Science.gov

Sample records for gamma dalam dosis

  1. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  2. (19) F DOSY diffusion-NMR spectroscopy of fluoropolymers.

    PubMed

    Xu, Chenglong; Wan, Yingbo; Chen, Dongxue; Gao, Chun; Yin, Hongnan; Fetherston, Daniel; Kupce, Eriks; Lopez, Gerald; Ameduri, Bruno; Twum, Eric B; Wyzgoski, Faith J; Li, Xiaohong; McCord, Elizabeth F; Rinaldi, Peter L

    2017-05-01

    A new pulse sequence for obtaining (19) F detected DOSY (diffusion ordered spectroscopy) spectra of fluorinated molecules is presented and used to study fluoropolymers based on vinylidene fluoride and chlorotrifluoroethylene. The performance of (19) F DOSY NMR experiments (and in general any type of NMR experiment) on fluoropolymers creates some unique complications that very often prevent detection of important signals. Factors that create these complications include: (1) the presence of many scalar couplings among (1) H, (19) F and (13) C; (2) the large magnitudes of many (19) F homonuclear couplings (especially (2) JFF ); (3) the large (19) F chemical shift range; and (4) the low solubility of these materials (which requires that experiments be performed at high temperatures). A systematic study of the various methods for collecting DOSY NMR data, and the adaptation of these methods to obtain (19) F detected DOSY data, has been performed using a mixture of low molecular weight, fluorinated model compounds. The best pulse sequences and optimal experimental conditions have been determined for obtaining (19) F DOSY spectra. The optimum pulse sequences for acquiring (19) F DOSY NMR data have been determined for various circumstances taking into account the spectral dispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimental parameters for optimizing these experiments for the study of fluoropolymers have been studied. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  4. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  5. DOSY of sample-limited mixtures: comparison of cold, nano and conventional probes.

    PubMed

    Bradley, Scott A; Paschal, Jonathan; Kulanthaivel, Palaniappan

    2005-01-01

    The DOSY analysis of dilute mixtures can be a challenge because a high signal-to-noise ratio is required for the best DOSY results. The sensitivity increase gained from new probe technologies (e.g. cold and nano probes) could enable one to acquire good DOSY spectra on sample amounts too low for conventional probes. In this article, we investigated the performance of cold and nano probes for qualitative DOSY analysis of concentrated and sample-limited mixtures, and compared the results with those of the conventional probe. We first measured the fluid flow for each probe. All three probes exhibited only relatively small levels of flow; consequently, a double-stimulated echo pulse sequence was not employed in the subsequent DOSY experiments. This decision was based on three facts: (1) flow-induced phase distortions were not observed, (2) our intentions are only to perform qualitative mixture analysis, and (3) discarding 50% of the already limited signal cannot be afforded. Although the cold and nano probes produced DOSY results for the concentrated mixture that were inferior to the conventional probe, the increase in the signal-to-noise ratio observed with these probes proved to be advantageous for the dilute three-component mixture. Furthermore, the cold probe showed slightly superior performance over the nano probe; thus, we conclude that among the probes examined the cold probe is best suited for qualitative DOSY analysis of sample-limited mixtures.

  6. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Przybyla, Bartos; Matthiä, Daniel; Reitz, Günther; Burmeister, Sönke; Labrenz, Johannes; Bilski, Pawel; Horwacik, Tomasz; Twardak, Anna; Hajek, Michael; Fugger, Manfred; Hofstätter, Christina; Sihver, Lembit; Palfalvi, Jozsef K.; Szabo, Julianna; Stradi, Andrea; Ambrozova, Iva; Kubancak, Jan; Brabcova, Katerina Pachnerova; Vanhavere, Filip; Cauwels, Vanessa; Van Hoey, Olivier; Schoonjans, Werner; Parisi, Alessio; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Doull, Brandon A.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2016-11-01

    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009-2011) and the DOSIS 3D (2012-ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195-270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude.

  7. STD-DOSY: A new NMR method to analyze multi-component enzyme/substrate systems

    NASA Astrophysics Data System (ADS)

    Kramer, Markus; Kleinpeter, Erich

    2010-02-01

    A new approach to analyze multi-component Saturation Transfer Difference (STD) NMR spectra by combining the STD and the DOSY experiment is proposed. The resulting pulse sequence was successfully used to simplify an exemplary multi-component protein/substrate system by means of standard DOSY processing methods. Furthermore, the same experiment could be applied to calculate the ratio of saturated substrate molecules and its saturation rate in the case of competitive interactions. This ratio depends on the strength of this interaction between the substrates and the protein, so that this kind of information could be extracted from the results of our experiment.

  8. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  9. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  10. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  11. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  12. DOSY-NMR and raman investigations on the self-aggregation and cyclodextrin complexation of vanillin.

    PubMed

    Ferrazza, Ruggero; Rossi, Barbara; Guella, Graziano

    2014-06-26

    Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a phenolic aldehyde with limited solubility in water; in this work, we investigate its self-aggregation, as well as its complexation equilibria with β-cyclodextrin by using nuclear magnetic resonance (NMR) and vibrational spectroscopy. In particular, diffusion-ordered NMR (DOSY) measurements allowing to detect diffusional changes caused by aggregation/inclusion phenomena lead to a reliable estimate of the equilibrium constants of these processes, while Raman spectroscopy was used to further characterize some structural details of vanillin self-aggregates and inclusion complexes. Although the self-association binding constant of vanillin in water was found to be low (K(a) ∼10), dimeric species are not negligible within the investigated range of concentration (3-65 mM); on the other hand, formation of β-cyclodextrin self-aggregates was not detected by DOSY measurements on aqueous solutions of β-cyclodextrin at different concentrations (2-12 mM). Finally, the binding of vanillin with β-cyclodextrin, as measured by the DOSY technique within a narrow range of concentrations (2-15 mM) by assuming the existence of only the monomeric 1:1 vanillin/β-CD complex, was about an order of magnitude higher (K(c) ∼ 90) than self-aggregation. However, the value of the equilibrium constant for this complexation was found to be significantly affected by the analytical concentrations of the host and guest system, thus indicating that K(c) is an "apparent" equilibrium constant.

  13. Quality control and assurance for validation of DOS/I measurements

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert; Durkin, Amanda; Kwong, Richard; Quang, Timothy; Hill, Brian; Tromberg, Bruce J.; MacKinnon, Nick; Mantulin, William W.

    2010-02-01

    Ongoing multi-center clinical trials are crucial for Biophotonics to gain acceptance in medical imaging. In these trials, quality control (QC) and assurance (QA) are key to success and provide "data insurance". Quality control and assurance deal with standardization, validation, and compliance of procedures, materials and instrumentation. Specifically, QC/QA involves systematic assessment of testing materials, instrumentation performance, standard operating procedures, data logging, analysis, and reporting. QC and QA are important for FDA accreditation and acceptance by the clinical community. Our Biophotonics research in the Network for Translational Research in Optical Imaging (NTROI) program for breast cancer characterization focuses on QA/QC issues primarily related to the broadband Diffuse Optical Spectroscopy and Imaging (DOS/I) instrumentation, because this is an emerging technology with limited standardized QC/QA in place. In the multi-center trial environment, we implement QA/QC procedures: 1. Standardize and validate calibration standards and procedures. (DOS/I technology requires both frequency domain and spectral calibration procedures using tissue simulating phantoms and reflectance standards, respectively.) 2. Standardize and validate data acquisition, processing and visualization (optimize instrument software-EZDOS; centralize data processing) 3. Monitor, catalog and maintain instrument performance (document performance; modularize maintenance; integrate new technology) 4. Standardize and coordinate trial data entry (from individual sites) into centralized database 5. Monitor, audit and communicate all research procedures (database, teleconferences, training sessions) between participants ensuring "calibration". This manuscript describes our ongoing efforts, successes and challenges implementing these strategies.

  14. Resolution of a nonionic surfactant oligomeric mixture by means of DOSY with inverse micelle assistance.

    PubMed

    Asaro, Fioretta; Savko, Nina

    2011-04-01

    DOSY is a recognized, efficient technique in the analysis of mixtures. It relies on the differences in self-diffusion coefficients, which are determined by the molecular size. Nowadays, efforts are directed towards devising matrices able to interact with the components of the mixture with differential affinity, and therefore capable to interfere with the diffusion processes and to display resolving power towards species of close, or even equal molecular weight, like isomers. Usually, commercial nonionic surfactants are mixtures of oligomeric species, since the head group, which is a short polyoxyehtylene chain, is somewhat polydisperse. The embedment of Igepal CA-520, 5 polyoxyethylene iso-octylphenyl ether, in an inverse microemulsion led to the separation of (1)H signals of the various oligomeric components. This ensued from the differential partitioning between the oil and the surface of the inverse micelles, which depends on the ethyleneoxide number (EON) of the head groups. Thus, it was possible to ascertain that the length distribution of the polyethyleneoxide chains is ingood agreement with the Poisson distribution theoretically predicted for the polymerization of ethylene oxide. The DOSY spectrum contributed to the assignment of the signals and afforded the partition degree, between the two environments, for each individual oligomeric species, providing further insight into nonionic inverse microemulsions, at present widely employed reaction media in the nanotechnological syntheses.

  15. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  16. Gamma watermarking

    SciTech Connect

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  17. Gamma Processes

    DTIC Science & Technology

    1986-01-01

    E[exp{-Bn Xn 1 U-Y nU-X vi ] - EeUY )Ee (v+Bu)X1 (2.4) where, in the last step, we have dropped the indices n and n-1 because of stationarity and...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  18. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  19. Induction of sterility in Anastrepha Fraterculus (Diptera: Tephritidae) by gamma radiation

    SciTech Connect

    Allinghi, A.; Gramajo, C.; Willink, E.; Vilardi, J.

    2007-03-15

    In relation to the application of the sterile insect technique (SIT) for the South American fruit fly Anastrepha fraterculus (Wiedemann), we analyzed the effect on adult fertility of different doses of gamma irradiation and the age of pupae at the time of irradiation. In a first experiment, we applied doses of 50, 70, and 90 Gy to pupae at 24, 48, 72, and 96 h before adult emergence. In a second experiment we irradiated pupae 48 h before emergence with 20, 40, and 60 Gy and estimated male and female fertility and sperm transfer by irradiated males. The results indicated pupal age at irradiation does not significantly affect male fertility. If males irradiated with 60 Gy are crossed to non-irradiated females the fertility is about 1%. Females irradiated with 40 Gy did not lay eggs independently of the male to which they mated. No significant effects of radiation were observed with respect to the ability of males to transfer sperm. A dose of 70 Gy applied 48 h before adult emergence induces 100% sterility in both males and females. (author) [Spanish] Para la aplicacion de la tecnica del insecto esteril (TIE) en Anastrepha fraterculus (Wiedemann), en este trabajo analizamos el efecto de diferentes dosis de irradiacion gamma y la edad optima de la pupa al momento de la irradiacion. En el primer experimento se evaluaron las dosis de 50, 70, y 90 Gy en pupas de 24, 48, 72, y 96 h antes de la emergencia del adulto. En el segundo experimento se irradiaron pupas 48 h antes de la emergencia con dosis de 20, 40, 60 Gy y se estimo la fertilidad de los machos y las hembras, y la transferencia de espermas por los machos irradiados. Los resultados indicaron que la irradiacion no modifico significativamente la fertilidad de los machos. En las cruzas de machos irradiados a 60 Gy con hembras no irradiadas se observo 1% de eclosion larvaria, mientras que las hembras irradiadas a 40 Gy no pusieron huevos. La irradiacion no afecto significativamente la transferencia de espermas de los

  20. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  1. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  2. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  3. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  4. Rehabilitation of gamma

    NASA Astrophysics Data System (ADS)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  5. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  6. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  7. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  8. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  9. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  10. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  11. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  12. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  13. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  14. THE {gamma}SF METHOD

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Okamoto, A.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2011-10-28

    The {gamma}-ray strength function ({gamma}SF) interconnects radiative neutron capture and photoneutron emission as a common ingredient in the statistical model. Outlined here is an indirect method of determining radiative neutron-capture cross sections for unstable nuclei based on the {gamma}-ray strength function. Application examples of the {gamma}SF method are demonstrated.

  15. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  16. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  17. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  18. [Gamma (or immune) interferon].

    PubMed

    Maniu, H

    1987-01-01

    Research on interferon progressed very much during the last years, especially studies on the gamma type of interferon. Historical data about the research conducted on the gamma interferon, its inductors, its physical, chemical and biological properties, the methods of preparation and purification, as well as the perspective of therapeutical utilisation of this type of interferon, in spite of some reversible side effects, are presented and discussed.

  19. Gamma-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Weekes, T.; Murdin, P.

    2000-11-01

    Gamma-rays are the highest-energy photons in the ELECTROMAGNETIC SPECTRUM and their detection presents unique challenges. On one hand it is easy to detect γ-rays. The interaction cross-sections are large and above a few MeV the pair production interaction, the dominant γ-ray interaction with matter, is easily recognized. Gamma-ray detectors were far advanced when the concept of `γ-ray astronomy' ...

  20. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  1. The GAMMA-400 gamma-ray telescope angular resolution

    NASA Astrophysics Data System (ADS)

    Kheymits, Maxim; Leonov, Alexey

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution nearby 1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper. The main point concerns with the space topology of high energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of more than 0.02 deg.

  2. DOSY NMR and MALDI-TOF evidence of covalent binding the DNA duplex by trimethylammonium salts of topotecan upon near UV irradiation.

    PubMed

    Naumczuk, Beata; Hyz, Karolina; Kawęcki, Robert; Bocian, Wojciech; Bednarek, Elżbieta; Sitkowski, Jerzy; Wielgus, Ewelina; Kozerski, Lech

    2015-08-01

    Using DOSY NMR and MALDI-TOF MS techniques, we present evidence that quaternary trimethylammonium salts of topotecan, [TPT-NMe3 ](+) X(-) (X = CF3SO3, HCOO), bind covalently the natural DNA oligomer upon near UV irradiation in water under physiological conditions. It is shown that formate salt is very reactive at pH 7 and requires short irradiation time. This weak irradiation at 365 nm paves the way for a new application of TPT derivatives in clinical use, which can dramatically increase the therapeutic effects of a medicine.

  3. Solvation chemistry of water-soluble thiol-protected gold nanocluster Au₁₀₂ from DOSY NMR spectroscopy and DFT calculations.

    PubMed

    Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Koivisto, Jaakko; Häkkinen, Hannu

    2014-07-21

    The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA(-) ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications.

  4. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  5. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  6. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  8. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  9. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  10. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  11. Gamma knife surgery for craniopharyngioma.

    PubMed

    Prasad, D; Steiner, M; Steiner, L

    1995-01-01

    We present our results of Gamma Knife surgery for craniopharyngioma in nine patients. The current status of surgery, radiation therapy, intracavitary instillation of radionucleides and Gamma Knife surgery in the management of craniopharyngiomas is discussed.

  12. Celestial gamma ray study

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1995-01-01

    This report documents the research activities performed by Stanford University investigators as part of the data reduction effort and overall support of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. This report is arranged chronologically, with each subsection detailing activities during roughly a one year period of time, beginning in June 1991.

  13. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  14. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  15. pi {sup 0} {yields} gamma gamma to NLO in CHPT

    SciTech Connect

    Jose Goity

    2003-05-01

    The pi 0 {yields} gamma gamma width is determined to next to leading order in the combined chiral and 1/Nc expansions. It is shown that corrections driven by chiral symmetry breaking produce an enhancement of about 4.5% with respect to the width calculated in terms of the chiral-limit amplitude leading to Gamma{sub {pi}}{sup 0} {yields} {gamma}{gamma} = 8.1 +/- 0.08 MeV. This theoretical prediction will be tested via pi 0 Primakoff production by the PRIMEX experiment at Jefferson Lab.

  16. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  17. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  18. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  19. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  20. NIF Gamma Reaction History

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y.; Young, C. S.; Mack, J. M.; McEvoy, A. M.; Hoffman, N. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S.; Batha, S. H.; Stoeffl, W.; Lee, A.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Malone, R. M.; Kaufman, M. I.

    2010-11-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostics is to provide bang time and burn width information based upon measurement of fusion gamma-rays. This is accomplished with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. In addition, the GRH detectors can perform γ-ray spectroscopy to explore other nuclear processes from which additional significant implosion parameters may be inferred (e.g., plastic ablator areal density). Implementation is occurring in 2 phases: 1) four PMT-based channels mounted to the outside of the NIF target chamber at ˜6 m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and 2) several channels located just inside the target bay shield wall at ˜15 m from TCC (GRH-15m) with optical paths leading through the wall into well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. This suite of diagnostics will allow exploration of interesting γ-ray physics well beyond the ignition campaign. Recent data from OMEGA and NIF will be shown.

  1. The DRAGO gamma camera

    SciTech Connect

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strueder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-15

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm{sup 2}, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated {sup 57}Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  2. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  3. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  4. gamma. -hexachlorocyclohexane (. gamma. -HCH) activates washed rabbit platelets

    SciTech Connect

    Lalau-Keraly, C.; Delautier, D.; Benveniste, J.; Puiseux-Dao, S.

    1986-03-01

    In guinea-pig macrophages, ..gamma..-HCH triggers activation of the phosphatidylinositol cycle and Ca/sup 2 +/ mobilization. Since these two biochemical events are also involved in platelet activation, the authors examined the effects of ..gamma..-HCH on washed rabbit platelets. Release of /sup 14/C-serotonin (/sup 14/C-5HT) and ATP from platelets prelabelled with /sup 14/C-5HT was measured simultaneously with aggregation. ..gamma..-HCH induced shape-change, aggregation and release reaction of platelets. Maximal aggregation (89 arbitrary units, AU), was observed using 170 ..mu..M ..gamma..-HCH, and was associated with 38.1 +/- 6.9% and 161 +/- 48 nM for /sup 14/C-5HT and ATP release respectively (mean +/- 1 SD, n=3). Using 80 ..mu..M ..gamma..-HCH yielded 18 AU, 12.8 +/- 1.0% and 27 +/- 14 nM for aggregation, C-5HT and ATP release respectively (n=3). No effect was observed with 40 ..mu.. M ..gamma..-HCH. Aspirin (ASA), a cyclooxygenase blocker, did not affect ..gamma..-HCH-induced platelet activation. Apyrase (APY), an ADP scavenger, inhibited by 90% aggregation induced by 170 ..mu..M ..gamma..-HCH and slightly inhibited (15%) the /sup 14/C-5HT release. In the presence of both ASA and APY, 96% inhibition of aggregation and 48% inhibition of /sup 14/C-5HT release were observed. Thus, ..gamma..-HCH induced platelet activation in a dose-dependent manner ADP, but not cyclooxygenase-dependent arachidonate metabolites, is involved in ..gamma..-HCH-induced aggregation, whereas, both appear to play a role in ..gamma..-HCH-induced release reaction.

  5. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  6. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  7. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  8. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  9. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  10. Gamma spectroscopy of environmental samples

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2013-05-01

    We describe experiments for the undergraduate laboratory that use a high-resolution gamma detector to measure radiation in environmental samples. The experiments are designed to instruct the students in the quantitative analysis of gamma spectra and secular equilibrium. Experiments include the radioactive dating of Brazil nuts, determining radioisotope concentrations in natural samples, and measurement of the 235U abundance in uranium rich rocks.

  11. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  12. Cyclic oxidation behavior of beta+gamma overlay coatings on gamma and gamma+gamma-prime alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Pilsner, B. H.; Carol, L. A.; Heckel, R. W.

    1984-01-01

    Detailed experimental studies of the cyclic oxidation behavior of low-pressure plasma sprayed beta+gamma coasting on gamma-phase Ni-Cr-Al alloys have shown the correlation of weight change, oxide type, and Cr and Al concentration-distance profiles as a function of oxidation time. Of special interest was the transition to breakway oxidation due to the loss of the Al flux to the oxide and the failure of the coated alloy to form an Al2O3-rich oxide scale. The experimental results on beta+gamma/gamma coating systems were used as the basis of a numerical model (ternary, semi-infinite, finite-difference analysis) which accurately predicted changes in Cr and Al concentration-distance profiles. The model was used to study parameters critical to enhancing the life of coatings which fail by a combination of Al loss in forming the oxide scale and Al loss via interdiffusion with the substrate alloy. Comparisons of beta+gamma/gamma coating behavior are made to the oxidation of coated gamma+gamma-prime substrates, both ternary Ni-Cr-Al alloys and Mar-M 247-type alloys.

  13. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  14. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  15. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  16. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  17. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  18. Pixelated gamma detector

    SciTech Connect

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  19. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  20. Towards an amplitude analysis of exclusive. gamma gamma. processes

    SciTech Connect

    Pennington, M.R.

    1988-06-01

    The potential of two photon processes to shed light on the parton content of resonances, we maintain, can only be realized in practice by moving towards an Amplitude Analysis of experimental data. By using the process ..gamma gamma.. ..-->.. ..pi pi.. as an example, the way to do this is discussed. Presently claimed uncertainties in the ..gamma gamma.. width of even the well-known f/sub 2/ (1270) are shown to be over-optimistic and the fitted couplings of the overlapping scalar states in the 1 GeV region meaningless. Only the use of Amplitude Analysis techniques on the new higher statistics data from SLAC and DESY can resolve these uncertainties and lead to definite and significant results. 37 refs., 18 figs.

