measurement counting time at day and twelve hours measurement counting time at night. The day spectrum does not fully cover the night spectrum for the same sample. It is observed that the perturbation come to the sun-light. After several investigations became clearer: to remove all effects of radiation from outside (earth, the sun, and universe) our system, it is necessary to measure the background for 24, 48 or 72 hours. In the same way, the samples have to be measured for 24, 48 or 72 hours to be safe to be purified the measurement (equality of day and night measurement). It is also possible to not use the background of the winter in summer. Depend on to the energy of radionuclide we seek, it is clear that the most important steps of a gamma spectrometry measurement are the preparation of the sample and the calibration of the detector.

  16. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fissionmore » event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.« less

  17. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  18. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  19. Increased gamma band power during movement planning coincides with motor memory retrieval.

    PubMed

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. γγ coincidence spectrometer for instrumental neutron-activation analysis

    NASA Astrophysics Data System (ADS)

    Tomlin, B. E.; Zeisler, R.; Lindstrom, R. M.

    2008-05-01

    Neutron-activation analysis (NAA) is an important technique for the accurate and precise determination of trace and ultra-trace elemental compositions. The application of γγ coincidence counting to NAA in order to enhance specificity was first explored over 40 years ago but has not evolved into a regularly used technique. A γγ coincidence spectrometer has been constructed at the National Institute of Standards and Technology, using two HPGe γ-ray detectors and an all-digital data-acquisition system, for the purpose of exploring coincidence NAA and its value in characterizing reference materials. This paper describes the initial evaluation of the quantitative precision of coincidence counting versus singles spectrometry, based upon a sample of neutron-irradiated bovine liver material.

  1. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~10 3 has largely precluded its use for this purpose, where a dynamic range of at least 10 5 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniformmore » intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar 9 +, whereas Ar 4 + is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.« less

  2. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    DOE PAGES

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; ...

    2016-10-31

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~10 3 has largely precluded its use for this purpose, where a dynamic range of at least 10 5 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniformmore » intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar 9 +, whereas Ar 4 + is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.« less

  3. Active Well Counting Using New PSD Plastic Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to themore » existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am

  4. Concentration Independent Calibration of β-γ Coincidence Detector Using 131mXe and 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Cooper, Matthew W.; Carman, April J.

    Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the b-g coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable.[1] A superior technique has been developed that uses the conversion-electron (CE) and x-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute sourcemore » strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.« less

  5. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detectionmore » of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.« less

  6. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    NASA Astrophysics Data System (ADS)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  7. The determination of the pulse pile-up reject (PUR) counting for X and gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Karabıdak, S. M.; Kaya, S.

    2017-02-01

    The collection the charged particles produced by the incident radiation on a detector requires a time interval. If this time interval is not sufficiently short compared with the peaking time of the amplifier, a loss in the recovered signal amplitude occurs. Another major constraint on the throughput of modern x or gamma-ray spectrometers is the time required for the subsequent the pulse processing by the electronics. Two above-mentioned limitations are cause of counting losses resulting from the dead time and the pile-up. The pulse pile-up is a common problem in x and gamma ray radiation detection systems. The pulses pile-up in spectroscopic analysis can cause significant errors. Therefore, inhibition of these pulses is a vital step. A way to reduce errors due to the pulse pile-up is a pile-up inspection circuitry (PUR). Such a circuit rejects some of the pulse pile-up. Therefore, this circuit leads to counting losses. Determination of these counting losses is an important problem. In this work, a new method is suggested for the determination of the pulse pile-up reject.

  8. Search for optical bursts from the gamma ray burst source GBS 0526-66

    NASA Astrophysics Data System (ADS)

    Seetha, S.; Sreenivasaiah, K. V.; Marar, T. M. K.; Kasturirangan, K.; Rao, U. R.; Bhattacharyya, J. C.

    1985-08-01

    Attempts were made to detect optical bursts from the gamma-ray burst source GBS 0526-66 during Dec. 31, 1984 to Jan. 2, 1985 and Feb. 23 to Feb. 24, 1985, using the one meter reflector of the Kavalur Observatory. Jan. 1, 1985 coincided with the zero phase of the predicted 164 day period of burst activity from the source (Rothschild and Lingenfelter, 1984). A new optical burst photon counting system with adjustable trigger threshold was used in parallel with a high speed photometer for the observations. The best time resolution was 1 ms and maximum count rate capability was 255,000 counts s(-1). Details of the instrumentation and observational results are presented.

  9. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less

  10. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-26

    The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less

  11. PIMACS (Polarimeter and improved modular anti-coincidence system): an effective instrument concept for x-, gamma-ray monitoring, and polarimetry measurements on the International Space Station

    NASA Astrophysics Data System (ADS)

    Stuffler, Timo; Graue, Roland; Bird, Antony J.; Dean, Antony; Staubert, Rüdiger

    2018-04-01

    This paper, "PIMACS (Polarimeter and improved modular anti-coincidence system): an effective instrument concept for x-, gamma-ray monitoring, and polarimetry measurements on the International Space Station," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  12. Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pu eff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  13. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds

    PubMed Central

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.

    2016-01-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  14. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  15. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, Robert Dennis; Cleveland, Steven L.

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible usingmore » gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.« less

  16. Anti-Coincidence Detector for GLAST

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.; Hartman, R. C.; Johnson, Thomas E.; Ormes, Jonathan F.; Thompson, D. J.

    2004-01-01

    The Anti-Coincidence Detector (ACD) is the outermost detector layer in the GLAST Large Area Telescope (LAT), surrounding the top and sides of the tracker. The purpose of the ACD is to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-5 orders of magnitude. The challenge in ACD design is that it has to have high (0.9997) detection efficiency for relativistic charged particles, but must have low sensitivity to backsplash photons. These are products of high energy interactions in the LAT calorimeter, and can cause a veto signal in the ACD resulting in degradation of the LAT efficiency for high energy (>10 GeV) gamma-rays. The ACD requirement is that backsplash shall not reduce the LAT sensitivity by more than 20% for gamma rays of 300 GeV. To solve this problem, the ACD is divided into 89 scintillating tiles, with wave-length shifting fiber readout. The detector design and its characteristics are given in this paper.

  17. A System for Photon-Counting Spectrophotometry of Prompt Optical Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Albright, K.; Casperson, D.; Fenimore, E.; Ho, C.; Priedhorsky, W.; White, R.; Wren, J.

    2003-04-01

    With the launch of HETE-2 and the coming launch of the Swift satellite, there will be many new opportunities to study the physics of the prompt optical emission with robotic ground-based telescopes. Time-resolved spectrophotometry of the rapidly varying optical emission is likely to be a rich area for discovery. We describe a program to apply state-of-the-art photon-counting imaging technology to the study of prompt optical emission from gamma-ray bursts. The Remote Ultra-Low Light Imaging (RULLI) project at Los Alamos National Laboratory has developed an imaging sensor which employs stacked microchannel plates and a crossed delay line readout with 200 picosecond photon timing to measure the time of arrival and positions for individual optical photons. RULLI detectors, when coupled with a transmission grating having 300 grooves/mm, can make photon-counting spectroscopic observations with spectral resolution that is an order of magnitude greater and temporal resolution three orders of magnitude greater than the most capable photon-counting imaging detectors that have been used for optical astronomy.

  18. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  19. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    DOE PAGES

    Lahmann, B.; Milanese, L. M.; Han, W.; ...

    2016-07-20

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less

  20. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z.

    PubMed

    Lahmann, B; Milanese, L M; Han, W; Gatu Johnson, M; Séguin, F H; Frenje, J A; Petrasso, R D; Hahn, K D; Jones, B

    2016-11-01

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  1. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahmann, B.; Milanese, L. M.; Han, W.

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less

  2. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahmann, B., E-mail: lahmann@mit.edu; Milanese, L. M.; Han, W.

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.« less

  3. Incorporating delayed neutrons into the point-model equations routinely used for neutron coincidence counting in nuclear safeguards

    DOE PAGES

    Croft, Stephen; Favalli, Andrea

    2016-09-21

    Here, we extend the familiar Bӧhnel point-model equations, which are routinely used to interpret neutron coincidence counting rates, by including the contribution of delayed neutrons. After developing the necessary equations we use them to show, by providing some numerical results, what the quantitative impact of neglecting delayed neutrons is across the full range of practical nuclear safeguards applications. The influence of delayed neutrons is predicted to be small for the types of deeply sub-critical assay problems which concern the nuclear safeguards community, smaller than uncertainties arising from other factors. This is most clearly demonstrated by considering the change in themore » effective (α,n)-to-spontaneous fission prompt-neutron ratio that the inclusion of delayed neutrons gives rise to. That the influence of delayed neutrons is small is fortunate, and our results justify the long standing practice of simply neglecting them in the analysis of field measurements.« less

  4. Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.

    NASA Astrophysics Data System (ADS)

    Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.

    2017-12-01

    We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.

  5. Design and Optimization of a Dual-HPGe Gamma Spectrometer and Its Cosmic Veto System

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Ro, Hyunje; Liu, Chuanlei; Hoffman, Ian; Ungar, Kurt

    2017-03-01

    In this paper, a dual high purity germanium (HPGe) gamma spectrometer detection system with an increased solid angle was developed. The detection system consists of a pair of Broad Energy Germanium (BE-5030p) detectors and an XIA LLC digital gamma finder/Pixie-4 data-acquisition system. A data file processor was developed containing five modules that parses Pixie-4 list-mode data output files and classifies detections into anticoincident/coincident events and their specific coincidence types (double/triple/quadruple) for further analysis. A novel cosmic veto system was installed in the detection system. It was designed to be easy to install around an existing system while still providing sufficient cosmic veto shielding comparable to other designs. This paper describes the coverage and efficiency of this cosmic veto and the data processing system. It has been demonstrated that the cosmic veto system can provide a mean background reduction of 66.1%, which results in a mean MDA improvement of 58.3%. The counting time to meet the required MDA for specific radionuclide can be reduced by a factor of 2-3 compared to those using a conventional HPGe system. This paper also provides an initial overview of coincidence timing distributions between an incoming event from a cosmic veto plate and HPGe detector.

  6. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  7. True-coincidence correction when using an LEPD for the determination of the lanthanides in the environment via k0-based INAA.

    PubMed

    Freitas, M C; De Corte, F

    1994-01-01

    As part of a recent study on the environmental effects caused by the operation of a coal-fired power station at Sines, Portugal, k0-based instrumental neutron activation analysis (INAA) was used for the determination of the lanthanides (and also of tantalum and uranium) in plant leaves and lichens. In view of the accuracy and sensitivity of the determinations, it was advantageous to make use of a low-energy photon detector (LEPD). To begin with, in the present article, a survey is given of the former developments leading to user-friendly procedures for detection efficiency calibration of the LEPD and for correction for true-coincidence (cascade summing) effects. As a continuation of this, computer coincidence correction factors are now tabulated for the relevant low-energetic gamma-rays of the analytically interesting lanthanide, tantalum, and uranium radionuclides. Also the 140.5-keV line of 99Mo/99mTc is included, molybdenum being the comparator chosen when counting using an LEPD.

  8. A burst of energetic gamma rays. [measured by balloon-borne instruments

    NASA Technical Reports Server (NTRS)

    Koga, R.; Simnett, G.; White, R. S.

    1974-01-01

    A burst of gamma rays with energies greater than 1 MeV occurring on May 14, 1972, at 201247 UT (151247 local time) was detected during a balloon flight from Palestine, Texas, at a float altitude of 4g/sq cm residual atmosphere. The detector was a tank of liquid scintillator 1m x 0.5 m x 15 cm surrounded by a 0.6 cm plastic scintillator in anticoincidence. The signal was 60 standard deviations above a steady background of 600 counts/sec. The flux was 0.12 (+0.07 or -0.04) gamma/sq cm, and the time integrated flux 20(+11 or -7) gamma/sq cm. Only one such event was seen during the 8 hours of observation in the daytime on May 14 and 15. Two sub-flares in H alpha occurred during the burst, but not coincident with the start time. A detector on the Solrad satellite observed X-rays on all channels 2 minutes after the gamma ray start time. This event is similar to three earlier reported events.

  9. Quantifying radionuclide signatures from a γ-γ coincidence system.

    PubMed

    Britton, Richard; Jackson, Mark J; Davies, Ashley V

    2015-11-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ-γ system utilises fully digital electronics and list-mode acquisition to time-stamp each event, allowing coincidence matrices to be easily produced alongside typical 'singles' spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ-γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout

    NASA Astrophysics Data System (ADS)

    Yang, H.; Menaa, N.; Bronson, F.; Kastner, M.; Venkataraman, R.; Mueller, W. F.

    2011-10-01

    Previous work showed that enriched 6Li halide scintillation crystal is a good candidate for portable neutron-sensitive detectors. Photodiode readout is a good alternative to PMT in compact devices. These detectors are often required to work in presence of a strong gamma background. Therefore, great discrimination against gamma rays is crucial. Because of the high Q-value of the 6Li(n,α) 3H reaction, the light yield of a neutron capture signal corresponds to 3-4 MeV gamma equivalent in spite of the quenching effect of heavily charged particles. As a result, energy discrimination is quite effective against gamma signals generated in thin crystals. However, direct gamma interactions inside the photodiode can create pulses whose amplitude is large enough to interfere with thermal neutron peak. This study shows an innovative design based on coincident readout to solve this problem. In this design, two photodiodes are attached on both sides of the LiI crystal. The output signal is only accepted when both photodiodes give out coincident output. The method is proved to effectively suppress background in the neutron window in a 420 mR/h 137Cs field down to the level of natural background.

  11. Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri

    2013-02-01

    A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.

  12. A Two-Channel Phoswich Detector for Dual and Triple Coincidence Measurements of Radioxenon Isotopes

    DTIC Science & Technology

    2007-09-01

    radon daughters in a two-dimensional beta/gamma coincidence energy distribution (McIntyre et al., 2004). This eliminates the need for additional...gamma spectrum is used to monitor xenon radioisotopes in the ARSA system (Figure 1). There are three boxed areas (in the absence of any radon daughters ) from

  13. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    NASA Astrophysics Data System (ADS)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  14. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores).

    PubMed

    Barbosa, S M; Miranda, P; Azevedo, E B

    2017-06-01

    This work addresses the short-term variability of gamma radiation measured continuously at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM). The temporal variability of gamma radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 h are coincident with heavy precipitation and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the PBL height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, since the drop growing process is dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays from all gamma-emitting elements on the ground. Anomalies occurring in the absence of precipitation are found to be associated with a diurnal cycle of maximum gamma counts before sunrise decreasing to a minimum in the evening, which are observed in conditions of thermal stability and very weak winds enabling the build-up of near surface radon progeny during the night. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    NASA Astrophysics Data System (ADS)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  16. Evidence for Coincident Fusion Products Using Silicon Surface-barrier Detectors

    NASA Astrophysics Data System (ADS)

    Jones, Steven; Scott, Mark; Keeney, Frank

    2002-10-01

    We report experimental results showing coincident proton and triton production from the reaction: d + d --> t (1.01 MeV) + p (3.02 MeV). Partially-deuterided thin titanium foils were positioned between two silicon surface-barrier detectors which were mounted in a small cylindrical vacuum chamber which also served as a Faraday cage. We performed Monte Carlo studies using the SRIM code to determine the expected energies of arriving particles after they exit the host foil. The dual-coincidence requirement reduces background to very low levels so that low yields from very thin TiD foils can be readily detected. In one sequence of experiments, we observed 74 foreground coincidences in the regions of interest compared with 24 background counts; the statistical significance is approximately ten standard deviations. A striking advance is that the repeatability from the dual-coincidence experiments is currently greater than 70%.

  17. Attributes from NMIS Time Coincidence, Fast-Neutron Imaging, Fission Mapping, And Gamma-Ray Spectrometry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L; Grogan, Brandon R; Mullens, James Allen

    This work tests a systematic procedure for analyzing data acquired by the Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory with fast-neutron imaging and high-purity germanium (HPGe) gamma spectrometry capabilities. NMIS has been under development by the US Department of Energy Office of Nuclear Verification since the mid-1990s, and prior to that by the National Nuclear Security Administration Y-12 National Security Complex, with NMIS having been used at Y-12 for template matching to confirm inventory and receipts. In this present work, a complete set of NMIS time coincidence, fast-neutron imaging, fission mapping, and HPGe gamma-ray spectrometry data wasmore » obtained from Monte Carlo simulations for a configuration of fissile and nonfissile materials. The data were then presented for analysis to someone who had no prior knowledge of the unknown object to accurately determine the description of the object by applying the previously-mentioned procedure to the simulated data. The best approximation indicated that the unknown object was composed of concentric cylinders: a void inside highly enriched uranium (HEU) (84.7 {+-} 1.9 wt % {sup 235}U), surrounded by depleted uranium, surrounded by polyethylene. The final estimation of the unknown object had the correct materials and geometry, with error in the radius estimates of material regions varying from 1.58% at best and 4.25% at worst; error in the height estimates varied from 2% to 12%. The error in the HEU enrichment estimate was 5.9 wt % (within 2.5{sigma} of the true value). The accuracies of the determinations could be adequate for arms control applications. Future work will apply this iterative reconstructive procedure to other unknown objects to further test and refine it.« less

  18. A high-efficiency HPGe coincidence system for environmental analysis.

    PubMed

    Britton, R; Davies, A V; Burnett, J L; Jackson, M J

    2015-08-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories which must meet certain sensitivity requirements for CTBT relevant radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a high-efficiency, dual-detector gamma spectroscopy system has been developed to improve the sensitivity of measurements for treaty compliance, greatly reducing the time required for each sample. Utilising list-mode acquisition, each sample can be counted once, and processed multiple times to further improve sensitivity. For the 8 key radionuclides considered, Minimum Detectable Activities (MDA's) were improved by up to 37% in standard mode (when compared to a typical CTBT detector system), with the acquisition time required to achieve the CTBT sensitivity requirements reduced from 6 days to only 3. When utilising the system in coincidence mode, the MDA for (60) Co in a high-activity source was improved by a factor of 34 when compared to a standard CTBT detector, and a factor of 17 when compared to the dual-detector system operating in standard mode. These MDA improvements will allow the accurate and timely quantification of radionuclides that decay via both singular and cascade γ emission, greatly enhancing the effectiveness of CTBT laboratories. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    DOE PAGES

    Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...

    2015-12-10

    We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less

  20. A new 4π(LS)-γ coincidence counter at NCBJ RC POLATOM with TDCR detector in the beta channel.

    PubMed

    Ziemek, T; Jęczmieniowski, A; Cacko, D; Broda, R; Lech, E

    2016-03-01

    A new 4π(LS)-γ coincidence system (TDCRG) was built at the NCBJ RC POLATOM. The counter consists of a TDCR detector in the beta channel and scintillation detector with NaI(Tl) crystal in the gamma channel. The system is equipped with a digital board with FPGA, which records and analyses coincidences in the TDCR detector and coincidences between the beta and gamma channels. The characteristics of the system and a scheme of the FPGA implementation with behavioral simulation are given. The TDCRG counter was validated by activity measurements on (14)C and (60)Co solutions standardized in RC POLATOM using previously validated methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  2. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  3. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  4. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  5. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  6. A Maximum NEC Criterion for Compton Collimation to Accurately Identify True Coincidences in PET

    PubMed Central

    Chinn, Garry; Levin, Craig S.

    2013-01-01

    In this work, we propose a new method to increase the accuracy of identifying true coincidence events for positron emission tomography (PET). This approach requires 3-D detectors with the ability to position each photon interaction in multi-interaction photon events. When multiple interactions occur in the detector, the incident direction of the photon can be estimated using the Compton scatter kinematics (Compton Collimation). If the difference between the estimated incident direction of the photon relative to a second, coincident photon lies within a certain angular range around colinearity, the line of response between the two photons is identified as a true coincidence and used for image reconstruction. We present an algorithm for choosing the incident photon direction window threshold that maximizes the noise equivalent counts of the PET system. For simulated data, the direction window removed 56%–67% of random coincidences while retaining > 94% of true coincidences from image reconstruction as well as accurately extracted 70% of true coincidences from multiple coincidences. PMID:21317079

  7. Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns

    PubMed Central

    Franken, Tom P.; Bremen, Peter; Joris, Philip X.

    2014-01-01

    Coincidence detection by binaural neurons in the medial superior olive underlies sensitivity to interaural time difference (ITD) and interaural correlation (ρ). It is unclear whether this process is akin to a counting of individual coinciding spikes, or rather to a correlation of membrane potential waveforms resulting from converging inputs from each side. We analyzed spike trains of axons of the cat trapezoid body (TB) and auditory nerve (AN) in a binaural coincidence scheme. ITD was studied by delaying “ipsi-” vs. “contralateral” inputs; ρ was studied by using responses to different noises. We varied the number of inputs; the monaural and binaural threshold and the coincidence window duration. We examined physiological plausibility of output “spike trains” by comparing their rate and tuning to ITD and ρ to those of binaural cells. We found that multiple inputs are required to obtain a plausible output spike rate. In contrast to previous suggestions, monaural threshold almost invariably needed to exceed binaural threshold. Elevation of the binaural threshold to values larger than 2 spikes caused a drastic decrease in rate for a short coincidence window. Longer coincidence windows allowed a lower number of inputs and higher binaural thresholds, but decreased the depth of modulation. Compared to AN fibers, TB fibers allowed higher output spike rates for a low number of inputs, but also generated more monaural coincidences. We conclude that, within the parameter space explored, the temporal patterns of monaural fibers require convergence of multiple inputs to achieve physiological binaural spike rates; that monaural coincidences have to be suppressed relative to binaural ones; and that the neuron has to be sensitive to single binaural coincidences of spikes, for a number of excitatory inputs per side of 10 or less. These findings suggest that the fundamental operation in the mammalian binaural circuit is coincidence counting of single binaural input

  8. Assessment of ileal function by abdominal counting of the retention of a gamma emitting bile acid analogue.

    PubMed Central

    Thaysen, E H; Orholm, M; Arnfred, T; Carl, J; Rødbro, P

    1982-01-01

    In eight patients without gastrointestinal complaints and 30 patients with various gastrointestinal disorders ileal bile acid conservation was assessed by oral administration of 75Se 23-selena-25-homocholic acid (SeHCAT) followed by abdominal gamma counting (SeHCAT-test). The results of the test correlated fairly well with the clinical features and with the [1-14C]-cholylglycine breath test including faecal 14C measurements (breath test). Of the two bile acid absorption tests the new is perhaps the more sensitive and is the one most easily performed. PMID:7117906

  9. Recovery and normalization of triple coincidences in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose amore » simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with

  10. Recovery and normalization of triple coincidences in PET.

    PubMed

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak

  11. Towards component-based validation of GATE: aspects of the coincidence processor

    PubMed Central

    Moraes, Eder R.; Poon, Jonathan K.; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D.