  1. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  2. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  3. The GAMMA-400 Space Experiment

    NASA Astrophysics Data System (ADS)

    Bongi, M.

    2014-06-01

    GAMMA-400 is a new space experiment which will study gamma rays and cosmic rays from about 100 MeV up to some TeVs. The proposed instrument has an angular resolution ˜ 0.1 degrees at 10 GeV and better than ˜ 0.02 degrees above 100 GeV, and an energy resolution ˜ 1% at E > 100 GeV for gamma rays. With these characteristics the experiment will be able to contribute to the search for signatures of Dark Matter, and to the study of Galactic and ex-tragalactic gamma sources and diffuse emission. A large segmented calorimeter more than 25 X0 deep will allow the study of high-energy electrons, and the measurement of the flux of protons and nuclei up to the "knee" region.

  4. Gamma Astrometric Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Gai, M.; Lattanzi, M. G.; Ligori, S.; Loreggia, D.; Vecchiato, A.

    GAME aims at the measurement of gravitational deflection of the light by the Sun, by an optimised telescope on board a small class satellite. The targeted precision on the gamma parameter of the Parametrised Post-Newtonian formulation of General Relativity is below 10-6, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometry. The observations also allow additional scientific objectives related to tests of General Relativity and to the study of exo-planetary systems. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics achieves efficient rejection of the solar radiation, with good angular resolution on the science targets. We describe the science motivation, the proposed mission implementation and the expected performance.

  5. Spectrum Roentgen Gamma

    NASA Astrophysics Data System (ADS)

    Predehl, P.; Pavlinsky, M.

    2014-07-01

    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in 2016 into a 6-month-period halo orbit around L2. The mission lifetime is planned to be more than seven years. While the first four years of the mission are devoted to an all sky survey, the rest of the mssion will be used for pointed observations. The payload consists of two X-ray telescopes, eROSITA and ART-XC. The eROSITA sky survey will be about 30 times more sensitive than ROSAT at energies between 0.5 and 2 keV, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters out to redshifts z>1 in order to study the large scale structure in the universe and test cosmological models including Dark Energy. ART-XC's role is to extend the energy range of eROSITA alone, thereby doubling the effective area in the critical 4-7 keV range. The harder response of ART-XC also facilitates the x-ray detection of obscured AGN. Both instruments are currently in the flight model and calibration phase.

  6. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  7. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  8. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  10. Gamma radiation field intensity meter

    SciTech Connect

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  11. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  12. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  13. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  14. Implications of final L3 measurement of {sigma}{sub tot}({gamma}{gamma}{yields}bb)

    SciTech Connect

    Chyla, Jiri

    2006-02-01

    The excess of data on the total cross section of bb production in {gamma}{gamma} collisions over QCD predictions, observed by L3, OPAL and DELPHI Collaborations at LEP2, has so far defied explanation. The recent final analysis of L3 data has brought important new information concerning the dependence of the observed excess on the {gamma}{gamma} collisions energy W{sub {gamma}}{sub {gamma}}. The implications of this dependence are discussed.

  15. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  16. Quality assurance for gamma knives

    SciTech Connect

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  17. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  18. Flavonoid glycosides from Persea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY.

    PubMed

    Álvarez, Juan M; Raya-Barón, Álvaro; Nieto, Pedro M; Cuca, Luis E; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto; Fernández, Ignacio

    2016-04-13

    Two flavonoid glycosides derived from rhamnopyranoside (1) and arabinofuranoside (2) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by (1) H NMR, (13) C NMR, and IR spectroscopy, together with LC-ESI-TOF and LC-ESI-IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix-assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra-residue and inter-residue proton-proton distances using nuclear Overhauser effect build-up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS-micelle, whereas the latter is placed closer to the surface. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Magnetars as soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    O'Meara, Karen

    1999-05-01

    The source of non-periodic, repeating, gamma-ray bursts located within our galaxy and near supernova remnants has been a mystery. A new theory by Christopher Thompson and Robert Duncan, postulating the existence of young neutron stars with intense magnetic fields (1E14 Gauss or more) offers an explanation. The intense magnetic fields of these "magnetars" suffice to create the phenomena detected from soft gamma-ray repeaters. The poles of a magnetar are hot enough to emit steady, low level x-ray emissions. Stresses on the star's crust due to the drifting of the magnetic field through the superfluid core create seismic activity and "starquakes," which release enormous bursts of energy. Data collected from recent soft gamma-ray repeater bursts appear to be strong evidence in support of this exciting new theory.

  20. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  1. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  2. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  3. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  4. BETA-GAMMA PERSONNEL DOSIMETER

    DOEpatents

    Davis, D.M.; Gupton, E.D.; Hart, J.C.; Hull, A.P.

    1961-01-17

    A personnel dosimeter is offered which is sensitive to both gamma and soft beta radiations from all directions within a hemisphere. The device is in the shape of a small pill box which is worn on a worker-s wrist. The top and sides of the device are provided with 50 per cent void areas to give 50 per cent response to the beta rays and complete response to the gamma rays. The device is so constructed as to have a response which will approximate the dose received by the basal layer of the human epidermis.

  5. gamma-Carboxyglutamic acid distribution.

    PubMed

    Zytkovicz, T H; Nelsestuen, G L

    1976-09-24

    The distribution of the vitamin K-dependent amino acid, gamma-carboxyglutamic acid was examined in proteins from a variety of sources. Proteins examined include purified rat and bovine coagulation proteins, barium citrate-adsorbing proteins from trout plasma, lamprey plasma, earthworm hemolymph, army worm hemolymph, lobster hemolymph, E. coli B/5, soybean leaf, the protein lysate from the hemolymph cell of the horseshoe crab and parathyroid extract. Other purified proteins examined included human alpha-1-antitrypsin, pepsinogen, S-100, fetuin, tropomyosin-troponin and complement protein C-3. Of these, only the blood-cotting proteins and the vertebrate plasma samples were shown to contain gamma-carboxyglutamic acid.

  6. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  7. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  8. Gamma source for active interrogation

    SciTech Connect

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  9. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  10. On Some Properties of Gamma Matrices

    ERIC Educational Resources Information Center

    Dumais, Jean-Francois

    1977-01-01

    Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)

  11. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  12. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  13. Gamma-ray Line Astronomy

    NASA Astrophysics Data System (ADS)

    Diehl, R.

    2005-07-01

    Gamma-ray lines from radioactive isotopes, ejected into interstellar space by cosmic nucleosynthesis events, are observed with new space telescopes. The Compton Observatory had provided a sky survey for the isotopes 56Co, 22Na, 44Ti, and 26Al, detecting supernova radioactivity and the diffuse glow of long-lived radioactivity from massive stars in the Galaxy. High-resolution spectroscopy is now being exploited with Ge detectors: Since 2002, with ESA's INTEGRAL satellite and the RHESSI solar imager two space-based Ge-gamma-ray telescopes are in operation, measuring Doppler broadenings and line shape details of cosmic gamma-ray lines. First year's results include a detection and line shape measurement of annihilation emission, and 26Al emission from the inner Galaxy and from the Cygnus region. 60Fe gamma-ray intensity is surprisingly low; it may have been detected by RHESSI at 10% of the 26Al brightness, yet is not seen by INTEGRAL. 44Ti emission from Cas A and SN1987A is being studied; no other candidate young supernova remnants have been found through 44Ti. 22Na from novae still is not seen.

  14. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  15. Gamma and Related Functions Generalized for Sequences

    ERIC Educational Resources Information Center

    Ollerton, R. L.

    2008-01-01

    Given a sequence g[subscript k] greater than 0, the "g-factorial" product [big product][superscript k] [subscript i=1] g[subscript i] is extended from integer k to real x by generalizing properties of the gamma function [Gamma](x). The Euler-Mascheroni constant [gamma] and the beta and zeta functions are also generalized. Specific examples include…

  16. Gamma-Ray Interactions for Reachback Analysts

    SciTech Connect

    Karpius, Peter Joseph; Myers, Steven Charles

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  17. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  18. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  19. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  20. Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2

    SciTech Connect

    Hong, S. G.; Kim, K. S.; Cho, J. Y.; Lee, K. H.

    2012-07-01

    KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)

  1. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  2. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  3. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  4. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  5. Radioimmunoassay for. gamma. -melanocyte stimulating hormone

    SciTech Connect

    Shibasaki, T.; Ling, N.; Guillemin, R.

    1980-05-26

    A specific radioimmunoassay for ..gamma..-melanocyte stimulating hormone-like peptides was developed. An antiserum raised in rabbit to synthetic bovine ..gamma../sub 3/-MSH, one of the possible ..gamma..-MSH peptides, specifically recognizes the portion between His/sup 5/ and Arg/sup 14/ of ..gamma../sub 3/-MSH without significant cross-reaction with other synthetic ..gamma..-MSH-like peptides, ..cap alpha..-, ..beta..-MSH, adrenocorticotropin, and ..beta..-endorphin. The usable range of this RIA is 10 pg to 600 pg of synthetic ..gamma../sub 3/-MSH. Three immunoreactive ..gamma..-MSH peaks were thus found in gel permeation chromatography of the whole bovine pituitary extract.

  6. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  7. 2010: Status of the GAMMA-400 Project

    NASA Astrophysics Data System (ADS)

    Topchiev, Nikolay; Galper, . M.; Arkhangelskaya, I. V.; Bonvicini, V.; Boezio, M.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Men'shenin, A. L.; Picozza, P.; Prilutskii, O. F.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    An optimized version of the GAMMA-400 telescope for detecting gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV and high-energy nuclei is presented. Its performance (angular resolution 0.05° , energy resolution 3%, e/p rejection factor 106 ) enables to search gamma rays, electrons, and positrons from annihilation or decay of dark matter components, to detect high-energy gamma rays from galactic and extragalactic astrophysical objects, to measure energy spectra of galactic and extragalactic diffuse gamma-ray emission, to search and investigate transient phenomena, high-energy (more than 1 GeV) gamma-ray bursts and gamma rays from solar flares, as well as galactic electron, positron, and nuclei fluxes.

  8. Prompt-Gamma Activation Analysis.

    PubMed

    Lindstrom, Richard M

    1993-01-01

    A permanent, full-time instrument for prompt-gamma activation analysis is nearing completion as part of the Cold Neutron Research Facility (CNRF). The design of the analytical system has been optimized for high gamma detection efficiency and low background, particularly for hydrogen. Because of the purity of the neutron beam, shielding requirements are modest and the scatter-capture background is low. As a result of a compact sample-detector geometry, the sensitivity (counting rate per gram of analyte) is a factor of four better than the existing Maryland-NIST thermal-neutron instrument at this reactor. Hydrogen backgrounds of a few micrograms have already been achieved, which promises to be of value in numerous applications where quantitative nondestructive analysis of small quantities of hydrogen in materials is necessary.

  9. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-08-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  10. Gamma radiolysis of chlorinated hydrocarbons

    SciTech Connect

    Arbon, R.E.; Mincher, B.J.; Meikrantz, D.H.

    1992-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collarborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous waste using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2,2{prime}, 3,3{prime},4,5{prime},6,6{prime} - octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (AIR) spent fuel pool. The decomposition rates and products in several solvents are discussed. 3 refs.

  11. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  12. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  13. Structurally divergent human T cell receptor. gamma. proteins encoded by distinct C. gamma. genes

    SciTech Connect

    Krangel, M.S.; Band, H.; Hata, S.; McLean, J.; Brenner, M.B.

    1987-07-03

    The human T cell receptor (TCR) ..gamma.. polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR ..gamma.. genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR ..gamma.. correlates with the use of the C..gamma..1 and C..gamma..2 constant-region gene segments, respectively. Variability in TCR ..gamma.. polypeptide and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus, C..gamma..1 and C..gamma..2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR ..gamma.. and delta peptides in the nondisulfide-linked form are distinct.

  14. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  15. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Neutron Detector Gamma Insensitivity Criteria

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Stephens, Daniel L.

    2009-10-21

    The shortage of 3He has triggered the search for an effective alternative neutron detection technology for radiation portal monitor applications. Any new detection technology must satisfy two basic criteria: 1) it must meet the neutron detection efficiency requirement, and 2) it must be insensitive to gamma ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this document to define this latter criterion.

  17. {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{eta}{gamma}{gamma}: A primer analysis

    SciTech Connect

    Escribano, Rafel

    2012-10-23

    The electromagnetic rare decays {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} are analysed for the first time and their predicted branching ratios given. The vector meson exchange dominant contribution is treated using Vector Meson Dominance and the scalar component is estimated by means of the Linear Sigma Model. The agreement between our calculation and the measurement of the related process {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} is a check of the procedure. Scalar meson effects are seen to be irrelevant for {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}, while a significant scalar contribution due to the {sigma}(500) resonance seems to emerge in the case of {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}. Future measurements coming from KLOE-2, Crystal Ball, WASA, and BES-III will elucidate if any of these processes carry an important scalar contribution or they are simply driven by the exchange of vector mesons.

  18. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  19. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  20. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  1. Instrumentation for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  2. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  3. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  4. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  5. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  6. A search for the rare decay. mu. /sup +/. -->. e/sup +/. gamma gamma

    SciTech Connect

    Grosnick, D.P.

    1987-02-01

    An experimental search for the lepton-family number nonconserving decay, ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.., has been conducted at the Clinton P. Anderson Meson Physics Facility (LAMPF) using the Crystal Box detector. The detector consists of a modular NaI(Tl) calorimeter, scintillator hodoscope, and a high-resolution, cylindrical drift chamber. It provides a large solid-angle for detecting three-body decays and has good resolutions in the time, position, and energy measurements to eliminate unwanted backgrounds. No evidence for ..mu../sup +/ ..-->.. e/sup +/..gamma gamma.. is found, giving an upper limit for the branching ratio of GAMMA(..mu.. ..-->.. e..gamma gamma..)/GAMMA(..mu.. ..-->.. e nu anti nu) less than or equal to 7.2 x 10/sup -11/ (90% C.L.). This result is an improvement of more than two orders of magnitude in the existing limit. 109 refs., 39 figs.

  7. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  8. gamma-Glutamyl dipeptides in Petiveria alliacea.

    PubMed

    Kubec, Roman; Musah, Rabi A

    2005-10-01

    Three gamma-glutamyl dipeptides have been isolated from Petiveria alliacea L. roots. These dipeptides include (S(C2)R(C7))-gamma-glutamyl-S-benzylcysteine together with two diastereomeric sulfoxides, namely (S(C2)R(C7)R(S))- and (S(C2)R(C7)R(S))-gamma-glutamyl-S-benzylcysteine S-oxides (gamma-glutamyl-petiveriins A and B, respectively). Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy, and confirmed by comparison with authentic compounds obtained by synthesis.

  9. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  10. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  11. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  12. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  13. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  14. Human Fc gamma RII, in the absence of other Fc gamma receptors, mediates a phagocytic signal.

    PubMed Central

    Indik, Z; Kelly, C; Chien, P; Levinson, A I; Schreiber, A D

    1991-01-01

    Fc gamma receptors are important components in the binding and phagocytosis of IgG-sensitized cells. Studies on the role of these receptors have been limited by the fact that most hematopoietic cells express more than one Fc gamma receptor. We studied the role of Fc gamma RIIA in isolation on a human erythroleukemia cell line (HEL) which expresses Fc gamma RIIA as its only Fc gamma receptor. HEL cells were observed to bind and phagocytose IgG-sensitized red blood cells (RBCs) in a dose-dependent manner. We then examined the role of Fc gamma RI and Fc gamma RII in isolation and in combination, in transfected COS-1 cells. Fc gamma RIIA-transfected COS cells also mediated both the binding and phagocytosis of IgG-sensitized RBCs. In contrast, phagocytosis was not observed in Fc gamma RI-transfected cells, although these cells avidly bound IgG-sensitized RBCs. Furthermore, coexpression of both receptors by doubly transfected cells did not affect the phagocytic efficiency of Fc gamma RIIA. These studies establish that Fc gamma RIIA can mediate phagocytosis and suggest that transfected COS-1 cells provide a model for examining this process. Since HEL cells exhibit characteristics of cells of the megakaryocyte-platelet lineage, including expression of Fc gamma RII as the only Fc gamma receptor, Fc gamma RIIA on megakaryocytes and platelets may be involved in the ingestion of IgG-containing immune complexes. Furthermore, these studies indicate that Fc gamma RI and Fc gamma RIIA differ in their requirements for transduction of a phagocytic signal. Images PMID:1834702

  15. Using (d,p{gamma}) as a surrogate reaction for (n,{gamma})

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Gibelin, J.; Phair, L.; Swan, T.

    2009-01-28

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known neutron capture cross section ratio of these nuclei. Preliminary surrogate results reproduced the measured values within 15%.

  16. Measurements of Branching Fractions for B+ -> rho+ gamma, B0 -> rho0 gamma, and B0 -> omega gamma

    SciTech Connect

    Aubert, B

    2008-08-15

    The authors present branching fraction measurements for the radiative decays B{sup +} {yields} {rho}{sup +}{gamma}, B{sup 0} {yields} {rho}{sup 0}{gamma}, and B{sup 0} {yields} {omega}{gamma}. The analysis is based on a data sample of 465 million B{bar B} events collected with the BABAR detector at the PEP-II asymmetric-energy B Factory located at the Stanford Linear Accelerator Center (SLAC). They find {Beta}(B{sup +} {yields} {rho}{sup +}{gamma}) = (1.20{sub -0.37}{sup +0.42} {+-} 0.20) x 10{sup -6}, {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.97{sub -0.22}{sup +0.24} {+-} 0.06) x 10{sup -6}, and a 90% C.L. upper limit {Beta}(B{sup 0} {yields} {omega}{gamma}) < 0.9 x 10{sup -6}, where the first error is statistical and the second is systematic. They also measure the isospin-violating quantity {Lambda}(B{sup +} {yields} {rho}{sup +}{gamma})/2{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma}) - 1 = -0.43{sub -0.22}{sup +0.25} {+-} 0.10.

  17. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation.

  18. Supervised Gamma Process Poisson Factorization

    SciTech Connect

    Anderson, Dylan Zachary

    2015-05-01

    This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling and several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.

  19. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  20. EML HASL-300 Method Ga-01-R: Gamma Radioassay

    EPA Pesticide Factsheets

    This method uses gamma spectrometry for measurement of gamma photons emitted from radionuclides. Samples are placed into a standard geometry for gamma counting, typically using an high purity Germanium [HP(Ge)] detector.

  1. First results from ASP on resonance production in. gamma gamma. interactions

    SciTech Connect

    Roe, N.

    1988-05-01

    The reaction e/sup +/e/sup -//yields/e/sup +/e/sup -//gamma/sup *//gamma/sup *///yields/(e/sup +/e/sup -/)/eta/, with subsequent decay of the /eta/ into two photons, has been observed with the ASP detector at the PEP e/sup +/e/sup -/ storage ring at /radical/ s=29 GeV. A measurement of the radiative width of the /eta/ yields the preliminary result /Gamma/(/eta//yields//gamma//gamma/) = .489 /+-/ .009 /+-/ .055 keV. Evidence for the production of the /eta/' with decay into two photons has also been observed.

  2. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  3. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  4. Gamma-ray spectral analysis algorithm library

    SciTech Connect

    Egger, A. E.

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  5. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  6. Shielding for beta-gamma radiation.

    PubMed

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  7. Gamma ray astronomy from satellites and balloons

    NASA Technical Reports Server (NTRS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  8. Multiple Scatters in Single Site Gamma Backgrounds

    SciTech Connect

    Brodsky, J. P.

    2016-09-16

    nEXO aims to reduce its gamma backgrounds by taking advantage of the fact that a large number of gammas that would otherwise be backgrounds will undergo multiple compton scattering in the TPC and produce spatially distinct signals. These multi-sited (MS) events can be excluded from the 0νββ search.

  9. Genetics Home Reference: mucolipidosis III gamma

    MedlinePlus

    ... time. People with mucolipidosis III gamma often have heart valve abnormalities and mild clouding of the clear covering ... III Gamma MedlinePlus Encyclopedia: Cloudy Cornea MedlinePlus Encyclopedia: Heart Valves General Information from MedlinePlus (5 links) Diagnostic Tests ...

  10. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  11. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  12. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  13. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  14. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  15. Gamma interferon: a central mediator in atherosclerosis.

    PubMed

    Leon, M L Alfaro; Zuckerman, S H

    2005-10-01

    Atherosclerosis is a chronic inflammatory disease of the vasculature with lesions developing in the arterial wall, frequently in the coronary and carotid arteries. The interaction between macrophages and lymphocytes within the atherosclerotic lesion microenvironment exemplifies a site where both innate and adaptive immunity contribute towards disease progression. As gamma interferon (IFN-gamma), the classic macrophage activating factor, has been localized to atherosclerotic lesions, this review will focus on its contribution to plaque pathology and will finally consider how current therapies, as exemplified by HMG CoA reductase inhibitors or statins, may impact this process beyond lipid lowering, in part by inhibiting IFN-gamma dependent processes. IFN-gamma sources within the atheroma as well as receptors, signaling pathways and its effects on macrophages as well as on vascular smooth muscle and endothelial cells will be considered. Therapeutic interventions targeting molecular events associated with IFN-gamma signaling offer novel approaches to the treatment of atherosclerosis.