    2014-01-01

    GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to “ground truth” obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the “multiple window method”), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the “single window method”). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. PMID:25240897

  12. Non-proportionality study of CaMoO4 and GAGG:Ce scintillation crystals using Compton coincidence technique.

    PubMed

    Kaewkhao, J; Limkitjaroenporn, P; Chaiphaksa, W; Kim, H J

    2016-09-01

    In this study, the CCT technique and nuclear instrument module (NIM) setup for the measurements of coincidence electron energy spectra of calcium molybdate (CaMoO4) and cerium doped gadolinium aluminium gallium garnet (Gd3Al2Ga3O12:Ce or GAGG:Ce) scintillation crystals were carried out. The (137)Cs irradiated gamma rays with an energy (Eγ) of 662keV was used as a radioactive source. The coincidence electron energy spectra were recorded at seven scattering angles of 30°-120°. It was found that seven corresponding electron energies were in the range of 100.5-435.4keV. The results show that, for all electron energies, the electron energy peaks of CaMoO4 crystal yielded higher number of counts than those of GAGG:Ce crystal. The electron energy resolution, the light yield and non-proportionality were also determined. It was found that the energy resolutions are inverse proportional to the square root of electron energy for both crystals. Furthermore, the results show that the light yield of GAGG:Ce crystal is much higher than that of CaMoO4 crystal. It was also found that both CaMoO4 and GAGG:Ce crystals demonstrated good proportional property in the electron energy range of 260-435.4keV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. On the accuracy of gamma spectrometric isotope ratio measurements of uranium

    NASA Astrophysics Data System (ADS)

    Ramebäck, H.; Lagerkvist, P.; Holmgren, S.; Jonsson, S.; Sandström, B.; Tovedal, A.; Vesterlund, A.; Vidmar, T.; Kastlander, J.

    2016-04-01

    The isotopic composition of uranium was measured using high resolution gamma spectrometry. Two acid solutions and two samples in the form of UO2 pellets were measured. The measurements were done in close geometries, i.e. directly on the endcap of the high purity germanium detector (HPGe). Applying no corrections for count losses due to true coincidence summing (TCS) resulted in up to about 40% deviation in the abundance of 235U from the results obtained with mass spectrometry. However, after correction for TCS, excellent agreement was achieved between the results obtained using two different measurement methods, or a certified value. Moreover, after corrections, the fitted relative response curves correlated excellently with simulated responses, for the different geometries, of the HPGe detector.

  14. Production of beta-gamma coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

    NASA Astrophysics Data System (ADS)

    Haas, Derek Anderson

    Radioactive xenon gas is a fission product released in the detonation of nuclear devices that can be detected in atmospheric samples far from the detonation site. In order to improve the capabilities of radioxenon detection systems, this work produces beta-gamma coincidence spectra of individual isotopes of radioxenon. Previous methods of radioxenon production consisted of the removal of mixed isotope samples of radioxenon gas released from fission of contained fissile materials such as 235U. In order to produce individual samples of the gas, isotopically enriched stable xenon gas is irradiated with neutrons. The detection of the individual isotopes is also modeled using Monte Carlo simulations to produce spectra. The experiment shows that samples of 131mXe, 133 Xe, and 135Xe with a purity greater than 99% can be produced, and that a sample of 133mXe can be produced with a relatively low amount of 133Xe background. These spectra are compared to models and used as essential library data for the Spectral Deconvolution Analysis Tool (SDAT) to analyze atmospheric samples of radioxenon for evidence of nuclear events.

  15. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  16. Study of the Nuclear Structure of 39P Using Beta-Delayed Gamma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abromeit, Brittany; NSCL Experiment E14063 Team Team

    2016-03-01

    Investigation of nuclei with neutron and proton imbalance is at the forefront of nuclear physics research today. This is driven by the fact that the structure in these regimes may vary with that seen near the valley of stability. With eight neutrons more than the stable isotope of phosphorous, 39P is a neutron-rich exotic nucleus that has very limited information on it: previous studies of 39P produce only three known energy levels and gamma rays. The fragmentation of a 48Ca primary beam on a 564mg/cm2 thick Be target at the National Superconducting Cyclotron Laboratory (NSCL) was used to produce exotic 39Si. Using the NSCL Beta Counting System (BCS), consisting of a thick planner germanium double-sided strip detector (GeDSSD) and 16 High-purity germanium detectors in an array, SeGA, the beta-gamma coincidences from the decay of 39Si to 39P were analyzed. The resulting level scheme of 39P, including over 12 new gamma rays and energy states, confirmation of the previously measured half-life, and first-time logft values will be presented. This work was supported by the NSF under Grant No. 1401574.

  17. Towards component-based validation of GATE: aspects of the coincidence processor.

    PubMed

    Moraes, Eder R; Poon, Jonathan K; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D

    2015-02-01

    GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to "ground truth" obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the "multiple window method"), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the "single window method"). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation

    NASA Astrophysics Data System (ADS)

    Yoshihara, Yuri; Shimazoe, Kenji; Mizumachi, Yuki; Takahashi, Hiroyuki

    2017-11-01

    Compton imaging has been used for various applications including astronomical observations, radioactive waste management, and biomedical imaging. The positions of radioisotopes are determined in the intersections of multiple cone traces through a large number of events, which reduces signal to noise ratio (SNR) of the images. We have developed an advanced Compton imaging method to localize radioisotopes with high SNR by using information of the interactions of Compton scattering caused by two gamma rays at the same time, as the double photon coincidence Compton imaging method. The targeted radioisotopes of this imaging method are specific nuclides that emit several gamma rays at the same time such as 60Co, 134Cs, and 111In, etc. Since their locations are determined in the intersections of two Compton cones, the most of cone traces would disappear in the three-dimensional space, which enhances the SNR and angular resolution. In this paper, the comparison of the double photon coincidence Compton imaging method and the single photon Compton imaging method was conducted by using GEANT4 Monte Carlo simulation.

  19. The Feynman-Y Statistic in Relation to Shift-Register Neutron Coincidence Counting: Precision and Dead Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Santi, Peter A.; Henzlova, Daniela

    The Feynman-Y statistic is a type of autocorrelation analysis. It is defined as the excess variance-to-mean ratio, Y = VMR - 1, of the number count distribution formed by sampling a pulse train using a series of non-overlapping gates. It is a measure of the degree of correlation present on the pulse train with Y = 0 for Poisson data. In the context of neutron coincidence counting we show that the same information can be obtained from the accidentals histogram acquired using the multiplicity shift-register method, which is currently the common autocorrelation technique applied in nuclear safeguards. In the casemore » of multiplicity shift register analysis however, overlapping gates, either triggered by the incoming pulse stream or by a periodic clock, are used. The overlap introduces additional covariance but does not alter the expectation values. In this paper we discuss, for a particular data set, the relative merit of the Feynman and shift-register methods in terms of both precision and dead time correction. Traditionally the Feynman approach is applied with a relatively long gate width compared to the dieaway time. The main reason for this is so that the gate utilization factor can be taken as unity rather than being treated as a system parameter to be determined at characterization/calibration. But because the random trigger interval gate utilization factor is slow to saturate this procedure requires a gate width many times the effective 1/e dieaway time. In the traditional approach this limits the number of gates that can be fitted into a given assay duration. We empirically show that much shorter gates, similar in width to those used in traditional shift register analysis can be used. Because the way in which the correlated information present on the pulse train is extracted is different for the moments based method of Feynman and the various shift register based approaches, the dead time losses are manifested differently for these two approaches. The

  20. Material screening with HPGe counting station for PandaX experiment

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Mao, Y.; Wang, H.; Wang, S.; Xie, P.; Zhang, T.

    2016-12-01

    A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.

  1. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  2. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  3. Coincident Detection Significance in Multimessenger Astronomy

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Burns, E.; Dal Canton, T.; Dent, T.; Eggenstein, H.-B.; Nielsen, A. B.; Prix, R.; Was, M.; Zhu, S. J.

    2018-06-01

    We derive a Bayesian criterion for assessing whether signals observed in two separate data sets originate from a common source. The Bayes factor for a common versus unrelated origin of signals includes an overlap integral of the posterior distributions over the common-source parameters. Focusing on multimessenger gravitational-wave astronomy, we apply the method to the spatial and temporal association of independent gravitational-wave and electromagnetic (or neutrino) observations. As an example, we consider the coincidence between the recently discovered gravitational-wave signal GW170817 from a binary neutron star merger and the gamma-ray burst GRB 170817A: we find that the common-source model is enormously favored over a model describing them as unrelated signals.

  4. In vivo elemental analysis by counting neutron-induced gamma rays for medical and biological applications

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Ma, Ruimei; Zhuang, Hong; Moore, Robert; Dowling, Lisa

    1995-03-01

    Non-invasive in vivo elemental analysis is a technique used to assess human body composition which is indicative of nutritional status and health condition. The in vivo measurement of the body's major elements is used for a variety of medical studies requiring the determination of the body's compartments (protein, fat, water, bone). Whole body gamma-ray counters, consisting of Nal(Tl) crystal detectors in a shielded room, are used for measuring in vivo the body's Ca, Cl, Na and P by delayed neutron activation analysis. Thermal neutrons from a moderated 238Pu-Be source are used for the measurement of total body nitrogen (and thus protein) and chlorine at low radiation exposure (0.80 mSv). The resulting high energy prompt gamma-rays from nitrogen (10.83 MeV) and chlorine (6.11 MeV) are detected simultaneously with the irradiation. Body fat (the main energy store) and fat distribution (which relates to risk for cardiovascular disease) are measured by detecting C and O in vivo through fast neutron inelastic scattering. A small sealed D-T neutron generator is used for the pulsed (4 - 8 KHz) production of fast neutrons. Carbon and oxygen are detected by counting the 4.44 and 6.13 MeV gamma-rays resulting from the inelastic scattering of the fast neutrons from the 12C and 16O nuclei, respectively. One use of this method is the systematic study of the mechanisms driving the age-associated depletion of the metabolizing, oxygen-consuming cellular compartment of the body. The understanding of this catabolism may suggest ways to maintain lean tissue and thus to preserve quality of life for the very old.

  5. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. FPGA-based gating and logic for multichannel single photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less

  7. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry--part II (volume sources).

    PubMed

    Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J

    2012-09-01

    The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Neutron coincidence measurements when nuclear parameters vary during the multiplication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ming-Shih; Teichmann, T.

    1995-07-01

    In a recent paper, a physical/mathematical model was developed for neutron coincidence counting, taking explicit account of neutron absorption and leakage, and using dual probability generating function to derive explicit formulae for the single and multiple count-rates in terms of the physical parameters of the system. The results of this modeling proved very successful in a number of cases in which the system parameters (neutron reaction cross-sections, detection probabilities, etc.) remained the same at the various stages of the process (i.e. from collision to collision). However, there are practical circumstances in which such system parameters change from collision to collision,more » and it is necessary to accommodate these, too, in a general theory, applicable to such situations. For instance, in the case of the neutron coincidence collar (NCC), the parameters for the initial, spontaneous fission neutrons, are not the same as those for the succeeding induced fission neutrons, and similar situations can be envisaged for certain other experimental configurations. This present document shows how the previous considerations can be elaborated to embrace these more general requirements.« less

  9. Low photon-count tip-tilt sensor

    NASA Astrophysics Data System (ADS)

    Saathof, Rudolf; Schitter, Georg

    2016-07-01

    Due to the low photon-count of dark areas of the universe, signal strength of tip-tilt sensor is low, limiting sky-coverage of reliable tip-tilt measurements. This paper presents the low photon-count tip-tilt (LPC-TT) sensor, which potentially achieves improved signal strength. Its optical design spatially samples and integrates the scene. This increases the probability that several individual sources coincide on a detector segment. Laboratory experiments show feasibility of spatial sampling and integration and the ability to measure tilt angles. By simulation an improvement of the SNR of 10 dB compared to conventional tip-tilt sensors is shown.

  10. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.

    PubMed

    Nocente, M; Rigamonti, D; Perseo, V; Tardocchi, M; Boltruczyk, G; Broslawski, A; Cremona, A; Croci, G; Gosk, M; Kiptily, V; Korolczuk, S; Mazzocco, M; Muraro, A; Strano, E; Zychor, I; Gorini, G

    2016-11-01

    Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr 3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus.

  11. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    DOE PAGES

    Koehler, Katrina E.; Henzl, Vladimir; Croft, Stephen; ...

    2016-06-29

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. But, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. Here, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, themore » double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We also discuss the role of these corrections across a range of scenarios.« less

  12. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  13. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  14. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  15. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  16. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    NASA Astrophysics Data System (ADS)

    El Kanawati, W.; Perot, B.; Carasco, C.; Eleon, C.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2011-10-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3H(d,n) 4H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  17. Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Charles, E.; Hartman, R. C.; Moiseev, A. A.; Ormes, J. F.

    2007-01-01

    The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meete its design requirements. The performance of the ACD has remained stable thrugh stand-alone environmental testing, shipment across the U.S. installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.

  18. Negative Binomial Process Count and Mixture Modeling.

    PubMed

    Zhou, Mingyuan; Carin, Lawrence

    2015-02-01

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.

  19. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  20. Analysis of counting errors in the phase/Doppler particle analyzer

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.

    1987-01-01

    NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.

  1. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  2. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Xiong; Li, Jian-Sheng; Gong, Jian; Zhu, Jian-Yu; Huang, Po

    2013-10-01

    Based on the time-dependent coincidence method, a preliminary experiment has been performed on uranium metal castings with similar quality (about 8-10 kg) and shape (hemispherical shell) in different enrichments using neutron from Cf fast fission chamber and timing DT accelerator. Groups of related parameters can be obtained by analyzing the features of time-dependent coincidence counts between source-detector and two detectors to characterize the fission signal. These parameters have high sensitivity to the enrichment, the sensitivity coefficient (defined as (ΔR/Δm)/R¯) can reach 19.3% per kg of 235U. We can distinguish uranium castings with different enrichments to hold nuclear weapon verification.

  3. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    PubMed

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A low-count reconstruction algorithm for Compton-based prompt gamma imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei

    2018-04-01

    The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

  5. Estimates and Recommendations for Coincidence Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, W.; Ressler, J. J.

    2013-05-23

    When two truly coincident gamma-rays deposit their energy within the same detector, a composite pulse which is indistinguishable from one due to a single event may be recorded by that detector. This summing e effct is known to become more important as the distance from source to detector is decreased [1]. In this short report, we give a rough estimate for the size of this e ect as a function of source-to-detector distance. The formalism used in this report is taken mainly from [2], and similar results can also be found, e.g., in [1, 3, 4]. In general, the sizemore » of the e ect will depend on the exact level scheme of the nucleus studied, but for the sake of extracting numerical values, we will assume a particular level scheme in this report.« less

  6. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    DOE PAGES

    Haefner, A.; Gunter, D.; Plimley, B.; ...

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method withmore » electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.« less

  7. Applications of LaBr3(Ce) Gamma-ray Spectrometer Arrays for Nuclear Spectroscopy and Radionuclide Assay

    NASA Astrophysics Data System (ADS)

    Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.

    2016-10-01

    An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.

  8. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  9. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  10. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  11. Development of a Gamma-Ray Spectrometer for Korean Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Park, Junghun; Choi, Yire; Lee, Sungsoon; Yeon, Youngkwang; Yi, Eung Seok; Jeong, Meeyoung; Sun, Changwan; van Gasselt, Stephan; Lee, K. B.; Kim, Yongkwon; Min, Kyungwook; Kang, Kyungin; Cho, Jinyeon; Park, Kookjin; Hasebe, Nobuyuki; Elphic, Richard; Englert, Peter; Gasnault, Olivier; Lim, Lucy; Shibamura, Eido; GRS Team

    2016-10-01

    Korea is preparing for a lunar orbiter mission (KPLO) to be developed in no later than 2018. Onboard the spacecraft is a gamma ray spectrometer (KLGRS) allowing to collect low energy gamma-ray signals in order to detect elements by either X-ray fluorescence or by natural radioactive decay in the low as well as higher energy regions of up to 10 MeV. Scientific objectives include lunar resources (water and volatile measurements, rare earth elements and precious metals, energy resources, major elemental distributions for prospective in-situ utilizations), investigation of the lunar geology and studies of the lunar environment (mapping of the global radiation environment from keV to 10 MeV, high energy cosmic ray flux using the plastic scintillator).The Gamma-Ray Spectrometer (GRS) system is a compact low-weight instrument for the chemical analysis of lunar surface materials within a gamma-ray energy range from 10s keV to 10 MeV. The main LaBr3 detector is surrounded by an anti-coincidence counting module of BGO/PS scintillators to reduce both low gamma-ray background from the spacecraft and housing materials and high energy gamma-ray background from cosmic rays. The GRS system will determine the elemental compositions of the near surface of the Moon.The GRS system is a recently developed gamma-ray scintillation based detector which can be used as a replacement for the HPGe GRS sensor with the advantage of being able to operate at a wide range of temperatures with remarkable energy resolution. LaBr3 also has a high photoelectron yield, fast scintillation response, good linearity and thermal stability. With these major advantages, the LaBr3 GRS system will allow us to investigate scientific objectives and assess important research questions on lunar geology and resource exploration.The GRS investigation will help to assess open questions related to the spatial distribution and origin of the elements on the lunar surface and will contribute to unravel geological surface

  12. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  13. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.

  14. Protective Effect of 940 nm Laser on Gamma-Irradiated Mice

    PubMed Central

    Efremova, Yulia; Navratil, Leos

    2015-01-01

    Abstract Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm2 and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Results: Laser (940 nm) at a fluence of 3 J/cm2 significantly prolonged the life span of gamma-irradiated mice (p<0.05). In the same group, counts of white blood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. Conclusions: In summary, 940 nm laser at a fluence of 3 J/cm2 demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies. PMID:25654740

  15. On the Sensitivity of the HAWC Observatory to Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hays, E.; McEnery, Julie E.

    2011-01-01

    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn will lead to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles.

  16. Detection of Neutrons with Scintillation Counters

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1948-11-01

    Detection of slow neutrons by: detection of single gamma rays following capture by cadmium or mercury; detection of more than one gamma ray by observing coincidences after capture; detection of heavy charged particles after capture in lithium or baron nuclei; possible use of anthracene for counting fast neutrons investigated briefly.

  17. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  18. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  19. Potential errors in body composition as estimated by whole body scintillation counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykken, G.I.; Lukaski, H.C.; Bolonchuk, W.W.

    Vigorous exercise has been reported to increase the apparent potassium content of athletes measured by whole body gamma ray scintillation counting of /sup 40/K. The possibility that this phenomenon is an artifact was evaluated in three cyclists and one nonathlete after exercise on the road (cyclists) or in a room with a source of radon and radon progeny (nonathlete). The apparent /sup 40/K content of the thighs of the athletes and whole body of the nonathlete increased after exercise. Counts were also increased in both windows detecting /sup 214/Bi, a progeny of radon. /sup 40/K and /sup 214/Bi counts weremore » highly correlated (r . 0.87, p less than 0.001). The apparent increase in /sup 40/K was accounted for by an increase in counts associated with the 1.764 MeV gamma ray emissions from /sup 214/Bi. Thus a failure to correct for radon progeny would cause a significant error in the estimate of lean body mass by /sup 40/K counting.« less

  20. Potential errors in body composition as estimated by whole body scintillation counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykken, G.I.; Lukaski, H.C.; Bolonchuk, W.W.

    Vigorous exercise has been reported to increase the apparent potassium content of athletes measured by whole body gamma ray scintillation counting of /sup 40/K. The possibility that this phenomenon is an artifact was evaluated in three cyclists and one nonathlete after exercise on the road (cyclists) or in a room with a source of radon and radon progeny (nonathlete). The apparent /sup 40/K content of the thighs of the athletes and whole body of the nonathlete increased after exercise. Counts were also increased in both windows detecting /sup 214/Bi, a progeny of radon. /sup 40/K and /sup 214/Bi counts weremore » highly correlated (r = 0.87, p < 0.001). The apparent increase in /sup 40/K was accounted for by an increase in counts associated with the 1.764 MeV gamma ray emissions from /sup 214/Bi. Thus a failure to correct for radon progeny would cause a significant error in the estimate of lean body mass by /sup 40/K counting.« less

  1. A system for the measurement of delayed neutrons and gammas from special nuclear materials

    DOE PAGES

    Andrews, M. T.; Corcoran, E. C.; Goorley, J. T.; ...

    2014-11-27

    The delayed neutron counting (DNC) system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting (DNGC) system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six ³He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine ²³³U content and determine fissile mass with an average relative error and accuracy of -2.2 and 1.5 %, respectively.

  2. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Low-SWaP coincidence processing for Geiger-mode LIDAR video

    NASA Astrophysics Data System (ADS)

    Schultz, Steven E.; Cervino, Noel P.; Kurtz, Zachary D.; Brown, Myron Z.

    2015-05-01

    Photon-counting Geiger-mode lidar detector arrays provide a promising approach for producing three-dimensional (3D) video at full motion video (FMV) data rates, resolution, and image size from long ranges. However, coincidence processing required to filter raw photon counts is computationally expensive, generally requiring significant size, weight, and power (SWaP) and also time. In this paper, we describe a laboratory test-bed developed to assess the feasibility of low-SWaP, real-time processing for 3D FMV based on Geiger-mode lidar. First, we examine a design based on field programmable gate arrays (FPGA) and demonstrate proof-of-concept results. Then we examine a design based on a first-of-its-kind embedded graphical processing unit (GPU) and compare performance with the FPGA. Results indicate feasibility of real-time Geiger-mode lidar processing for 3D FMV and also suggest utility for real-time onboard processing for mapping lidar systems.

  4. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  5. Prompt-gamma monitoring in hadrontherapy: A review

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.

    2018-01-01

    Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.

  6. LOW LEVEL COUNTING TECHNIQUES WITH SPECIAL REFERENCE TO BIOMEDICAL TRACER PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, F.; Nag, B.D.

    1959-12-01

    Low-level counting techniques in tracer experiments are discussed with emphasis on the measurement of beta and gamma radiations with Geiger and scintillation counting methods. The basic principles of low-level counting are outlined. Screen-wall counters, internal gas counters, low-level beta counters, scintillation spectrometers, liquid scintillators, and big scintillation installations are described. Biomedical tracer investigations are discussed. Applications of low-level techniques in archaeological dating, biology, and other problems are listed. (M.C.G.)

  7. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  8. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  9. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  10. Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira

    NASA Astrophysics Data System (ADS)

    Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís

    2017-04-01

    Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.

  11. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, J.; Lindquist, R.P.

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlledmore » geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.« less

  12. Real-Time, Fast Neutron Coincidence Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.

    2014-06-01

    The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.

  13. Gamma Oscillations of Spiking Neural Populations Enhance Signal Discrimination

    PubMed Central

    Masuda, Naoki; Doiron, Brent

    2007-01-01

    Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive. PMID:18052541

  14. Low energy proton capture study of the 14N(p, gamma)15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  15. Summing coincidence correction for γ-ray measurements using the HPGe detector with a low background shielding system

    NASA Astrophysics Data System (ADS)

    He, L.-C.; Diao, L.-J.; Sun, B.-H.; Zhu, L.-H.; Zhao, J.-W.; Wang, M.; Wang, K.

    2018-02-01

    A Monte Carlo method based on the GEANT4 toolkit has been developed to correct the full-energy peak (FEP) efficiencies of a high purity germanium (HPGe) detector equipped with a low background shielding system, and moreover evaluated using summing peaks in a numerical way. It is found that the FEP efficiencies of 60Co, 133Ba and 152Eu can be improved up to 18% by taking the calculated true summing coincidence factors (TSCFs) correction into account. Counts of summing coincidence γ peaks in the spectrum of 152Eu can be well reproduced using the corrected efficiency curve within an accuracy of 3%.

  16. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently

  17. Estimating the effective system dead time parameter for correlated neutron counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; McElroy, Robert D.; Simone, Angela T.

    2017-11-01

    Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correcting these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it

  18. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE PAGES

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; ...

    2017-04-29

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently

  19. Multi-Parameter Linear Least-Squares Fitting to Poisson Data One Count at a Time

    NASA Technical Reports Server (NTRS)

    Wheaton, W.; Dunklee, A.; Jacobson, A.; Ling, J.; Mahoney, W.; Radocinski, R.

    1993-01-01

    A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multi-component linear model, with underlying physical count rates or fluxes which are to be estimated from the data.

  20. Fermi LAT detection of increased gamma-ray activity from blazar S5 0716+71

    NASA Astrophysics Data System (ADS)

    Buson, S.

    2014-04-01

    The Large Area Telescope (LAT), one of two instruments on-board the Fermi Gamma-ray Space Telescope, has observed an increase in gamma-ray activity from a source positionally coincident with the BL Lac object S5 0716+71 (also known as 2FGL J0721.9+7120, Nolan et al. ...

  1. Count distribution for mixture of two exponentials as renewal process duration with applications

    NASA Astrophysics Data System (ADS)

    Low, Yeh Ching; Ong, Seng Huat

    2016-06-01

    A count distribution is presented by considering a renewal process where the distribution of the duration is a finite mixture of exponential distributions. This distribution is able to model over dispersion, a feature often found in observed count data. The computation of the probabilities and renewal function (expected number of renewals) are examined. Parameter estimation by the method of maximum likelihood is considered with applications of the count distribution to real frequency count data exhibiting over dispersion. It is shown that the mixture of exponentials count distribution fits over dispersed data better than the Poisson process and serves as an alternative to the gamma count distribution.

  2. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  3. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  4. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  5. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    PubMed

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Müller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  7. Increased Gamma-ray Activity from the FSRQ PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Dutka, Michael

    2012-10-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has observed increased gamma-ray emission from a source positionally coincident with the flat spectrum radio quasar PKS 1424-41 (1424-418; 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31). PKS 1424-41 has the coordinates RA=14h27m56.3s, DEC= -42d06'19.4", J2000, (Johnston et al. 1995, AJ, 110, 880).

  8. On the use of positron counting for radio-Assay in nuclear pharmaceutical production.

    PubMed

    Maneuski, D; Giacomelli, F; Lemaire, C; Pimlott, S; Plenevaux, A; Owens, J; O'Shea, V; Luxen, A

    2017-07-01

    Current techniques for the measurement of radioactivity at various points during PET radiopharmaceutical production and R&D are based on the detection of the annihilation gamma rays from the radionuclide in the labelled compound. The detection systems to measure these gamma rays are usually variations of NaI or CsF scintillation based systems requiring costly and heavy lead shielding to reduce background noise. These detectors inherently suffer from low detection efficiency, high background noise and very poor linearity. They are also unable to provide any reasonably useful position information. A novel positron counting technique is proposed for the radioactivity assay during radiopharmaceutical manufacturing that overcomes these limitations. Detection of positrons instead of gammas offers an unprecedented level of position resolution of the radiation source (down to sub-mm) thanks to the nature of the positron interaction with matter. Counting capability instead of charge integration in the detector brings the sensitivity down to the statistical limits at the same time as offering very high dynamic range and linearity from zero to any arbitrarily high activity. This paper reports on a quantitative comparison between conventional detector systems and the proposed positron counting detector. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mold and aflatoxin reduction by gamma radiation of packed hot peppers and their evolution during storage.

    PubMed

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Ariño, Agustin

    2012-08-01

    The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases.

  10. Cosmic-ray effects on diffuse gamma-ray measurements.

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1972-01-01

    Evaluation of calculations and experimental evidence from 600-MeV proton irradiation indicating that cosmic-ray-induced radioactivity in detectors used to measure the diffuse gamma-ray background produces a significant counting rate in the energy region around 1 MeV. It is concluded that these counts may be responsible for the observed flattening of the diffuse photon spectrum at this energy.

  11. Soudan Low Background Counting Facility (SOLO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attisha, Michael; Viveiros, Luiz de; Gaitksell, Richard

    2005-09-08

    The Soudan Low Background Counting Facility (SOLO) has been in operation at the Soudan Mine, MN since March 2003. In the past two years, we have gamma-screened samples for the Majorana, CDMS and XENON experiments. With individual sample exposure times of up to two weeks we have measured sample contamination down to the 0.1 ppb level for 238U / 232Th, and down to the 0.25 ppm level for 40K.

  12. Fast neutron counting in a mobile, trailer-based search platform

    NASA Astrophysics Data System (ADS)

    Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.

    2017-12-01

    Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.

  13. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less

  14. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  15. Multiparameter linear least-squares fitting to Poisson data one count at a time

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Dunklee, Alfred L.; Jacobsen, Allan S.; Ling, James C.; Mahoney, William A.; Radocinski, Robert G.

    1995-01-01

    A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multicomponent linear model, with underlying physical count rates or fluxes which are to be estimated from the data. Despite its conceptual simplicity, the linear least-squares (LLSQ) method for solving this problem has generally been limited to situations in which the number n(sub i) of counts in each bin i is not too small, conventionally more than 5-30. It seems to be widely believed that the failure of the LLSQ method for small counts is due to the failure of the Poisson distribution to be even approximately normal for small numbers. The cause is more accurately the strong anticorrelation between the data and the wieghts w(sub i) in the weighted LLSQ method when square root of n(sub i) instead of square root of bar-n(sub i) is used to approximate the uncertainties, sigma(sub i), in the data, where bar-n(sub i) = E(n(sub i)), the expected value of N(sub i). We show in an appendix that, avoiding this approximation, the correct equations for the Poisson LLSQ (PLLSQ) problems are actually identical to those for the maximum likelihood estimate using the exact Poisson distribution. We apply the method to solve a problem in high-resolution gamma-ray spectroscopy for the JPL High-Resolution Gamma-Ray Spectrometer flown on HEAO 3. Systematic error in subtracting the strong, highly variable background encountered in the low-energy gamma-ray region can be significantly reduced by closely pairing source and background data in short segments. Significant results can be built up by weighted averaging of the net fluxes obtained from the subtraction of many individual source/background pairs. Extension of the approach to complex situations, with multiple cosmic sources and realistic background parameterizations, requires a means of efficiently fitting to data from single scans in the narrow (approximately = 1.2 ke

  16. Minimum Detectable Activity for Tomographic Gamma Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, Ram; Smith, Susan; Kirkpatrick, J. M.

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographicmore » Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose

  17. Fermi-LAT Observations of Continued Gamma-ray Activity from Nova ASASSN-16ma

    NASA Astrophysics Data System (ADS)

    Li, Kwan-Lok; Chomiuk, Laura; Strader, Jay; Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-11-01

    Following the report of a sudden gamma-ray onset detection of nova ASASSN-16ma coincident with the optical peak of 5.5 mag on November 8 (ATel #9736), ASASSN-16ma was observed to slowly decrease in gamma-rays but has remained bright enough to be detectable with Fermi-LAT over the last 9 days (test statistic, TS > 10 per day, except for November 17 with TS=5).

  18. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  19. Plasma n-6 Fatty Acid Levels Are Associated With CD4 Cell Counts, Hospitalization, and Mortality in HIV-Infected Patients.

    PubMed

    Kabagambe, Edmond K; Ezeamama, Amara E; Guwatudde, David; Campos, Hannia; Fawzi, Wafaie

    2016-12-15

    Fatty acids, including n-6 series, modulate immune function, but their effect on CD4 cell counts, death, or hospitalization in HIV-infected patients on antiretroviral therapy is unknown. In a randomized trial for effects of multivitamins in HIV-infected patients in Uganda, we used gas chromatography to measure plasma n-6 fatty acids at baseline; determined CD4 counts at baseline, 3, 6, 12, and 18 months; and recorded hospitalization or death events. The associations of fatty acids with CD4 counts and events were analyzed using repeated-measures analysis of variance and Cox regression, respectively. Among 297 patients with fatty acids measurements, 16 patients died and 69 were hospitalized within 18 months. Except for linoleic acid, n-6 fatty acids levels were positively associated with CD4 counts at baseline but not during follow-up. In models that included all 5 major n-6 fatty acids, age; sex; body mass index; anemia status; use of antiretroviral therapy, multivitamin supplements, and alcohol; and the risk of death or hospitalization decreased significantly with an increase in linoleic acid and gamma-linolenic acid levels, whereas associations for dihomo-gamma-linolenic acid, arachidonic acid, and aolrenic acid were null. The hazard ratios (95% confidence intervals) per 1 SD increase in linoleic acid and gamma-linolenic acid were 0.73 (0.56-0.94) and 0.51 (0.36-0.72), respectively. Gamma-linolenic acid remained significant (hazard ratio = 0.51; 95% confidence interval: 0.35 to 0.68) after further adjustment for other plasma fatty acids. Lower levels of gamma-linolenic acid are associated with lower CD4 counts and an increased risk of death or hospitalization. These results suggest a potential for using n-6 fatty acids to improve outcomes from antiretroviral therapy.

  20. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.

  1. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  2. Sensitivity to coincidences and paranormal belief.

    PubMed

    Hadlaczky, Gergö; Westerlund, Joakim

    2011-12-01

    Often it is difficult to find a natural explanation as to why a surprising coincidence occurs. In attempting to find one, people may be inclined to accept paranormal explanations. The objective of this study was to investigate whether people with a lower threshold for being surprised by coincidences have a greater propensity to become believers compared to those with a higher threshold. Participants were exposed to artificial coincidences, which were formally defined as less or more probable, and were asked to provide remarkability ratings. Paranormal belief was measured by the Australian Sheep-Goat Scale. An analysis of the remarkability ratings revealed a significant interaction effect between Sheep-Goat score and type of coincidence, suggesting that people with lower thresholds of surprise, when experiencing coincidences, harbor higher paranormal belief than those with a higher threshold. The theoretical aspects of these findings were discussed.

  3. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, V.; Ferrigno, C.; Bozzo, E.

    We report the INTernational Gamma-ray Astrophysics Laboratory ( INTEGRAL ) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi -GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS) merging event GW170817 detected by the LIGO and Virgo observatories. The significance of association between the gamma-ray burst observed by INTEGRAL and GW170817 is 3.2σ, while the association between the Fermi -GBM and INTEGRAL detections is 4.2σ. GRB 170817A was detected by the SPI-ACS instrument about 2 s after the end of the GW event.more » We measure a fluence of (1.4 ± 0.4 ± 0.6) × 10{sup −7} erg cm{sup −2} (75–2000 keV), where, respectively, the statistical error is given at the 1σ confidence level, and the systematic error corresponds to the uncertainty in the spectral model and instrument response. We also report on the pointed follow-up observations carried out by INTEGRAL , starting 19.5 hr after the event, and lasting for 5.4 days. We provide a stringent upper limit on any electromagnetic signal in a very broad energy range, from 3 keV to 8 MeV, constraining the soft gamma-ray afterglow flux to <7.1 × 10{sup −11} erg cm{sup −2} s{sup −1} (80–300 keV). Exploiting the unique capabilities of INTEGRAL , we constrained the gamma-ray line emission from radioactive decays that are expected to be the principal source of the energy behind a kilonova event following a BNS coalescence. Finally, we put a stringent upper limit on any delayed bursting activity, for example, from a newly formed magnetar.« less

  4. Addressing the third gamma problem in PET

    NASA Astrophysics Data System (ADS)

    Schueller, M. J.; Mulnix, T. L.; Christian, B. T.; Jensen, M.; Holm, S.; Oakes, T. R.; Roberts, A. D.; Dick, D. W.; Martin, C. C.; Nickles, R. J.

    2003-02-01

    PET brings the promise of quantitative imaging of the in-vivo distribution of any positron emitting nuclide, a list with hundreds of candidates. All but a few of these, the "pure positron" emitters, have isotropic coincident gamma rays that give rise to misrepresented events in the sinogram and in the resulting reconstructed image. Of particular interest are /sup 10/C, /sup 14/O, /sup 38/K, /sup 52m/Mn, /sup 60/Cu, /sup 61/Cu, /sup 94m/Tc, and /sup 124/I, each having high-energy gammas that are Compton-scattered down into the 511 keV window. The problems arising from the "third gamma," and its accommodation by standard scatter correction algorithms, were studied empirically, employing three scanner models (CTI 933/04, CTI HR+ and GE Advance), imaging three phantoms (line source, NEMA scatter and contrast/detail), with /sup 18/F or /sup 38/K and /sup 72/As mimicking /sup 14/O and /sup 10/C, respectively, in 2-D and 3-D modes. Five findings emerge directly from the image analysis. The third gamma: 1) does, obviously, tax the single event rate of the PET scanners, particularly in the absence of septa, from activity outside of the axial field of view; 2) does, therefore, tax the random rate, which is second order in singles, although the gamma is a prompt coincidence partner; 3) does enter the sinogram as an additional flat background, like randoms, but unlike scatter; 4) is not seriously misrepresented by the scatter algorithm which fits the correction to the wings of the sinogram; and 5) does introduce additional statistical noise from the subsequent subtraction, but does not seriously compromise the detectability of lesions as seen in the contrast/detail phantom. As a safeguard against the loss of accuracy in image quantitation, fiducial sources of known activity are included in the field of view alongside of the subject. With this precaution, a much wider selection of imaging agents can enjoy the advantages of positron emission tomography.

  5. Dual-isotope PET using positron-gamma emitters.

    PubMed

    Andreyev, A; Celler, A

    2011-07-21

    Positron emission tomography (PET) is widely recognized as a highly effective functional imaging modality. Unfortunately, standard PET cannot be used for dual-isotope imaging (which would allow for simultaneous investigation of two different biological processes), because positron-electron annihilation products from different tracers are indistinguishable in terms of energy. Methods that have been proposed for dual-isotope PET rely on differences in half-lives of the participating isotopes; these approaches, however, require making assumptions concerning kinetic behavior of the tracers and may not lead to optimal results. In this paper we propose a novel approach for dual-isotope PET and investigate its performance using GATE simulations. Our method requires one of the two radioactive isotopes to be a pure positron emitter and the second isotope to emit an additional high-energy gamma in a cascade simultaneously with positron emission. Detection of this auxiliary prompt gamma in coincidence with the annihilation event allows us to identify the corresponding 511 keV photon pair as originating from the same isotope. Two list-mode datasets are created: a primary dataset that contains all detected 511 keV photon pairs from both isotopes, and a second, tagged (much smaller) dataset that contains only those PET events for which a coincident prompt gamma has also been detected. An image reconstructed from the tagged dataset reflects the distribution of the second positron-gamma radiotracer and serves as a prior for the reconstruction of the primary dataset. Our preliminary simulation study with partially overlapping (18)F/(22)Na and (18)F/(60)Cu radiotracer distributions showed that in these two cases the dual-isotope PET method allowed for separation of the two activity distributions and recovered total activities with relative errors of about 5%.

  6. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  7. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  8. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  9. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  10. Early optical polarization of a gamma-ray burst afterglow.

    PubMed

    Mundell, Carole G; Steele, Iain A; Smith, Robert J; Kobayashi, Shiho; Melandri, Andrea; Guidorzi, Cristiano; Gomboc, Andreja; Mottram, Chris J; Clarke, David; Monfardini, Alessandro; Carter, David; Bersier, David

    2007-03-30

    We report the optical polarization of a gamma-ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma-rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2sigma) upper limit on the percentage of polarization, less than 8%, coincides with the fireball deceleration time at the onset of the afterglow. The combination of the rate of decay of the optical brightness and the low polarization at this critical time constrains standard models of GRB ejecta, ruling out the presence of a large-scale ordered magnetic field in the emitting region.

  11. Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-11-01

    We report coincidences of ground-level gamma-ray enhancements with precipitation events and strong electric fields typical of thunderstorms, measured at the Emilio Segre Cosmic Ray observatory located on the western slopes of Mt. Hermon in northern Israel. The observatory hosts 2 × 2″ Nal(TI) gamma ray scintillation detectors alongside a vertical atmospheric electric field (Ez) mill and conduction current (Jz) plates. During several active thunderstorms that occurred near the Mt. Hermon station in October and November 2015, we recorded prolonged periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field. Two types of events were detected: slow increase (up to 300 min) of atmospheric gamma ray radiation due to radon progeny washout (or rainout) along with minutes of Ez enhancement, which were not associated with the occurrences of nearby CG lightning discharges. The second type showed 30 min bursts of gamma rays, coinciding with minutes of Ez enhancement that closely matched the occurrences of nearby CG lightning discharges, and are superimposed on the radiation from radon daughters washed out to near surface levels by precipitation. We conclude that a superposition of accelerated high energy electrons by thunderstorm electric fields and radon progeny washout (or rainout) explains the relatively fast near surface gamma-ray increase, where the minutes-scale vertical electric field enhancement are presumably caused due to nearby convective clouds. Our results show that the mean exponential half-life depletion times of the residual nuclei produced during events without lightning occurrences were between 25-65 min, compared to 55-100 min when lightning was present, indicating that different types of nuclei were involved.

  12. Elemental analysis using natural gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Naqvi, A. A.; Khiari, F. Z.; Abujarad, F.; Al-Ohali, M.; Sumani, M.

    1994-12-01

    A gamma-ray spectroscopy setup has been recently established to measure the natural gamma-ray activity from potassium ( 40K), uranium ( 238U), and thorium ( 232Th) isotopes in rock samples of oil well-logs. The setup mainly consists of a shielded 135 cm 3 Hyper Pure Germanium (HPGe) detector, a 5 in. × 5 in. NaT(Tl) detector and a PC based data acquisition system. The core samples, with 70-100 g weight, have cylindrical geometry and are sealed such that radon gas from 238U decay would not escape from the sample. For room background subtraction, pure quartz samples identical to core samples were used. The sample is first counted with the HPGe detector to identify the elements through its characteristics gamma rays. Then the elemental concentration is determined by counting the sample with a NaI detector. In order to determine the absolute concentrations, the sample activity is compared with the activities of standards supplied by NIST and IAEA. The concentration of 238U and 232Th has been determined in ppm range with that of 40K in wt.%.

  13. Interpretation of detailed aerial gamma-ray survey, Jabal Ashirah area, southeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Duval, J.S.

    1987-01-01

    A detailed aerial gamma-ray spectrometric survey of the Jabal Ashirah area in the southeastern Arabian Shield has been analyzed using computer-classification algorithms. The analysis resulted in maps that show radiometric map units and gamma-ray anomalies indicating the presence of possible concentrations of potassium and uranium. The radiometric-unit map was interpreted to 'produce a simplified radiolithic map that was correlated with the mapped geology. The gamma-ray data show uranium anomalies that coincide with a tin-bearing granite, but known gold and nickel mineralization do not have any associated gamma-ray signatures.

  14. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  15. Development of an alpha/beta/gamma detector for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  16. Development of an alpha/beta/gamma detector for radiation monitoring.

    PubMed

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics

  17. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  18. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-07-02

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. In this paper, we report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Finally, direct detection of gamma-raymore » pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.« less

  19. Rejection of randomly coinciding events in ZnMoO scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.

    2014-06-01

    Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.

  20. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  1. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  2. Coincident disruptive coloration

    PubMed Central

    Cuthill, Innes C.; Székely, Aron

    2008-01-01

    Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such ‘coincident disruptive coloration’ ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form. PMID:18990668

  3. The 3C 279 Campaign of Winter 1999: A Gamma-Optical Correlation?

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Villata, M.; Raiteri, C. M.; Sobrito, M.; DeFrancesco, G.; Ostorero, L.; Tosti, G.; Kurtanidze, O.; Nikolashvili, M.; Takalo, L.

    2000-01-01

    Preliminary results are presented from the gamma-optical campaign of January-February 1999 on 3C 279. During this period we obtained good optical sampling of the source, the best ever for a gamma-bright OVV quasar. Its large and fast variations have been compared with the gamma-ray fluxes obtained simultaneously by Energy Gamma Ray Experiment Telescope (EGRET), on Compton Gamma Ray Observatory (CGRO). Despite rather poor counting statistics in the gamma-ray data, a fair correlation is found, with the gamma variations following those in the optical by 3-4 days. This is the first time such a significant day-scale correlation has been observed between the optical and gamma emissions from a OVV quasar. Its implications are currently under study.

  4. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  5. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization

    NASA Astrophysics Data System (ADS)

    Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud

    2018-04-01

    Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing

  6. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, S.A.; Bennett, E.F.; Yule, T.J.

    1982-10-21

    Apparatus and method are presented for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  7. Evaluation of counting methods for oceanic radium-228

    NASA Astrophysics Data System (ADS)

    Orr, James C.

    1988-07-01

    Measurement of open ocean 228Ra is difficult, typically requiring at least 200 L of seawater. The burden of collecting and processing these large-volume samples severely limits the widespread use of this promising tracer. To use smaller-volume samples, a more sensitive means of analysis is required. To seek out new and improved counting method(s), conventional 228Ra counting methods have been compared with some promising techniques which are currently used for other radionuclides. Of the conventional methods, α spectrometry possesses the highest efficiency (3-9%) and lowest background (0.0015 cpm), but it suffers from the need for complex chemical processing after sampling and the need to allow about 1 year for adequate ingrowth of 228Th granddaughter. The other two conventional counting methods measure the short-lived 228Ac daughter while it remains supported by 228Ra, thereby avoiding the complex sample processing and the long delay before counting. The first of these, high-resolution γ spectrometry, offers the simplest processing and an efficiency (4.8%) comparable to α spectrometry; yet its high background (0.16 cpm) and substantial equipment cost (˜30,000) limit its widespread use. The second no-wait method, β-γ coincidence spectrometry, also offers comparable efficiency (5.3%), but it possesses both lower background (0.0054 cpm) and lower initial cost (˜12,000). Three new (i.e., untried for 228Ra) techniques all seem to promise about a fivefold increase in efficiency over conventional methods. By employing liquid scintillation methods, both α spectrometry and β-γ coincidence spectrometry can improve their counter efficiency while retaining low background. The third new 228Ra counting method could be adapted from a technique which measures 224Ra by 220Rn emanation. After allowing for ingrowth and then counting for the 224Ra great-granddaughter, 228Ra could be back calculated, thereby yielding a method with high efficiency, where no sample processing

  8. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  9. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  10. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    PubMed

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  11. Development of a Compton suppressed gamma spectrometer using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Britton, Richard

    Gamma ray spectroscopy is routinely used to measure radiation in a number of situations. These include security applications, nuclear forensics studies, characterisation of radioactive sources, and environmental monitoring. For routine studies of environmental materials, the amount of radioactivity present is often very low, requiring spectroscopy systems which have to monitor the source for up to 7 days to achieve the required sensitivity. Recent developments in detector technology and data processing techniques have opened up the possibility of developing a highly efficient Compton Suppressed system, that was previously the preserve of large experimental collaborations. The accessibility of Monte-Carlo toolkits such as GEANT4 also provide the opportunity to optimise these systems using computer simulations, greatly reducing the need for expensive (and inefficient) testing in the laboratory. This thesis details the development of such a Compton Suppressed, planar HPGe detector system. Using the GEANT4 toolkit in combination with the experimental facilities at AWE, Aldermaston (which include HPGe detection systems, scintillator based detector systems, advanced shielding materials and gamma-gamma coincidence systems), simulations were built and validated to reproduce the detector response seen in the 'real-life' systems. This resulted in several improvements to the current system; for the shielding materials used, terrestrial and cosmic radiation were minimised, while reducing the X-ray fluorescence seen in the primary HPGe detector by an order of magnitude. With respect to the HPGe detector itself, an optimum thickness was identified for low energy (<300 keV) radiation, which maximised the efficiency for the energy range of interest while minimising the interaction probability for higher energy radionuclides (which are the primary cause of the Compton continuum that obscures lower energy decays). A combination of secondary detectors were then optimised to design a

  12. Experimental demonstration of Klyshko's advanced-wave picture using a coincidence-count based, camera-enabled imaging system

    NASA Astrophysics Data System (ADS)

    Aspden, Reuben S.; Tasca, Daniel S.; Forbes, Andrew; Boyd, Robert W.; Padgett, Miles J.