  16. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  17. Unveiling the secrets of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Gomboc, Andreja

    2012-07-01

    Gamma Ray Bursts are unpredictable and brief flashes of gamma rays that occur about once a day in random locations in the sky. Since gamma rays do not penetrate the Earth's atmosphere, they are detected by satellites, which automatically trigger ground-based telescopes for follow-up observations at longer wavelengths. In this introduction to Gamma Ray Bursts we review how building a multi-wavelength picture of these events has revealed that they are the most energetic explosions since the Big Bang and are connected with stellar deaths in other galaxies. However, in spite of exceptional observational and theoretical progress in the last 15 years, recent observations raise many questions which challenge our understanding of these elusive phenomena. Gamma Ray Bursts therefore remain one of the hottest topics in modern astrophysics.

  18. Visual awareness, emotion, and gamma band synchronization.

    PubMed

    Luo, Qian; Mitchell, Derek; Cheng, Xi; Mondillo, Krystal; Mccaffrey, Daniel; Holroyd, Tom; Carver, Frederick; Coppola, Richard; Blair, James

    2009-08-01

    What makes us become aware? A popular hypothesis is that if cortical neurons fire in synchrony at a certain frequency band (gamma), we become aware of what they are representing. We tested this hypothesis adopting brain-imaging techniques with good spatiotemporal resolution and frequency-specific information. Specifically, we examined the degree to which increases in event-related synchronization (ERS) in the gamma band were associated with awareness of a stimulus (its detectability) and/or the emotional content of the stimulus. We observed increases in gamma band ERS within prefrontal-anterior cingulate, visual, parietal, posterior cingulate, and superior temporal cortices to stimuli available to conscious awareness. However, we also observed increases in gamma band ERS within the amygdala, visual, prefrontal, parietal, and posterior cingulate cortices to emotional relative to neutral stimuli, irrespective of their availability to conscious access. This suggests that increased gamma band ERS is related to, but not sufficient for, consciousness.

  19. Future Missions for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gamma-ray astronomy has made great advances in recent years, due largely to the recently completed 9-year mission of the Compton Gamma Ray Observatory. In this talk I will give an overview of what advances we may expect in the near future, with particular emphasis on earth-orbiting missions scheduled for flight within the next 5 years. Two missions, the High Energy Transient Explorer and Swift, will provide important new information on the sources of gamma-ray bursts. The Gamma-Ray Large Area Space Telescope will investigate high energy emission from a wide variety of sources, including active galaxies and gamma-ray pulsars. The contributions of ground-based and multiwavelength observations will also be addressed.

  20. Method of Incident Low-Energy Gamma-Ray Direction Reconstruction in GAMMA-400 Gamma-Ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Galper, A. M.; Zverev, V. G.; Leonov, A. A.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Y. T.

    Gamma-telescope GAMMA-400 is designed to measure fluxes of γ-rays and the electron-positron cosmic ray component possibly associated with dark matter particles annihilation or decay; and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts (GRB) and γ-rays from the active Sun. GAMMA-400 gamma-ray space-based telescope scientific goals require fine angular resolution. GAMMA-400 is the pair production telescope. In the converter-tracker the incident gamma-quantum convert into electron-positron pair in the tungsten layer and then the tracks are registered by silicon-strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident gamma direction reconstruction for energies below several GeV. The method of utilising this process to improve the resolution is proposed in the presented work.

  1. Gamma Knife Radiosurgery for Acromegaly

    PubMed Central

    Rolston, John D.; Blevins, Lewis S.

    2012-01-01

    Acromegaly is debilitating disease occasionally refractory to surgical and medical treatment. Stereotactic radiosurgery, and in particular Gamma Knife surgery (GKS), has proven to be an effective noninvasive adjunct to traditional treatments, leading to disease remission in a substantial proportion of patients. Such remission holds the promise of eliminating the need for expensive medications, along with side effects, as well as sparing patients the damaging sequelae of uncontrolled acromegaly. Numerous studies of radiosurgical treatments for acromegaly have been carried out. These illustrate an overall remission rate over 40%. Morbidity from radiosurgery is infrequent but can include cranial nerve palsies and hypopituitarism. Overall, stereotactic radiosurgery is a promising therapy for patients with acromegaly and deserves further study to refine its role in the treatment of affected patients. PMID:22518132

  2. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, H.W.

    1994-03-15

    An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

  3. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  4. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

  5. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  6. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P; Annand, J R; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V; Bergh��user, H; Braghieri, A; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F; Collicott, C; Costanza, S; Danilkin, I V; Denig, A; Demissie, B; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Gregor, R; Hamilton, D; Heid, E; Hornidge, D; Howdle, D; Jahn, O; Jude, T C; Kashevarov, V L; K��ser, A; Keshelashvili, I; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J; Maghrbi, Y; Mancel, J; Manley, D M; McNicoll, E F; Mekterovic, D; Metag, V; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ortega, H; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Starostin, A; Strakovsky, I I; Strub, T; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmueller, D; Witthauer, L

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  7. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  8. Quantitative comparison of 3D and 2.5D gamma analysis: introducing gamma angle histograms

    NASA Astrophysics Data System (ADS)

    Sa'd, M. Al; Graham, J.; Liney, G. P.; Moore, C. J.

    2013-04-01

    Comparison of dose distributions using the 3D gamma method is anticipated to provide better indicators for the quality assurance process than the 2.5D (stacked 2D slice-by-slice) gamma calculation, especially for advanced radiotherapy technologies. This study compares the accuracy of the 3D and 2.5D gamma calculation methods. 3D and 2.5D gamma calculations were carried out on four reference/evaluation 3D dose sample pairs. A number of analysis methods were used, including average gamma and gamma volume histograms. We introduce the concept of gamma-angle histograms. Noise sensitivity tests were also performed using two different noise models. The advantage of the 3D gamma method showed up as a higher proportion of points passing the tolerance criteria of 3% dose difference and 3 mm distance-to-agreement (DTA), with considerably lower average gamma values, a lower influence of the DTA criterion, and a higher noise tolerance. The 3D gamma approach is more reliable than the 2.5D approach in terms of providing comprehensive quantitative results, which are needed in quality assurance procedures for advanced radiotherapy methods.

  9. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  10. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  11. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  12. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  13. Python in gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph Deil

    2016-03-01

    Gamma-ray astronomy is a relatively new window on the cosmos. The first source detected from the ground was the Crab nebula, seen by the Whipple telescope in Arizona in 1989. Today, about 150 sources have been detected at TeV energies using gamma-ray telescopes from the ground such as H.E.S.S. in Namibia or VERITAS in Arizona, and about 3000 sources at GeV energies using the Fermi Gamma-ray Space Telescope. Soon construction will start for the Cherenkov Telescope Array (CTA), which will be the first ground-based gamma-ray telescope array operated as an open observatory, with a site in the southern and a second site in the northern hemisphere. In this presentation I will give a very brief introduction to gamma-ray astronomy and data analysis, as well as a short overview of the software used for the various missions. The main focus will be on recent attempts to build open-source gamma-ray software on the scientific Python stack and Astropy: ctapipe as a CTA Python pipeline prototype, Fermipy and the Fermi Science Tools for Fermi-LAT analysis, Gammapy as a community-developed gamma-ray Python package and naima as a non-thermal spectral modeling and fitting package.

  14. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  15. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-07

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  16. Isothermal deformation of gamma titanium aluminide

    SciTech Connect

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-04-15

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material.

  17. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  18. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  19. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  20. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  1. Gamma-Gamma Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2016-09-01

    The goal of this work was to explore the sensitivity of the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) 16 clover-detector γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations. The methodology was established using both experimental measurements and Geant4 simulations that were used to create angular correlation templates for the GRIFFIN geometry. Direct comparisons were made between experimental data sets and the simulated angular correlation templates. A first in-beam test of the γ - γ angular correlation measurements with GRIFFIN was performed with a radioactive beam of 66Ga. Mixing ratios of δ = - 2 . 1(2) and δ = - 0 . 08(3) were measured for the 2+ ->2+ ->0+ 833-1039 keV and 1+ ->2+ ->0+ 2752-1039 keV cascades in the daughter nucleus 66Zn. These results are in good agreement with pervious literature values and the mixing ratio for the 833-1039 keV cascade has a higher precision. Also, the sensitivity to the 1333-1039 keV cascade, with its pronounced 0+ ->2+ ->0+ angular correlation, was measured.A test measurement of the superallowed Fermi β emitter 62Ga will also be discussed. Canada Foundation of Innovation, Natural Sciences and Engineering Research Council of Canada, National Research Council of Canada and Canadian Research Chairs Program.

  2. A Search for the Rare Decay $B\\rightarrow\\gamma\\gamma$

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-06-02

    We report the result of a search for the rare decay B{sup 0} {yields} {gamma}{gamma} in 426 fb{sup -1} of data, corresponding to 226 million B{sup 0}{bar B}{sup 0} pairs, collected on the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy e{sup +}e{sup -} collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21{sub -12}{sup +13} signal events with a statistical signficance of 1.9 {sigma}. This corresponds to a branching fraction {Beta}(B{sup 0} {yields} {gamma}{gamma}) = (1.7 {+-} 1.1(stat.) {+-} 0.2(syst.)) x 10{sup -7}. Based on this result, we set a 90% confidence level upper limit of {Beta}(B{sup 0} {yields} {gamma}{gamma}) < 3.2 x 10{sup -7}.

  3. High-energy gamma rays from the intense 1993 January 31 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Sommer, M.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Fishman, G. J.; Harding, A. K.; Hartman, R. C.; Hunter, S. D.; Hurley, K.; Kanbach, G.

    1994-01-01

    The intense gamma-ray burst of 1993 January 31 was detected by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Observatory. Sixteen gamma rays above 30 MeV were imaged in the telescope when only 0.04 gamma rays were expected by chance. Two of these gamma rays have energies of approximately 1 GeV, and the five bin spectrum of the 16 events is fitted by a power law of photon spectral index -2.0 +/- 0.4. The high-energy emission extends for at least 25 s. The most probable direction for this burst is determined from the directions of the 16 gamma rays observed by Egret and also by requiring the position to lie on annulus derived by the Interplanetary Network.

  4. The gamma 1 and gamma 3 bands of (16)O3: Line positions and intensities

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Devi, V. Malathy; Rinsland, C. P.; Smith, M. A. H.

    1988-01-01

    Using 0.005/cm-resolution Fourier transform spectra of samples of ozone, the gamma 1 and gamma 3 bands of (16)O3 have been reanalyzed to obtain accurate line positions and an extended set of upper state rotational levels (J up to 69, K sub a up to 20). Combined with the available microwave data, these upper state rotational levels were satisfactorily fitted using a Hamiltonian which takes explicitly into account the strong Coriolis interaction affecting the rotational levels of these two interacting states. In addition, 350 relative line intensities were measured from which the rotational expansions of the transition moment operators for the gamma 1 and gamma 3 states have been deduced. Finally, a complete listing of line positions, intensities, and lower state energies of the gamma 1 and gamma 3 bands of (16)O3 has been generated.

  5. GammaLib: A New Framework for the Analysis of Astronomical Gamma-Ray Data

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    2012-09-01

    With the advent of a new generation of telescopes (INTEGRAL, Fermi, H.E.S.S., MAGIC, VERITAS, MILAGRO) and the prospects of planned observatories such as CTA or HAWC, gamma-ray astronomy is becoming an integral part of modern astrophysical research. Analysing gamma-ray data is still a major challenge, and today relies on a large diversity of tools and software frameworks that were specifically developed for each instrument. With the goal of facilitating and unifying the analysis of gamma-ray data, we are currently developing an innovative data analysis toolbox, called the GammaLib, that enables gamma-ray data analysis in an instrument independent way. We will present the basic ideas that are behind the GammaLib, and describe its architecture and usage.

  6. Higgs mediated flavor violating top quark decays t{yields}u{sub i}H, u{sub i{gamma}}, u{sub i{gamma}{gamma}}, and the process {gamma}{gamma}{yields}tc in effective theories

    SciTech Connect

    Aranda, J. I.; Ramirez-Zavaleta, F.; Tututi, E. S.; Toscano, J. J.

    2010-04-01

    The rare top quark couplings tu{sub i{gamma}} and tu{sub i{gamma}{gamma}} (u{sub i}=u, c) induced at the one-loop level by a flavor violating tu{sub i}H vertex are studied within the context of an effective Yukawa sector that incorporates SU{sub L}(2)xU{sub Y}(1)-invariant operators of up to dimension six. Data on the recently observed D{sup 0}-D{sup 0} mixing are employed to constrain the tu{sub i}H vertex, which is then used to predict the t{yields}u{sub i}H, t{yields}u{sub i{gamma}}, and t{yields}u{sub i{gamma}{gamma}} decays, as well as the {gamma}{gamma}{yields}tu{sub i}+tu{sub i} reaction in the context of the ILC. It is found that the t{yields}cH and t{yields}c{gamma}{gamma} decays can reach sizable branching ratios as high as 5x10{sup -3} and 10{sup -4}, respectively. As for the t{yields}c{gamma} decay, it can have a branching ratio of 5x10{sup -8} that is about 6 orders of magnitude larger than the standard model prediction, which, however, is still very small to be detected. As for tc production, it is found that, due to the presence of a resonant effect in the convoluted cross section {sigma}(e{sup +}e{sup -{yields}{gamma}{gamma}{yields}}tc+tc), about (0.5-2.7)x10{sup 3} tc events may be produced at the ILC for a value of the Higgs mass near to the top mass.

  7. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  8. Tests of quantum chromodynamics in exclusive e sup + e sup minus and. gamma. gamma. processes

    SciTech Connect

    Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: Factorization theorem for exclusive processes; Electromagnetic form factors of baryons; Suppression of final state interactions; The {gamma}{pi}{sub 0} Transition form factor; Exclusive charmonium decays; The {pi}-{rho} puzzle; Time-like compton processes; Multi-hadron production; Heavy Quark exclusive states and form factor zeros in QCD; Exclusive {gamma}{gamma} reactions; Higher twist effects; and Tauonium and threshold {tau}{sup +}{tau}{sup {minus}} production. 41 refs., 15 figs. (LSP)

  9. Radon concentration monitoring using xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Chernysheva, I.; Grachev, V.; Vlasik, K.; Uteshev, Z.; Shustov, A.; Petrenko, D.; Bychkova, O.

    2017-01-01

    A method for 222Rn concentration monitoring by means of intensity measurement of its daughter nuclei (214Pb and 214Bi) gamma-ray emission using xenon gamma-ray spectrometer is presented. Testing and calibration results for a gamma-spectrometric complex based on xenon gamma-ray detector are described.

  10. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  11. Gamma-ray observatory INTEGRAL reloaded

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Edward P. J.

    2017-04-01

    The scientific aims of the European Space Agency's International Gamma-Ray Astrophysics Laboratory are considerably extended because of its unique capability to identify electromagnetic counterparts to sources of gravitational waves and ultra-high-energy neutrinos.

  12. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  13. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  14. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  15. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  16. Hardness Evolution of Gamma-Irradiated Polyoxymethylene

    NASA Astrophysics Data System (ADS)

    Hung, Chuan-Hao; Harmon, Julie P.; Lee, Sanboh

    2016-12-01

    This study focuses on analyzing hardness evolution in gamma-irradiated polyoxymethylene (POM) exposed to elevated temperatures after irradiation. Hardness increases with increasing annealing temperature and time, but decreases with increasing gamma ray dose. Hardness changes are attributed to defects generated in the microstructure and molecular structure. Gamma irradiation causes a decrease in the glass transition temperature, melting point, and extent of crystallinity. The kinetics of defects resulting in hardness changes follow a first-order structure relaxation. The rate constant adheres to an Arrhenius equation, and the corresponding activation energy decreases with increasing dose due to chain scission during gamma irradiation. The structure relaxation of POM has a lower energy barrier in crystalline regions than in amorphous ones. The hardness evolution in POM is an endothermic process due to the semi-crystalline nature of this polymer.

  17. Gamma beam system at ELI-NP

    SciTech Connect

    Ur, Calin Alexandru

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  18. High resolution gamma spectroscopy well logging system

    SciTech Connect

    Giles, J.R.; Dooley, K.J.

    1997-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions.

  19. HotSpotter? Neutron/Gamma Detector

    SciTech Connect

    Bell, Z.W.

    2003-04-01

    The HotSpotter{trademark} Neutron/Gamma Detector combines in a single detecting module high sensitivity to gamma rays up to 3 MeV and sensitivity to neutrons. Using a 15 mm cubic CdWO{sub 4} (cadmium tungstate) crystal mounted on a 25 mm photomultiplier, the instrument realizes a factor of 5 increased photopeak efficiency over NaI(Tl) at 1 MeV, and a factor of 2 improvement over CsI(Tl). The addition of a 0.5 mm layer of {sup 10}B- impregnated epoxy covering the crystal provides neutron sensitivity without sacrificing gamma ray spectroscopic characteristics. Neutrons are detected by the presence of the 478 keV gamma from the {sup 10}B(n,{alpha}){sup 7}Li* reaction. In this paper, we describe the electronics and software of the instrument, and some of its characteristics.

  20. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  1. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  2. Status of the GAMMA-400 project

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2° at Eγ ˜ 100 MeV and ˜0.01° at Eγ > 100 GeV, its energy resolution ˜1% at Eγ > 100 GeV, and the proton rejection factor ˜106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  3. Electrophoretic separation of A gamma and G gamma human globin chains in Nonidet P-40.

    PubMed

    Guerrasio, A; Saglio, G; Mazza, U; Pich, P; Camaschella, C; Ricco, G; Gianazza, E; Righetti, P G

    1979-11-15

    Electrophoresis in cellulose acetate in the presence of 3% Nonidet P-40 can resolve two neutral genetic variants, A gamma and G gamma human fetal globin chains. The ratio of these two chains, determined by densitometry of the electrophoretic strips, is in excellent agreement with the Gly-Ala ratio obtained by chemical analysis of the cyanogen bromide fragment gamma CB3. It is suggested that the detergent binds preferentially to the hydrophobic amino acid segment 133-141 in the A gamma chain, thus masking either a Lys or an Arg residue at the two extremes.

  4. Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s.

    PubMed Central

    Liu, C; Asherie, N; Lomakin, A; Pande, J; Ogun, O; Benedek, G B

    1996-01-01

    We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens. PMID:8552642

  5. Enzymatic synthesis of radioactive (-)-carnitine from. gamma. -butyrobetaine prepared by the methylation of. gamma. -aminobutyric acid

    SciTech Connect

    Daveluy, A.; Parvin, R.; Pande, S.V.

    1982-01-15

    Radioactive ..gamma..-butyrobetaine was prepared by quaternization of ..gamma..-aminobutyric acid with tritiated methyl iodide under conditions giving high yields with respect to both the above precursors. Part of the product was passed through a column of ion-retardation resin and gave radioactive ..gamma..-butyrobetaine of good purity. The remainder was converted to (-)-carnitine stoichiometrically by employing a 50-60% ammonium sulfate fraction of rat liver supernatant as the source of ..gamma..-butyrobetaine hydroxylase (EC 1,14,11,1) Successive column chromatographies on a cation exchanger and ion-retardation resins then gave radioactive (-)-carnitine of good purity in high yield.

  6. Laser Electron Gamma Source Facility biennial progress report, June 1992

    SciTech Connect

    Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F. ); Hoblit, S. . Dept. of Physics); Whisnant, C.S. South Carolina Univ., Columbia, SC . Dept. of Physics)

    1992-01-01

    This report briefly discusses the Laser Electron Gamma Source facility and the following experiments conducted here: polarization in D(gamma, p)n and N-N tensor forces for energies less than 225 Mev; constraints on the nuclear tensor force from D(gamma, p)n for energies less than 315 Mev; the p(gamma, neutral pion) reaction and the E2 excitation of delta resonance; quasi-two- and three-body absorption in helium 3(gamma, N-N); and the delta-nucleon interaction in D(gamma,p-negative pion)p and D(gamma, p-n)neutral pions. (LSP).

  7. Laser Electron Gamma Source Facility biennial progress report, June 1992

    SciTech Connect

    Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Hoblit, S.; Whisnant, C.S. |

    1992-08-01

    This report briefly discusses the Laser Electron Gamma Source facility and the following experiments conducted here: polarization in D(gamma, p)n and N-N tensor forces for energies less than 225 Mev; constraints on the nuclear tensor force from D(gamma, p)n for energies less than 315 Mev; the p(gamma, neutral pion) reaction and the E2 excitation of delta resonance; quasi-two- and three-body absorption in helium 3(gamma, N-N); and the delta-nucleon interaction in D(gamma,p-negative pion)p and D(gamma, p-n)neutral pions. (LSP).

  8. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  9. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  10. Higgs mediated lepton flavor violating tau decays {tau}{yields}{mu}{gamma} and {tau}{yields}{mu}{gamma}{gamma} in effective theories

    SciTech Connect

    Aranda, J. I.; Tututi, E. S.; Toscano, J. J.