    2014-04-01

    The Klyshko advanced-wave picture is a well-known tool useful in the conceptualisation of parametric down-conversion (SPDC) experiments. Despite being well-known and understood, there have been few experimental demonstrations illustrating its validity. Here, we present an experimental demonstration of this picture using a time-gated camera in an image-based coincidence measurement. We show an excellent agreement between the spatial distributions as predicted by the Klyshko picture and those obtained using the SPDC photon pairs. An interesting speckle feature is present in the Klyshko predictive images due to the spatial coherence of the back-propagated beam in the multi-mode fibre. This effect can be removed by mechanically twisting the fibre, thus degrading the spatial coherence of the beam and time-averaging the speckle pattern, giving an accurate correspondence between the predictive and SPDC images.

  13. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  14. Particle- $$\\gamma$$ γ coincidence spectroscopy of the N = 90 nucleus 154Gd by ( $$p,t\\gamma$$ p , t γ )

    DOE PAGES

    Allmond, J. M.; Beausang, C. W.; Ross, T. J.; ...

    2017-03-01

    A segmented Si-telescope and HPGe array, STARS-LIBERACE, was used to study the 156Gd(p,t )154Gd direct reaction by particle- coincidence spectroscopy. New cross sections with a 25- MeV proton beam are reported and compared to previous (p,t) and (t,p) studies. Furthermore, additional evidence for coexisting K = 0+1 , 2+1 and 0+2 , 2+2 configurations at N = 90 is presented. Direct and indirect population patterns of the low-lying states are also explored. Review of the new and existing evidence fa- vors an interpretation based on a configuration-dependent pairing interaction. The weakening of monopole pairing strength and an increase in quadrupolemore » pairing strength could bring 2p-2h 0+ states below 2 . This may account for a large number of the low-lying 0+ states observed in two-nucleon transfer reactions. A hypothesis for the the origin of the 0+2 and 0+3 states is provided.« less

  15. Analysis of historical delta values for IAEA/LANL NDA training courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William; Santi, Peter; Swinhoe, Martyn

    2009-01-01

    The Los Alamos National Laboratory (LANL) supports the International Atomic Energy Agency (IAEA) by providing training for IAEA inspectors in neutron and gamma-ray Nondestructive Assay (NDA) of nuclear material. Since 1980, all new IAEA inspectors attend this two week course at LANL gaining hands-on experience in the application of NDA techniques, procedures and analysis to measure plutonium and uranium nuclear material standards with well known pedigrees. As part of the course the inspectors conduct an inventory verification exercise. This exercise provides inspectors the opportunity to test their abilities in performing verification measurements using the various NDA techniques. For an inspector,more » the verification of an item is nominally based on whether the measured assay value agrees with the declared value to within three times the historical delta value. The historical delta value represents the average difference between measured and declared values from previous measurements taken on similar material with the same measurement technology. If the measurement falls outside a limit of three times the historical delta value, the declaration is not verified. This paper uses measurement data from five years of IAEA courses to calculate a historical delta for five non-destructive assay methods: Gamma-ray Enrichment, Gamma-ray Plutonium Isotopics, Passive Neutron Coincidence Counting, Active Neutron Coincidence Counting and the Neutron Coincidence Collar. These historical deltas provide information as to the precision and accuracy of these measurement techniques under realistic conditions.« less

  16. Supervised Gamma Process Poisson Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dylan Zachary

    This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling andmore » several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.« less

  17. In situ capture gamma-ray analysis of coal in an oversize borehole

    USGS Publications Warehouse

    Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.

    1983-01-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.

  18. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  19. Enhanced PET resolution by combining pinhole collimation and coincidence detection

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.

    2015-10-01

    Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT

  20. From Mere Coincidences to Meaningful Discoveries

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2007-01-01

    People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…

  1. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of

  2. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    NASA Astrophysics Data System (ADS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  3. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  4. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  5. Characterizing ICF Neutron Diagnostics on the nTOF line at SUNY Geneseo

    NASA Astrophysics Data System (ADS)

    Simone, Angela; Padalino, Stephen; Turner, Ethan; Ginnane, Mary Kate; Dubois, Natalie; Fletcher, Kurtis; Giordano, Michael; Lawson-Keister, Patrick; Harrison, Hannah; Visca, Hannah; Sangster, Craig; Regan, Sean

    2014-10-01

    Charged particle beams from the Geneseo 1.7 MV tandem Pelletron accelerator produce nuclear reactions that emit neutrons in the range of 0.5 to 17.9 MeV via the d(d,n)3He and 11B(d,n)12C reactions. The neutron energy and flux can be adjusted by controlling the accelerator beam current and potential. This adjustable neutron source makes it possible to calibrate ICF and HEDP neutron scintillator diagnostics. However, gamma rays which are often present during an accelerator-based calibration are difficult to differentiate from neutron signals in scintillators. To identify neutrons from gamma rays and to determine their energy, a permanent neutron time-of-flight (nTOF) line is being constructed. By detecting the scintillator signal in coincidence with an associated charged particle (ACP) produced in the reaction, the identity of the neutron can be known and its energy determined by time of flight. Using a 100% efficient surface barrier detector to count the ACPs, the absolute efficiency of the scintillator as a function of neutron energy can be determined. This is done by determining the ratio of the ACP counts in the singles spectrum to coincidence counts for matched solid angles of the SBD and scintillator. Funded in part by a LLE contract through the DOE.

  6. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  7. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  8. Artifacts in digital coincidence timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, W. W.; Peng, Q.

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  9. Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons.

    PubMed

    Weston, Kenneth D; Dyck, Martina; Tinnefeld, Philip; Müller, Christian; Herten, Dirk P; Sauer, Markus

    2002-10-15

    A simple new approach is described and demonstrated for measuring the number of independent emitters along with the fluorescence intensity, lifetime, and emission wavelength for trajectories and images of single molecules and multichromophoric systems using a single PC plug-in card for time-correlated single-photon counting. The number of independent emitters present in the detection volume can be determined using the interphoton times in a manner similar to classical antibunching experiments. In contrast to traditional coincidence analysis based on pulsed laser excitation and direct measurement of coincident photon pairs using a time-to-amplitude converter, the interphoton distances are retrieved afterward by recording the absolute arrival time of each photon with nanosecond time resolution on two spectrally separated detectors. Intensity changes that result from fluctuations of a photophysical parameter can be distinguished from fluctuations due to changes in the number of emitters (e.g., photobleaching) in single chromophore and multichromophore intensity trajectories. This is the first report to demonstrate imaging with contrast based on the number of independently emitting species within the detection volume.

  10. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  11. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  12. Inter-operator variation in ELISPOT analysis of measles virus-specific IFN-gamma-secreting T cells.

    PubMed

    Ryan, J E; Ovsyannikova, I G; Dhiman, N; Pinsky, N A; Vierkant, R A; Jacobson, R M; Poland, G A

    2005-01-01

    The ELISPOT assay is a highly sensitive technique used for the detection of individual cytokine releasing cells. We have developed an IFN-gamma ELISPOT assay utilizing unfractionated frozen peripheral blood mononuclear cells (PBMC) to quantify the frequency of measles virus (MV)-specific IFN-gamma-secreting T cells in 117 healthy children who had been previously immunized with two doses of the measles-mumps-rubella vaccine. We have also estimated the variability associated with the quantification of ELISPOT plates and compared the number of MV-specific IFN-gamma-secreting T cells for each subject as determined by two different operators of an ELISPOT reader. The median frequency of MV-specific IFN-gamma-producing memory T cells detected by this assay was 0.005 % and 0.01 % as determined by an in-house and commercial operator, respectively. Although we found a significant correlation (r = 0.83, p<0.0001) between the number of spots counted by the commercial and in-house operators of an ELISPOT reader, the median number of spots counted by the commercial operator was twice the number of spots counted by an in-house operator (p<0.001). This demonstrates the importance of using a common ELISPOT reader and operator, among other parameters, to quantify the number of spots when a large volume of plates are being scanned and analyzed.

  13. Evolution of floral diversity: genomics, genes and gamma

    PubMed Central

    Berger, Brent A.; Howarth, Dianella G.; Soltis, Douglas E.

    2017-01-01

    A salient feature of flowering plant diversification is the emergence of a novel suite of floral features coinciding with the origin of the most species-rich lineage, Pentapetalae. Advances in phylogenetics, developmental genetics and genomics, including new analyses presented here, are helping to reconstruct the specific evolutionary steps involved in the evolution of this clade. The enormous floral diversity among Pentapetalae appears to be built on a highly conserved ground plan of five-parted (pentamerous) flowers with whorled phyllotaxis. By contrast, lability in the number and arrangement of component parts of the flower characterize the early-diverging eudicot lineages subtending Pentapetalae. The diversification of Pentapetalae also coincides closely with ancient hexaploidy, referred to as the gamma whole-genome triplication, for which the phylogenetic timing, mechanistic details and molecular evolutionary consequences are as yet not fully resolved. Transcription factors regulating floral development often persist in duplicate or triplicate in gamma-derived genomes, and both individual genes and whole transcriptional programmes exhibit a shift from broadly overlapping to tightly defined expression domains in Pentapetalae flowers. Investigations of these changes associated with the origin of Pentapetalae can lead to a more comprehensive understanding of what is arguably one of the most important evolutionary diversification events within terrestrial plants. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994132

  14. QCD constituent counting rules for neutral vector mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less

  15. QCD constituent counting rules for neutral vector mesons

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    2018-02-01

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in order to be consistent with the fundamental theory. Here, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V0 in e+e- annihilation, processes in which the V0 can couple via intermediate photons. In the case of a (narrow) real V0, the photon virtuality is fixed to a precise value s1=mV02, thus treating the V0 as a single fundamental particle. Each real V0 thus contributes to the constituent counting rules with NV0=1. In effect, the leading operator underlying the V0 has twist 1. Thus, in the specific physical case of single or double on-shell V0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V0 as an elementary field. However, the VMD prediction fails in the general case where the V0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0=2 . Analogous effects appear in p p scattering processes.

  16. QCD constituent counting rules for neutral vector mesons

    DOE PAGES

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    2018-02-08

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less

  17. Detection of a strong optical and gamma-ray flare from blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Longo, F.; Jankowsky, F.; Schwemmer, S.; Wagn, S.

    2013-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has observed an increasing gamma-ray flux from a source positionally coincident with PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31; R.A.= 14h27m56.2975s, Dec.= -42d06m19.437s, J2000, Johnston et al. 1995, AJ, 110, 880), a flat spectrum radio quasar with a redshift of 1.522 (White et al. 1988, ApJ, 327, 561).

  18. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  19. Disentangling the gamma-ray emission towards Cygnus X: Sh2-104

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric

    2015-09-01

    We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.

  20. Analysis of 161Tb by radiochemical separation and liquid scintillation counting

    DOE PAGES

    Jiang, J.; Davies, A.; Arrigo, L.; ...

    2015-12-05

    The determination of 161Tb activity is problematic due to its very low fission yield, short half-life, and the complication of its gamma spectrum. At AWE, radiochemically purified 161Tb solution was measured on a PerkinElmer 1220 Quantulus TM Liquid Scintillation Spectrometer. Since there was no 161Tb certified standard solution available commercially, the counting efficiency was determined by the CIEMAT/NIST Efficiency Tracing method. The method was validated during a recent inter-laboratory comparison exercise involving the analysis of a uranium sample irradiated with thermal neutrons. Lastly, the measured 161Tb result was in excellent agreement with the result using gamma spectrometry and the resultmore » obtained by Pacific Northwest National Laboratory.« less

  1. Scatter Fraction, Count Rates, and Noise Equivalent Count Rate of a Single-Bed Position RPC TOF-PET System Assessed by Simulations Following the NEMA NU2-2001 Standards

    NASA Astrophysics Data System (ADS)

    Couceiro, Miguel; Crespo, Paulo; Marques, Rui F.; Fonte, Paulo

    2014-06-01

    Scatter Fraction (SF) and Noise Equivalent Count Rate (NECR) of a 2400 mm wide axial field-of-view Positron Emission Tomography (PET) system based on Resistive Plate Chamber (RPC) detectors with 300 ps Time Of Flight (TOF) resolution were studied by simulation using Geant4. The study followed the NEMA NU2-2001 standards, using the standard 700 mm long phantom and an axially extended one with 1800 mm, modeling the foreseeable use of this PET system. Data was processed based on the actual RPC readout, which requires a 0.2 μs non-paralyzable dead time for timing signals and a paralyzable dead time (τps) for position signals. For NECR, the best coincidence trigger consisted of a multiple time window coincidence sorter retaining single coincidence pairs (involving only two photons) and all possible coincidence pairs obtained from Multiple coincidences, keeping only those for which the direct TOF-reconstructed point falls inside a tight region surrounding the phantom. For the 700 mm phantom, the SF was 51.8% and, with τps = 3.0 μs, the peak NECR was 167 kcps at 7.6 kBq/cm3. Using τps = 1.0 μs the NECR was 349 kcps at 7.6 kBq/cm3, and no peak was found. For the 1800 mm phantom, the SF was slightly higher, and the NECR curves were identical to those obtained with the standard phantom, but shifted to lower activity concentrations. Although the higher SF, the values obtained for NECR allow concluding that the proposed scanner is expected to outperform current commercial PET systems.

  2. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun

    2013-03-01

    A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.

  4. Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy

    NASA Astrophysics Data System (ADS)

    Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.

    2015-10-01

    Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.

  5. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  6. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.

    PubMed

    Heinz, M G; Colburn, H S; Carney, L H

    2001-10-01

    The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

  7. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  8. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  9. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  10. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    NASA Astrophysics Data System (ADS)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  11. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D >more » 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.« less

  12. FERMI LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-10-27

    In this paper, the discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10 4 yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 × 10 36 erg s –1 given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral π mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts tomore » $$\\bar{n}_{\\rm H}W_p \\simeq 5\\times 10^{51}\\ (D/6\\ {\\rm kpc})^2\\ \\rm erg\\ cm^{-3}$$. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. Finally, the Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.« less

  13. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: Christopher.Kurz@physik.uni-muenchen.de; Bauer, Julia; Conti, Maurizio

    Purpose: External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β{sup +}-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small numbermore » of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. Methods: The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the

  14. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring.

    PubMed

    Kurz, Christopher; Bauer, Julia; Conti, Maurizio; Guérin, Laura; Eriksson, Lars; Parodi, Katia

    2015-07-01

    External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β(+)-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small number of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the recommended reconstruction scheme

  15. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  16. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  17. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array.

    PubMed

    Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André

    2016-12-12

    We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

  18. Prompt gamma imaging of proton pencil beams at clinical dose rate

    NASA Astrophysics Data System (ADS)

    Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.

    2014-10-01

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.

  19. Role of gamma interferon in a neonatal mouse model of group B streptococcal disease.

    PubMed Central

    Cusumano, V; Mancuso, G; Genovese, F; Delfino, D; Beninati, C; Losi, E; Teti, G

    1996-01-01

    The aim of this study was to assess the role of gamma interferon (IFN-gamma) in a neonatal mouse model of group B streptococcal (GBS) sepsis. IFN-gamma was produced by spleen cells at 24, 48, and 72 h after GBS challenge. Treatment with anti-IFN-gamma at 6 h before challenge totally abrogated the IFN-gamma response but did not affect survival. Subcutaneous administration of recombinant IFN-gamma (2,500 IU per pup) at 18 h after challenge resulted in increased survival time and reduced blood colony counts at 48 and 72 h. In vitro preincubation of neonatal whole blood with IFN-gamma before the addition of GBS resulted in significant restriction of bacterial growth. These data indicate that administration of recombinant IFN-gamma can partially restore impaired host defenses against GBS in neonatal mice. This cytokine may be useful for the treatment of neonatal infections. PMID:8757817

  20. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  1. Data analysis of the COMPTEL instrument on the NASA gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Diehl, R.; Bennett, K.; Collmar, W.; Connors, A.; Denherder, J. W.; Hermsen, W.; Lichti, G. G.; Lockwood, J. A.; Macri, J.; Mcconnell, M.

    1992-01-01

    The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied.

  2. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  3. MCNPX evaluation of gamma spectrometry results in high radon concentration areas.

    PubMed

    Thinová, L; Solc, J

    2014-07-01

    The radon concentration in underground workplaces may reach tens of thousands of Bq m(-3). A simple MCNPXTM Monte Carlo (MC) model of a cave was developed to estimate the influence of radon on the in situ gamma spectrometry results in various geometries and radon concentrations. The detector total count rate was obtained as the sum of the individual count rates due to 214Bi in the air, radon in the walls and deposition of radon daughters on surfaces. The MC model was then modified and used in the natural conditions of the Mladeč Caves, Czech Republic. The content of 226Ra was calculated from laboratory gamma spectrometry measurements, and the concentrations of unattached and attached 214Bi were measured using the FRITRA4 device (SMM-Prague). We present a comparison of the experimental results with results calculated by the MCNPXTM model of the Gamma Surveyor spectrometry probe (GF Instruments) with a 3″×3″ NaI(Tl) detector and a 2″×2″ BGO detector. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Time-resolved gamma spectroscopy of single events

    NASA Astrophysics Data System (ADS)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  5. Low Background Counting at LBNL

    DOE PAGES

    Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...

    2015-03-24

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less

  6. The interference of medical radionuclides with occupational in vivo gamma spectrometry.

    PubMed

    Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B

    2003-06-01

    Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.

  7. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  8. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Joglekar, P. V.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886.

  9. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, P. V.; Gladen, R.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    2015-03-01

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  10. Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, P. E.; Lehmann, H.; Jolie, J.

    2001-08-01

    Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less

  11. Comparison of digital signal processing modules in gamma-ray spectrometry.

    PubMed

    Lépy, Marie-Christine; Cissé, Ousmane Ibrahima; Pierre, Sylvie

    2014-05-01

    Commercial digital signal-processing modules have been tested for their applicability to gamma-ray spectrometry. The tests were based on the same n-type high purity germanium detector. The spectrum quality was studied in terms of energy resolution and peak area versus shaping parameters, using a Eu-152 point source. The stability of a reference peak count rate versus the total count rate was also examined. The reliability of the quantitative results is discussed for their use in measurement at the metrological level. © 2013 Published by Elsevier Ltd.

  12. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Angellier, G.; Balleyguier, L.; Dauvergne, D.; Freud, N.; Hérault, J.; Létang, J. M.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y.

    2017-04-01

    For the purpose of detecting deviations from the prescribed treatment during particle therapy, the integrals of uncollimated prompt gamma-ray timing distributions are investigated. The intention is to provide information, with a simple and cost-effective setup, independent from monitoring devices of the beamline. Measurements have been performed with 65 MeV protons at a clinical cyclotron. Prompt gamma-rays emitted from the target are identified by means of time-of-flight. The proton range inside the PMMA target has been varied via a modulator wheel. The measured variation of the prompt gamma peak integrals as a function of the modulator position is consistent with simulations. With detectors covering a solid angle of 25 msr (corresponding to a diameter of 3-4 in. at a distance of 50 cm from the beam axis) and 108 incident protons, deviations of a few per cent in the prompt gamma-ray count rate can be detected. For the present configuration, this change in the count rate corresponds to a 3 mm change in the proton range in a PMMA target. Furthermore, simulation studies show that a combination of the signals from multiple detectors may be used to detect a misplacement of the target. A different combination of these signals results in a precise number of the detected prompt gamma rays, which is independent on the actual target position.

  13. Observation and Simulations of the Backsplash Effects in High-Energy Gamma-Ray Telescopes Containing a Massive Calorimeter

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.; Ormes, Jonathan F.; Hartman, Robert C.; Johnson, Thomas E.; Mitchell, John W.; Thompson, David J.

    1999-01-01

    Beam test and simulation results are presented for a study of the backsplash effects produced in a high-energy gamma-ray detector containing a massive calorimeter. An empirical formula is developed to estimate the probability (per unit area) of backsplash for different calorimeter materials and thicknesses, different incident particle energies, and at different distances from the calorimeter. The results obtained are applied to the design of Anti-Coincidence Detector (ACD) for the Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST).

  14. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.

    PubMed

    Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A

    1985-08-01

    Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.

  15. A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.

    1995-07-01

    The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).

  16. Radon Detection and Counting

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2004-11-01

    One of the daughter products of the naturally occuring U 238 decay chain is the colorless, odorless, inert gas radon. The daughter products of the radon, from Po 218 through Po 214, can remain in the lungs after breathing radon that has diffused into the atmosphere. Radon testing of homes before sale or purchase is necessary in many parts of the U.S. Testing can be accomplished by the simple procedure of exposing a canister of activated charcoal to the ambient air. Radon atoms in the air are adsorbed onto the surface of the charcoal, which is then sealed in the canister. Gamma rays of the daughter products of the radon, in particular Pb 214 and Bi 214, can then be detected in low background counting system. Radon remediation procedures are encouraged for radon activities in the air greater than 4 pCi/L.

  17. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    NASA Astrophysics Data System (ADS)

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  18. WBC count

    MedlinePlus

    Leukocyte count; White blood cell count; White blood cell differential; WBC differential; Infection - WBC count; Cancer - WBC count ... called leukopenia. A count less than 4,500 cells per microliter (4.5 × 10 9 /L) is ...

  19. Cosmological Distance Scale to Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Azzam, W. J.; Linder, E. V.; Petrosian, V.

    1993-05-01

    The source counts or the so-called log N -- log S relations are the primary data that constrain the spatial distribution of sources with unknown distances, such as gamma-ray bursts. In order to test galactic, halo, and cosmological models for gamma-ray bursts we compare theoretical characteristics of the log N -- log S relations to those obtained from data gathered by the BATSE instrument on board the Compton Observatory (GRO) and other instruments. We use a new and statistically correct method, that takes proper account of the variable nature of the triggering threshold, to analyze the data. Constraints on models obtained by this comparison will be presented. This work is supported by NASA grants NAGW 2290, NAG5 2036, and NAG5 1578.

  20. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-12-01

    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (˜10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5ergscm-2 to F<1200ergscm-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈33Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

  1. Quantitative NDA of isotopic neutron sources.

    PubMed

    Lakosi, L; Nguyen, C T; Bagi, J

    2005-01-01

    A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.

  2. Near surface gamma-ray and electric field enhancements during disturbed weather: combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-04-01

    We present correlations found between ground-level gamma-ray enhancements with precipitation and strong electric fields typical of thunderstorms. The data was obtained at the Cosmic Ray Observatory located on the western slopes of Mt. Hermon in northern Israel (altitude 2020 m ASL). During several thunderstorms in October and November 2015, we recorded extended periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field (Ez). We distinguish between two types of events based on the behavior of these parameters: (a) slow increase (up to 300 minutes) of atmospheric gamma ray radiation due to radon progeny washout along with minutes of Ez enhancement, which were not associated with the occurrences of near-by CG lightning discharges, and (b) rapid 30 minutes-long bursts of gamma rays, coinciding with much shorter Ez enhancements that were associated with the occurrences of near-by CG lightning discharges, and were superimposed on the radiation from radon daughters at ground level washed out by precipitation. We conclude that the superposition of accelerated high energy electrons by thunderstorm electric fields with the radon progeny washout explains the relatively fast gamma-ray increase observed at ground level, where the minutes-scale vertical electric field enhancement are presumably caused due to near-by convective clouds. Our results show that the mean half-life depletion times of the residual nuclei that were produced during events without lightning occurrences were between 25-65 minutes, compared to 55-100 minutes when lightning were present, indicating that different types of nuclei were involved.

  3. RADIATION GENETICS IN WHEAT. VII. COMPARISON OF RADIATION EFFECTS OF BETA- AND GAMMA-RAYS ON DIPLOID WHEAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, S.

    1962-01-01

    Seeds of Triticum monococcum flavescens were soaked in P/sup 32/ and I/ sup 131/solutions for 2 days before sowing, to compare the effects of beta and gamma radiations. Radioactive solutions of pH 6-7 contained 0.05-0.8 mc/gr P/sup 32/ and 0.2--0.8 mc/g I/sup 131/. For comparison, seeds soaked in water for 2 days were exposed to gamma radiation with Co/sup 60/ at the dosages 2.5, 5, 10, and 20 kr. The growth of seedlings, height of mature plants, single-spike fertility, and chromosome aberrations of treated plants in X/sub 1/ and chlorophyll mutations in X/sub 2/ were compared for beta and gammamore » irradiation. The higher the dosage of beta and gamma rays, the more delayed were emergence and growth of seedlings and the lower were survival rate, height of mature plants, and fertility. The relation between the inhibition of seedling growth and dosage of beta and gamma radiations coincides roughly with that between the decrease of survival rate or- fertility and dosage. There was no emergence of seedlings at 20 kr gamma radiation and 0.8 mc/g P/sup 32/ beta radiation. The effects of beta radiation from 0.15-0.2 mc/g P/sup 32/ and 0.8 mc/g I/sup 131/ solutions correspond roughly to those of 2.5 kr gamma radiation. As to chromosome aberrations and chlorophyll mutations, the effects of 2.5 kr gamma radiation coincide roughly with those of 0.1 mc/g P/sup 32/ and 0.6-0.8 mc/g I/sup 131/ solution. If it is assumed that the effects of beta radiation are confined only to the embryo, then a 0.2 mc/g P/sup 32/ solution equals about 2.4 krad. This will account for the present data. (auth)« less

  4. SEARCH FOR GAMMA RAY BURSTS WITH THE ARGO-YBJ DETECTOR IN SCALER MODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aielli, G.; Camarri, P.; Bacci, C.

    2009-07-10

    We report on the search for gamma ray bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, People's Republic of China, 4300 m above sea level), active surface ({approx}6700 m{sup 2} of Resistive Plate Chambers), and large field of view ({approx}2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carriedmore » out using the 'single particle technique', i.e., counting all the particles hitting the detector without measurement of the energy and arrival direction of the primary gamma rays. Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites occurred within the field of view of ARGO-YBJ (zenith angle {theta} {<=} 45 deg.). It was possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data finding no statistically significant emission. With a lack of detected spectra in this energy range fluence upper limits are profitable, especially when the redshift is known and the correction for the extragalactic absorption can be considered. The obtained fluence upper limits reach values as low as 10{sup -5} erg cm{sup -2} in the 1-100 GeV energy region. Besides this individual search for a higher energy counterpart, a statistical study of the stack of all the GRBs both in time and in phase was made, looking for a common feature in the GRB high-energy emission. No significant signal has been detected.« less

  5. Rejection of randomly coinciding events in Li_2^{100}MoO_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    NASA Astrophysics Data System (ADS)

    Chernyak, D. M.; Danevich, F. A.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; Marcillac, P. de; Marnieros, S.; Nones, C.; Olivieri, E.; Poda, D. V.; Tretyak, V. I.

    2017-01-01

    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate ^{100} Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double-beta decay of ^{100} Mo in enriched Li_2^{100} MoO_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of {˜ }750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of {˜ }6× 10^{-5} counts/(keV\\cdot kg\\cdot y), to the background counting rate in the region of interest for a large volume ({˜ }90 cm^3) Li_2^{100} MoO_4 detector. This background level is very encouraging in view of a possible use of the Li_2^{100} MoO_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project.

  6. Design and performance of A 3He-free coincidence counter based on parallel plate boron-lined proportional technology

    DOE PAGES

    Henzlova, D.; Menlove, H. O.; Marlow, J. B.

    2015-07-01

    Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less

  7. Outcrop Gamma-ray Analysis of the Cretaceous mesaverde Group: Jicarilla Apache Indian Reservation, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie; Dunbar, Robyn Wright

    2001-04-25

    This report presents the results of an outcrop gamma-ray survey of six selected measured sections included in the original report. The primary objective of this second study is to provide a baseline to correlate from the outcrop and reservoir model into Mesaverde strata in the San Juan Basin subsurface. Outcrop logs were generated using a GAD-6 gamma-ray spectrometer that simultaneously recorded total counts, potassium, uranium, and thorium data.

  8. A phoswich detector for simultaneous alpha-gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Moghadam, S. Rajabi; Feghhi, S. A. H.; Safari, M. J.

    2015-11-01

    Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241Am) based on the alpha-gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.

  9. Tailoring point counts for inference about avian density: dealing with nondetection and availability

    USGS Publications Warehouse

    Johnson, Fred A.; Dorazio, Robert M.; Castellón, Traci D.; Martin, Julien; Garcia, Jay O.; Nichols, James D.

    2014-01-01

    Point counts are commonly used for bird surveys, but interpretation is ambiguous unless there is an accounting for the imperfect detection of individuals. We show how repeated point counts, supplemented by observation distances, can account for two aspects of the counting process: (1) detection of birds conditional on being available for observation and (2) the availability of birds for detection given presence. We propose a hierarchical model that permits the radius in which birds are available for detection to vary with forest stand age (or other relevant habitat features), so that the number of birds available at each location is described by a Poisson-gamma mixture. Conditional on availability, the number of birds detected at each location is modeled by a beta-binomial distribution. We fit this model to repeated point count data of Florida scrub-jays and found evidence that the area in which birds were available for detection decreased with increasing stand age. Estimated density was 0.083 (95%CI: 0.060–0.113) scrub-jays/ha. Point counts of birds have a number of appealing features. Based on our findings, however, an accounting for both components of the counting process may be necessary to ensure that abundance estimates are comparable across time and space. Our approach could easily be adapted to other species and habitats.

  10. Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Murchenko, A. E.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Kheymits, M. D.

    Usually instruments for high-energy γ-quanta registration consists of converter (where γ-quanta produced pairs) and calorimeter for particles energy measurements surrounded by anticoincidence shield used to events identification (whether incident particle was charged or neutral). The influence of pair formation by γ-quanta in shield and the backsplash (moved in the opposite direction particles created due high energy γ-rays interact with calorimeter) should be taken into account. It leads to decrease both effective area and registration efficiency at E>10 GeV. In the presented article the event recognizing methods used in Fermi/LAT trigger system is considered in comparison with the ones applied in counting and triggers signals formation system of gamma-telescope GAMMA-400. The GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new high-apogee space γ-observatory. The GAMMA-400 consist of converter-tracker based on silicon-strip coordinate detectors interleaved with tungsten foils, imaging calorimeter make of 2 layers of double (x, y) silicon strip coordinate detectors interleaved with planes of CsI(Tl) crystals and the electromagnetic calorimeter CC2 consists only of CsI(Tl) crystals. Several plastics detections systems used as anticoincidence shield, for particles energy and moving direction estimations. The main differences of GAMMA-400 constructions from Fermi/LAT one are using the time-of-flight system with base of 50 cm and double layer structure of plastic detectors provides more effective particles direction definition and backsplash rejection. Also two calorimeters in GAMMA-400 composed the total absorbtion spectrometer with total thickness ∼ 25 X0 or ∼1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). It provides energy resolution 1-2% for 10 GeV-3.0×103 GeV events while the Fermi/LAT energy resolution does not reach such a

  11. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  12. Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls

    NASA Astrophysics Data System (ADS)

    Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong

    2013-01-01

    The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.

  13. Fermi LAT detection of gamma-ray flaring activity from the blazar MG J221916+1806 through the Fermi All-sky Variability Analysis (FAVA)

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Kocevski, D.; Gasparrini, D.; Buehler, R.; Thompson, D.; Ciprini, S.

    2014-03-01

    During the week between March 17 and March 24, 2014, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increased gamma-ray activity from a source positionally coincident with the flat-spectrum radio quasar MG J221916+1806 (also known as 2FGL J2219.1+1805, Nolan et al., 2012, ApJS, 199, 31, and CGRaBS J2219+1806, Healey et al. ...

  14. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    NASA Astrophysics Data System (ADS)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  15. Detailed Investigation of the Gamma-Ray Emission in the Vicinity of SNR W28 with FERMI-LAT

    NASA Technical Reports Server (NTRS)

    Hanabata, Y.; Katagiri, H.; Hewitt, John William; Ballet, J.; Fukazawa, Y.; Fukui, Y.; Hayakawa, T.; Lemoine-Goumard, M.; Pedaletti, G.; Strong, A. W.; hide

    2014-01-01

    We present a detailed investigation of the Gamma-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4-0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant ? -ray emission spatially coincident with TeV sources HESS J1800-240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV Gamma-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s (exp-1). Under the assumption that the Gamma-ray emission toward HESS J1800-240A, B, and C comes from 3.14(exp0) decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than is approximately 2 × 10(exp49) erg. The emission from Source W can also be explained with the same CR escape scenario.

  16. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  17. Test results of a new detector system for gamma ray isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.

    1993-08-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticizedmore » NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.« less

  18. SU-E-I-79: Source Geometry Dependence of Gamma Well-Counter Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Belanger, A; Kijewski, M

    Purpose: To determine the effect of liquid sample volume and geometry on counting efficiency in a gamma well-counter, and to assess the relative contributions of sample geometry and self-attenuation. Gamma wellcounters are standard equipment in clinical and preclinical studies, for measuring patient blood radioactivity and quantifying animal tissue uptake for tracer development and other purposes. Accurate measurements are crucial. Methods: Count rates were measured for aqueous solutions of 99m- Tc at four liquid volume values in a 1-cm-diam tube and at six volume values in a 2.2-cm-diam vial. Total activity was constant for all volumes, and data were corrected formore » decay. Count rates from a point source in air, supported by a filter paper, were measured at seven heights between 1.3 and 5.7 cm from the bottom of a tube. Results: Sample volume effects were larger for the tube than for the vial. For the tube, count efficiency relative to a 1-cc volume ranged from 1.05 at 0.05 cc to 0.84 at 3 cc. For the vial, relative count efficiency ranged from 1.02 at 0.05 cc to 0.87 at 15 cc. For the point source, count efficiency relative to 1.3 cm from the tube bottom ranged from 0.98 at 1.8 cm to 0.34 at 5.7 cm. The relative efficiency of a 3-cc liquid sample in a tube compared to a 1-cc sample is 0.84; the average relative efficiency for the solid sample in air between heights in the tube corresponding to the surfaces of those volumes (1.3 and 4.8 cm) is 0.81, implying that the major contribution to efficiency loss is geometry, rather than attenuation. Conclusion: Volume-dependent correction factors should be used for accurate quantitation radioactive of liquid samples. Solid samples should be positioned at the bottom of the tube for maximum count efficiency.« less

  19. RALPH: An online computer program for acquisition and reduction of pulse height data

    NASA Technical Reports Server (NTRS)

    Davies, R. C.; Clark, R. S.; Keith, J. E.

    1973-01-01

    A background/foreground data acquisition and analysis system incorporating a high level control language was developed for acquiring both singles and dual parameter coincidence data from scintillation detectors at the Radiation Counting Laboratory at the NASA Manned Spacecraft Center in Houston, Texas. The system supports acquisition of gamma ray spectra in a 256 x 256 coincidence matrix (utilizing disk storage) and simultaneous operation of any of several background support and data analysis functions. In addition to special instruments and interfaces, the hardware consists of a PDP-9 with 24K core memory, 256K words of disk storage, and Dectape and Magtape bulk storage.

  20. Theoretical and experimental investigations of coincidences in Poisson distributed pulse trains and spectral distortion caused by pulse pileup

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-03-01

    The occurrence rates of pulse strings, or sequences of pulses with interarrival times less than the resolving time of the pulse-height analysis system used to acquire spectra, are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern analog to digital converters, were used to generate pileup spectra due to coincidences between two pulses (first order pileup) and three pulses (second order pileup) for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum. The use of a flat spectrum showed the first order pileup distorted the spectrum to a linear ramp with a pileup tail. A correction algorithm was successfully applied to correct entire spectra (simulated and real) for first and second order pileups.

  1. Implications of the IRAS data for galactic gamma ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far surveys of the galaxy, logically consistent picture of the large scale distribution of galactic gas and cosmic rays was derived, tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of te galaxy, the large scale radial distributions of galactic far-infrared emission independently was obtained for both the Northern and Southern Hemisphere sides of the Galaxy. The dominant feature in these distributions was found to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Evidence was found for spiral arm features. Strong correlations are evident between the large scale galactic distributions of far-infrared emission, gamma-ray emission and total CO emission. There is particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale. The 5 kpc ring was evident in existing galactic gamma-ray data. The extent to which the more detailed spiral arm features are evident in the more resolved EGRET (Energetic Gamma-Ray Experimental Telescope) data will help to determine more precisely the propagation characteristics of cosmic rays.

  2. Exploitation of Geometric Occlusion and Covariance Spectroscopy in a Gamma Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2013-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory has recently used an array of six small-footprint (1-inch diameter by 3-inch long) cylindrical crystals of thallium-doped sodium iodide scintillators to obtain angular information from discrete gamma ray–emitting point sources. Obtaining angular information in a near-field measurement for a field-deployed gamma sensor is a requirement for radiological emergency work. Three of the sensors sit at the vertices of a 2-inch isosceles triangle, while the other three sit on the circumference of a 3-inch-radius circle centered in this triangle. This configuration exploits occlusion of sensors, correlation from Compton scattering within a detector array,more » and covariance spectroscopy, a spectral coincidence technique. Careful placement and orientation of individual detectors with reference to other detectors in an array can provide improved angular resolution for determining the source position by occlusion mechanism. By evaluating the values of, and the uncertainties in, the photopeak areas, efficiencies, branching ratio, peak area correction factors, and the correlations between these quantities, one can determine the precise activity of a particular radioisotope from a mixture of radioisotopes that have overlapping photopeaks that are ordinarily hard to deconvolve. The spectral coincidence technique, often known as covariance spectroscopy, examines the correlations and fluctuations in data that contain valuable information about radiation sources, transport media, and detection systems. Covariance spectroscopy enhances radionuclide identification techniques, provides directional information, and makes weaker gamma-ray emission—normally undetectable by common spectroscopic analysis—detectable. A series of experimental results using the concept of covariance spectroscopy are presented.« less

  3. Neutron and gamma-ray dose-rates from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distancemore » from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.« less

  4. Preliminary design and performance of an advanced gamma ray spectrometer for future orbiter missions. [composition and evolution of planets

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.

    1975-01-01

    A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.

  5. A new NIST primary standardization of 18F.

    PubMed

    Fitzgerald, R; Zimmerman, B E; Bergeron, D E; Cessna, J C; Pibida, L; Moreira, D S

    2014-02-01

    A new primary standardization of (18)F by NIST is reported. The standard is based on live-timed beta-gamma anticoincidence counting with confirmatory measurements by three other methods: (i) liquid scintillation (LS) counting using CIEMAT/NIST (3)H efficiency tracing; (ii) triple-to-double coincidence ratio (TDCR) counting; and (iii) NaI integral counting and HPGe γ-ray spectrometry. The results are reported as calibration factors for NIST-maintained ionization chambers (including some "dose calibrators"). The LS-based methods reveal evidence for cocktail instability for one LS cocktail. Using an ionization chamber to link this work with previous NIST results, the new value differs from the previous reports by about 4%, but appears to be in good agreement with the key comparison reference value (KCRV) of 2005. © 2013 Published by Elsevier Ltd.

  6. STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu

    2011-09-10

    An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less

  7. Improvement of microbiological safety of sous-vide meals by gamma radiation

    NASA Astrophysics Data System (ADS)

    Farkas, J.; Polyák-Fehér, K.; Andrássy, É.; Mészáros, L.

    2002-03-01

    Experimental batches of smoked-cured pork in stewed beans sauce were inoculated with spores of psychrotrophic Bacillus cereus, more heat and radiation resistant than spores of non-proteolytic C. botulinum. After vacuum packaging, the meals were treated with combinations of pasteurizing heat treatments and gamma irradiation of 5 kGy. Prior and after treatments, and periodically during storage at 10°C, total aerobic and total anerobic viable cell counts, and selectively, the viable cell counts of B. cereus and sulphite-reducing clostridia have been determined. The effects of the treatment order as well as addition of nisin to enhance the preservative efficiency of the physical treatments were also studied. Heat-sensitization of bacterial spores surviving irradiation occurred. The quality-friendly sous-vide cooking in combination with this medium dose gamma irradiation and/or nisin addition increased considerably the microbiological safety and the keeping quality of the meals studied. However, approx. 40% loss of thiamin content occurred as an effect of combination treatments, and adverse sensorial effects may also limit the feasible radiation doses or the usable concentrations of nisin.

  8. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, A.; Roberts, O. J.; Connaughton, V.

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  9. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

    NASA Astrophysics Data System (ADS)

    Goldstein, A.; Veres, P.; Burns, E.; Briggs, M. S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C. A.; Preece, R. D.; Poolakkil, S.; Roberts, O. J.; Hui, C. M.; Connaughton, V.; Racusin, J.; von Kienlin, A.; Dal Canton, T.; Christensen, N.; Littenberg, T.; Siellez, K.; Blackburn, L.; Broida, J.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; McEnery, J.; Meegan, C. A.; Paciesas, W. S.; Stanbro, M.

    2017-10-01

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  10. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  11. [Aerosolized recombinant interferon-gamma prevent antigen-induced eosinophil recruitment in guinea pig trachea].

    PubMed

    Gao, Y; Chenping; Lin, X P

    1997-10-01

    In order to determine whether interferon-gamma (IFN-gamma) inhibits eosinphil infiltration in the trachea of asthmatic guinea pigs induced by Rhizopus nigricans. We had administered aerosolized rIFN-gamma in the tracheas of 30 sensitized guinea pigs which had been divided into six groups, then teated animal inhaled rIFN-gamma of 5 x 10(4), 20 x 10(4), and 40 x 10(4) concentration, BDP and normal saline respectively at 24 h, 12 h, 2 h before being challenged. (1) Provocation positive rates decreased in 40 x 10(4) rIFN-gamma and BDP group compared with that in normal saline group and before intervention (P < 0.05), airway resistence decreased (P < 0.01). (2) The administration of aerosolized rIFN-gamma (40 x 10(4)) and BDP also decreased fungus-induced eosnophils but not other cells infiltration in the trachea. (3) In BALF, Eos count and ECP level were obviously lower than those in other groups. However, eosinophil numbers did not show significant change in the peripheral blood. Local administration of rIFN-gamma (40 x 10(4)) may reduce airway inflammation and intervene asthmatic attack by inhibition of Eos, ECP infiltration in airways.

  12. Glycinergic inhibition tunes coincidence detection in the auditory brainstem

    PubMed Central

    Myoga, Michael H.; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-01-01

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. PMID:24804642

  13. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  14. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  15. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE PAGES

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  16. Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellizzoni, A.; Pilia, M.; Possenti, M.

    2008-12-24

    AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. It provides large sky exposure levels (> or approx. 10{sup 9} cm{sup 2} s per year on the Galactic Plane) with sensitivity peaking at E{approx}400 MeV(and simultaneous X-ray monitoring in the 18-60 keV band) where the bulk of pulsar energy output is typically released. Its {approx}1 {mu}s is absolute time tagging capability makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we summarize the timing results obtained during themore » first year of AGILE observations of the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-4. AGILE collected a large number of gamma-ray photons from EGRET pulsars ({approx}10,000 pulsed counts for Vela) in only few months of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves and paving the way to the discovery of new gamma-ray pulsars.« less

  17. A coincidence measurement of the D(gamma, pp pi(-)) cross section in the region of the Delta resonance

    NASA Astrophysics Data System (ADS)

    Quraan, Maher A.

    Photonuclear reactions are excellent means for understanding final state interactions (FSI). The photon interacts only electromagnetically, allowing a clean separation of the strong interaction channels in the final state. The availability of high duty factor electron machines and large acceptance detectors in the past decade have allowed a further investigation of these effects covering wider regions of phase space. In this experiment, we have successfully measured the D(/gamma, pp/pi/sp-) reaction cross section at the Saskatchewan Accelerator Laboratory (SAL) utilizing the Saskatchewan- Alberta Large Acceptance Detector (SALAD). This is the first measurement of the /gamma D /to pp/pi/sp--cross section covering a wide range of phase space with an attempt to study the FSI's and the /Delta - N interaction that has successfully reproduced the normalizations. The cross section for this reaction is compared to the calculation of J. M. Laget. Laget's theory is quite successful in describing the shapes of the distributions. as well as the overall magnitude of the cross section. The different FSI's and the /Delta - N interaction have an overall effect of 10%-15% on the single differential cross section, with the calculation that includes /Delta - N interaction having the best normalization compared to the data.

  18. Nondestructive determination of radionuclides in lunar samples using a large low-background gamma-ray spectrometer and a novel application of least-squares fitting

    NASA Technical Reports Server (NTRS)

    Eldridge, J. S.; Okelly, G. D.; Northcutt, K. J.; Schonfeld, E.

    1972-01-01

    Dual-parameter gamma ray spectrometer systems with large volume Nal (Tl) crystals and low backgrounds were used for nondestructive determination of K, Th, U and cosmic ray produced radionuclides in 60 lunar samples. The total weight of samples measured with this system is 28 kg, and the individual sample weights varied from 2 to 2300 g. Samples from Apollo 11, 12, 14, 15 and 16 were measured. Operation of the spectrometers in the coincidence mode and analyzing single coincidence spectra permits the simultaneous determination of 8-10 radionuclides in each lunar sample.

  19. A cosmic gamma-ray burst on May 14, 1975

    NASA Technical Reports Server (NTRS)

    Herzo, D.; Dayton, B.; Zych, A. D.; White, R. S.

    1975-01-01

    A cosmic gamma-ray burst is reported that occurred at 29309.11 s UTC, May 14, 1975. The burst was detected at an atmospheric depth of 4 g/sq cm residual atmosphere with the University of California double scatter gamma-ray telescope launched on a balloon from Palestine, Texas at 1150 UTC, May 13, 1975. The burst was observed both in the single scatter mode by the top liquid scintillator tank in anti-coincidence with the surrounding plastic scintillator and in the double scatter mode from which energy and directional information are obtained. The burst is 24 standard deviations above the background for single scatter events. The total gamma-ray flux in the burst, incident on the atmosphere with photon energy greater than 0.5 MeV, is 0.59 + or - 0.15 photons/sq cm. The initial rise time to 90% of maximum is 0.015 + or - 0.005 s and the duration is 0.11 s. Time structure down to the 5 ms resolution of the telescope is seen. The mean flux over this time period is 5.0 + or - 1.3 photons/sq cm/s and the maximum flux is 8.5 + or - 2.1 photons/sq cm/s.

  20. Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.

    2005-03-01

    The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.

  1. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  2. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.

    PubMed

    Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin

    2017-03-22

    The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to

  3. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection

    PubMed Central

    Hetrick, Vaughn L.; Berke, Joshua D.

    2017-01-01

    The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex

  4. Anthropic versus cosmological solutions to the coincidence problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, A.; Avelino, P. P.; Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto

    2011-05-15

    In this paper, we investigate possible solutions to the coincidence problem in flat phantom dark-energy models with a constant dark-energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the {Lambda} cold dark matter model. This relates a cosmological solution to the coincidence problem with a dynamical dark-energymore » component having an equation-of-state parameter not too close to -1 at the present time. We further show that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.« less

  5. A scalable multi-photon coincidence detector based on superconducting nanowires.

    PubMed

    Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K

    2018-06-04

    Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.