    2008-07-01

    The size of the branching ratios for the {tau}{yields}{mu}{gamma} and {tau}{yields}{mu}{gamma}{gamma} decays induced by a lepton flavor violating Higgs interaction H{tau}{mu} is studied in the framework of effective field theories. The best constraint on the H{tau}{mu} vertex, derived from the know measurement on the muon anomalous magnetic moment, is used to impose the upper bounds Br({tau}{yields}{mu}{gamma})<7.5x10{sup -10} and Br({tau}{yields}{mu}{gamma}{gamma})<2.3x10{sup -12}, which are more stringent than current experimental limits on this class of transitions.

  11. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  12. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  13. Observation of J/psi-->3gamma.

    PubMed

    Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Ma, J S Y; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B

    2008-09-05

    We report the first observation of the decay J/psi-->3gamma. The signal has a statistical significance of 6sigma and corresponds to a branching fraction of B(J/psi-->3gamma)=(1.2+/-0.3+/-0.2)x10;{-5}, in which the errors are statistical and systematic, respectively. The measurement uses psi(2S)-->pi;{+}pi;{-}J/psi events acquired with the CLEO-c detector operating at the CESR e;{+}e;{-} collider.

  14. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  15. Gamma heating measurements with proportional counters

    SciTech Connect

    Chiu, H.; Bennett, E.F.; Micklich, B.J.

    1990-05-01

    A new data acquisition technique (the Continuously-varied Bias- voltage Acquisition mode) has been developed and tested for the low-flux broad-energy regime characteristic of existing fusion blanket mock-ups. This method of analysis allows for the acquisition of data spanning several orders of magnitude in energy with a single proportional counter. Utilizing this method, the gamma energy deposition in a mixed neutron and gamma field was measured. 7 refs., 5 figs.

  16. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  17. Gamma radiation induced resistivity changes in Iron

    NASA Astrophysics Data System (ADS)

    Tundwal, Ambika; Kumar, V.; Datta, A.

    2017-03-01

    Monte Carlo Code JA-IPU is used for estimation of Frenkel pairs and their effect on change of resistivity of Iron on irradiation by gamma spectrum of Co60. The Code includes three cascade processes of incident gamma, produced electrons and recoiled atoms and simulation of the lattice structure of the target material. Change in experimentally measured resistivity of Iron is found to vary with number of Frenkel pairs as (x - 1) ln N d .

  18. Gamma Imaging using Rotational Modulation Collimation

    DTIC Science & Technology

    2014-01-01

    Gamma imaging techniques 2 2.1 Compton imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Pinhole or parallel-hole collimation...imaging techniques that are of relevance to national security applications. 2.1 Compton imaging Compton scattering is a specific interaction...Overlaying multiple trajectory cones over many gamma photon interactions reveals the source position, and this forms the basis for the technique of Compton

  19. Recombinant human gamma interferon inhibits simian malaria.

    PubMed Central

    Maheshwari, R K; Czarniecki, C W; Dutta, G P; Puri, S K; Dhawan, B N; Friedman, R M

    1986-01-01

    Prophylactic treatment with 0.1 mg of human gamma interferon per kg (body weight) per day completely suppressed experimental infection with Plasmodium cynomolgi B sporozoites in rhesus monkeys. Treatment with lower doses partially suppressed this infection. Prophylactic treatment with human gamma interferon, however, had no protective effect against trophozoite-induced infection, suggesting that the interferon effect was limited to the exoerythrocytic stage of parasitic development. PMID:3091507

  20. Gamma -radiations connected to atmospheric precipitations

    NASA Astrophysics Data System (ADS)

    Vashenyuk, Eduard; Balabin, Yury; Gvozdevsky, Boris; Germanenko, Alexey

    Since 2008 we are monitoring the gamma -radiation in surface layer of atmosphere with scin-tillation gamma -spectrometers. Instruments consist of a crystal NaI (Tl), a photomultiplier and a pulse amplifier. The data are transmitted to a computer with a special card with the 4096 channel pulse-amplitude analyzer. The gamma-ray monitoring is presently carried out at two high-latitude points: Apatity (N 65.57, E 33.39) and Barentsburg, Spitsbergen(N 78.06, E 14.22). The detectors in Apatity and Barentsburg are covered from sides and bottom by metallic screen for shielding them from environmental radiations from a building and ground. Together with gamma-spectrometer in Apatity a precipitation measuring device (PMD) was installed, which allows us to estimate presence and intensity of precipitations. Information about precipitations in Barentsburg was taken from the local meteorological observatory. The observations have shown that sporadic increases of gamma -radiation registered by spectrome-ters are almost always accompanied by intensive precipitations (rain, snowfall). The measured spectrum of gamma -radiation was rather smooth and did not show peaks in a range from 1 up to 200 KeV. Two basic hypotheses of an origin of high-energy photons during precipitations are discussed. The first is probable connection with atmospheric radionuclides, which are at-tached to aerosols and are taken out from the atmosphere by precipitations (rain and snow). Against this hypothesis speaks lack of peaks on gamma-ray spectrum. The gamma-spectrum from radionuclides usually has characteristic and expressed spectral lines. The second probable cause is x-ray radiation arising at deceleration in air of free electrons, accelerated in an electric field between clouds and ground. All cases of precipitations are accompanied by dense cloudi-ness and strengthening of an atmospheric electric field. The arguments for this mechanism are resulted.

  1. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  2. Shock response of a gamma titanium aluminide

    SciTech Connect

    Shazly, Mostafa; Prakash, Vikas

    2008-10-15

    Potential use of {gamma}-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys--the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8{+-}0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied.

  3. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  4. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  5. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  6. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  7. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  8. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  9. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  10. Automated Gamma Knife dose planning

    NASA Astrophysics Data System (ADS)

    Leichtman, Gregg S.; Aita, Anthony L.; Goldman, H. W.

    1998-06-01

    The Gamma Knife (Elekta Instruments, Inc., Atlanta, GA), a neurosurgical, highly focused radiation delivery device, is used to eradicate deep-seated anomalous tissue within the human brain by delivering a lethal dose of radiation to target tissue. This dose is the accumulated result of delivering sequential `shots' of radiation to the target where each shot is approximately 3D Gaussian in shape. The size and intensity of each shot can be adjusted by varying the time of radiation exposure and by using one of four collimator sizes ranging from 4 - 18 mm. Current dose planning requires that the dose plan be developed manually to cover the target, and only the target, with a desired minimum radiation intensity using a minimum number of shots. This is a laborious and subjective process which typically leads to suboptimal conformal target coverage by the dose. We have used adaptive simulated annealing/quenching followed by Nelder-Mead simplex optimization to automate the selection and placement of Gaussian-based `shots' to form a simulated dose plane. In order to make the computation of the problem tractable, the algorithm, based upon contouring and polygon clipping, takes a 2 1/2-D approach to defining the cost function. Several experiments have been performed where the optimizers have been given the freedom to vary the number of shots and the weight, collimator size, and 3D location of each shot. To data best results have been obtained by forcing the optimizers to use a fixed number of unweighted shots with each optimizer set free to vary the 3D location and collimator size of each shot. Our preliminary results indicate that this technology will radically decrease planning time while significantly increasing accuracy of conformal target coverage and reproducibility over current manual methods.

  11. Gamma-Ray Imaging Probes.

    NASA Astrophysics Data System (ADS)

    Wild, Walter James

    1988-12-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.

  12. Hardening anisotropy of {gamma}/{gamma}{prime} superalloy single crystals. 2: Numerical analysis of heterogeneity effects

    SciTech Connect

    Estevez, R.; Hoinard, G.; Franciosi, P.

    1997-04-01

    In the first part of this study, the {gamma}/{gamma}{prime} superalloy single crystals yield stress and hardening anisotropy were experimentally estimated at 650 C, assuming homogeneous plasticity, G. Hoinard, R. Estevez and P. Franciosi, Acta Metall. 43, 1593 (1995). Here alloy morphology is regarded in two different ways: first as a two-phase anisotropic material with a uniform {gamma} matrix, describing the {gamma}{prime} precipitates arrangement with the help of an elementary pattern of inclusions; then treating the {gamma} matrix as a three (geometrical) phase medium, i.e., the three families of orthogonal {gamma} layers separating the precipitates, to estimate the matrix behavior heterogeneity in a 4-phase modelling of the alloy. Both {gamma} and {gamma}{prime} phases are treated as elastic-plastic crystalline media deforming by octahedral and cubic slip, and the models are based on the self consistent approximation. The alloy elasticity limit, internal stresses and hardening anisotropy are discussed with regard to the chosen behavior description for each phase, and behavior simulations are compared to experimental information.

  13. Dual Gamma Neutron Directional Elpasolite Detector

    SciTech Connect

    Guss, P. P.; Mukhopadhyay, S.

    2013-09-01

    Some applications, particularly in homeland security, require detection of both neutron and gamma radiation. Typically, this is accomplished with a combination of two detectors registering neutrons and gammas separately. We have investigated a new type of neutron/gamma (n/γ) directional detection capability. We explored a new class of scintillator, cerium (Ce)-doped Elpasolites such as Cs2LiYCl6:Ce (CLYC), Cs2LiLaCl6 (CLLC), Cs2LiLaBr6:Ce (CLLB), or Cs2LiYBr6:Ce (CLYB). These materials are capable of providing energy resolution as good as 2.9% at 662 keV (FWHM), which is better than that of NaI:Tl. Because they contain 6Li, Elpasolites can also detect thermal neutrons. In the energy spectra, the full energy thermal neutron peak appears near or above 3 GEEn MeV. Thus, very effective pulse height discrimination is possible. In addition, the core-to-valence luminescence (CVL) provides Elpasolites with different temporal responses under gamma and neutron excitation, and, therefore, may be exploited for effective pulse shape discrimination. For instance, the CLLC emission consists of two main components: (1) CVL spanning from 220 nm to 320 nm and (2) Ce emission found in the range of 350 to 500 nm. The former emission is of particular interest because it appears only under gamma excitation. It is also very fast, decaying with a 2 ns time constant. The n/γ discrimination capability of Elpasolite detectors may be optimized by tuning the cerium doping content for maximum effect on n/γ pulse shape differences. The resulting Elpasolite detectors have the ability to collect neutron and gamma data simultaneously, with excellent discrimination. Further, an array of four of these Elpasolites detectors will perform directional detection in both the neutron and gamma channels simultaneously.

  14. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  15. Human Gamma Oscillations during Slow Wave Sleep

    PubMed Central

    Valderrama, Mario; Crépon, Benoît; Botella-Soler, Vicente; Martinerie, Jacques; Hasboun, Dominique; Alvarado-Rojas, Catalina; Baulac, Michel; Adam, Claude; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks. PMID:22496749

  16. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  17. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  18. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  19. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  20. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2015-04-01

    The gamma-ray sky offers a unique view into broad range of astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. The Fermi mission has dramatically demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, covering the electromagnetic spectrum at energies above about 100 keV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has recently embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. The GammaSIG, as a part of the Physics of the Cosmos Program Analysis Group, provides a forum open to all members of the gamma-ray community. The GammaSIG is currently working to bring the community together with a common vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories, including both Fermi and INTEGRAL, and will summarize the status of the community roadmap effort.

  1. Gamma-ray limits on neutrino lines

    SciTech Connect

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  2. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  3. Oligomerization of L-gamma-carboxyglutamic acid.

    PubMed

    Hill, A R; Orgel, L E

    1999-03-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  4. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  5. Shock response of a gamma titanium aluminide

    NASA Astrophysics Data System (ADS)

    Shazly, Mostafa; Prakash, Vikas

    2008-10-01

    Potential use of γ-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys—the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8±0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied.

  6. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  7. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  8. High spins in gamma-soft nuclei

    SciTech Connect

    Leander, G.A.; Frauendorf, S.; May, F.R.

    1982-01-01

    Nuclei which are soft with respect to the ..gamma.. shape degree of freedom are expected to have many different structures coexisting in the near-yrast regime. In particular, the lowest rotational quasi-particle in a high-j shell exerts a strong polarizing effect on ..gamma... The ..gamma.. to which it drives is found to vary smoothly over a 180/sup 0/ range as the position of the Fermi level varies. This simple rule is seen to have a direct connection with the energy staggering of alternate spin states in rotational bands. A diagram is presented which provides a general theoretical reference for experimental tests of the relation between ..gamma.., spin staggering, configuration, and nucleon number. In a quasicontinuum spectrum, the coexistence of different structures are expected to make several unrelated features appear within any one slice of sum energy and multiplicity. However, it is also seen that the in-band moment of inertia may be similar for many bands of different ..gamma...

  9. Gamma Reaction History for the NIF

    SciTech Connect

    Herrmann, H W; Evans, S C; Kim, Y; Mack, J M; Young, C S; Cox, B C; Frogget, B C; Kaufman, M I; Malone, R M; Tunnell, T W; Stoeffl, W; Horsfield, C J

    2009-06-05

    Bang time and reaction history measurements are fundamental components of diagnosing ICF implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF System Design Requirements. A staged approach of implementing Gamma Reaction History (GRH) diagnostics on the NIF has been initiated. In the early stage, multiple detectors located close to target chamber center (at 2 and 6 m) and coupled to photomultiplier tubes are geared toward the loweryield THD campaign. In the later stage, streak camera–coupled instruments will be used for improved temporal resolution at the higher yields expected from the DT ignition campaign. Multiple detectors will allow for increased dynamic range and gamma energy spectral information.

  10. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  11. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  12. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  13. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  14. Form factors of the transitions {gamma}{sup *}{pi}{sup 0} {r_arrow} {gamma} and {gamma}{sup *}{eta}{r_arrow}{gamma}

    SciTech Connect

    Afanasev, A.

    1994-04-01

    The author discusses possibilities to study {gamma}*{pi}{sup 0} and {gamma}*{eta} {r_arrow} {gamma} transition form factors at CEBAF energies. The author shows that for 4 GeV electron beam, these form factors can be measured at CEBAF for the 4-momentum transfers Q{sup 2} {le} 2.5 (GeV/c){sup 2} using virtual Compton scattering on the proton and nuclear target in the kinematic regime of low momentum transfers to the target. These measurements can be extended to Q{sup 2} {le} 4.0 (GeV/c){sup 2} using the electron beam with the energy 6 GeV.

  15. Low radioactivity spectral gamma calibration facility

    SciTech Connect

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.; Lavelle, M.J.; Smith, A.R.; Hearst, J.R.; Wollenberg, H.A.; Flexser, S.

    1986-01-01

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.

  16. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  17. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  18. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  19. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  20. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  1. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  2. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  3. SUB-LUMINOUS {gamma}-RAY PULSARS

    SciTech Connect

    Romani, R. W.; Kerr, M.; Craig, H. A.; Johnston, S.; Cognard, I.; Smith, D. A.

    2011-09-01

    Most pulsars observed by the Fermi Large Area Telescope have {gamma}-ray luminosities scaling with spin-down power E-dot as L{sub {gamma}}{approx}(E-dot x 10{sup 33} erg s{sup -1}){sup 1/2}. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these 'sub-luminous' {gamma}-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with E-dot >10{sup 34} erg s{sup -1} and d {<=} 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.

  4. Fuzzy correlations of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Linder, Eric V.; Blumenthal, George R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated.

  5. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  6. (n,{gamma}) Experiments on tin isotopes

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Rusev, G.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Becvar, F.; Krticka, M.; Kroll, J.; Agvaanluvsan, U.; Dashdorj, D.; Erdenehuluun, B.; Tsend-Ayush, T.

    2013-04-19

    Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spins of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.

  7. Gamma-Ray Bursts Search with HAWC

    NASA Astrophysics Data System (ADS)

    de Leon, Cederik; Salazar Ibarguen, Humberto; Villaseã+/-Or Cendejas, Luis Manuel; HAWC Collaboration

    2017-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray observatory is a wide field-of-view observatory sensitive to gamma rays in the 100 GeV - 100 TeV energy range, located in Mexico at an altitude of 4100 m. In the present work we present results on the search for excesses in the rates of signals from the individual photomultiplier tubes (PMTs) using the Time to Digital Converters (TDC) of HAWC. This search is based on the implementation of the Moving Average Ratio Analysis (MARA) focused on the characterization of the different physical phenomena that may give rise to such excesses: noise in the PMTs, atmospheric conditions related with thunderstorms and excesses of astrophysical origin such as variable sources of high energy gamma rays and in particular GRBs. In particular we present an analysis over the HAWC historical data for the search of such excesses and elaborate on the possible physical interpretation of the found excesses.

  8. The Prototype of GAMMA-400 Apparatus

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Runtso, M. F.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu. T.

    Scientific project GAMMA-400 (Gamma-Astronomy Multifunction Modules Apparatus) relates to the new generation of space observatories for investigation of cosmic γ-emission in the energy band from ∼20 MeV up to several TeV, electron/positron fluxes from ∼1 GeV up to ∼10 TeV and cosmic-ray nuclei fluxes with energies up to ∼1015 eV by means of GAMMA-400 gamma-telescope represents the core of the scientific complex. The investigation of gamma ray bursts in the energy band of 10 keV-15 MeV are possible too by means of KONUS-FG apparatus included in the complex. For γ-rays in the energy region from 10 to 100 GeV expected energy resolution changes from ∼3% to ∼1% and angular resolution from ∼0.1% to ∼ 0.01% respectively, γ/protons rejection factor is ∼5·105. The GAMMA-400 satellite will be launched at the beginning of the next decade on the high apogee orbit with following initial parameters: apogee altitude ∼300000 km, perigee altitude ∼500 km, rotation period ∼7 days, inclination to the equator plane 51.4°. The active functioning interval will be 7-10 years. The scientific complex will have next main technical parameters: total weight ∼4100 kg, power consumption ∼2000 W, information quote 100 GByte/day. During the project development, the prototype of apparatus was created for working-off of the main apparatus construction units in laboratory conditions. The main distinctive features of the prototype are presented.

  9. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  10. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit.

    PubMed

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-03-02

    gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.

  11. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriaini, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2015-10-01

    The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is ∼10-3 at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of ∼4 × 105 for vertical incident particles and ∼3 × 105 for particles with initial inclination of 30° in the electron energy range from 50 GeV to 1 TeV.

  12. Rescue of gamma2 subunit-deficient mice by transgenic overexpression of the GABAA receptor gamma2S or gamma2L subunit isoforms.

    PubMed

    Baer, K; Essrich, C; Balsiger, S; Wick, M J; Harris, R A; Fritschy, J M; Lüscher, B

    2000-07-01

    The gamma2 subunit is an important functional determinant of GABAA receptors and is essential for formation of high-affinity benzodiazepine binding sites and for synaptic clustering of major GABAA receptor subtypes along with gephyrin. There are two splice variants of the gamma2 subunit, gamma2 short (gamma2S) and gamma2 long (gamma2L), the latter carrying in the cytoplasmic domain an additional eight amino acids with a putative phosphorylation site. Here, we show that transgenic mice expressing either the gamma2S or gamma2L subunit on a gamma2 subunit-deficient background are phenotypically indistinguishable from wild-type. They express nearly normal levels of gamma2 subunit protein and [3H]flumazenil binding sites. Likewise, the distribution, number and size of GABAA receptor clusters colocalized with gephyrin are similar to wild-type in both juvenile and adult mice. Our results indicate that the two gamma2 subunit splice variants can substitute for each other and fulfil the basic functions of GABAA receptors, allowing in vivo studies that address isoform-specific roles in phosphorylation-dependent regulatory mechanisms.

  13. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  14. Gamma compensated, self powered neutron detector

    DOEpatents

    Brown, Donald P.

    1977-01-01

    An improved, self-powered, gamma compensated, neutron detector having two electrically conductive concentric cylindrical electrodes and a central rod emitter formed from a material which emits beta particles when bombarded by neutrons. The outer electrode and emitter are maintained at a common potential and the neutron representative current is furnished at the inner cylindrical electrode which serves as a collector. The two concentric cylindrical electrodes are designed to exhibit substantially equal electron emission induced by Compton scattering under neutron bombardment to supply the desired gamma compensation.

  15. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  16. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  17. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  18. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  19. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  20. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  1. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1988-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  2. Polarimetric properties of the Reiner Gamma swirl

    NASA Astrophysics Data System (ADS)

    Jeong, Minsup; Kim, Sungsoo S.; Choi, Young-Jun; Garrick-Bethell, Ian

    2016-12-01

    In order to understand the regolith characteristics of the Reiner Gamma swirl, one of the most prominent lunar swirls, we analyze the correlation between the linear polarization flux Q and the intensity I of the swirl. We present comparisons between the phase function (the intensity variation with the phase angle) of the swirl and the phase functions of its neighbors using polarimetric data. We find that the swirl has unusually large Q values for given I values. We also show that the phase function of the swirl is relatively shallow compared to its neighbors. We suggest that the microstructure of the regolith on the Reiner Gamma swirl has been disrupted.

  3. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  4. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  5. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  6. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  7. Regulation of PPAR{gamma} function by TNF-{alpha}

    SciTech Connect

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.

  8. Study of Z gamma events and limits on anomalous Z Z gamma and Z gamma gamma couplings in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay

    2005-02-01

    The authors present a measurement of the Z{gamma} production cross section and limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings for form-factor scales of {Lambda} = 750 and 1000 GeV. The measurement is based on 138 (152) candidate events in the ee{gamma} ({mu}{mu}{gamma}) final state using 320 (290) pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h{sub 10,30}{sup Z}| < 0.23, |h{sub 20,40}{sup Z}| < 0.020, |h{sub 10,30}{gamma}| < 0.23, and |h{sub 20,40}{gamma}| < 0.019 for {Lambda} = 1000 GeV.

  9. Measurements of the CKM Angle Gamma at BaBar

    SciTech Connect

    Latour, Emmanuel; /Ecole Polytechnique

    2007-10-02

    We present a short review of the measurements of the CKM angle {gamma} performed by the BABAR experiment. We focus on methods using charged B decays, which give a direct access to {gamma} and provide the best constraints so far.

  10. Dietary modulation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Marion-Letellier, R; Déchelotte, P; Iacucci, M; Ghosh, S

    2009-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that regulates intestinal inflammation. PPAR gamma is highly expressed in the colon and can be activated by various dietary ligands. A number of fatty acids such as polyunsaturated fatty acids or eicosanoids are considered as endogenous PPAR gamma activators. Nevertheless, other nutrients such as glutamine, spicy food or flavonoids are also able to activate PPAR gamma. As PPAR gamma plays a key role in bacterial induced inflammation, anti-inflammatory properties of probiotics may be mediated through PPAR gamma. The aims of the present review are to discuss of the potential roles of dietary compounds in modulating intestinal inflammation through PPAR gamma.

  11. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  12. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  13. Gamma-ray astronomy--A status report

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1994-01-01

    Gamma-rays provide us with powerful insight into the highest energy processes occurring in the cosmos. This review highlights some of the progress in our understanding of gamma-ray astronomy that has been enabled by new data from GRANAT and the Compton Gamma-Ray Observaatory, and suggests requirements for future progress. In particular, the unique role of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission and concurrent multiwavelength observations is highlighted.

  14. Tomographic Gamma Scanner Experience: Three Cases

    SciTech Connect

    Mercer, David J.

    2014-06-30

    This is a summary of field applications of tomographic gamma scanning (TGS). Three cases are shown: enriched uranium scanning at Rocky Flats, heat-source plutonium at LANL, and plutonium-bearing pyrochemical salts at Rocky Flats. Materials are taken from the references shown below.

  15. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  16. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  17. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  18. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  19. Inspection of cargo containers using gamma radiation

    NASA Astrophysics Data System (ADS)

    Hussein, Esam M. A.; Gokhale, Prasad; Arendtsz, Nina V.; Lawrence, Andre H.

    1997-02-01

    This paper investigate, with the aid of Monte Carlo simulations and laboratory experiments, a technique for the detection of narcotics in large cargo containers using gamma-radiation. The transmission and back-scattering of photons, at different energies, is used to provide information useful for identifying the presence of bulk quantities of commonly encountered narcotics.

  20. Laser Electron Gamma Source. Biennial progress report

    SciTech Connect

    Sandorfi, A.M.; Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Miceli, L.; Thorn, C.E.; Hoblit, S.; Khandaker, M. |

    1994-06-01

    The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. With the start of ring operations at 2.8 GeV, LEGS {gamma}-ray energies now extend to 370 MeV. Considerable progress has been made in the development of a new laser system that will increase the beam energies to 470 MeV, and this system is expected to come into operation before the next biennial report. The total flux is administratively held at 6 {times} 10{sup 6} s{sup {minus}1}. The {gamma}-ray energy is determined, with a resolution of 5.5 MeV, by detecting the scattering electrons in a magnetic spectrometer. This spectrometer can `tag` all {gamma}-rays with energies from 185 MeV up to the Compton edge. The beam spot size at the target position is 8 mm (V) {times} 18 mm (H), FWHM. For a single laser wavelength, the linear polarization of the beam is 98% at the Compton edge and decreases to 50% at about 1/2 the energy of the edge. By choosing the laser wavelengths appropriately the polarization can be maintained above 85% throughout the tagging range. During the last two years, experimental running at LEGS occupied an average of 3000 hours annually. Highlights of some of the programs are discussed below.

  1. Toward standardising gamma camera quality control procedures

    NASA Astrophysics Data System (ADS)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  2. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  3. Concomitant GRID boost for Gamma Knife radiosurgery

    SciTech Connect

    Ma Lijun; Kwok, Young; Chin, Lawrence S.; Simard, J. Marc; Regine, William F.

    2005-11-15

    We developed an integrated GRID boost technique for Gamma Knife radiosurgery. The technique generates an array of high dose spots within the target volume via a grid of 4-mm shots. These high dose areas were placed over a conventional Gamma Knife plan where a peripheral dose covers the full target volume. The beam weights of the 4-mm shots were optimized iteratively to maximize the integral dose inside the target volume. To investigate the target volume coverage and the dose to the adjacent normal brain tissue for the technique, we compared the GRID boosted treatment plans with conventional Gamma Knife treatment plans using physical and biological indices such as dose-volume histogram (DVH), DVH-derived indices, equivalent uniform dose (EUD), tumor control probabilities (TCP), and normal tissue complication probabilities (NTCP). We found significant increase in the target volume indices such as mean dose (5%-34%; average 14%), TCP (4%-45%; average 21%), and EUD (2%-22%; average 11%) for the GRID boost technique. No significant change in the peripheral dose coverage for the target volume was found per RTOG protocol. In addition, the EUD and the NTCP for the normal brain adjacent to the target (i.e., the near region) were decreased for the GRID boost technique. In conclusion, we demonstrated a new technique for Gamma Knife radiosurgery that can escalate the dose to the target while sparing the adjacent normal brain tissue.

  4. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  5. INTEGRAL: International Gamma Ray Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Christoph

    1992-07-01

    INTEGRAL is dedicated to the fine spectroscopy and imaging of celestial gamma ray sources in the energy range 15 keV to 10 MeV. The instruments on INTEGRAL will achieve a gamma ray line sensitivity of 3 times 10 to the minus 6th power ph/sq cm/s, a continuum sensitivity of 3 times 10 to the minus 8th power ph/sq cm/s/keV at 1 MeV (approximately 10 mCrab at 1 MeV) and imaging with an angular resolution of better than 20 minutes. This represents an order of magnitude improvement over the Gamma Ray Observatory (GRO) in line sensitivity, energy resolution and angular resolution. Comparison with the low energy gamma ray telescope Sigma also shows a major advance: the continuum sensitivity improvement is considerably more than one order of magnitude between 100 keV and 1 MeV; and the narrow line sensitivity is increased by nearly two orders of magnitude. INTEGRAL consists of two main instruments: a germanium spectrometer and a caesium iodide coded aperture mask imager. These instruments are supplemented by two monitors: an X-ray monitor and an optical transient camera.

  6. Slow gamma takes the reins in replay.

    PubMed

    Colgin, Laura Lee

    2012-08-23

    The mechanisms supporting hippocampal memory reactivation are puzzling. Reactivation occurs during ripple oscillations, yet ripples are not coordinated across regions. In this issue of Neuron, Carr et al. (2012) report that another oscillation, slow gamma, coordinates memory reactivation across the hippocampal network.

  7. In sync: gamma oscillations and emotional memory

    PubMed Central

    Headley, Drew B.; Paré, Denis

    2013-01-01

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35–120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory. PMID:24319416

  8. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  9. Gamma Radiation Tolerance of Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy

    2011-10-01

    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  10. Polymerase Gamma Disease through the Ages

    ERIC Educational Resources Information Center

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  11. New shield for gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  12. HAWC observatory catches first gamma rays

    NASA Astrophysics Data System (ADS)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  13. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  14. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  15. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  16. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  17. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  18. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    SciTech Connect

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich; Smith, Elton S.

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizability $\\alpha_{\\pi}-\\beta_{\\pi}$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $\\pi^{\\circ}\\rightarrow\\gamma\\gamma$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $\\rho^{\\circ}$ production.

  19. Cross Sections for (gamma)-ray Production in the 191Ir (n,xn(gamma)) Reactions

    SciTech Connect

    Fotiades, N; Nelson, R O; Devlin, M; Chadwick, M B; Talou, P; Becker, J A; Garrett, P E; Younes, W

    2005-01-11

    Discrete {gamma}-ray spectra have been measured for nuclei populated in {sup 191}Ir(n{sub 4}xn{gamma}) with x{<=}11, as a function of incident neutron energy using neutrons from the 'white' neutron source at the Los Alamos Neutron Science Center's WNR facility. The energy of the neutrons was determined using the time-of-flight technique. The data were taken using the GEANIE spectrometer. The cross sections for emission of 202 {gamma} rays of {sup 181-191}Ir were determined for neutron energies 0.2 MeV < E{sub n} < 300 MeV. Comparison with model calculations, using the GNASH reaction model, and with GEANIE results from the similar {sup 193}Ir(n{sub 4}xn{gamma}) reactions is made.

  20. Gamma ray lines from the Galactic Center and gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Leiter, D.; Lingenfelter, R. E.

    1981-01-01

    The observations and interpretations of cosmic (nonsolar) gamma ray lines are discussed. The most prominent of these lines is the e(+)e(-) annihilation line which was observed from the Galactic Center and from several gamma ray transients. At the Galactic Center the e(+)e(-) pairs are probably produced by an accreting massive black hole (solar mass of approximately one million) and annihilate within the central light year to produce a line at almost exactly 0.511 MeV. In gamma ray transients the annihilation line is redshifted by factors consistent with neutron star surface redshifts. Other observed transient gamma ray lines appear to be due to cyclotron absorption in the strong magnetic fields of neutron stars, and nuclear deexcitations and neutron capture, which could also occur on or around these objects.

  1. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    SciTech Connect

    Chyzh, A.; Dashdorj, D.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Becker, J. A.; Parker, W.; Wu, C. Y.; Becvar, F.; Kroll, J.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  2. Interdiffusion Behavior of Pt-Diffused gamma+gamma' Coatings on Ni-Based Superalloys

    SciTech Connect

    Zhang, Ying; Stacy, J P; Pint, Bruce A; Haynes, James A; Hazel, Brian T; Nagaraj, Ben

    2008-01-01

    Platinum-diffused {gamma} + {gamma}{prime} coatings ({approx} 20 at.% Al, {approx} 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with {approx} 7 {micro}m of Pt, followed by an annealing treatment in vacuum at 1175 C. In order to study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 C for various durations. Composition profiles of the alloying elements in the {gamma} + {gamma}{prime} coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion.

  3. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  4. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  5. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  6. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  7. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  8. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  9. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  10. Gamma radiation from blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) observed high-energy gamma rays from PKS 0537-441 during observations in 1991 July-August. Upper limits from later EGRET observations suggest time variability.

  11. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  12. Future Prospects for Space-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark

    2016-03-01

    The gamma-ray sky offers a unique view into broad range of high energy astrophysical phenomena, from nearby solar flares, to galactic pulsars, to gamma-ray bursts at the furthest reaches of the Universe. In recent years, results from the Fermi mission have further demonstrated the broad range of topics that can be addressed by gamma-ray observations. The full range of gamma-ray energies is quite broad, from about 100 keV up to about 100 TeV. The energy range below several hundred GeV is the domain of space-based gamma-ray observatories, a range that is not completely covered by the Fermi LAT instrument. The gamma ray community has embarked on an effort to define the next steps for space-based gamma ray astronomy. These discussions are being facilitated through the Gamma-ray Science Interest Group (GammaSIG), which exists to provide community input to NASA in regards to current and future needs of the gamma-ray astrophysics community. Through a series of workshops and symposia, the GammaSIG is working to bring the community together with one common vision, a vision that will be expressed in the form of a community roadmap. This talk will summarize some of the latest results from active gamma ray observatories and will summarize the status of the community roadmap effort.

  13. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  14. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical.

  15. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  16. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth

  17. GAMMA FACILITY, TRA641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GAMMA FACILITY, TRA-641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER CONSTRUCTION NEXT TO CONTROL HOUSE, TRA-620. CAMERA FACING NORTHWEST. CONCRETE SLAB AND BUILDING AT RIGHT EDGE OF VIEW IS TRA-614, IN USE AS A COLD METALLURGICAL LAB. INL NEGATIVE NO. 13187. Unknown Photographer, 11/24/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  19. Gamma-Glutamyl Compounds: Substrate Specificity of Gamma-Glutamyl Transpeptidase Enzymes

    PubMed Central

    Wickham, Stephanie; West, Matthew B.; Cook, Paul F.; Hanigan, Marie H.

    2011-01-01

    Gamma-glutamyl compounds include antioxidants, inflammatory molecules, drug metabolites and neuroactive compounds. Two cell surface enzymes have been identified that metabolize gamma-glutamyl compounds, gamma-glutamyl transpeptidase (GGT1) and gamma-glutamyl leukotrienase (GGT5). There is controversy in the literature regarding the substrate specificity of these enzymes. To address this issue, we have developed a method for comprehensive kinetics analysis of compounds as substrates for GGT enzymes. Our assay is sensitive, quantitative and is conducted at physiologic pH. We evaluated a series of gamma-glutamyl compounds as substrates for human GGT1 and human GGT5. The Kms for reduced glutathione were 11μM for both GGT1 and GGT5. However, the Km for oxidized glutathione was 9μM for GGT1 and 43μM for GGT5. Our data show that the Kms for leukotriene C4 are equivalent for GGT1 and GGT5 at 10.8μM and 10.2μM, respectively. This assay was also used to evaluate serine-borate, a well-known inhibitor of GGT1, which was 8-fold more potent in inhibiting GGT1 than inhibiting GGT5. These data provide essential information regarding the target enzymes for developing treatments for inflammatory diseases such as asthma and cardiovascular disease in humans. This assay is invaluable for studies of oxidative stress, drug metabolism and other pathways that involve gamma-glutamyl compounds. PMID:21447318

  20. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  1. The Distinctive Features of Anticoincidence Detector System of the GAMMA-400 Gamma-ray Telescope

    NASA Astrophysics Data System (ADS)

    Runtso, M. F.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Galper, A. M.; Kaplin, V. A.; Leonov, A. A.; sNaumov, P. Yu.; Kheimitz, M. D.; Yurkin, Yu. T.; Kushin, V. V.; Lazarev, S. D.; Likhacheva, V. L.; Maklyaev, E. F.; Loginov, V. A.; Manuilova, E. S.; Fedotov, S. N.; Sharapov, M. P.

    Some features of scintillation anticoincidence system (includes ACtop detector section located upper the converter-tracker and four AClat ones placed from its lateral sides) of the GAMMA-400 gamma-ray telescope, related to joint operations with another fast scintillation systems: SDC (scintillation detector system of calorimeter) and TOF (time-of-flight system) are considered. The main problem for high-energy (over 50 GeV) gamma-rays registration by gamma-telescopes is the presence of so-called «backsplash current» (BS) of particles from massive calorimeter when detecting of particles is provided. BS is a set of low energy particles, moving up from the calorimeter and producing triggering of the anticoincidence detectors, imitating detection of a charged particle. As an additional indicator of BS particles presence of in the ACtop detector, we offer the value of energy release in the S3 scintillation detector placing between two parts of the calorimeter (CC1 and CC2). Fast trigger signal in the main aperture for gamma-quanta is composed of analysis of TOF system signal, showing that charged particle or particles move in the direction from up to down, and ACtop energy deposition taking in to account specially designed for GAMMA-400 algorithms of backsplash rejection.

  2. Is (d,p{gamma}) a surrogate for neutron capture?

    SciTech Connect

    Hatarik, R.; Cizewski, J. A.; O'Malley, P. D.; Bernstein, L. A.; Burke, J. T.; Lesher, S. R.; Gibelin, J. D.; Phair, L. W.; Swan, T.

    2008-04-17

    To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured and compared with the neutron capture cross sections measured by Wisshak et al. The (d,p{gamma}) ratios were measured using an 18.5 MeV deuteron beam from the 88-Inch Cyclotron at LBNL. Preliminary results comparing the surrogate ratios with the known (n,{gamma}) cross sections are discussed.

  3. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  4. Radiative Penguin Decays of B Mesons: Measurements of B to K* gamma, B to K2* gamma, and Search for B0 to phi gamma

    SciTech Connect

    Bauer, J.

    2005-01-03

    Electromagnetic radiative penguin decays of the B meson were studied with the BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching fractions and isospin asymmetry of the decay B {yields} K*{gamma}, branching fractions of B {yields} K*{sub 2}(1430){gamma}, and a search for B{sup 0} {yields} {phi}{gamma} are presented. The decay rates may be enhanced by contributions from non-standard model processes.

  5. Astrophysical constraints from gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Prantzos, Nikos; von Ballmoos, Peter

    2006-10-01

    Gamma-ray lines from cosmic sources provide unique isotopic information, since they originate from energy level transitions in the atomic nucleus. Gamma-ray telescopes explored this astronomical window in the past three decades, detecting radioactive isotopes that have been ejected in interstellar space by cosmic nucleosynthesis events and nuclei that have been excited through collisions with energetic particles. Astronomical gamma-ray telescopes feature standard detectors of nuclear physics, but have to be surrounded by effective shields against local instrumental background, and need special detector and/or mask arrangements to collect imaging information. Due to exceptionally-low signal/noise ratios, progress in the field has been slow compared with other wavelengths. Despite the difficulties, this young field of astronomy is well established now, in particular due to advances made by the Compton Gamma-Ray Observatory in the 90ies. The most important achievements so far concern: short-lived radioactivities that have been detected in a couple of supernovae (56Co and 57Co in SN1987A, 44Ti in Cas A), the diffuse glow of long-lived 26Al that has been mapped along the entire plane of the Galaxy, several excited nuclei that have been detected in solar flares, and, last but not least, positron annihilation that has been observed in the inner Galaxy since the 70ies. High-resolution spectroscopy is now being performed: since 2002, ESAs INTEGRAL and NASAs RHESSI, two space-based gamma-ray telescopes with Ge detectors, are in operation. Recent results include: imaging and line shape measurements of e e annihilation emission from the Galactic bulge, which can hardly be accounted for by conventional sources of positrons; 26Al emission and line width measurement from the inner Galaxy and from the Cygnus region, which can constrain the properties of the interstellar medium; and a diffuse 60Fe gamma-ray line emission which appears rather weak, in view of current theoretical

  6. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  7. Derivative based sensitivity analysis of gamma index

    PubMed Central

    Sarkar, Biplab; Pradhan, Anirudh; Ganesh, T.

    2015-01-01

    Originally developed as a tool for patient-specific quality assurance in advanced treatment delivery methods to compare between measured and calculated dose distributions, the gamma index (γ) concept was later extended to compare between any two dose distributions. It takes into effect both the dose difference (DD) and distance-to-agreement (DTA) measurements in the comparison. Its strength lies in its capability to give a quantitative value for the analysis, unlike other methods. For every point on the reference curve, if there is at least one point in the evaluated curve that satisfies the pass criteria (e.g., δDD = 1%, δDTA = 1 mm), the point is included in the quantitative score as “pass.” Gamma analysis does not account for the gradient of the evaluated curve - it looks at only the minimum gamma value, and if it is <1, then the point passes, no matter what the gradient of evaluated curve is. In this work, an attempt has been made to present a derivative-based method for the identification of dose gradient. A mathematically derived reference profile (RP) representing the penumbral region of 6 MV 10 cm × 10 cm field was generated from an error function. A general test profile (GTP) was created from this RP by introducing 1 mm distance error and 1% dose error at each point. This was considered as the first of the two evaluated curves. By its nature, this curve is a smooth curve and would satisfy the pass criteria for all points in it. The second evaluated profile was generated as a sawtooth test profile (STTP) which again would satisfy the pass criteria for every point on the RP. However, being a sawtooth curve, it is not a smooth one and would be obviously poor when compared with the smooth profile. Considering the smooth GTP as an acceptable profile when it passed the gamma pass criteria (1% DD and 1 mm DTA) against the RP, the first and second order derivatives of the DDs (δD’, δD”) between these two curves were derived and used as the boundary

  8. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  9. Reaction of gamma-tocopherol with hypochlorous acid.

    PubMed

    Nguyen, Quyen; Southwell-Keely, Peter T

    2007-03-01

    In addition to being a very good antioxidant, gamma-tocopherol is also an excellent electrophile trap. This is a study of the reactivity of gamma-tocopherol with hypochlorous acid/hypochlorite, a potential biological foe that is both an oxidant and an electrophile. Aqueous sodium hypochlorite (1.72 mmol; pH 7.4) was stirred with gamma-tocopherol (0.12 mmol) in hexane for 2 min at room temperature. The following products were isolated: gamma-tocopheryl quinone (0.6%), tocored (10%), 3-chloro-gamma-tocopheryl quinone (14%), an ether dimer of 3-chloro-gamma-tocopheryl quinone (0.4%), two isomers of 5-(5-gamma-tocopheryl)-gamma-tocopherol (3 and 2% respectively), 5-chloro-gamma-tocopherol (14%) and two chlorinated dimers (14 and 24% respectively) which were identified as diastereomers of (3R,10R)-11a-chloro-2,3,9,10-tetrahydro-3,5,6,10,12,13-hexamethyl-3,10-bis[(4R,8R)-4,8,12-trimethyltridecyl]-1H-pyrano(3,2a)-8H-pyrano(3,2g)-dibenzofuran-14(7aH)(14aH)-one. The chlorinated dimers, 5-chloro-gamma-tocopherol, 3-chloro-gamma-tocopheryl quinone and its ether dimer are new compounds.