  6. Did A Galactic Gamma-Ray Burst Kill the Dinosaurs?

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1997-12-01

    Gamma-ray bursts now appear to be primarily of extragalactic origin. Statistically, assuming isotropic emission, the observed event rates and fluxes imply that one event occurs per 10(4) \\ - 10(6) \\ years per galaxy, with about 10(51) \\ - 10(53) \\ ergs in gamma-rays emitted per event. Unless the Milky Way is unusual, a gamma-ray burst should occur within 10(2) \\ - 10(3) \\ pc of the Sun in a time span of order 10(8) \\ years. Independent of the underlying cause of the event, it would irradiate the solar system with a brief flash of MeV gamma-rays with a fluence as large as 10(9) - 10(11) \\ erg cm(-2) . What is the effect of such an event on the Earth and objects nearby? Ruderman (\\underbar{Science}, 184, 1079, 1974) and subsequent authors have considered a number of effects of a flash of gamma-rays from a nearby supernova explosion on the Earth's atmosphere, and on its biota. However, with regard to the demise of the dinosaurs, it appears that there was a marked increase in the deposition rate of the rare earth iridium coincident with their extinction. For this reason, an asteroid-Earth impact has been considered the leading contender for the death of the dinosaurs. Here we consider a new mechanism for mass biological extinctions, caused by small comets nudged into the inner solar system by nearby gamma-ray bursts. If comets populate the Oort cloud with a wide distribution of masses, radii and orbital eccentricities, we find that small (< 1 km), low density (10(-2) \\ gm cm(-3) ) objects in highly eccentric orbits can be injected into the inner solar system by a nearby gamma-ray burst. For a relatively brief period of time, the near Earth comet population would increase dramatically. The consequent increased probability of comet-Earth impacts of appropriate energy and material content could account for many of the characteristics of the Cretaceous-Tertiary or other terrestrial mass biological extinctions.

  7. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deyglun, C.; Simony, B.; Perot, B.

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microsecondsmore » are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a

  9. Analysis of high resolution satellite data for cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Nakano, G. H.; Reagan, J. B.

    1976-01-01

    Cosmic gamma ray bursts detected a germanium spectrometer on the low altitude satellite 1972-076B were surveyed. Several bursts with durations ranging from approximately 0.032 to 15 seconds were found and are tabulated. The frequency of occurrence/intensity distribution of these events was compared with the S to the -3/2 power curve of confirmed events. The longer duration events fall above the S to the -3/2 power curve of confirmed events, suggesting they are perhaps not all true cosmic gamma-ray bursts. The narrow duration events fall closely on the S to the -3/2 power curve. The survey also revealed several counting rate spikes, with durations comparable to confirmed gamma-ray bursts, which were shown to be of magnetospheric origin. Confirmation that energetic electrons were responsible for these bursts was achieved from analysis of all data from the complete payload of gamma-ray and energetic particle detectors on board the satellite. The analyses also revealed that the narrowness of the spikes was primarily spatial rather than temporal in character.

  10. Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield

    NASA Astrophysics Data System (ADS)

    Cramer, S. N.; Roussin, R. W.

    1981-11-01

    A Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield is presented. The energy range covered in the analysis is 15-2 MeV for neutron source energies. The multigroup MORSE code was used with the VITAMIN C 171-36 neutron-gamma-ray cross-section data set. Both neutron and gamma-ray count rates and unfolded energy spectra are presented and compared, with good general agreement, with experimental results.

  11. On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914

    NASA Astrophysics Data System (ADS)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Christensen, N.; Hui, C. M.; Kocevski, D.; Littenberg, T.; McEnery, J. E.; Racusin, J.; Shawhan, P.; Veitch, J.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Giles, M. M.; Gibby, M. H.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O. J.; Stanbro, M.; Veres, P.

    2018-01-01

    The weak transient detected by the Fermi Gamma-ray Burst Monitor (GBM) 0.4 s after GW150914 has generated much speculation regarding its possible association with the black hole binary merger. Investigation of the GBM data by Connaughton et al. revealed a source location consistent with GW150914 and a spectrum consistent with a weak, short gamma-ray burst. Greiner et al. present an alternative technique for fitting background-limited data in the low-count regime, and call into question the spectral analysis and the significance of the detection of GW150914-GBM presented in Connaughton et al. The spectral analysis of Connaughton et al. is not subject to the limitations of the low-count regime noted by Greiner et al. We find Greiner et al. used an inconsistent source position and did not follow the steps taken in Connaughton et al. to mitigate the statistical shortcomings of their software when analyzing this weak event. We use the approach of Greiner et al. to verify that our original spectral analysis is not biased. The detection significance of GW150914-GBM is established empirically, with a false-alarm rate (FAR) of ∼ {10}-4 Hz. A post-trials false-alarm probability (FAP) of 2.2× {10}-3 (2.9σ ) of this transient being associated with GW150914 is based on the proximity in time to the gravitational-wave event of a transient with that FAR. The FAR and the FAP are unaffected by the spectral analysis that is the focus of Greiner et al.

  12. Cascaded systems analysis of photon counting detectors.

    PubMed

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  13. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2017-07-01

    We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  14. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  15. Parameter Estimation in Astronomy with Poisson-Distributed Data. 1; The (CHI)2(gamma) Statistic

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.

    1999-01-01

    Applying the standard weighted mean formula, [Sigma (sub i)n(sub i)ssigma(sub i, sup -2)], to determine the weighted mean of data, n(sub i), drawn from a Poisson distribution, will, on average, underestimate the true mean by approx. 1 for all true mean values larger than approx.3 when the common assumption is made that the error of the i th observation is sigma(sub i) = max square root of n(sub i), 1).This small, but statistically significant offset, explains the long-known observation that chi-square minimization techniques which use the modified Neyman'chi(sub 2) statistic, chi(sup 2, sub N) equivalent Sigma(sub i)((n(sub i) - y(sub i)(exp 2)) / max(n(sub i), 1), to compare Poisson - distributed data with model values, y(sub i), will typically predict a total number of counts that underestimates the true total by about 1 count per bin. Based on my finding that weighted mean of data drawn from a Poisson distribution can be determined using the formula [Sigma(sub i)[n(sub i) + min(n(sub i), 1)](n(sub i) + 1)(exp -1)] / [Sigma(sub i)(n(sub i) + 1)(exp -1))], I propose that a new chi(sub 2) statistic, chi(sup 2, sub gamma) equivalent, should always be used to analyze Poisson- distributed data in preference to the modified Neyman's chi(exp 2) statistic. I demonstrated the power and usefulness of,chi(sub gamma, sup 2) minimization by using two statistical fitting techniques and five chi(exp 2) statistics to analyze simulated X-ray power - low 15 - channel spectra with large and small counts per bin. I show that chi(sub gamma, sup 2) minimization with the Levenberg - Marquardt or Powell's method can produce excellent results (mean slope errors approx. less than 3%) with spectra having as few as 25 total counts.

  16. Choral Counting

    ERIC Educational Resources Information Center

    Turrou, Angela Chan; Franke, Megan L.; Johnson, Nicholas

    2017-01-01

    The students in Ms. Moscoso's second-grade class gather on the rug after recess, ready for one of their favorite math warm-ups: Choral Counting. Counting is an important part of doing mathematics throughout the school; students count collections (Schwerdtfeger and Chan 2007) and solve problems using a variety of strategies, many of which are…

  17. Analysis of Nuclear Lifetimes Using the Gamma-ray Induced Doppler Shift Attenuation Method

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.

    2018-05-01

    Lifetime measurements allow extraction of fundamental information on the nature of the excited states of a nuclear system. Since nuclear lifetimes cover many orders of magnitude, a number of experimental techniques and detection setups have been developed depending on the range of the lifetime of interest. The Gamma-ray Induced Doppler Shift Attenuation (GRIDSA) Method presented here is applied to the measurement of very short lifetimes, in the femtosecond range. It allows determining the nuclear lifetime by measuring the Doppler shift of a gamma ray emitted from the state of interest, in different directions with respect to a coincident preceding gamma ray, populating the same state and inducing a recoil of the nucleus in the target material with velocities of the order of 104-105 m/s. We realized an experiment in order to test the GRIDSA technique for the measurement of fs lifetimes after (n,γ) reactions. The measurement was performed at the Institut Laue-Langevin (ILL) with the 8 Ge-clover detectors of the FIPPS array. Preliminary results are discussed.

  18. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  19. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production.

    PubMed

    Blasco, Manuel; Badenes, María Luisa; Del Mar Naval, María

    2016-09-01

    Successful haploid induction in loquat ( Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar 'Algerie' were pollinated using pollen of cultivars 'Changhong-3', 'Cox' and 'Saval Brasil' irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from 'Algerie' pollinated with 300-Gy-treated pollen of 'Saval Brasil' from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids.

  20. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    PubMed Central

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves

  1. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com; Sitek, Arkadiusz; Celler, Anna

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracermore » A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  2. In-Flight Observation of Gamma Ray Glows by ILDAS.

    PubMed

    Kochkin, Pavlo; van Deursen, A P J; Marisaldi, M; Ursi, A; de Boer, A I; Bardet, M; Allasia, C; Boissin, J-F; Flourens, F; Østgaard, N

    2017-12-16

    An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.

  3. In-Flight Observation of Gamma Ray Glows by ILDAS

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, A. P. J.; Marisaldi, M.; Ursi, A.; de Boer, A. I.; Bardet, M.; Allasia, C.; Boissin, J.-F.; Flourens, F.; Østgaard, N.

    2017-12-01

    An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.

  4. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Chris; Daigle, Stephen; Buckner, Matt

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ) 15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  5. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  6. Components of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  7. Einstein@home discovery of four young gamma-ray pulsars in Fermi LAT data

    DOE PAGES

    Pletsch, Holger J.; Guillemot, L.; Allen, B.; ...

    2013-11-26

    Here, we report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10 34—10 36 erg s –1. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hzmore » spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.« less

  8. EINSTEIN@HOME DISCOVERY OF FOUR YOUNG GAMMA-RAY PULSARS IN FERMI LAT DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, H. J.; Allen, B.; Aulbert, C.

    2013-12-10

    We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422–6138, J1522–5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range 6 × 10{sup 34}—10{sup 36} erg s{sup –1}. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 ismore » the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.« less

  9. DAMPE: A gamma and cosmic ray observatory in space

    NASA Astrophysics Data System (ADS)

    D'Urso, D.; Dampe Collaboration

    2017-05-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  10. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2003.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count and Families Count indicators have been combined into four new categories: health and health behaviors, educational involvement and achievement, family environment and…

  11. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  12. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  13. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal

  14. Radon and gamma rays anomalies observed in northern Taiwan: a possible connection with the seismicity near the subduction zone

    NASA Astrophysics Data System (ADS)

    Fu, C. C.; Lee, L. C.; Yang, T. F.; Wang, P. G.; Liu, T. K.; Walia, V.; Chen, C. H.; Lin, C. H.; Lai, T. H.; Giuliani, G.; Ouzounov, D.

    2015-12-01

    Taiwan is tectonically situated in a terrain resulting from the oblique collision between the Philippine Sea plate (PHS) and the Eurasian plate (EU). The continuous observations of soil radon for earthquake studies at the Tapingti station (TPT) have been recorded and are compared with the data from gamma rays observations at the Taiwan Volcano Observation station(YMSG), located north to the TPT station. Some anomalous high radon concentrations and gamma-ray counts at certain times can be identified. It is noted that the significant increase of soil radon concentrations were observed and followed by the increase in gamma-ray counts several days before the earthquakes, which occurred in eastern Taiwan. Many of these earthquakes are located within the subducting PHS beneath the EU to the north along the Ryukyu trench in northern Taiwan (e.g., ML=6.3 April 20, 2015). It is suggested that the pre-earthquake activities may be associated with slow geodynamic processes at the subduction interface, leading to the PHS movement to trigger radon enhancements at TPT station. Furthermore, the further movement of PHS may be locked by EU and accumulate elastic stress resulting in the increase of gamma rays due to an increase in the porosity and fractures below the YMSG station. The continuous monitoring on the multiple parameters can improve our understanding of the relationship between the observed radon and gamma-ray variations and the regional crustal stress/strain in the area.

  15. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  16. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  17. The Prompt Gamma Neutron Activation Analysis Facility at ICN—Pitesti

    NASA Astrophysics Data System (ADS)

    Bǎrbos, D.; Pǎunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-01

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performace of INAA method. A facility has been developed at Institute for Nuclear Research—Piteşti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA—facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system. Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φscd = 1.106 n/cm2/s with a cadmium ratio of:80. The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90° with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  18. [Protective effects of astaxanthin against oxidative damage induced by 60Co gamma-ray irradiation].

    PubMed

    Zhao, Wei; Jing, Xuejun; Chen, Chen; Cui, Jie; Yang, Mo; Zhang, Zunzhen

    2011-09-01

    To investigate the protection effect of haematococcus pluvialis (containing astaxanthin) against the impairment of anti-oxidative system and DNA damage in mice induced by 60Co gamma-rays. Fifty mice were randomly divided into five groups, i.e. three haematococcus pluvialis groups (41.7, 83.3 and 166.7 mg/kg in vegetable oil, respectively), control group and model group (vegetable oil only). All mice except control group were irradiated by 8 Gy 60Co gamma-rays 30 days later, and executed in the 4th day after irradiation. Liver cells were collected for the analysis of the integrity of DNA by comet assay, as well as MDA contents, SOD and GSH-Px activities in liver by commercial kits. Peripheral granulocyte and bone marrow nucleated cells were counted by hematocyte counter. MDA contents of model group were higher than those of control group (P < 0.01), and SOD, GSH-Px activities of model group were lower than those of control group (P < 0.01). Compared with the model group, MDA contents were decreased (P < 0.01), and SOD and GSH-Px activities were increased (P < 0.01) in all haematococcus pluvialis groups, especially in the high haematococcus pluvialis group, and the more haematococcus pluvialis in the diet of mice, the lower rate of comet tail and OTM value were shown (P < 0.01). Furthermore, the counts of peripheral granulocyte and bone marrow nucleated cells of model group were lower than those of the control group, while the counts of peripheral granulocyte and bone marrow nucleated cells of medium and high haematococcus pluvialis groups were increased significantly when compared with the model group (P < 0.01). Astaxanthin might have some protective effect against oxidative impairment and DNA damage induced by 60Co gamma-rays in mice.

  19. Study of different filtering techniques applied to spectra from airborne gamma spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelm, Emilien; Gutierrez, Sebastien; Reboli, Anne

    2015-07-01

    One of the features of spectra obtained by airborne gamma spectrometry is low counting statistics due to the short acquisition time (1 s) and the large source-detector distance (40 m). It leads to considerable uncertainty in radionuclide identification and determination of their respective activities from the windows method recommended by the IAEA, especially for low-level radioactivity. The present work compares the results obtained with filters in terms of errors of the filtered spectra with the window method and over the whole gamma energy range. The results are used to determine which filtering technique is the most suitable in combination withmore » some method for total stripping of the spectrum. (authors)« less

  20. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production

    PubMed Central

    Blasco, Manuel; Badenes, María Luisa; del Mar Naval, María

    2016-01-01

    Successful haploid induction in loquat (Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar ‘Algerie’ were pollinated using pollen of cultivars ‘Changhong-3’, ‘Cox’ and ‘Saval Brasil’ irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from ‘Algerie’ pollinated with 300-Gy-treated pollen of ‘Saval Brasil’ from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids. PMID:27795686

  1. Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico.

    PubMed

    Mireles, F; Dávila, J I; Quirino, L L; Lugo, J F; Pinedo, J L; Ríos, C

    2003-03-01

    The study of natural gamma radioactivity was made to determine the concentrations of natural radionuclides in soil. Twenty soil samples collected in the cities of Zacatecas and Guadalupe and their suburban areas in the Mexican state of Zacatecas were analyzed by gamma-ray spectrometry to determine the activity concentrations of 226Ra, 232Th, and 40K. Gamma-spectrometry measurements were made using a hyperpure germanium detector surrounded with shielding material to reduce the background counting rate. The GammaVision-32 MCA emulation software was used for gamma-ray spectrum analysis and the TRUMP card of 2k as a MCA emulator. Conversion factors were used to calculate the dose to the population from outdoor exposure to terrestrial gamma rays. The measured activity concentration of 226Ra varies from 11 to 38 Bq kg(-1), the activity concentration of 232Th varies from 8 to 38 Bq kg(-1). The activity concentration of 40K is in the range 309-1,049 Bq kg(-1). The overall population mean outdoor terrestrial gamma dose rate is 44.94 nGy h(-1).

  2. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    PubMed

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  3. Gamma radiation effects on commercial Mexican bread making wheat flour

    NASA Astrophysics Data System (ADS)

    Agúndez-Arvizu, Z.; Fernández-Ramírez, M. V.; Arce-Corrales, M. E.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-04-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 60C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  4. Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño deLeón, S.; De la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hernandez, S.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-07-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico that has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index 1.66, the high-energy component is extended to higher energies with no cutoff other than that from extragalactic background light attenuation, HAWC would observe gamma-rays with a peak energy of ˜300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift and Fermi, including 3 GRBs that were also detected by the Large Area Telescope (Fermi-LAT). An ON/OFF analysis method is employed, searching on the timescale given by the observed light curve at keV-MeV energies and also on extended timescales. For all GRBs and timescales, no statistically significant excess of counts is found and upper limits on the number of gamma-rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi satellite (Fermi-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cutoff in an additional high-energy component to be less than 100 {GeV} for reasonable assumptions about the energetics and redshift of the burst.

  5. Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy.

    PubMed

    Bemmerer, D; Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2006-09-22

    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.

  6. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  7. Energy calibration of organic scintillation detectors for. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Jiahui; Xiao Genlai; Liu Jingyi

    1988-10-01

    An experimental method of calibrating organic detectors is described. A NaI(T1) detector has some advantages of high detection efficiency, good energy resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation detector and the pulse of the back-scattering peak from NaI(T1) detector. It can be used to calibrate various sizes and shapes of organic scintillation detectors simply and reliably. The home-made plastic and organic liquid scintillation detectors are calibrated and positions of the Compton edge as a function of ..gamma..-ray energies aremore » obtained.« less

  8. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  9. On the structure of the set of coincidence points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arutyunov, A V; Gel'man, B D

    2015-03-31

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  10. Importance of interpolation and coincidence errors in data fusion

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

    2018-02-01

    The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  11. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  12. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  13. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less

  14. AGATE: A High Energy Gamma-Ray Telescope Using Drift Chambers

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Dingus, B. L.; Esposito, J. A.; Bertsch, D. L.; Cuddapah, R.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.

    1996-01-01

    The exciting results from the highly successful Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory (CGRO) has contributed significantly to increasing our understanding of high energy gamma-ray astronomy. A follow-on mission to EGRET is needed to continue these scientific advances as well as to address the several new scientific questions raised by EGRET. Here we describe the work being done on the development of the Advanced Gamma-Ray Astronomy Telescope Experiment (AGATE), visualized as the successor to EGRET. In order to achieve the scientific goals, AGATE will have higher sensitivity than EGRET in the energy range 30 MeV to 30 GeV, larger effective area, better angular resolution, and an extended low and high energy range. In its design, AGATE will follow the tradition of the earlier gamma-ray telescopes, SAS-2, COS B, and EGRET, and will have the same four basic components of an anticoincidence system, directional coincidence system, track imaging, and energy measurement systems. However, due to its much larger size, AGATE will use drift chambers as its track imaging system rather than the spark chambers used by EGRET. Drift chambers are an obvious choice as they have less deadtime per event, better spatial resolution, and are relatively easy and inexpensive to build. Drift chambers have low power requirements, so that many layers of drift chambers can be included. To test the feasibility of using drift chambers, we have constructed a prototype instrument consisting of a stack of sixteen 1/2m × 1/2m drift chambers and have measured the spatial resolution using atmospheric muons. The results on the drift chamber performance in the laboratory are presented here.

  15. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  16. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distribution of galactic far-infrared emission were obtained independently for both the Northern and Southern Hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale.

  17. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms

    PubMed Central

    Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    [1] Terrestrial gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02–4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site. PMID:26167428

  18. Determination of mammalian cell counts, cell size and cell health using the Moxi Z mini automated cell counter.

    PubMed

    Dittami, Gregory M; Sethi, Manju; Rabbitt, Richard D; Ayliffe, H Edward

    2012-06-21

    Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls(1-5). A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques(6). Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics

  19. Magnetometer Application for GAMMA-400 Telescope Switching into the Mode with Increased Low Energy Charged Particles Intensity Registration

    NASA Astrophysics Data System (ADS)

    Khyzhniak, E. V.; Arkhangelskaja, I. V.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Topchiev, N. P.

    GAMMA-400 is an international project of a high apogee orbital astrophysical observatory for studying the characteristics of high-energy gamma-emission, electrons/positrons and light nuclei fluxes. The energy range for γ-rays and electrons/positrons registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. Also, this aperture allows high energy light nuclei fluxes characteristics investigation. Moreover, special aperture configuration allows registering of gamma-quanta, electrons (positrons) and light nuclei from the lateral directions too. The spacecraft GAMMA-400 orbit will be located in the Earth's magnetosphere and will pass front shock wave from magnetosphere interaction with the solar wind, turbulent-transition region, magnetopause and so on. During the satellite's movement through various Earth's magnetosphere regions its anticoincidence detectors will register high intensity fluxes of low energy charged particles captured by the magnetic field. The working area sections of GAMMA-400 detector systems used as anticoincidence shield are about 1 m2 each. The high intensity low energy charged particles flux influence on anticoincidence detectors should be taken into account during particle identification. This article presents a comparison between Earth's magnetosphere theoretical model according to SPENVIIS package and real data measured by detectors onboard THEMIS series satellites. The differences between these two datasets indicate that the calculated data are not sufficient to make short time predictions of variations of magnetic induction in the outer magnetosphere. A special trigger marker flag will be produced by GAMMA-400 counting and triggers signals formation system accordingly to the data of two onboard magnetometers. This flag's presence leads to special algorithms execution start, putting the plastic detectors into a dedicated working mode taking into account possible high count rates of external detector layers.

  20. Commissioning of a new SeHCAT detector and comparison with an uncollimated gamma camera.

    PubMed

    Taylor, Jonathan C; Hillel, Philip G; Himsworth, John M

    2014-10-01

    Measurements of SeHCAT (tauroselcholic [75selenium] acid) retention have been used to diagnose bile acid malabsorption for a number of years. In current UK practice the vast majority of centres calculate uptake using an uncollimated gamma camera. Because of ever-increasing demands on gamma camera time, a new 'probe' detector was designed, assembled and commissioned. To validate the system, nine patients were scanned at day 0 and day 7 with both the new probe detector and an uncollimated gamma camera. Commissioning results were largely in line with expectations. Spatial resolution (full-width 95% of maximum) at 1 m was 36.6 cm, the background count rate was 24.7 cps and sensitivity at 1 m was 720.8 cps/MBq. The patient comparison study showed a mean absolute difference in retention measurements of 0.8% between the probe and uncollimated gamma camera, and SD of ± 1.8%. The study demonstrated that it is possible to create a simple, reproducible SeHCAT measurement system using a commercially available scintillation detector. Retention results from the probe closely agreed with those from the uncollimated gamma camera.

  1. Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.

    PubMed

    Chapman, Clare L; Wright, James J; Bourke, Paul D

    2002-07-01

    Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.