  10. Gamma ray lines from a universal extra dimension

    SciTech Connect

    Bertone, G.; Jackson, C. B.; Shaughnessy, G.; Tait, T. M.P.; Vallinotto, A.

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  11. New generation high-energy space observatory GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, Nikolay

    Space gamma radiation gives unique information on high-energy processes in our Universe. Gammas are not deflected by magnetic field and mainly come to the vicinity of the Earth with the same direction and energy as they were generated in astrophysical objects. GAMMA-400 is the gamma-ray space observatory planned to be launched in 2019 to the high-elliptical orbit with an apogee of 300000 km. The observatory carries two instruments onboard: the gamma-ray burst monitor KONUS and the high-energy gamma-ray telescope GAMMA-400 for the energy range from 100 MeV to 3000 GeV. The main goal of the project is to study high-energy gamma radiation and also electrons+positrons. Having both angular and energy resolution 5-10 times better than achieved present instruments, GAMMA-400 will make a new step in gamma-ray astronomy. Expected advances are: searching for signatures of dark matter, studying the center of Galaxy, identifying numerous unassociated gamma-ray sources.

  12. Atypical laterality of resting gamma oscillations in autism spectrum disorders.

    PubMed

    Maxwell, Christina R; Villalobos, Michele E; Schultz, Robert T; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-02-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age and intelligence quotient matched typically developing controls. We found a decrease in resting gamma power at right lateral electrodes in ASD. We further explored associations between gamma and ASD severity as measured by the Social Responsiveness Scale (SRS) and found a negative correlation between SRS and gamma power. We believe that our findings give further support of gamma oscillations as a potential biomarker for ASD.

  13. Z(gamma) production and limits on anomalous ZZ(gamma) and Z(gamma gamma) couplings in p(p)over-bar collisions at root s 1.96 TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; Asman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garcia-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kobach, A. C.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; et al.

    2012-03-01

    We present a measurement of p{bar p} {yields} Z{sub {gamma}} {yields} {ell}{sup +}{ell}{sup -}{sub {gamma}} ({ell} = e, {mu}) production with a data sample corresponding to an integrated luminosity of 6.2 fb{sup -1} collected by the D0 detector at the Fermilab Tevatron p{bar p} Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section d{sigma}/dp{sub T}{sup {gamma}}, where p{sub T}{sup {gamma}} is the momentum of the photon in the plane transverse to the beam line. The results obtained are consistent with the standard model predictions from next-to-leading order use ttransverse momentum spectrum of the photon to place limits on anomalous ZZ{gamma} and Z{gamma}{gamma} couplings.

  14. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  15. Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Topchiev, N. P.; Bonvicini, V.; Adriani, O.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bobkov, S. G.; Boezio, M.; Dalkarov, O. D.; Egorov, A. E.; Glushkov, N. A.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kheymits, M. D.; Korepanov, V. E.; Longo, F.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Moskalenko, I. V.; Naumov, P. Yu; Picozza, P.; Runtso, M. F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Yurkin, Yu T.; Zverev, V. G.

    2017-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ∼20 MeV to ∼1 TeV, performing a sensitive search for high-energy gamma-ray emission when annihilating or decaying dark matter particles. Such measurements will be also associated with the following scientific goals: searching for new and studying known Galactic and extragalactic discrete high-energy gamma-ray sources (supernova remnants, pulsars, accreting objects, microquasars, active galactic nuclei, blazars, quasars). It will be possible to study their structure with high angular resolution and measuring their energy spectra and luminosity with high-energy resolution; identify discrete gamma-ray sources with known sources in other energy ranges. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolutions for gamma rays above 10 GeV. The gamma-ray telescope angular and energy resolutions for the main aperture at 100-GeV gamma rays are ∼0.01% and ∼1%, respectively. The motivation of presented results is to improve physical characteristics of the GAMMA-400 gamma-ray telescope in the energy range of ∼20-100 MeV, most unexplored range today. Such observations are crucial today for a number of high-priority problems faced by modern astrophysics and fundamental physics, including the origin of chemical elements and cosmic rays, the nature of dark matter, and the applicability range of the fundamental laws of physics. To improve the reconstruction accuracy of incident angle for low-energy gamma rays the special analysis of topology of pair-conversion events in thin layers of converter performed. Choosing the pair-conversion events with more precise vertical localization allows us to obtain significantly better angular resolution in comparison with previous and current space and ground-based experiments. For 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is better than 50.

  16. Gamma Ray Imaging System (GRIS) GammaCam{trademark}. Final report, January 3, 1994--May 31, 1996

    SciTech Connect

    1996-12-31

    This report describes the activities undertaken during the development of the Gamma Ray Imaging System (GRIS) program now referred to as the GammaCam{trademark}. The purpose of this program is to develop a 2-dimensional imaging system for gamma-ray energy scenes that may be present in nuclear power plants. The report summarizes the overall accomplishments of the program and the most recent GammaCam measurements made at LANL and Estonia. The GammaCam is currently available for sale from AIL Systems as an off-the-shelf instrument.

  17. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Aptekar, R. L.; Arkhangelskaya, I. V.; Boezio, M.; Bonvicini, V.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Mazets, E. P.; Menshenin, A. L.; Picozza, P.; Prilutskii, O. F.; Rodin, V. G.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2011-02-01

    The GAMMA-400 space observatory will provide precise measurements of gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV. The good angular and energy resolutions, as well as identification capabilities (angular resolution ~0.01°, energy resolution ~1%, and proton rejection factor ~106) will allow us to study the main galactic and extragalactic sources, diffuse gamma-ray background, gamma-ray bursts, and to measure electron and positron fluxes. The peculiar characteristics of the experiment is simultaneous detection of gamma rays and cosmic-ray electrons and positrons, which can be connected with annihilation or decay of dark matter particles.

  18. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  19. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  20. Galactic arm structure and gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.

    1974-01-01

    Unexpectedly high energy gamma radiation over a broad region of the galactic plane in the general direction of the galactic center was observed. A model is proposed wherein the galactic cosmic rays are preferentially located in the high matter density regions of galactic arm segments, as a result of the weight of the matter in these arms tieing the magnetic fields and hence the cosmic rays to these regions. The presently observed galactic gamma ray longitudinal distribution can be explained with the current estimate of the average galactic matter density: if the average arm to interarm matter ratio is five to one for the major arm segments toward the galactic center from the sun; and if the cosmic ray density normalized to its local value is assumed to be directly proportional to the matter density.

  1. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  2. Unthermalized positrons in gamma ray burst sources

    NASA Technical Reports Server (NTRS)

    Tkaczyk, W.; Karakula, S.

    1992-01-01

    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated.

  3. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  4. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  5. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  6. Using NAI detectors for tomographic gamma scanning

    SciTech Connect

    Estep, R.J.; Melton, S.

    1997-03-01

    The authors examined two approaches for using NaI detectors to perform transmission corrections used in the tomographic gamma scanner (TGS) and segmented gamma scanner (SGS) nondestructive assay methods. They found that a material-basis-set (MBS) fit using empirical logarithmic response spectra is quite accurate. Because this is a gross count technique, it gives sensitivities (for equal numbers of detectors) that are roughly ten times better than those obtained using Germanium detectors. The authors also found that simple continuum subtraction can be used in MBS fits using the energy-group-analysis technique only when the Pu transmission is greater than 10%. Both approaches for using NaI detectors require a knowledge of the Pu (or other) isotopics to obtain full accuracy.

  7. Gamma europium- and cobalt-sources

    SciTech Connect

    Klochkov, E.P.; Risovany, V.D.; Ponomarenko, B.V.

    1993-12-31

    The double-purpose control rods of nuclear reactors were made in which the inserts containing cobalt and europium oxide with natural {sup 151}Eu and {sup 153}Eu content were used as an absorbing core. The mass content of europium oxide is to exceed 15% to provide for a necessary reactivity. Cobalt and europium radionuclides were shown to be accumulated during the reactor operation allowing the inserts to be used as gamma sources after unloading of control rods at large commercial plants for radiation processing of different materials. Shape, geometry and composition of inserts were optimized allowing their specific activity to be obtained above 2 x 10 Bq/g (about 60 Ci/g). The spectral activity and radiation resistance of gamma sources were studied.

  8. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  9. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  10. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  11. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  12. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  13. Ginga Gamma-Ray Burst Line Occurrence

    NASA Technical Reports Server (NTRS)

    Band, David

    1998-01-01

    The purpose of this project is the statistical evaluation of the occurrence of spectral lines in the gamma-ray burst spectra detected by the Ginga burst detector, and the comparison of the Ginga results to the BATSE observations. Two significant line features were detected in the Ginga bursts, but thus far none have been detected in the bursts BATSE detected. These line features may indicate the presence of strong magnetic fields in bursts, and therefore are important physical diagnostics of the conditions in the plasma which radiates the observed gamma-rays. The issue is whether there is a discrepancy between the Ginga and BATSE results; the potential discrepancy must be evaluated statistically. Even if BATSE line detections are announced, the statistical methodology we have developed can be used to estimate the rate at which different types of spectral features occur.

  14. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  15. The Gamma-Ray Burst Next Door

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    I hesitate to spawn a thousand bad sci-fi flicks, but here it goes: Scientists now say that some gamma-ray bursts, the most powerful explosions in the universe, originate in nearby galaxy clusters. If one were to occur nearby, it could wipe out life on Earth. Fortunately, the chances of mass extinction are slimmer than the Chicago Cubs meeting the Boston Red Sox in the World Series (. . . and the Red Sox winning). But a new analysis of over 1400 archived gamma-ray bursts reveals that about 100 bursts originated within 325 million light-years of Earth, and not billions of light-years away as previously thought. If so, there's no reason why a burst couldn't go off in our galaxy.

  16. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  17. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  18. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  19. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  20. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  1. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  2. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  3. Gamma ray bursts and their afterglows

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.

    2017-03-01

    Gamma-Ray Bursts (GRBs) were among the greatest mysteries in modern astrophysics. They were first observed 50 years ago but it took three decades before optical counterparts could be found and the underlying physical phenomena studied in detail. GRB research represents currently one of the most rapidly growing areas in extragalactic astronomy. This is due in large part to the numerous connections that GRBs have with other disciplines like cosmology, supernovae, stellar evolution, nuclear physics, astroparticle and gravitational wave astronomy. Therefore, their study is of great importance to understand various astrophysical phenomena such as the formation of the first stars, the chemical evolution and the expansion of the Universe. Since gamma radiation can travel along cosmological distances without being affected by any possible intervening absorption, GRBs can be detected from the most distant universe, reaching redshifts up to z = 10 or more.

  4. delta beta-Thalassaemia in Sicily: report of a case of double heterozygosity for A gamma delta beta-thalassaemia and A gamma G gamma delta beta-thalassaemia.

    PubMed Central

    Musumeci, S; Romeo, M A; Pizzarelli, G; Schilirò, G; Russo, G

    1983-01-01

    A case of double heterozygosity for A gamma delta beta-thalassaemia and A gamma G gamma delta beta-thalassaemia was found during a screening programme in Sicily. The proband, a 4-year-old girl, showed a clinical picture of thalassaemia intermedia. Hb F (85.12% by the Singer method) was G gamma A gamma type. The parents and the brother were delta beta-thalassaemia carriers. Structural analysis of Hb F showed both G gamma and A gamma chains in the father, but only A gamma chains in the mother. Images PMID:6188831

  5. B{yields}X{sub s}{gamma} constraints on the top quark anomalous t{yields}c{gamma} coupling

    SciTech Connect

    Yuan Xingbo; Hao Yang; Yang Yadng

    2011-01-01

    Observation of the top quark flavor changing neutral process t{yields}c+{gamma} at the LHC would be the signal of physics beyond the standard model. If anomalous t{yields}c{gamma} coupling exists, it will affect the precisely measured B(B{yields}X{sub s}{gamma}). In this paper, we study the effects of a dimension 5 anomalous tc{gamma} operator in B{yields}X{sub s}{gamma} decay to derive constraints on its possible strength. It is found that, for real anomalous t{yields}c{gamma} coupling {kappa}{sub tcR}{sup {gamma}}, the constraints correspond to the upper bounds B(t{yields}c+{gamma})<6.54x10{sup -5} (for {kappa}{sub tcR}{sup {gamma}}>0) and B(t{yields}c+{gamma})<8.52x10{sup -5} (for {kappa}{sub tcR}{sup {gamma}}<0), respectively, which are about the same order as the 5{sigma} discovery potential of ATLAS (9.4x10{sup -5}) and slightly lower than that of CMS (4.1x10{sup -4}) with 10 fb{sup -1} integrated luminosity operating at {radical}(s)=14 TeV.

  6. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats.

    PubMed

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-08-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (∼25-55 Hz) and fast (∼60-100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds.

  7. Multiple gamma lines from semi-annihilation

    SciTech Connect

    D'Eramo, Francesco; McCullough, Matthew; Thaler, Jesse E-mail: mccull@mit.edu

    2013-04-01

    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from ''semi-annihilation'' among multiple dark sector states. The semi-annihilation reaction ψ{sub i}ψ{sub j} → ψ{sub k}γ with a single final state photon is typically enhanced relative to ordinary annihilation ψ{sub i}ψ-bar {sub i} → γγ into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N{sup 3} lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter.

  8. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  9. Gamma-Ray Bursts - A Cosmic Riddle

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    1994-12-01

    A deep and abiding mystery is one of the greatest treasures nature has to offer to scientists and the public alike. Gamma-ray bursts have been observed for over 20 years. More than 2000 papers have been published about them and numerous theoretical models proposed, yet no one knows for sure what they are, where they come from, or even if they are a single class of phenomena. Isotropy and confinement (i.e., a deficiency of faint sources compared to that expected for an unbounded homogeneous sample), as exhibited in the BATSE observations from the Compton Gamma-Ray Observatory, have lead us to consider seriously only two sites - an extended Galactic halo populated by neutron stars, or else cosmologically distant sources. Models of both varieties will be reviewed. At the present time, both classes of models are given about equal credence, though ALL current models make troublesome assumptions requiring clarification. Halo models have received several boosts lately, including the realization that the mean velocity of pulsars is greater than previously thought, the certain localization of two out of three (and possibly all) soft gamma-ray repeaters to supernova remnants in our Galaxy and in the LMC, and calculations to show that under certain, albeit highly restrictive assumptions, the BATSE statistics can be satisfied by high velocity neutron stars ejected from the Galaxy. Several current halo oriented theories would like to relate the soft repeaters to the more common ``classical" bursts and claim that the former are an earlier evolutionary stage of the latter. If, on the other hand, the soft repeaters are a separate class, as the cosmologists would require, perhaps there are other classes as well. Amid all this theoretical speculation, the solution to the gamma-ray burst riddle will most likely come from further observation. Some prospects for future observations, especially with the High Energy Transient Experiment, will be briefly discussed.

  10. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  11. Gamma radiation transmission along the multibend mazes.

    PubMed

    Kim, Sangrok

    2016-08-01

    Installing a maze on the corridor reduces much shielding materials in shielding door at the end of the pathway. In this study, gamma transmission was measured along single-, double-, and triple-bend mazes, which were applied to nondestructive test workplace by Monte Carlo method. In the facility using (192)Ir 1.85TBq, the lengths of corridors to reduce the effective dose under the limitation without shielding door were 10 and 6m in double- and triple-bend mazes, respectively.

  12. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  13. Prospects for Nuclear-gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    An analysis was made of prospects for gamma rays coming from two sources outside the solar system: (1) radioactive decay of fresh nuclear products to explosive nucleosynthesis, and (2) scattering of low energy cosmic rays. The former should be detectable and will provide a factual base for many suppositions about the site and history of nucleosynthesis. The latter may be detectable and, if so, will probably provide factual information about high-flux regions of cosmic radiation.

  14. Spectrometer of high energy gamma quantums

    NASA Technical Reports Server (NTRS)

    Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

    1979-01-01

    A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

  15. Molecular evolution of the gamma-Herpesvirinae.

    PubMed Central

    McGeoch, D J

    2001-01-01

    Genomic sequences available for members of the gamma-Herpesvirinae allow analysis of many aspects of the group's evolution. This paper examines four topics: (i) the phylogeny of the group; (ii) the histories of gamma-herpesvirus-specific genes; (iii) genomic variation of human herpesvirus 8 (HHV-8); and (iv) the relationship between Epstein-Barr virus types 1 and 2 (EBV-1 and EBV-2). A phylogenetic tree based on eight conserved genes has been constructed for eight gamma-herpesviruses and extended to 14 species with smaller gene sets. This gave a generally robust assignment of evolutionary relationships, with the exception of murine herpesvirus 4 (MHV-4), which could not be placed unambiguously on the tree and which has evidently experienced an unusually high rate of genomic change. The gamma-herpesviruses possess a variable complement of genes with cellular homologues. In the clearest cases these virus genes were shown to have originated from host genome lineages in the distant past. HHV-8 possesses at its left genomic terminus a highly diverse gene (K1) and at its right terminus a gene (K15) having two diverged alleles. It was proposed that the high diversity of K1 results from a positive selection on K1 and a hitchhiking effect that reduces diversity elsewhere in the genome. EBV-1 and EBV-2 differ in their alleles of the EBNA-2, EBNA-3A, EBNA-3B and EBNA-3C genes. It was suggested that EBV-1 and EBV-2 may recombine in mixed infections so that their sequences outside these genes remain homogeneous. Models for genesis of the types, by recombination between diverged parents or by local divergence from a single lineage, both present difficulties. PMID:11313003

  16. Decays Z{yields}gg{gamma} and Z{sup '}{yields}gg{gamma} in the minimal 331 model

    SciTech Connect

    Flores-Tlalpa, A.; Montano, J.; Ramirez-Zavaleta, F.; Toscano, J. J.

    2009-10-01

    The one-loop induced Z{yields}gg{gamma} and Z{sup '}{yields}gg{gamma} decays are studied within the context of the minimal 331 model, which predicts the existence of new gauge bosons and three exotic quarks. It is found that the Z{yields}gg{gamma} decay is insensitive to the presence of the exotic quarks, as it is essentially governed by the first two families of known quarks. As to the Z{sup '}{yields}gg{gamma} decay, it is found that the exotic quark contribution dominates and that for a heavy Z{sup '} boson it leads to a {gamma}(Z{sup '}{yields}gg{gamma}) that is more than 1 order of magnitude larger than that associated with {gamma}(Z{sup '}{yields}ggg). This result may be used to distinguish a new neutral Z{sup '} boson from those models that do not introduce exotic quarks.

  17. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  18. Gamma Knife Radiosurgery for Choroidal Hemangioma

    SciTech Connect

    Kim, Yun Taek; Kang, Se Woong; Lee, Jung-Il

    2011-12-01

    Purpose: Patients with choroidal hemangioma (CH), a benign ocular hamartoma, frequently presents with visual disturbance as a result of exudative retinal detachment (RD), which originates in subretinal fluid accumulation. We report our experience using the Leksell Gamma Knife in the management of symptomatic CH. Methods and Materials: Seven patients with symptomatic CH (circumscribed form in 3 patients and diffuse form in 4) were treated with the Leksell Gamma Knife at our institution during a 7-year period. All patients presented with exudative RD involving the macula that resulted in severe visual deterioration. The prescription dose to the target margin was 10 Gy in all cases. The mean tumor volume receiving the prescription dose was 536 mm{sup 3} (range, 151-1,057). The clinical data were analyzed in a retrospective fashion after a mean follow-up of 34.4 months (range, 9-76). Results: The resolution of exudative RD was achieved within 6 months, and the visual acuity of the affected eye had improved at the latest follow-up examination (p = .018) in all patients. No recurrence of exudative RD occurred. Thinning of the CHs was observed in most patients; however, symptomatic radiation toxicity had not developed in any of the patients. Conclusion: Symptomatic CHs can be safely and effectively managed with Gamma Knife radiosurgery using a marginal dose of 10 Gy.

  19. Prompt Gamma Ray Analysis of Soil Samples

    SciTech Connect

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman; Isab, A.H.

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  20. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  1. Parametric Studies for 233U Gamma Spectrometry

    SciTech Connect

    Scheffing, C.C.; Krichinsky, A.

    2004-01-01

    Quantification of special nuclear material is a necessary aspect to assuring material accountability and is often accomplished using non-destructive gamma spectrometry. For 233U, gamma rays are affected by matrix and packaging attenuation and by a strong Compton continuum from decay products of 232U (inherently found in 233U) that obscure 233U gamma photopeaks. This project, based on current work at the national repository for separated 233U located at Oak Ridge National Laboratory (ORNL), explores the effects of various parameters on the quantification of 233U– including material form and geometry. Using an attenuation correction methodology for calculating the mass of 233U from NDA analysis, a bias of almost 75% less than the actual 233U mass was identified. The source of the bias needs to be understood at a more fundamental level for further use of this quantification method. Therefore, controlled experiments using well characterized packages of 233U were conducted at the repository and are presented in this paper.

  2. Boron and beryllium in Gamma Geminorum

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Praderie, F.

    1981-01-01

    Observations have been made of the B II resonance line at 1362 A in the A0 IV star Gamma Gem with the Princeton spectrometer on the Copernicus satellite at a spectral resolution of 0.05 A. Complementary ground-based observations of the Be II resonance lines at 3130 and 3131 A have been made at Mauna Kea Observatory with a comparable resolution. A model-atmosphere abundance analysis has been done which includes the effects of the lines that blend with the B II and Be II lines. Previous data on Alpha Lyr and Alpha CMa for B II (which blends with a V III feature) have been reanalyzed with the help of new photographic and Reticon data from Mauna Kea which enable the determination of the V abundance. The results show that Gamma Gem is depleted in B by a factor of 5-10 relative to Alpha Lyr and other normal B stars and depleted in Be by at least a factor of four. By comparison, the hot Am star Alpha CMa is B-deficient by about three orders of magnitude and Be-deficient by at least fifteen times. It is suggested that the abundance deficiencies are due to diffusion, and that Alpha CMa is intrinsically a slow rotator, and Gamma Gem is a slightly evolved slow rotator where some, but not all, of the B and Be has resurfaced.

  3. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  4. Neutrino bursts from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Xu, Guohong

    1994-01-01

    If gamma-ray bursts originate at cosmological distances, as strongly indicated by the results from Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), then ultrarelativistic ejecta are the likely consequence of the highly super-Eddington luminosity of the sources. If the energy injection rate varies with time, then the Lorentz factor of the wind also varies, and the shells of ejected matter collide with each other. The collisions between baryons produce pions which decay into high-energy photons, electrons, electron positron pairs, and neutrino pairs. The bulk Lorentz factor of approximately 300 is required if our model is to be compatible with the observed millisecond variability. The strongest gamma-ray bursts are observed to deliver approximately 10(exp -4) ergs/sq cm in 100-200 keV photons. In our scenario more energy may be delivered in a neutrino burst. Typical neutrinos may be approximately 30 GeV if the protons have a Maxwellian energy distribution, and up to approximately TeV if the protons have a power-law distribution. Such neutrino bursts are close to the detection limit of the DUMAND II experiment.

  5. Solar Two Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Tümer, T.; Bhattacharya, D.; Mohideen, U.; Rieben, R.; Souchkov, V.; Tom, H.; Zweerink, J.

    1999-06-01

    The field of high energy gamma-ray astronomy grew tremendously in the last decade due to the launch of the EGRET detector on the Compton Gamma-Ray Observatory in 1991 and the proliferation of ground-based air Čherenkov telescopes (ACTs) such as the Whipple 10 meter reflector. Interestingly, the ground-based telescopes only see 4-5 of the over 170 objects detected by EGRET. A simple extrapolation of the EGRET objects' energy spectra up to the energies which the ACTs are sensitive suggests that many of them should have been detected. The key to resolving this lack of detections is to observe these sources in the previously unobserved 20-250 GeV energy range. The Solar Two Observatory collaboration is developing a secondary optics system on the central tower of the world's largest solar energy pilot plant, Solar Two, to observe gamma-ray sources in this energy range. The progress in building the secondary optics system to be used to image ˜64 heliostats at Solar Two located in Barstow, California, is presented. We hope to design and build this detector over the next 2 years.

  6. Long period grating response to gamma radiation

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Stǎncalie, Andrei; Neguţ, Daniel; Delepine-Lesoille, Sylvie; Lablonde, Laurent

    2016-04-01

    We report the evaluation of one long period grating (LPG) and one fiber Bragg grating (FBG) under gamma irradiation. The LPG was produced by the melting-drawing method based on CO2 laser assisted by a micro-flame and was engraved in a commercial single mode fiber SMF28 from Corning, grating length 25 mm, grating pitch of 720 μm. After the manufacturing of the grating, the fiber was re-coated with Acrylate and the grating was inserted into special ceramic case transparent to gamma radiation. The FBG is commercialized by Technica SA, and it is written in SMF-28 optical fiber (λ= 1546 nm; grating length of 12 mm; reflectivity > 80 %; bandwidth - BW @3 dB < 0.3 nm; side lobe suppress ratio - SLSR >15 dB; Acrylate recoating). By on-line monitoring of the LPG wavelength deep with an optical fiber interrogator during the irradiation exposure and pauses, both the irradiation induced shift (maximum 1.45 nm) and the recovery (in the range of 200 pm) phenomena were observed. Temperature sensitivity of the LPS was not affected by gamma irradiation.

  7. Boron and beryllium in gamma Geminorum

    SciTech Connect

    Boesgaard, A.M.; Praderie, F.

    1981-04-01

    Observations have been made of the B II resonance line at 1362 A inthe A0 IV star ..gamma.. Gem with the Princeton spectrometer on the Copernicus satellite at a spectral resolution of 0.05 A. Complementary ground-based observations of the Be II resonance lines at 3130 and 3131 A have been made at Mauna Kea Observatory with a comparable resolution. A model-atmosphere abundance analysis has been done which includes the effects of the lines that blend with the B II and Be II lines. Previous data on ..cap alpha.. Lyr and ..cap alpha.. CMa for B II (which blends with a V III feature) have been reanalyzed with the help of new photographic and Reticon data from Mauna Kea which enable us to determine the V abundance. The results show that ..gamma.. Gem is depleted in B by a factor of 5--10 relative to ..cap alpha.. Lyr and other normal B stars and depleted in Be by at least a factor of 4. By comparison, the hot Am star ..cap alpha.. CMa is B-deficient by about 3 orders of magnitude and Be-deficient by at least 15 times. It is suggested that the abundance deficiencies are due to diffusion, and that ..cap alpha.. CMa is intrinsically a slow rotator, and ..gamma.. Gem is a slightly evolved slow rotator where some, but not all, of the B and Be has resurfaced.

  8. Gamma Reaction History Backgrounds at the NIF

    NASA Astrophysics Data System (ADS)

    Church, J. A.; Stoeffl, W. S.; Watts, P. W.; Carpenter, A. C.; Liebman, J.; Herrmann, H. W.; Kim, Y. H.; Grafil, E.

    2011-10-01

    The Gamma Reaction History (GRH) diagnostic at NIF detects gamma-rays, emitted directly from DT fusion reactions (DT γ) , through the use of four Gas Cherenkov detectors with adjustable gamma-ray energy thresholds. It is primarily used to determine bang time, burn width and total DT yield of the implosion. Background interference to the signal is insignificant when capsules are driven directly by the lasers, but can be significant during indirect-drive using a hohlraum, forming an approximately 20 ns plateau under the narrow ~200 ps FWHM fusion signal. This background is independent of fusion yield and most likely the result of laser-plasma interaction (LPI) induced hot electron bremsstrahlung radiation. These hard x-rays stream out target chamber ports and take multiple scatter paths to reach the GRH photomultiplier tubes (PMT), where they then bypass the Cherenkov conversion process and generate signal by direct interaction with the PMT microchannel plates. An examination of this background contribution to the GRH signal and possible mitigation strategies will be presented. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, LLNL-ABS-490832.

  9. Precision Measurement of {eta} --> {gamma} {gamma} Decay Width via the Primakoff Effect

    SciTech Connect

    Gan, Liping Gin

    2013-08-01

    A precision measurement of the {eta} --> {gamma} {gamma} decay width via the Primakoff effect is underway in Hall D at Jefferson Lab. The decay width will be extracted from measured differential cross sections at forward angles on two light targets, liquid hydrogen and 4He, using a 11.5 GeV tagged photon beam. Results of this experiment will not only potentially resolve a long standing discrepancy between the Primakoff and the collider measurements, but will also reduce the experimental uncertainty by a factor of two on the average value of previous experimental results listed by the Particle Data Group(PDG). It will directly improve all other eta partial decay widths which rely on the accuracy of the eta radiative decay width. The projected 3% precision on the {Gamma}({eta} --> {gamma} {gamma} ) measurement will have a significant impact on the experimental determination of the fundamental parameters in QCD, such as the ratio of light quark masses (m{sub u},m{sub d},m{sub s}) and the {eta} - {eta}' mixing angle. It will be a sensitive probe for understanding QCD symmetries and the origin and the dynamics of QCD symmetry breaking.

  10. Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.

    2009-04-01

    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results from searches for pulsars carried out on Fermi data, both blind searches, and using contemporaneous timing of known radio pulsars.

  11. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  12. Design of an innovative gamma ray spectroscopy image-based telescope by assigning reciprocal vision color to each gamma photon depending on the energy of gamma photons

    NASA Astrophysics Data System (ADS)

    Rahmani Nejad, Akbar; Olia, M. A.

    2009-08-01

    In this paper an innovative method to devise a new astronomical observation instrument by simultaneous implementation of a gamma telescope and a gamma spectroscope is presented. Electromagnetic beams emitted from a star e.g. the sun is spread all electromagnetic spectrum from gamma rays to radio waves, but there is a fingerprint in such a wide spectrum that shows the exact fusion reaction which can be traced by associated gamma photons. This means if gamma photons, emitted from each part of sun, to be detected by this instrument, then spatial information is provided by telescope and information about the energy is recorded by spectrometer, by convolving two above mentioned data, there will be an illustration of a star like the sun that can show which area emits associated gamma photons that in turn illustrates the spatial distribution of elements that produce these gamma photons e.g. hydrogen, deuterium, tritium, helium, etc. we choose a reference color for each principle gamma photon, according to method similar to gamut color space of CIE [1], by specific linear transformation, or transformation matrix having photon-energy dependence coefficients, then there will be a colorful illustration of sun or any star (or even a GRB) that depicts distribution of elements, released energy, density of elements, etc. This information in turn will reveal the rate and topological variation of matter, energy, magnetic fields, etc. This information will also help to provide enough data to find spatial distribution function of energy, matter, variation and displacement of matters on stars and in turn, it will provide unique information about behaviors of stars. Finally, the method of vibrating holes to increase the spatial resolution of gamma detectors to hundreds times is presented. This method increases the spatial resolution of semiconductor-gamma telescopes to hundreds of times without decreasing the size of gamma sensor pixels and without any major effort to improve the

  13. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  14. Electrons and protons separation in the GAMMA-400 experiment

    NASA Astrophysics Data System (ADS)

    Leonov, Alexey

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific tasks: search for signatures of dark matter, investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons, protons and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in total flux is ~10^-3 for high energies. In present paper the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The separate investment in proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide rejection from protons with factor of ~4×10^5 for vertical incident particles and ~3×10^5 for particles with initial inclination of 30 deg.

  15. EML Gamma Spectrometry Data Evaluation Program

    SciTech Connect

    Decker, Karin M.

    2001-01-01

    This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV to 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these

  16. Exclusive meson pair production in {gamma}*{gamma} scattering at small momentum transfer

    SciTech Connect

    Lansberg, J.P.; Pire, B.; Szymanowski, L.

    2006-04-01

    We study the exclusive production of {pi}{pi} and {rho}{pi} in hard {gamma}*{gamma} scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. Cross sections for {rho}{pi} and {pi}{pi} production are evaluated and compared to the possible background from the Bremsstrahlung process. This picture may be tested at intense electron-positron colliders such as CLEO and B factories. The cross section e{gamma}{yields}e{sup '}{pi}{sup 0}{pi}{sup 0} is finally shown to provide a possible determination of the {pi}{sup 0} axial form factor, F{sub A}{sup {pi}{sup 0}}, at small t, which seems not to be measurable elsewhere.

  17. Heat treating of a lamellar eutectic alloy /gamma/gamma prime + delta/

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy gamma/gamma prime + delta was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the gamma prime at 1210 C and then aging at 900 C, the tensile strength can be increased about 12 per cent at temperatures up to 900 C. At 1040 C, no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy were reduced by heat treatment.

  18. GAMMA-400 Space Gamma-telescope Mathematical Model with Engineering Elements Included

    NASA Astrophysics Data System (ADS)

    Chasovikov, E. N.; Arkhangelskaja, I. V.; Perfil`ev, A. A.; Arkhangelskiy, A. I.; Galper, A. M.; Topchiev, N. P.; Gusakov, Yu. V.; Kheymits, M. D.; Yurkin, Yu. T.

    Mathematical model creation is a necessary stage in scientific apparatus development. The mathematical model of gamma-ray telescope GAMMA-400 is used to emulate transport of various elementary particles through the apparatus. The new iteration of the model is based on precise technical drawings and includes all the elements of the real gamma-telescope. It is created in Geant4 environment. This model allows calculation of energy deposition not only in detectors, but in any part of the apparatus, including construction elements. Moreover, it supports creation of virtual sensitive volumes, allowing determination of the number and properties of particles passing through an arbitrary part of the construction. Software for automated creation of Geant4 model based on technical drawings in STEP 3D Model format was developed. This software is capable of making models of other apparatus based particularly on scintillation and strip detectors.

  19. gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates.

    PubMed

    Wistow, Graeme; Wyatt, Keith; David, Larry; Gao, Chun; Bateman, Orval; Bernstein, Steven; Tomarev, Stanislav; Segovia, Lorenzo; Slingsby, Christine; Vihtelic, Thomas

    2005-05-01

    The beta and gamma crystallins are evolutionarily related families of proteins that make up a large part of the refractive structure of the vertebrate eye lens. Each family has a distinctive gene structure that reflects a history of successive gene duplications. A survey of gamma-crystallins expressed in mammal, reptile, bird and fish species (particularly in the zebrafish, Danio rerio) has led to the discovery of gammaN-crystallin, an evolutionary bridge between the beta and gamma families. In all species examined, gammaN-crystallins have a hybrid gene structure, half beta and half gamma, and thus appear to be the 'missing link' between the beta and gamma crystallin lineages. Overall, there are four major classes of gamma-crystallin: the terrestrial group (including mammalian gammaA-F); the aquatic group (the fish gammaM-crystallins); the gammaS group; and the novel gammaN group. Like the evolutionarily ancient beta-crystallins (but unlike the terrestrial gammaA-F and aquatic gammaM groups), both the gammaS and gammaN crystallins form distinct clades with members in fish, reptiles, birds and mammals. In rodents, gammaN is expressed in nuclear fibers of the lens and, perhaps hinting at an ancestral role for the gamma-crystallins, also in the retina. Although well conserved throughout vertebrate evolution, gammaN in primates has apparently undergone major changes and possible loss of functional expression.

  20. Searches for Lepton Flavor Violation in the Decays tau+- ---> e+- gamma and tau+- ---> mu+- gamma

    SciTech Connect

    Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, David Nathan; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /more authors..

    2010-06-11

    Searches for lepton-flavor-violating decays of a {tau} lepton to a lighter mass lepton and a photon have been performed with the entire dataset of (963 {+-} 7) x 10{sup 6} {tau} decays collected by the BABAR detector near the {Upsilon}(4S), {Upsilon}(3S) and {Upsilon}(2S) resonances. The searches yield no evidence of signals and they set upper limits on the branching fractions of {Beta}({tau}{sup {+-}} {yields} e{sup {+-}}{gamma}) < 3.3 x 10{sup -8} and {Beta}({tau}{sup {+-}} {yields} {mu}{sup {+-}}{gamma}) < 4.4 x 10{sup -8} at 90% confidence level.

  1. Application of the gamma evaluation method in Gamma Knife film dosimetry

    SciTech Connect

    Park, Jeong-Hoon; Han, Jung Ho; Kim, Chae-Yong; Oh, Chang Wan; Lee, Do-Heui; Suh, Tae-Suk; Gyu Kim, Dong; Chung, Hyun-Tai

    2011-10-15

    Purpose: Gamma Knife (GK) radiosurgery is a minimally invasive surgical technique for the treatment of intracranial lesions. To minimize neurological deficits, submillimeter accuracy is required during treatment delivery. In this paper, the delivery accuracy of GK radiosurgery was assessed with the gamma evaluation method using planning dose distribution and film measurement data. Methods: Single 4, 8, and 16 mm and composite shot plans were developed for evaluation using the GK Perfexion (PFX) treatment planning system (TPS). The planning dose distributions were exported as digital image communications in medicine - radiation therapy (DICOM RT) files using a new function of GK TPS. A maximum dose of 8 Gy was prescribed for four test plans. Irradiation was performed onto a spherical solid water phantom using Gafchromic EBT2 films in the axial and coronal planes. The exposed films were converted to absolute dose based on a 4th-order polynomial calibration curve determined using ten calibration films. The film measurement results and planning dose distributions were registered for further analysis in the same Leksell coordinate using in-house software. The gamma evaluation method was applied to two dose distributions with varying spatial tolerance (0.3-2.0 mm) and dosimetric tolerance (0.3-2.0%), to verify the accuracy of GK radiosurgery. The result of gamma evaluation was assessed using pass rate, dose gamma index histogram (DGH), and dose pass rate histogram (DPH). Results: The 20, 50, and 80% isodose lines found in film measurements were in close agreement with the planning isodose lines, for all dose levels. The comparison of diagonal line profiles across the axial plane yielded similar results. The gamma evaluation method resulted in high pass rates of >95% within the 50% isodose line for 0.5 mm/0.5% tolerance criteria, in both the axial and coronal planes. They satisfied 1.0 mm/1.0% criteria within the 20% isodose line. Our DGH and DPH also showed that low

  2. Modeling of gamma/gamma-prime phase equilibrium in the nickel-aluminum system

    NASA Technical Reports Server (NTRS)

    Sanchez, J. M.; Barefoot, J. R.; Jarrett, R. N.; Tien, J. K.

    1984-01-01

    A theoretical model is proposed for the determination of phase equilibrium in alloys, taking into consideration dissimilar lattice parameters. Volume-dependent pair interactions are introduced by means of phenomenological Lennard-Jones potentials and the configurational entropy of the system is treated in the tetrahedron approximation of the cluster variation method. The model is applied to the superalloy-relevant, nickel-rich, gamma/gamma-prime phase region of the Ni-Al phase diagram. The model predicts reasonable values for the lattice parameters and the enthalpy of formation as a function of composition, and the calculated phase diagram closely approximates the experimental diagram.

  3. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  4. Instructions for calibrating gamma detectors using the Canberra-Nuclear Data Genie Gamma Spectroscopy System

    SciTech Connect

    Brunk, J.L.

    1995-09-01

    A straight forward protocol provides a way to guide the calibration of a gamma detector for a particular geometry and material. Several programs have used the Low Level Gamma Counting Facility of the Health and Ecological Assessment Division of the Lawrence Livermore National Laboratory to count a variety of large environmental samples contained in several unique geometries. The equipment and calibration requirements needed to analyze these types of samples are explained. This document describes the calibration protocol that has been developed and describes how it is used to calibrate the detectors.

  5. Polarized gamma-rays with laser-Compton backscattering

    SciTech Connect

    Ohgaki, H.; Noguchi, T.; Sugiyama, S.

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  6. Cytotoxic function of gamma delta (gamma/delta) T cells against pamidronate-treated cervical cancer cells.

    PubMed

    Lertworapreecha, Monthon; Patumraj, Suthiluk; Niruthisard, Somchai; Hansasuta, Pokrath; Bhattarakosol, Parvapan

    2013-08-01

    The cytotoxic function of polyclonal expanded gamma/delta T cells against pamidronate-treated cervical cancer cells in vitro and in vivo were determined. The gamma/delta T cells were isolated and purified from PBMCs by using miniMACS and were later treated with 10 microM pamidronate. The expansion of gamma/delta T cells was 15 times more than the non-stimulated cells. Among the expanded gamma/delta T cells, 47% were Vgamma9/Vdelta2 T cells with a purity of 87%. Analyzing the cytotoxic function of gamma/delta T cells against 3 cervical cancer cells in vitro by LDH cytotoxicity test revealed that the killing efficacy increased if the cervical cancer cells (HeLa, SiHa and CaSki) were pretreated with pamidronate. The presence of CD107 on gamma/delta T cells indicated the degranulation of perforin and granzyme pathway is one of the mechanisms used by the gamma/delta T cells to kill cancer cells. The killing ability of gamma/delta T cells against cancer cells in vivo was preliminary assessed by using mouse baring HeLa cells. The results demonstrated that gamma/delta T cells induce apoptosis in tumor cells. Our study supports the usefulness of gamma/delta T cells in future development of immunotherapy for cervical cancer.

  7. EPR investigation of some gamma-irradiated excipients

    NASA Astrophysics Data System (ADS)

    Aleksieva, Katerina; Yordanov, Nicola D.

    2012-09-01

    The results of electron paramagnetic resonance (EPR) studies on some excipients: lactose, microcrystalline cellulose (avicel), starch, dioxosilane (aerosil), talc and magnesium stearate before and after gamma-irradiation are reported. Before irradiation, all samples are EPR silent except talc. After gamma-irradiation, they show complex spectra except magnesium stearate, which is EPR silent. Studies show the influence of gamma-irradiation on EPR spectra and stability of gamma-induced radicals. Analysis of the EPR spectrum of gamma-irradiated talc shows that this material is radiation insensitive. Only lactose forms stable-free radicals upon gamma sterilization and can be used for identification of radiation processing for a long time period thereafter.