  2. Application of gamma irradiation for inactivation of three pathogenic bacteria inoculated into meatballs

    NASA Astrophysics Data System (ADS)

    Gumus, Tuncay; Şukru Demirci, A.; Murat Velioglu, H.; Velioglu, Serap D.; Yilmaz, Ismail; Sagdic, Osman

    2008-09-01

    In this research, the effect of gamma irradiation on the inactivation of Escherichia coli O157:H7 (ATCC 33150), Staphylococcus aureus (ATCC 2392) and Salmonella typhimurium (NRRL 4463) inoculated into Tekirdag meatballs was investigated. The meatball samples were inoculated with pathogens and irradiated at the absorbed doses of 1, 2.2, 3.2, 4.5 and 5.2 kGy. E. coli O157:H7 count in 1 kGy irradiated meatballs stored in the refrigerator for 7 days was detected to be 4 log cfu/g lower than the count in nonirradiated samples ( p<0.05). S. aureus counts were decreased to 4 log cfu/g after being exposed to irradiation at a dose of 1 kGy. Although it was ineffective on elimination of S. typhimurium, irradiation at a dose of 3.2 kGy reduced E. coli O157:H7 and S. aureus counts under detectable values in the meatballs. However, none of the test organisms were detected in the samples after irradiation with 4.5 kGy doses.

  3. A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279.

    PubMed

    2010-02-18

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii.

  4. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; hide

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  5. Evaluation of methods for the assay of radium-228 in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyce, J.R.

    1981-02-01

    The technical literature from 1967 to May 1980 was searched for methods for assaying radium-228 in water. These methods were evaluated for their suitability as potential EPA reference methods for drinking water assays. The authors suggest the present EPA reference method (Krieger, 1976) be retained but improved, and a second method (McCurdy and Mellor, 1979), which employs beta-gamma coincidence counting, be added. Included in this report is a table that lists the principal features of 17 methods for radium-228 assays.

  6. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  7. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector

  8. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    NASA Astrophysics Data System (ADS)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  9. Multiple channel coincidence detector and controller for microseismic data analysis

    DOEpatents

    Fasching, George E.

    1976-11-16

    A multiple channel coincidence detector circuit is provided for analyzing data either in real time or recorded data on a magnetic tape during an experiment for determining location and progression of fractures in an oil field or the like while water is being injected at high pressure in wells located in the field. The circuit is based upon the utilization of a set of parity generator trees combined with monostable multivibrators to detect the occurrence of two events at any pair of channel input terminals that are within a preselected time frame and have an amplitude above a preselected magnitude. The parity generators perform an exclusive OR function in a timing circuit composed of monostable multivibrators that serve to yield an output when two events are present in the preselected time frame. Any coincidences falling outside this time frame are considered either noise or not otherwise useful in the analysis of the recorded data. Input pulses of absolute magnitude below the low-level threshold setting of a bipolar low-level threshold detector are unwanted and therefore rejected. A control output is provided for a utilization device from a coincidence hold circuit that may be used to halt a tape search unit at the time of coincidence or perform other useful control functions.

  10. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Reyss, J-L

    2010-07-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes. 2009 Elsevier Ltd. All rights reserved.

  11. Monte Carlo simulation of β γ coincidence system using plastic scintillators in 4π geometry

    NASA Astrophysics Data System (ADS)

    Dias, M. S.; Piuvezam-Filho, H.; Baccarelli, A. M.; Takeda, M. N.; Koskinas, M. F.

    2007-09-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, has been applied for simulating a 4 πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60Co and 133Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 πβ(PC)-γ coincidence system.

  12. Gamma-Ray Signatures Improvement of the EURITRACK Tagged Neutron Inspection System Database

    NASA Astrophysics Data System (ADS)

    Kanawati, Wassila El; Carasco, Cedric; Perot, Bertrand; Mariani, Alain; Raoux, Anne-Cecile; Valkovic, Vladivoj; Sudac, Davorin; Obhodas, Jasmina; Baricevic, Martina

    2010-10-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Reactions induced by fast neutrons inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle, the detection of which allows the neutron direction to be determined. The neutron path length is obtained from a neutron time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined, while the chemical composition of the target material is correlated with their energy spectrum. Gamma-ray spectra have been collected with the inspection portal equipped with large volume NaI (Tl) detectors, in order to build a database of signatures for various elements (C, O, N, Fe, Pb, Al, Na, Si, Cl, Cu, Zn) with a low energy threshold of 0.6 MeV. The spectra are compared with previous ones, which were acquired with a 1.35 MeV threshold. The new library is currently being tested to unfold the energy spectra of transported goods into elemental contributions. Results are compared with data processed with the old 1.35 MeV threshold database, thus illustrating the improvement for material identification.

  13. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.

    PubMed

    Rigamonti, D; Muraro, A; Nocente, M; Perseo, V; Boltruczyk, G; Fernandes, A; Figueiredo, J; Giacomelli, L; Gorini, G; Gosk, M; Kiptily, V; Korolczuk, S; Mianowski, S; Murari, A; Pereira, R C; Cippo, E P; Zychor, I; Tardocchi, M

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr 3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E γ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  14. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory

    NASA Astrophysics Data System (ADS)

    Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.

    2018-06-01

    Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations

  15. A method to improve observations of gamma-ray sources near 10 (15) eV

    NASA Technical Reports Server (NTRS)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  16. Effect of gamma irradiation on physical characteristics of Jordanian durum wheat and quality of semolina and lasagna products

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-09-01

    This study was conducted to determine the effect of using varying gamma irradiation doses on the physiochemical and rheological properties of semolina and its products. Ash, protein and water content were not influenced with gamma irradiation, while falling number and fungi counts decreased with increasing irradiation dose. Irradiation adversely affected wet gluten at 5 kGy dose. Dough stability was deteriorated vigorously with increasing irradiation dose. Sensory evaluation showed that lasagna produced from 0.25- and 1 kGy-irradiated semolina did not show any significant differences as compared with the control sample.

  17. Design optimization for a wearable, gamma-ray and neutron sensitive, detector array with directionality estimation

    NASA Astrophysics Data System (ADS)

    Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.

    2017-10-01

    In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.

  18. Nanosecond lifetime measurements of Iπ=9/2- intrinsic excited states and low-lying B(E1) strengths in 183Re using combined HPGe-LaBr3 coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurgi, L. A.; Regan, P. H.; Daniel, T.; Podolyák, Zs.; Bruce, A. M.; Mason, P. J. R.; Mǎrginean, N.; Mǎrginean, R.; Werner, V.; Alharbi, T.; Alkhomashi, N.; Bajoga, A. D.; Britton, R.; Cǎta-Danil, I.; Carroll, R. J.; Deleanu, D.; Bucurescu, D.; Florea, N.; Gheorghe, I.; Ghita, D. G.; Glodariu, T.; Lice, R.; Mihai, C.; Mulholland, K. F.; Negret, A.; Olacel, A.; Roberts, O. J.; Sava, T.; Söderström, P.-A.; Stroe, L.; Suvaila, R.; Toma, S.; Wilson, E.; Wood, R. T.

    2017-08-01

    This paper presents precision measurements of electromagnetic decay probabilities associated with electric dipole transitions in the prolate-deformed nucleus 183Re. The nucleus of interest was formed using the fusion evaporation reaction 180Hf(7Li,4n)183Re at a beam energy of 30 MeV at the tandem accelerator at the HH-IFIN Institute, Bucharest Romania. Coincident decay gamma rays from near-yrast cascades were detected using the combined HPGe-LaBr3 detector array ROSPHERE. The time differences between cascade gamma rays were measured using the LaBr3 detectors to determine the half-lives of the two lowest lying spin-parity 9/2- states at excitation energies of 496 and 617 keV to be 5.65(5) and 2.08(3) ns respectively. The deduced E1 transition rates from these two states are discussed in terms of the K-hindrance between the low-lying structures in this prolate-deformed nucleus.

  19. Heralded ions via ionization coincidence

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Speirs, R. W.; Wissenberg, S. H.; Tielen, R. P. M.; Sparkes, B. M.; Scholten, R. E.

    2018-04-01

    We demonstrate a method for the deterministic production of single ions by exploiting the correlation between an electron and associated ion following ionization. Coincident detection and feedback in combination with Coulomb-driven particle selection allows for high-fidelity heralding of ions at a high repetition rate. Extension of the scheme beyond time-correlated feedback to position- and momentum-correlated feedback will provide a general and powerful means to optimize the ion beam brightness for the development of next-generation focused ion beam technologies.

  20. Tight bounds for the Pearle-Braunstein-Caves chained inequality without the fair-coincidence assumption

    NASA Astrophysics Data System (ADS)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2017-08-01

    In any Bell test, loopholes can cause issues in the interpretation of the results, since an apparent violation of the inequality may not correspond to a violation of local realism. An important example is the coincidence-time loophole that arises when detector settings might influence the time when detection will occur. This effect can be observed in many experiments where measurement outcomes are to be compared between remote stations because the interpretation of an ostensible Bell violation strongly depends on the method used to decide coincidence. The coincidence-time loophole has previously been studied for the Clauser-Horne-Shimony-Holt and Clauser-Horne inequalities, but recent experiments have shown the need for a generalization. Here, we study the generalized "chained" inequality by Pearle, Braunstein, and Caves (PBC) with N ≥2 settings per observer. This inequality has applications in, for instance, quantum key distribution where it has been used to reestablish security. In this paper we give the minimum coincidence probability for the PBC inequality for all N ≥2 and show that this bound is tight for a violation free of the fair-coincidence assumption. Thus, if an experiment has a coincidence probability exceeding the critical value derived here, the coincidence-time loophole is eliminated.

  1. EIGHT {gamma}-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.

    2010-12-10

    We report the discovery of eight {gamma}-ray pulsars in blind frequency searches of {approx}650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young ({tau}{sub c} < 100 kyr), energetic (E-dot {approx}>10{sup 36} erg s{sup -1}), and located within the Galactic plane (|b| < 3{sup 0}). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included inmore » the Fermi-LAT bright {gamma}-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age ({tau}{sub c} = 4.6 kyr) and is the most energetic (E-dot = 1.1x10{sup 37} erg s{sup -1}) of all {gamma}-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant {gamma}-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3{sigma} excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages ({tau}{sub c} {approx} 1 Myr) and are the least energetic (E-dot {approx}5x10{sup 33} erg s{sup -1}) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the

  2. System for monitoring non-coincident, nonstationary process signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.

    2005-01-04

    An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.

  3. Short communication: Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count.

    PubMed

    Koop, G; Dik, N; Nielen, M; Lipman, L J A

    2010-06-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    2017-01-05

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  5. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  6. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  7. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  8. Imaging observations of SN1987A at gamma-ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.R.; Palmer, D.M.; Prince, T.A.

    1988-09-25

    The Caltech imaging ..gamma..-ray telescope was launched by balloon from Alice Springs, NT, Australia for observations of SN1987A during the period 18.60--18.87 November 1987 UT. The preliminary results presented here are derived from 8200 seconds of instrument livetime on the supernova and 2500 seconds on the Crab Nebula and pulsar at a float altitude of 37 km. We have obtained the first images of the SN1987A region at ..gamma..-ray energies confirming that the bulk of the ..gamma..-ray emission comes from the supernova and not from LMC X-1. A count excess is detected between 300 and 1300 keV from the directionmore » of the supernova, one third of which comes from energy bands of width 80 and 92 keV centered on 847 and 1238 keV, respectively. The excess can be interpreted as a line photon flux plus scattered photon continuum from the radioactive decay of /sup 56/Co synthesized in the supernova explosion. We compare our data to recent predictions and find it to be consistent with models invoking moderate mixing of core material into the envelope.« less

  9. Validation of the FFM PD count technique for screening personality pathology in later middle-aged and older adults.

    PubMed

    Van den Broeck, Joke; Rossi, Gina; De Clercq, Barbara; Dierckx, Eva; Bastiaansen, Leen

    2013-01-01

    Research on the applicability of the five factor model (FFM) to capture personality pathology coincided with the development of a FFM personality disorder (PD) count technique, which has been validated in adolescent, young, and middle-aged samples. This study extends the literature by validating this technique in an older sample. Five alternative FFM PD counts based upon the Revised NEO Personality Inventory (NEO PI-R) are computed and evaluated in terms of both convergent and divergent validity with the Assessment of DSM-IV Personality Disorders Questionnaire (shortly ADP-IV; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders - Fourth edition). For the best working count for each PD normative data are presented, from which cut-off scores are derived. The validity of these cut-offs and their usefulness as a screening tool is tested against both a categorical (i.e., the DSM-IV - Text Revision), and a dimensional (i.e., the Dimensional Assessment of Personality Pathology; DAPP) measure of personality pathology. All but the Antisocial and Obsessive-Compulsive counts exhibited adequate convergent and divergent validity, supporting the use of this method in older adults. Using the ADP-IV and the DAPP - Short Form as validation criteria, results corroborate the use of the FFM PD count technique to screen for PDs in older adults, in particular for the Paranoid, Borderline, Histrionic, Avoidant, and Dependent PDs. Given the age-neutrality of the NEO PI-R and the considerable lack of valid personality assessment tools, current findings appear to be promising for the assessment of pathology in older adults.

  10. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2002.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count statistical profile is based on 11 main indicators of child well-being: (1) births to teens 15-17 years; (2) births to teens 10 to 14 years; (3) low birth weight babies; (3)…

  11. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  12. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System.

    PubMed

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H; Schroeder, Jill; Libbin, James

    2008-06-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low.

  13. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System

    PubMed Central

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H.; Schroeder, Jill; Libbin, James

    2008-01-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low. PMID:19259526

  14. In-flight observation of long duration gamma-ray glows by aircraft

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  15. Models for Serially Correlated Over or Underdispersed Unequally Spaced Longitudinal Count Data with Applications to Asthma Inhaler Use

    DTIC Science & Technology

    2007-08-01

    the gamma prior and Poisson counts are conditioned on an unobserved AR( 1 ) process that accounts for the time since the last observation . This model did...to the observation equation. For unequally spaced observations the AR( 1 ) errors are replaced by a continuous time AR( 1 ) process , and the distance...unequal spaced observations are handled in the XJG model by assuming an underlying continuous time AR( 1 ) (CAR(l)) process . It is implemented by

  16. Gamma radiation combined with cinnamon oil to maintain fish quality

    NASA Astrophysics Data System (ADS)

    Lyu, Fei; Zhang, Jing; Wei, Qianqian; Gao, Fei; Ding, Yuting; Liu, Shulai

    2017-12-01

    Effects of gamma radiation combined with cinnamon oil on quality of Northern Snakehead fish fillets were observed during storage at 4 °C. Fish fillets were treated with 1-5 kGy gamma radiation, 0.05-0.5% cinnamon oil or the combination of radiation and cinnamon oil. The antimicrobial activity increased with radiation dose and cinnamon oil concentration. During storage, the combination of 1 kGy radiation and 0.5% cinnamon oil displayed better inhibiting activities on aerobic plate counts, total volatile basic nitrogen, thiobarbituric acid reaction substances than 1 kGy radiation or 0.5% cinnamon oil used alone. Moreover, the combination could arrive at the similar inhibiting activities of cinnamon oil with higher concentration of 0.5% or radiation with higher dose of 5 kGy. Thus, the combination could decrease the radiation dose and cinnamon oil concentration without decreasing the effect of them on maintaining fish quality.

  17. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  18. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    NASA Astrophysics Data System (ADS)

    Polee, C.; Chankow, N.; Srisatit, S.; Thong-Aram, D.

    2015-05-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable.

  19. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    PubMed

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. IXO-XMS LVSID Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Porter, Scott F.; Kilbourne, Caroline

    2010-01-01

    This document describes a high-TRL backup implementation of the anti-coincidence detector for the IXO/XMS instrument. The backup detector, hereafter referred to as the low-voltage silicon ionization detector (LVSID), has been successfully flown on Astro-E2 (Suzaku)/XRS and is currently being implemented, without significant changes, on the Astro-H/SXS instrument. The LVSID anti-coincidence detector on Astro-E2/XRS operated successfully for almost 2 years, and was not affected by the loss of liquid helium in that instrument. The LVSID continues to operate after almost 5 years on-orbit (LEO, 550 km) but with slightly increased noise following the expected depletion of solid Neon after 22 months. The noise of the device is increased after the loss of sNe due to thermally induced bias and readout noise. No radiation damage, or off-nominal affects have been observed with the LVSID on-orbit during the Astro-E2/XRS program. A detector die from the same fabrication run will be used on the Astro-H/SXS mission. The LVSID technology and cryogenic JFET readout system is thus TRL 9. The technology is described in detail in section 2. The IXO/XMS "backup-up" anti-coincidence detector is a small array of LVSID detectors that are almost identical to those employed for Astro -E2/XRS as described in this document. The readout system is identical and, infact would use the same design as the Astro -E2/XRS JFET amplifier module (19 channels) essentially without changes except for its mechanical mount. The changes required for the IXO/XMS LVSID array are limited to the mounting of the LVSID detectors, and the mechanical mounting of the JFET amplifier sub-assembly. There is no technical development needed for the IXO/XMS implementation and the technology is ready for detailed design-work leading to PDR. The TRL level is thus at least 6, and possibly higher. Characteristics of an IXO/XMS LVSID anti-co detector are given in Table 1 and described in detail in section 3.

  1. Gamma-Ray Burst Precursor Activity as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Kouveliotou, Chryssa; Paciesas, William S.; vanParadijs, Jan; Pendleton, Geoffrey N.; Briggs, Michael S.; Fishman, Gerald J.; Meegan, Charles A.

    1995-01-01

    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission.

  2. Stacking Searches for Greater Than 100 MeV Gamma Ray Emission from Radio Galaxies and Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.; Bertsch, D. L.

    2003-01-01

    The EGRET telescope on CGRO detected more than sixty sources of high-energy gamma radiation associated with active galactic nuclei (AGN). All but one of those belong to the blazar subclass; the only exception is the nearby radio galaxy Centaurus A. Since there is no obvious reason other than proximity to expect Cen A to be the only non-blazar AGN emitting in high-energy gamma rays, we have utilized the "stacking" technique to search for $>100$-MeV emission from two non-blazar AGN subclasses, radio galaxies and Seyfert galaxies. Maps of gamma-ray counts, exposure, and diffuse background have been created, then co-added in varying numbers based on sorts by redshift, 5-GHZ flux density, and optical brightness, and finally tested for gamma-ray emission. No detection significance greater than $2\\sigma$ has been found for any subclass, sorting parameter, or number of objects co-added. Monte Carlo simulations have also been performed, to validate the technique and estimate the significance of the results.

  3. Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP

    NASA Astrophysics Data System (ADS)

    Sahiner, Huseyin

    While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.

  4. X-ray line coincidence photopumping in a solar flare

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  5. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays.

    PubMed

    De Guzman, Zenaida M; Cervancia, Cleofas R; Dimasuay, Kris Genelyn B; Tolentino, Mitos M; Abrera, Gina B; Cobar, Ma Lucia C; Fajardo, Alejandro C; Sabino, Noel G; Manila-Fajardo, Analinda C; Feliciano, Chitho P

    2011-10-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a ⁶⁰Co source. Surviving spores were counted and used to estimate the decimal reduction (D₁₀) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10⁵- 9 × 10³ spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D(min)) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  7. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  8. Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Clapson, A.-C.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-01-01

    The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position {RA=18^h 32^m 50^s ± 3^s_{stat} ± 2^s_{syst}}, {Dec=-9*deg;22'36" ± 32"}_{stat} ± 20^' '}_{syst} (J2000)}, spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Γ = 2.6 ± 0.3stat ± 0.1syst and a normalization at 1 TeV of Φ _0=(4.8 ± 0.8_stat± 1.0_syst) × 10^{-13} cm ^{-2} s^{-1} TeV^{-1}. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.

  9. Variable gamma-ray sky at 1 GeV

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10-6, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  10. mrpy: Renormalized generalized gamma distribution for HMF and galaxy ensemble properties comparisons

    NASA Astrophysics Data System (ADS)

    Murray, Steven G.; Robotham, Aaron S. G.; Power, Chris

    2018-02-01

    mrpy calculates the MRP parameterization of the Halo Mass Function. It calculates basic statistics of the truncated generalized gamma distribution (TGGD) with the TGGD class, including mean, mode, variance, skewness, pdf, and cdf. It generates MRP quantities with the MRP class, such as differential number counts and cumulative number counts, and offers various methods for generating normalizations. It can generate the MRP-based halo mass function as a function of physical parameters via the mrp_b13 function, and fit MRP parameters to data in the form of arbitrary curves and in the form of a sample of variates with the SimFit class. mrpy also calculates analytic hessians and jacobians at any point, and allows the user to alternate parameterizations of the same form via the reparameterize module.

  11. Lithium and boron based semiconductors for thermal neutron counting

    NASA Astrophysics Data System (ADS)

    Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai

    2011-09-01

    Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.

  12. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  13. Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite

    NASA Astrophysics Data System (ADS)

    Arimoto, M.; Kanai, Y.; Ueno, M.; Kataoka, J.; Kawai, N.; Tanaka, T.; Yamamoto, K.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Axelsson, M.; Kiss, M.; Marini Bettolo, C.; Carlson, P.; Klamra, W.; Pearce, M.; Chen, P.; Craig, B.; Kamae, T.; Madejski, G.; Ng, J. S. T.; Rogers, R.; Tajima, H.; Thurston, T. S.; Saito, Y.; Takahashi, T.; Gunji, S.; Bjornsson, C.-I.; Larsson, S.; Ryde, F.; Bogaert, G.; Varner, G.

    2007-12-01

    Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25 80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.

  14. A study of the temporal and spectral characteristics of gamma ray bursts. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Norris, J.

    1983-01-01

    Gamma-ray burst data obtained from the ISEE-3 Gamma Ray Burst Spectrometer and the Solar Maximum Mission's Hard X-ray Burst Spectrometer (HXRBS) were analyzed to yield information on burst temporal and spectral characteristics. A Monte Carlo approach was used to simulate the HXRBS response to candidate spectral models. At energies above about 100 keV, the spectra are well fit by exponential forms. At lower energies, 30 keV to 60 keV, depressions below the model continua are apparent in some bursts. The depressions are not instrumental or data-reduction artifacts. The event selection criterion of the ISEE-3 experiment is based on the time to accumulate a present number of photons rather than the photon count per unit time and is consequently independent of event duration for a given burst intensity, unlike most conventional systems. As a result, a significantly greater percentage of fast, narrow events have been detected. The ratio of count rates from two ISEE-3 detectors indicates that bursts with durations or approx. one second have much softer spectra than longer bursts.

  15. F18-FDG coincidence-PET in patients with suspected gynecological malignancy.

    PubMed

    Zor, E; Stokkel, M P; Ozalp, S; Vardareli, E; Yalçin, O Tarik; Ak, I

    2006-07-01

    To assess the role of F18-FDG imaging with a dual-head coincidence mode gamma camera (Co-PET) in identifying malignant tumors in patients with a suspicious adnexal mass depicted by conventional imaging methods. F18-FDG Co-PET was performed preoperatively in 18 women (mean age 56.38 years) with suspected malignant gynecologic tumors according to clinical and abdomino-pelvic/transvaginal ultrasound or computed tomography findings. Exploratory laparotomy was performed in all patients within the 10 days post-F18-FDG Co-PET study, and the definitive diagnosis of the adnexal masses was established by histopathological examination. Histopathological examinations of the surgically excised adnexal masses revealed eight malignant, one borderline, and nine benign neoplastic tumors. Four benign tumors had no F18-FDG uptake, while the remaining five tumors, all leiomyomas, showed mild FDG accumulation. Eight malignant tumors showed intense F18-FDG uptake. Sensitivity, specificity, PPV, and NPV of F18-FDG co-PET in differentiating benign from malign adnexal masses were 88%, 44%, 61%, and 80%, respectively. Tumor to background ratios (T/B) in benign lesions (2.04 +/- 0.27) were significantly lower than in malignant lesions (7.4 +/- 0.99). F18-FDG Co-PET is of clinical value when assessing suspicious malignant adnexal masses. False-negative F18-FDG results might arise from borderline disease. Moderate F18-FDG uptake in leiomyomas can result false-positive, but T/B ratios may be helpful in such cases.