  8. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  9. SAS-2 galactic gamma ray results. 2. Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  10. Compton-dragged Gamma-Ray Bursts Associated with Supernovae.

    PubMed

    Lazzati; Ghisellini; Celotti; Rees

    2000-01-20

    It is proposed that the gamma-ray photons that characterize the prompt emission of gamma-ray bursts are produced through the Compton-drag process, which is caused by the interaction of a relativistic fireball with a very dense soft photon bath. If gamma-ray bursts are indeed associated with supernovae, then the exploding star can provide enough soft photons for radiative drag to be effective. This model accounts for the basic properties of gamma-ray bursts, i.e., the overall energetics, the peak frequency of the spectrum, and the fast variability, with an efficiency that can exceed 50%. In this scenario, there is no need for particle acceleration in relativistic collisionless shocks. Furthermore, although the Poynting flux may be important in accelerating the outflow, no magnetic field is required in the gamma-ray production. The drag also naturally limits the relativistic expansion of the fireball to Gamma less, similar104.

  11. Gamma and beta logging of underground sewer and process lines

    SciTech Connect

    Rangel, M.J.; Martz, D.E.; Langner, G.H. Jr.

    1989-11-01

    The GammaSnake can be useful for locating uranium mill tailings used as backfill for sewer lines or storm drains where the lines can be readily accessed from a cleanout access port or other opening. The time required to determine if contamination is present using the GammaSnake method is considerably less than when using the delta gamma or drilling methods. There is, also, less potential hazard to the equipment operators when using the GammaSnake method. The GammaSnake method is generally limited to a distance of 100 feet or less. Used with the MAC-51B line locator, the GammaSnake method can provide useful information without extensive drilling or surveying. 7 figs., 2 tabs.

  12. A Correlated Optical and Gamma Emission from GRB 081126A

    SciTech Connect

    Gendre, B.; Klotz, A.; Atteia, J. L.; Boeer, M.; Coward, D. M.; Imerito, A. C.

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  13. Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor.

    PubMed Central

    Wilson, K C; Finbloom, D S

    1992-01-01

    Interferon gamma (IFN-gamma) transcriptionally activates several early-response genes in monocytes that are important for the ultimate phenotype of the activated macrophage. One of these genes is the high-affinity Fc receptor for IgG (Fc gamma RI). Recently, Pearse et al. [Pearse, R.N., Feinman, R. & Ravetch, J. V. (1991) Proc. Natl. Acad. Sci. USA 88, 11305-11309] defined within the promoter region of the Fc gamma RI gene an element, the gamma response region, which was necessary for IFN-gamma-induced enhancement of Fc gamma RI. In this report we describe the induction by IFN-gamma of a DNA-binding factor, FcRF gamma (Fc gamma RI DNA-binding factor, IFN-gamma induced), that specifically recognizes the gamma response region element. Electrophoretic mobility shift assays (EMSAs) demonstrated the presence of FcRF gamma in human monocytes within 1 min after exposure to IFN-gamma. On EMSA, FcRF gamma consisted of two complexes termed FcRF gamma 1 and FcRF gamma 2. The nuclear concentration of FcRF gamma rapidly increased, peaked at 15 min, and then fell after 1-2 hr. Dose-response studies revealed (i) as little as 0.05 ng of IFN-gamma per ml induced FcRF gamma, (ii) maximum activation occurred at 1 ng/ml, and (iii) steady-state levels of Fc gamma RI mRNA closely paralleled that of FcRF gamma. Since FcRF gamma was activated in cells normally not expressing Fc gamma RI RNA, other regulatory mechanisms must control Fc gamma RI-restricted tissue expression. Activation of FcRF gamma by IFN-gamma was inhibited by pretreatment with 500 nM staurosporin and 25 microM phenyl arsine oxide. These data suggest that a kinase and possibly a phosphatase activity are required for IFN-gamma-induced signaling of FcRF gamma in monocytes. Images PMID:1334553

  14. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  15. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  16. Application of the {gamma}SF method to palladium

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Iwamoto, C.; Kamata, M.; Itoh, O.; Goriely, S.; Daoutidis, I.; Arteaga, D. P.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2011-10-28

    Photoneutron cross sections were measured for {sup 108}Pd, {sup 106}Pd, and {sup 105}Pd with laser-Compton scattering {gamma}-ray beams in an application of the {gamma}SF method to a radioactive nucleus {sup 107}Pd. We present radiative neutron cross sections for {sup 107}Pd[6.5x10{sup 6} y] obtained with the {gamma}SF method.

  17. Identical gamma-vibrational bands in {sup 165}Ho

    SciTech Connect

    Radford, D.C.; Galindo-Uribarri, A.; Janzen, V.P.

    1996-12-31

    The structure of {sup 165}Ho at moderate spins has been investigated by means of Coulomb excitation. Two {gamma}-vibrational bands (K{sup {pi}} = 11/2{sup {minus}} and K{sup {pi}} = 3/2{sup {minus}}) are observed, with very nearly identical in-band {gamma}-ray energies. Gamma-ray branching ratios are analyzed to extract information on Coriolis mixing, and the role of the K quantum number in identical bands is discussed.

  18. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    SciTech Connect

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  19. Average Description of Dipole Gamma Transitions in Hot Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Plujko, V. A.; Gorbachenko, O. M.; Rovenskykh, E. P.; Zheltonozhskii, V. A.

    2014-04-01

    A new version of the modified Lorentzian approach for radiative strength function is proposed. It is based on renewed systematics for giant dipole resonance (GDR) parameters. The gamma-decay strength functions are calculated using new GDR parameters and compared with experimental data. It is demonstrated that closed-form approaches with energy-dependent width of the gamma strength, as a rule, provide a reliable simple method for description of gamma-decay processes.

  20. A Gamma-Ray Camera for Inspection Control

    SciTech Connect

    Danilenko, K.N.; Ignatyev, G.N.; Semenov, D.S; D Chernov, M.Y.; Morgan, J.

    2000-06-29

    The Research Institute of Pulse Technique has constructed a gamma-ray camera for imaging radioactive materials. The work was performed under the DOE Lab to Lab Dismantlement Transparency Program with the Lawrence Livermore National Laboratory (USA). The gamma-ray camera was intended for imaging radioactive materials, including fissile materials, in a storage container. In this case, the spatial resolution established in the specifications for the gamma ray camera was limited for reasons of inspection non-intrusiveness.

  1. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  2. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1993-01-01

    Most Galactic optical supernovae are hidden due to severe extinction in the disk, but could be detectable through their gamma-ray afterglow. Ti-44 is among the potentially detectable isotopes in supernova ejecta. HEAO 3 and SMM sky surveys have not detected gamma-ray lines from the decay of Ti-44, thus constraining SN rates and nucleosynthesis. We perform Monte Carlo simulations of the gamma-ray signatures of SN occurring during the last millenium to interpret the gamma-ray paucity.

  3. Physical changes associated with gamma doses on Wood/ Polypropylene Composites

    NASA Astrophysics Data System (ADS)

    Ndiaye, Diène; Tidjani, Adams

    2014-08-01

    The effect of gamma- radiation on the morphology, thermal behavior and mechanical properties of wood polypropylene composites has been investigated. Simultaneous thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been performed on WPC samples of (9.5 ± 0.1) mg. These samples were exposed to different gamma-dose in the range 10 to 100kGy. The results indicated that gamma radiation improves the mechanical properties while the thermal stability is decreased. With gamma radiation, the scanning electron microscopy (SEM) of the micrographs became smoother and we can notice an improvement of interaction between polymer and wood fibers.

  4. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  5. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  6. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  7. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  8. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  9. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  10. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  11. A role for gamma scintigraphy in cancer immunology and immunotherapy.

    PubMed

    Perkins, A C; Pimm, M V

    1992-01-01

    Facilities for radiolabelling and gamma scintigraphy are largely restricted to nuclear medicine departments or specialised research institutions and are therefore not widely available to workers in cancer research. Despite this, there is growing interest in gamma scintigraphy, which can provide information relevant to the entire field of cancer immunology. This review discusses the present and future roles of gamma scintigraphy in respect of antibody-targeted, cell-mediated and cytokine therapy. The authors aim to show that gamma scintigraphy is an investigative tool of great potential.

  12. Inhibitory effects of interferon-gamma on myocardial hypertrophy.

    PubMed

    Jin, Hongkui; Li, Wei; Yang, Renhui; Ogasawara, Annie; Lu, Hsienwie; Paoni, Nicholas F

    2005-09-21

    Prostaglandin F(2alpha) (PGF(2alpha)) plays an important role in pathologic cardiac growth. After testing several immune cytokines, we found that interferon-gamma (IFN-gamma) inhibited responsiveness of adult myocytes to PGF(2alpha). The present study was designed to test the hypothesis that IFN-gamma inhibits cardiac hypertrophy induced by PGF(2alpha). Incubation of cultured adult rat cardiac myocytes with PGF(2alpha) caused cell spreading, which was inhibited by IFN-gamma. The inhibitory effect was not affected by nitric oxide (NO) synthase inhibitors. In addition, administration of fluprostenol, a more selective agonist at the PGF(2alpha) receptor, induced cardiac hypertrophy in rats. Chronic treatment with IFN-gamma inhibited this myocardial growth, and the inhibitory effect of IFN-gamma was not accompanied by an increase in myocardial NO synthase gene expression. Further, abdominal aortic constriction resulted in a substantial increase in heart, ventricular and left ventricular weights to BW ratio that was significantly attenuated by treatment with IFN-gamma. The results demonstrate that IFN-gamma inhibits the in vitro and in vivo effects of PGF(2alpha) on cardiac hypertrophy, and that the mechanism of action is likely independent of NO production. IFN-gamma also attenuated cardiac hypertrophy induced by pressure overload, suggesting that PGF(2alpha) plays a role in the pathogeneses of this severe type of cardiac hypertrophy.

  13. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  14. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  15. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    NASA Astrophysics Data System (ADS)

    Lambertin, D.; Boher, C.; Dannoux-Papin, A.; Galliez, K.; Rooses, A.; Frizon, F.

    2013-11-01

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  16. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  17. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  18. Induction of interferon-gamma (IFN-gamma) and T helper 1 (Th1) immune response by bitter gourd extract.

    PubMed

    Ike, Kazunori; Uchida, Yuko; Nakamura, Tomohiko; Imai, Soichi

    2005-05-01

    Mice were inoculated intraperitoneally wih 34 different types of vegetable juices, and interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) were measured as markers for the induction of Th1 and Th2 cells, respectively. Serum IFN-gamma level was markedly increased in mice inoculated with bitter gourd (Momordica charantia) juice, but IL-4 levels were not increased with any of the 34 vegetable juices. Testing of the various components of bitter gourd, including peel, pulp, and seed, showed that the pulp induced the highest levels of IFN-gamma. Trial immunogen including the heat extract of the pulp induced specific IgG(2a) antibody of the mice serum inoculated with this immunogen. These results demonstrate that bitter gourd pulp induced IFN-gamma production and show its promise as a means of effective immunostimulatory therapy specific for Th1 cells and IFN-gamma production.

  19. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  20. Multiwavelength Studies of gamma-ray Binaries

    NASA Astrophysics Data System (ADS)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  1. Polycrystalline gamma plutonium's elastic moduli versus temperature

    SciTech Connect

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  2. Synchronization system for Gamma-4 electrophysical facility

    NASA Astrophysics Data System (ADS)

    Grishin, A. V.; Nazarenko, S. T.; Kozachek, A. V.; Kalashnikov, D. A.; Glushkov, S. L.; Mironychev, B. P.; Martynov, V. M.; Turutin, V. V.; Kul'dyushov, D. A.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Esaeva, Yu. A.

    2015-01-01

    A synchronization system for the Gamma-4 four-module electrophysical facility has been developed. It has been shown that the synchronization system should provide triggering (with precision not worse than ±3 ns) of the high-voltage gas-filled trigatron-type switches of the facility modules (144 spark gaps with an operating voltage of 1 MV), the pre-pulse switches of the modules (24 spark gaps with an operating voltage of 3 MV) and eight Arkad'ev-Marx generators (40 spark gaps with an operating voltage of 100 kV).

  3. Asymmetries in gamma scattering by Fe-57.

    NASA Technical Reports Server (NTRS)

    Lee, L. Y.; Goodman, C. D.

    1972-01-01

    Experiments were conducted with a setup in which a Co-57 single-line source was driven by a constant-acceleration motor. The 14.4-keV gamma rays emitted from the iron foil scatterer were detected by a proportional counter filled with krypton and carbon dioxide. The interference for individual Zeeman hyperfine transitions in a magnetic field was calculated. It was found that beside the cos phi angular dependence of line shape asymmetry, there exists a sin phi intensity dependence for some of the hyperfine transitions.

  4. Gamma-N activation of cancer patients

    SciTech Connect

    Wielopolski, L.; Meek, A.G.; Moskowitz, M.; Cohn, S.H.

    1986-01-01

    High energy gamma radiation (8 to 30 MeV) is gaining acceptance for radiation therapy of patients with deep cancers. This radiation is of sufficient energy to induce photonuclear activation of the elements in the human body. Our results of measurements of nitrogen and phosphorus in an anthropomorphic phantom, a cadaver, and a cancer patient with bremsstrahlung radiation from 15 MeV electrons demonstrate the feasibility of a method to monitor these two elements in the human body in vivo by measuring the radioactivity induced in these targets by photonuclear reactions. 14 refs., 3 figs., 2 tabs.

  5. ICF gamma-ray reaction history diagnostics

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  6. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  7. THE ORTHOGONAL GAMMA-RAY BURST MODEL

    SciTech Connect

    Contopoulos, Ioannis; Pugliese, Daniela; Nathanail, Antonios

    2014-01-01

    We explore the analogy between a rotating magnetized black hole and an axisymmetric pulsar and derive the black hole's electromagnetic spindown after its formation in the core collapse of a supermassive star. The spindown shows two characteristic phases: an early Blandford-Znajek phase that lasts a few hundred seconds and a late pulsar-like afterglow phase that lasts much longer. During the first phase, the spindown luminosity decreases almost exponentially, whereas during the afterglow phase it decreases as t {sup –a} with 1 ≲ a ≲ 1.5. We associate our findings with long duration gamma-ray bursts and compare them with observations.

  8. Very high energy gamma ray astrophysics

    NASA Astrophysics Data System (ADS)

    Lamb, R. C.

    1983-03-01

    Sources of very high energy gamma rays (E(BETA) (11) eV) and improvement of the instrumentation of detectors in this energy regime were investigated. Approximately 4 x 10(5) Cerepkov air shower events from the region of Cygnus X-3 and the Crab nebula were collected with the JPL instrumentation during the fall of 1982. Significant improvement on the 1981 sensitivity to source variations and the development of a Cerenkov air shower camera are reported. A suitable mirror and mount for use as a detector auxiliary to the primary 10 inch Mt. Hopkins detector is located.

  9. Gamma shielding properties of Tamoxifen drug

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Gulsah Saydan; Oto, Berna; Gulebaglan, Sinem Erden

    2017-02-01

    Tamoxifen (MW=371 g/mol) is an endocrine therapeutic drug widely prescribed as chemopreventive in women to prevent and to treat all stages of breast cancer. It is also being studied for other types of cancer. In this study, we have calculated some gamma shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) for Tamoxifen drug. The values of μρ were calculated using WinXCom computer program and then the values of Zeff and Nel were derived using μρ values in the wide energy range (1 keV - 100 GeV).

  10. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  11. MULTIPLE THICKNESS TIMES DENSITY GAMMA GAGE

    DOEpatents

    Cherry, N.H.

    1962-07-24

    A device was developed for measuring simultaneously the thicknesses of two dissimilar materials superimposed on each other, such as coating of one material on another. The apparatus utilizes a double gamma radiation source producing radiation in two narrow band energy levels. The different materials attenuate the two bands of energy unequally with the result that a composite signal is received which can be analyzed to separate out the components due to the differing materials and indicate the thickness or densities of the two layers. (AEC)

  12. Gamma bang time analysis at OMEGA.

    PubMed

    McEvoy, A M; Herrmann, H W; Horsfield, C J; Young, C S; Miller, E K; Mack, J M; Kim, Y; Stoeffl, W; Rubery, M; Evans, S; Sedillo, T; Ali, Z A

    2010-10-01

    Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.

  13. Gamma bang time analysis at OMEGAa)

    NASA Astrophysics Data System (ADS)

    McEvoy, A. M.; Herrmann, H. W.; Horsfield, C. J.; Young, C. S.; Miller, E. K.; Mack, J. M.; Kim, Y.; Stoeffl, W.; Rubery, M.; Evans, S.; Sedillo, T.; Ali, Z. A.

    2010-10-01

    Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.

  14. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  15. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  16. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  17. Image Recognition Techniques for Gamma Spectroscopy

    SciTech Connect

    Vlachos, D. S.; Tsabaris, C. G.

    2007-12-26

    Photons, after generated from a radioactive source and before they deposit their energy in a photo detector, are subsequent to multiple scattering mechanisms. As a result, the measured energy from the photo detector is different from the energy the photon had when generated. This is known as folding of the photon energy. Moreover, statistical fluctuation inside the detector contribute to energy folding. In this work, a new method is presented for unfolding the gamma ray spectrum. The method uses a 2-dimensional representation of the measured spectrum (image) and then uses image recognition techniques, and especially differential edge detection, to generate the original spectrum.

  18. Interferon gamma release assays: principles and practice.

    PubMed

    Lalvani, Ajit; Pareek, Manish

    2010-04-01

    The last decade has witnessed significant advances in mycobacterial genomics and cellular research which have resulted in the development of two new blood tests, the enzyme-linked immunospot assay (ELISpot) (TSPOT.TB, Oxford Immunotec, Oxford, UK) and the enzyme-linked immunosorbent assay (ELISA) (QuantiFERON-TB Gold In-Tube, Cellestis, Carnegie, Australia). These tests, which are collectively known as interferon gamma release assays (IGRAs), detect latent tuberculosis infection (LTBI) by measuring interferon (IFN)-gamma release in response to antigens present in Mycobacterium tuberculosis, but not bacille Calmette-Guerin (BCG) vaccine and most nontuberculous mycobacteria. This is done through enumeration of IFN-gamma-secreting T cells (ELISpot) or by measurement of IFN-gamma concentration (ELISA). The evidence base for these tests has expanded rapidly and now demonstrates that IGRAs are more specific than the tuberculin skin test (TST) as they are not confounded by previous BCG vaccination. In addition, with active tuberculosis (TB) as a surrogate for LTBI, it appears that the ELISA has a similar sensitivity to the TST, whereas the ELISpot is more sensitive. Using degree of exposure to TB as a surrogate for LTBI, both assays correlate at least as well with TB exposure as the TST. Recent longitudinal data have now demonstrated the prognostic power of positive IGRA results in recent contacts for the subsequent progression to active TB. Deployment of IGRAs, driven by new guidelines internationally, will impact on clinical practice in several ways. Their high specificity means that BCG-vaccinated individuals with a false-positive TST will not receive unnecessary preventive treatment, whereas improved sensitivity in individuals with weakened cellular immunity at highest risk of progressing to active TB (for example HIV-positive individuals) enables more reliable targeted testing and treatment of these vulnerable groups. The role of IGRAs in active TB is less clear but

  19. The control and data acquisition structure for the GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, Andrey

    2016-07-01

    The GAMMA-400 space project is intended for precision investigation of the cosmic gamma-emission in the energy band from keV region up to several TeV, electrons and positrons fluxes from ˜~1~GeV up to ˜~10~TeV and high energy cosmic-ray nuclei fluxes. A description of the control and data acquisition structure for gamma-telescope involved in the GAMMA 400 space project is given. The technical capabilities of all specialized equipment providing the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands and program commands transmitted via onboard control system and scientific data acquisition system. Up to 100~GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified experimentally with the scientific complex prototype in the laboratory conditions.

  20. On the capacity of MISO FSO systems over gamma-gamma and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2015-08-24

    In this work, the ergodic capacity performance for multiple-input/single-output (MISO) free-space optical (FSO) communications system with equal gain combining (EGC) reception is analyzed over gamma-gamma and misalignment fading channels, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.). Novel and analytical closed-form ergodic capacity expression is obtained in terms of H-Fox function by using the well-known inequality between arithmetic and geometric mean of positive random variables (RV) in order to obtain an approximate closed-form expression of the distribution of the sum of M gamma-gamma with pointing errors variates. In addition, we present an asymptotic ergodic capacity expression at high signal-to-noise ratio (SNR) for the ergodic capacity of MISO FSO systems. It can be concluded that the use of MISO technique can significantly reduce the effect of the atmospheric turbulence as well as pointing errors and, hence, provide significant capacity gain over the direct path link (DL). The impact of pointing errors on the MISO FSO system is also analyzed, which only depends on the number of laser sources and pointing error parameters. Moreover, it can be also concluded that the ergodic capacity performance is dramatically reduced as a consequence of the severity of pointing error effects. Simulation results are further demonstrated to confirm the analytical results.