  16. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  17. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  18. In situ gamma-spectrometry several years after deposition of radiocesium. II. Peak-to-valley method.

    PubMed

    Gering, F; Hillmann, U; Jacob, P; Fehrenbacher, G

    1998-12-01

    A new method is introduced for deriving radiocesium soil contaminations and kerma rates in air from in situ gamma-ray spectrometric measurements. The approach makes use of additional information about gamma-ray attenuation given by the peak-to-valley ratio, which is the ratio of the count rates for primary and forward scattered photons. In situ measurements are evaluated by comparing the experimental data with the results of Monte Carlo simulations of photon transport and detector response. The influence of photons emitted by natural radionuclides on the calculation of the peak-to-valley ratio is carefully analysed. The new method has been applied to several post-Chernobyl measurements and the results agreed well with those of soil sampling.

  19. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  20. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  1. Effect of combination treatment of gamma irradiation and ascorbic acid on physicochemical and microbial quality of minimally processed eggplant (Solanum melongena L.)

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Omeera, A.; Suradkar, Prashant P.; Dar, Mohd A.

    2014-10-01

    Gamma irradiation alone and in combination with ascorbic acid was tested for preventing the surface browning and maintaining the quality attributes of minimally processed eggplant. Eggplant samples after preparation were subjected to treatment of gamma irradiation in the dose range of 0.25-1.0 kGy and to combination treatments of ascorbic acid dip at a concentration of 2.0% w/v and gamma irradiation (dose range 0.5-2.0 kGy) followed by storage at 3±1 °C, RH 80%. Studies revealed inverse correlation (r=-0.93) between the polyphenol oxidase (PPO) activity, browning index and the treatments of ascorbic acid and gamma irradiation. Combinatory treatment of 2.0% w/v ascorbic acid and 1.0 kGy gamma irradiation proved to be significantly (p≤0.05) effective in inhibiting the PPO activity, preventing the surface browning and maintaining the creamy white color and other quality attributes of minimally processed eggplant up to 6 days of refrigerated storage. Sensory evaluation revealed that control and 0.25 kGy irradiated samples were unacceptable only after 3 days of storage. Samples irradiated at 0.5 kGy and 0.75 kGy were unacceptable after 6 days of storage. Microbial analysis revealed that radiation processing of minimally processed eggplant at 1.0 kGy with and without ascorbic acid resulted in around 1 and 1.5 log reduction in yeast and mold count as well as bacterial count just after treatment and 6 days of storage therefore, enhances the microbial safety.

  2. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  3. Inventory count strategies.

    PubMed

    Springer, W H

    1996-02-01

    An important principle of accounting is that asset inventory needs to be correctly valued to ensure that the financial statements of the institution are accurate. Errors is recording the value of ending inventory in one fiscal year result in errors to published financial statements for that year as well as the subsequent fiscal year. Therefore, it is important that accurate physical counts be periodically taken. It is equally important that any system being used to generate inventory valuation, reordering or management reports be based on consistently accurate on-hand balances. At the foundation of conducting an accurate physical count of an inventory is a comprehensive understanding of the process coupled with a written plan. This article presents a guideline of the physical count processes involved in a traditional double-count approach.

  4. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  5. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  6. A magnetic-bottle multi-electron-ion coincidence spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Akitaka; Hishikawa, Akiyoshi; Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602

    2011-10-15

    A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS{sub 2} {yields} CS{sub 2}{sup 2+} + e{sup -} + e{sup -},more » in ultrashort intense laser fields (2.8 x 10{sup 13} W/cm{sup 2}, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.« less

  7. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  8. Predicted performance of a PG-SPECT system using CZT primary detectors and secondary Compton-suppression anti-coincidence detectors under near-clinical settings for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hales, Brian; Katabuchi, Tatsuya; Igashira, Masayuki; Terada, Kazushi; Hayashizaki, Noriyosu; Kobayashi, Tooru

    2017-12-01

    A test version of a prompt-gamma single photon emission computed tomography (PG-SPECT) system for boron neutron capture therapy (BNCT) using a CdZnTe (CZT) semiconductor detector with a secondary BGO anti-Compton suppression detector has been designed. A phantom with healthy tissue region of pure water, and 2 tumor regions of 5 wt% borated polyethylene was irradiated to a fluence of 1.3 × 109 n/cm2. The number of 478 keV foreground, background, and net counts were measured for each detector position and angle. Using only experimentally measured net counts, an image of the 478 keV production from the 10B(n , α) 7Li* reaction was reconstructed. Using Monte Carlo simulation and the experimentally measured background counts, the reliability of the system under clinically accurate parameters was extrapolated. After extrapolation, it was found that the value of the maximum-value pixel in the reconstructed 478 keV γ-ray production image overestimates the simulated production by an average of 9.2%, and that the standard deviation associated with the same value is 11.4%.

  9. Semiconductor quantum dot scintillation under gamma-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Wang, T

    2006-08-23

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well asmore » security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon

  10. X-ray line coincidence photopumping in a solar flare

    DOE PAGES

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; ...

    2017-11-23

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  11. X-ray line coincidence photopumping in a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  12. Moments of the Particle Phase-Space Density at Freeze-out and Coincidence Probabilities

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyż, W.; Zalewski, K.

    2005-10-01

    It is pointed out that the moments of phase-space particle density at freeze-out can be determined from the coincidence probabilities of the events observed in multiparticle production. A method to measure the coincidence probabilities is described and its validity examined.

  13. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G.

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution ofmore » 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.« less

  14. A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.

    PubMed

    Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi

    2010-04-01

    The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.

  15. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  16. Gamma rays of 0.3 to 30 MeV from PSR 0531+21

    NASA Technical Reports Server (NTRS)

    White, R. S.; Sweeney, W.; Tuemer, T.; Zych, A. D.

    1985-01-01

    Pulsed gamma rays from the Crab Pulsar PSR 0531+21 are reported for energies of 0.3 to 30 MeV. The observations were carried out with the UCR gamma ray double Compton scatter telescope launched on a balloon from Palestine, Texas at 4.5 GV, at 2200 LT, September 29, 1978. Two 8 hr observations of the pulsar were made, the first starting at 0700 UT (0200 LT) September 30 just after reaching float altitude of 4.5 g/sq cm. Analysis of the total gamma ray flux from the Crab Nebula plus pulsar using telescope vertical cell pairs was published previously. The results presented supersede the preliminary ones. The double scatter mode of the UCR telescope measures the energy of each incident gamma ray from 1 to 30 MeV and its incident angle to a ring on the sky. The time of arrival is measured to 0.05 ms. The direction of the source is obtained from overlapping rings on the sky. The count rate of the first scatter above a threshold of 0.3 MeV is recorded every 5.12 ms. The Crab Pulsar parameters were determined from six topocentric arrival times of optical pulses.

  17. Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction

    NASA Astrophysics Data System (ADS)

    Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.

    2016-09-01

    Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.

  18. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko

    2017-03-01

    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.

  19. Dropout Count Procedural Handbook.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City. Planning, Research and Evaluation Branch.

    This manual outlines the procedure for counting dropouts from the Nevada schools. The State Department of Education instituted a new dropout counting procedure to its student accounting system in January 1988 as part of its response to recommendations of a task force on at-risk youth. The count is taken from each secondary school and includes…

  20. Suicide risk in relation to air pollen counts: a study based on data from Danish registers

    PubMed Central

    Qin, Ping; Waltoft, Berit L; Mortensen, Preben B; Postolache, Teodor T

    2013-01-01

    Objectives Since the well-observed spring peak of suicide incidents coincides with the peak of seasonal aeroallergens as tree-pollen, we want to document an association between suicide and pollen exposure with empirical data from Denmark. Design Ecological time series study. Setting Data on suicide incidents, air pollen counts and meteorological status were retrieved from Danish registries. Participants 13 700 suicide incidents over 1304 consecutive weeks were obtained from two large areas covering 2.86 million residents. Primary and secondary outcome measures Risk of suicide associated with pollen concentration was assessed using a time series Poisson-generalised additive model. Results We noted a significant association between suicide risk and air pollen counts. A change of pollen counts levels from 0 to ‘10–<30’ grains/m3 air was associated with a relative risk of 1.064, that is, a 6.4% increase in weekly number of suicides in the population, and from 0 to ‘30–100’ grains, a relative risk of 1.132. The observed association remained significant after controlling for effects of region, calendar time, temperature, cloud cover and humidity. Meanwhile, we observed a significant sex difference that suicide risk in men started to rise when there was a small increase of air pollen, while the risk in women started to rise until pollen grains reached a certain level. High levels of pollen had slightly stronger effect on risk of suicide in individuals with mood disorder than those without the disorder. Conclusions The observed association between suicide risk and air pollen counts supports the hypothesis that aeroallergens, acting as immune triggers, may precipitate suicide. PMID:23793651

  1. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation ofmore » background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.« less

  2. Kids Count [and] Families Count in Delaware: Fact Book, 1998.

    ERIC Educational Resources Information Center

    Nelson, Carl, Ed.; Wilson, Nancy, Ed.

    This Kids Count report is combined with Families Count, and provides information on statewide trends affecting children and families in Delaware. The first statistical profile is based on 10 main indicators of child well-being: (1) births to teens; (2) low birth weight babies; (3) infant mortality; (4) child deaths; (5) teen deaths; (6) juvenile…

  3. Youth Count: Exploring How KIDS COUNT Grantees Address Youth Issues

    ERIC Educational Resources Information Center

    Wilson-Ahlstrom, Alicia; Gaines, Elizabeth; Ferber, Thaddeus; Yohalem, Nicole

    2005-01-01

    Inspired by the 2004 Kids Count Databook essay, "Moving Youth From Risk to Opportunity," this new report highlights the history of data collection, challenges and innovative strategies of 12 Annie E. Casey Foundation KIDS COUNT grantees in their work to serve the needs of older youth. (Contains 3 figures, 2 tables, and 9 notes.)

  4. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    PubMed

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  5. AUTOMATIC COUNTING APPARATUS

    DOEpatents

    Howell, W.D.

    1957-08-20

    An apparatus for automatically recording the results of counting operations on trains of electrical pulses is described. The disadvantages of prior devices utilizing the two common methods of obtaining the count rate are overcome by this apparatus; in the case of time controlled operation, the disclosed system automatically records amy information stored by the scaler but not transferred to the printer at the end of the predetermined time controlled operations and, in the case of count controlled operation, provision is made to prevent a weak sample from occupying the apparatus for an excessively long period of time.

  6. 241Am (n,gamma) isomer ratio measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Evelyn M; Vieira, David J; Moody, Walter A

    The objective of this project is to improve the accuracy of the {sup 242}Cm/{sup 241}Am radiochemistry ratio. We have performed an activation experiment to measure the {sup 241}Am(n,{gamma}) cross section leading to either the ground state of {sup 242g}Am (t{sub 1/2} = 16 hr) which decays to {sup 242}Cm (t{sub 1/2} = 163 d) or the long-lived isomer {sup 242m}Am (t{sub 1/2} = 141 yr). This experiment will develop a new set of americium cross section evaluations that can be used with a measured {sup 242}Cm/{sup 241}Am radiochemical measurement for nuclear forensic purposes. This measurement is necessary to interpret themore » {sup 242}Cm/{sup 241}Am ratio because a good measurement of this neutron capture isomer ratio for {sup 241}Am does not exist. The targets were prepared in 2007 from {sup 241}Am purified from LANL stocks. Gold was added to the purified {sup 241}Am as an internal neutron fluence monitor. These targets were placed into a holder, packaged, and shipped to Forschungszentrum Karlsruhe, where they were irradiated at their Van de Graff facility in February 2008. One target was irradiated with {approx}25 keV quasimonoenergetic neutrons produced by the {sup 7}Li(p,n) reaction for 3 days and a second target was also irradiated for 3 days with {approx}500 keV neutrons. Because it will be necessary to separate the {sup 242}Cm from the {sup 241}Am in order to measure the amount of {sup 242}Cm by alpha spectrometry, research into methods for americium/curium separations were conducted concurrently. We found that anion exchange chromatography in methanol/nitric acid solutions produced good separations that could be completed in one day resulting in a sample with no residue. The samples were returned from Germany in July 2009 and were counted by gamma spectrometry. Chemical separations have commenced on the blank sample. Each sample will be spiked with {sup 244}Cm, dissolved and digested in nitric acid solutions. One third of each sample will be processed at a

  7. Towards a global network of gamma-ray detector calibration facilities

    NASA Astrophysics Data System (ADS)

    Tijs, Marco; Koomans, Ronald; Limburg, Han

    2016-09-01

    Gamma-ray logging tools are applied worldwide. At various locations, calibration facilities are used to calibrate these gamma-ray logging systems. Several attempts have been made to cross-correlate well known calibration pits, but this cross-correlation does not include calibration facilities in Europe or private company calibration facilities. Our aim is to set-up a framework that gives the possibility to interlink all calibration facilities worldwide by using `tools of opportunity' - tools that have been calibrated in different calibration facilities, whether this usage was on a coordinated basis or by coincidence. To compare the measurement of different tools, it is important to understand the behaviour of the tools in the different calibration pits. Borehole properties, such as diameter, fluid, casing and probe diameter strongly influence the outcome of gamma-ray borehole logging. Logs need to be properly calibrated and compensated for these borehole properties in order to obtain in-situ grades or to do cross-hole correlation. Some tool providers provide tool-specific correction curves for this purpose. Others rely on reference measurements against sources of known radionuclide concentration and geometry. In this article, we present an attempt to set-up a framework for transferring `local' calibrations to be applied `globally'. This framework includes corrections for any geometry and detector size to give absolute concentrations of radionuclides from borehole measurements. This model is used to compare measurements in the calibration pits of Grand Junction, located in the USA; Adelaide (previously known as AMDEL), located in Adelaide Australia; and Stonehenge, located at Medusa Explorations BV in the Netherlands.

  8. Ground gamma-ray spectrometric studies of El-Sahu area, southwestern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Abdrabboh, Ahmad M.

    2017-12-01

    Based on the previous airborne gamma-ray spectrometric study carried out in southwestern Sinai area, El Sahu area was selected for detail ground gamma-ray spectrometric survey. This area is considered as a good target for radioactive mineral exploration. The study area is exposed in a Paleozoic basin covered by different rocks (ranging from Precambrian to Quaternary). The ground gamma-ray spectrometric survey has been conducted along the study area through random survey. The resultant gamma-ray spectrometric maps show different levels of radioactivity over the studied area, which reflect contrasting radioelement contents for the exposed various rock types. The studied area possesses total count ranging from 2.6 to 326 Ur, 0.1 to 2.8% K, 1.7 to 316 ppm eU and 0.9 to 47.5 ppm eTh. The highest uranium concentrations are located in the northern and southern parts of El Sahu area. They are mainly associated with Um Bogma Formation occurrences. Uranium ratio maps (eU/K and eU/eTh) as well as ternary maps show sharp increase of eU content over both potassium and thorium contents associated with the ENE and NNW trends in Um Bogma Formation, indicating an increase in the U-potentiality than the surrounding rocks. This indicates that the mineralization in the study area may be structurally-controlled.

  9. Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory.

    PubMed

    Dilmanian, F A; Lidofsky, L J; Stamatelatos, I; Kamen, Y; Yasumura, S; Vartsky, D; Pierson, R N; Weber, D A; Moore, R I; Ma, R

    1998-02-01

    The prompt-gamma neutron activation facility at Brookhaven National Laboratory was upgraded to improve both the precision and accuracy of its in vivo determinations of total body nitrogen. The upgrade, guided by Monte Carlo simulations, involved elongating and modifying the source collimator and its shielding, repositioning the system's two NaI(Tl) detectors, and improving the neutron and gamma shielding of these detectors. The new source collimator has a graphite reflector around the 238PuBe neutron source to enhance the low-energy region of the neutron spectrum incident on the patient. The gamma detectors have been relocated from positions close to the upward-emerging collimated neutron beam to positions close to and at the sides of the patient. These modifications substantially reduced spurious counts resulting from the capture of small-angle scattered neutrons in the NaI detectors. The pile-up background under the 10.8 MeV 14N(n, gamma)15N spectral peak has been reduced so that the nitrogen peak-to-background ratio has been increased by a factor of 2.8. The resulting reduction in the coefficient of variation of the total body nitrogen measurements from 3% to 2.2% has improved the statistical significance of the results possible for any given number of patient measurements. The new system also has a more uniform composite sensitivity.

  10. Comparison Of 252Cf Time Correlated Induced Fisssion With AmLi Induced Fission On Fresh MTR Research Reactor Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Jay Prakash

    The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded andmore » collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of the AmLi source. In this work, two MTR fuel assemblies varying both in

  11. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Comparison of the efficacy of gamma and UV irradiation in sanitization of fresh carrot juice

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Lee, Kyung Haeng

    2012-08-01

    As there is no pasteurization procedure for the manufacture of fresh vegetable juice, both industry and consumers have sought a method for improving the storage stability and shelf-life of this category of products. In this study, the effects of commercially available, non-thermal pasteurization processes, such as gamma and UV irradiation, were compared for their efficacy in sanitizing fresh carrot juice (FCJ). FCJ was manufactured, packaged, and gamma irradiated with doses of 0, 1, 3, and 5 kGy. The manufactured FCJ was also passed through 4 UV light lamps at doses of 3.67, 4.69, and 6.50 kGy. The total aerobic bacterial count of the FCJ approached the legal limit (105 CFU/mL) after manufacturing. Both treatments were effective in reducing the number of total aerobic bacteria, and the reduced number was maintained during storage for 7 days. Gamma irradiation was more effective in suppressing microbial growth during storage. When the doses for UV treatment and gamma irradiation were higher, the inactivation effects were higher. The reduction of ascorbic acid content was greater upon gamma irradiation than UV treatment. No difference was found in the contents of flavonoids and polyphenols in FCJ after either treatment. After 3 days of refrigerated storage, the sensory scores of gamma- or UV-irradiated FCJ were superior to those of the control. The results indicate that both non-thermal treatments were effective in improving storage stability and extending shelf-life, but gamma irradiation was slightly better in suppressing microbial growth after treatment.

  13. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  14. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  15. Early diagnosis of tuberculosis using an INF-gamma assay in a child with HIV-1 infection and a very low CD4 count.

    PubMed

    Spyridis, Nikos; Chakraborty, Rana; Sharland, Mike; Heath, Paul T

    2007-01-01

    An 11-y-old girl diagnosed with HIV-1, presented with prolonged pyrexia and a non-reactive tuberculin skin test. An INF-gamma assay (ELISpot) was positive and led to administration of tuberculosis treatment. Positive cultures for Mycobacterium tuberculosis followed 6 weeks later. INF-gamma assays should be considered as first line investigations in HIV-1 infected subjects when TB is a diagnostic possibility.

  16. Effects of proton and gamma radiation on lymphocyte populations and acute response to antigen

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Gheorghe, C.; Andres, M. L.; Abell, G. A.; Folz-Holbeck, J.; Slater, J. M.; Nelson, G. A.; Gridley, D. S.

    1999-01-01

    BACKGROUND: The clinical use of proton radiation in the management of cancer, as well as benign disorders, is rapidly increasing. The major goal of this study was to compare the effects of proton and gamma (60Co) radiation on cell-mediated and humoral immunological parameters. MATERIALS AND METHODS: C57BL/6 mice were exposed to a single dose of 3 Gray (Gy) protons or gamma-rays and intraperitoneally injected 1 day later with sheep red blood cells (sRBC). On 4, 10, 15, and 29 days after exposure, subsets from each group were euthanised; nonirradiated controls (with and without sRBC injection) were included. Body and relative spleen weights, leukocyte counts, spontaneous blastogenesis, lymphocyte populations, and anti-sRBC titers were evaluated. RESULTS: The data showed significant depression (p < 0.05) in nearly all assays on days 4 and 10 after irradiation. B lymphocytes (CD19+) were the most radiosensitive, although reconstitution back to normal levels was observed by day 15. T cell (CD3+) and T helper cell (CD4+) recovery was evident by day 29, whereas the T cytotoxic cell (CD8+) count remained significantly below normal. Natural killer cells (NK1.1+) were relatively radioresistant. Anti-sRBC antibody production was slow and low titers were obtained after irradiation. No significant differences were noted between the two types of radiation. CONCLUSIONS: Taken together, the data show that whole-body irradiation with protons or gamma-rays, at the dose employed, results in marked, but transient, immunosuppression. However, at the time points of testing and with the assays used, little or no differences were found between the two forms of radiation.

  17. Avian leucocyte counting using the hemocytometer

    USGS Publications Warehouse

    Dein, F.J.; Wilson, A.; Fischer, D.; Langenberg, P.

    1994-01-01

    Automated methods for counting leucocytes in avian blood are not available because of the presence of nucleated erythrocytes and thrombocytes. Therefore, total white blood cell counts are performed by hand using a hemocytometer. The Natt and Herrick and the Unopette methods are the most common stain and diluent preparations for this procedure. Replicate hemocytometer counts using these two methods were performed on blood from four birds of different species. Cells present in each square of the hemocytometer were counted. Counting cells in the corner, side, or center hemocytometer squares produced statistically equivalent results; counting four squares per chamber provided a result similar to that obtained by counting nine squares; and the Unopette method was more precise for hemocytometer counting than was the Natt and Herrick method. The Unopette method is easier to learn and perform but is an indirect process, utilizing the differential count from a stained smear. The Natt and Herrick method is a direct total count, but cell identification is more difficult.

  18. Dual specific oral tolerance induction using interferon gamma for IgE-mediated anaphylactic food allergy and the dissociation of local skin allergy and systemic oral allergy: tolerance or desensitization?

    PubMed

    Noh, G; Jang, E H

    2014-01-01

    Specific oral tolerance induction (SOTI) for IgE-mediated food allergy (IFA) can be successfully achieved using interfero gamma (classic SOTI). In this study, a tolerable dose was introduced during tolerance induction with interferon gamma (dual SOTI), and its effectiveness was evaluated. The study population comprised 25 IFA patients. Blood samples were taken for analysis, including complete blood count with differential counts of eosinophils, serum total IgE levels, and specific IgE for allergenic foods. Skin prick tests were conducted with the allergens. Oral food challenges were performed to diagnose IFA. Ten patients received dual SOTI, 5 received classic SOTI, 5 received SOTI without interferon gamma (original SOTI), and 5 were not treated (controls). Patients treated with dual SOTI and classic SOTI using interferon gamma became tolerant to the allergenic food. The tolerable dose was introduced successfully in dual SOTI. It was difficult to proceed with the same dosing protocol used for classic SOTI in cases treated with original SOTI. Following dual SOTI, the systemic reaction to oral intake subsided, but the local skin reaction to contact with the allergenic food persisted. Dual SOTI is an improved protocol for SOTI using interferon gamma for IFA.The local skin reaction and systemic reaction to oral intake were dissociated following dual SOTI. In cases of food allergy, tolerance appears to result from desensitization to allergens.

  19. The AMANDA Search for High Energy Neutrinos From Gamma Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardtke, Rellen

    2004-09-28

    We have searched three and a half years of AMANDA data for high energy muon neutrinos from gamma-ray bursts (GRBs). The data was recorded from 1997 through 1999 by the AMANDA-B10 detector and in 2000 by the AMANDA-II detector. AMANDA is a Cerenkov detector embedded 1.5 to 2 km deep in the transparent ice of the South Polar plateau. We searched for neutrino candidates from the direction of, and coincident with, GRBs detected by the Burst and Transient Source Experiment (BATSE). The current result is consistent with no signal. A preliminary event upper limit for GRB neutrino emission is presentedmore » as well as a description of AMANDA's cubic-kilometer successor, IceCube.« less

  20. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.