Science.gov

Sample records for gamma emission tomography

  1. A new gamma camera for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Schotanus, Paul

    1988-06-01

    The detection of annihilation radiation employing radiation absorbed in a barium fluoride (BaF2) crystal is described. The resulting scintillation light is detected in a multiwire proportional chamber filled with a photosensitive vapor. The use of a high density fast scintillator with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. The physical background of the detection mechanism is explored and the performance parameters of a gamma camera using this principle are determined. The scintillation mechanism and physical characteristics of the BaF2 scintillator are examined. Ultraviolet scintillation materials consisting of rare earth doped fluorides are introduced.

  2. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  3. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  4. High resolution gamma detector for small-animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    In this study, the performance of continuous miniature crystal element (cMiCE) detectors with LYSO crystals of different thickness were investigated. Potential designs of a cMiCE small animal positron emission tomography scanner were also evaluated by an analytical simulation approach. The cMiCE detector was proposed as a high sensitivity, low cost alternative to the prevailing discrete crystal detectors. A statistics based positioning (SBP) algorithm was developed to solve the scintillation position estimation problem and proved to be successful on a cMiCE detector with a 4 mm thick crystal. By assuming a Gaussian distribution, the distributions of the photomultiplier signals could be characterized by mean and variance, which are functions of scintillation position. After calibrating the detector on a grid of locations, a 2D table of the mean and variance can be built. The SBP algorithm searches the tables to find the location that maximizes the likelihood between the mean and variance of known positions and the incoming scintillation event. In this work, the performance of the SBP algorithm on cMiCE detectors with thicker crystals (6 and 8 mm) was studied. The stopping power of a cMiCE detector is 40% and 49% for 6 and 8 mm thick crystals respectively. The intrinsic spatial resolution is 1.2 mm and 1.4 mm FWHM for the center and corner sections of a 6 mm thick crystal detector, and 1.3 mm and 1.6 mm for center and corner of an 8 mm thick crystal detector. These results demonstrate that the cMiCE detector is a promising candidate for high resolution, high sensitivity PET applications. A maximum-likelihood (ML) clustering method was developed to empirically separate the experimental data set into two to four subgroups according to the depth-of-interaction of the detected photons. This method enabled us to build 2-DOI lookup tables (LUT) (mean and variance lookup tables for front group and back group). Using the 2-DOI SBP LUTs, the scintillation position and DOI

  5. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  6. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  7. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  8. Determination of the rod-wise fission gas release fraction in a complete fuel assembly using non-destructive gamma emission tomography

    NASA Astrophysics Data System (ADS)

    Holcombe, Scott; Andersson, Peter; Svärd, Staffan Jacobsson; Hallstadius, Lars

    2016-11-01

    A gamma tomography instrument has been developed at the Halden Boiling Water Reactor (HBWR) in cooperation between the Institute for Energy Technology, Westinghouse (Sweden) and Uppsala University. The instrument is used to record the gamma radiation field surrounding complete fuel assemblies and consists of a shielded enclosure with fixtures to accurately position the fuel and detector relative to each other. A High Purity Germanium detector is used for acquiring high-resolution spectroscopic data, allowing for analysis of multiple gamma-ray peaks. Using the data extracted from the selected peaks, tomographic reconstruction algorithms are used to reproduce the corresponding spatial gamma-ray source distributions within the fuel assembly. With this method, rod-wise data can be can be deduced without the need to dismantle the fuel. In this work, the tomographic device has been experimentally benchmarked for non-destructive rod-wise determination of the Fission Gas Release (FGR) fraction. Measurements were performed on the fuel-stack and gas-plenum regions of a complete fuel assembly, and quantitative tomographic reconstructions of the measurement data were performed in order to determine the rod-wise ratio of 85Kr in the gas plenum to 137Cs in the fuel stack. The rod-wise ratio of 85Kr/137Cs was, in turn, used to calculate the rod-wise FGR fraction. In connection to the tomographic measurements, the fuel rods were also measured individually using gamma scanning in order to provide an experimental benchmark for the tomographic method. Fuel rods from two donor driver fuel assemblies were placed into a nine-rod HBWR driver fuel assembly configuration. In order to provide a challenging measurement object and thus an appropriate benchmark for the tomographic method, five rods were taken from an assembly with a burnup of 51 MWd/kgUO2, and four rods were from an assembly with a burnup of 26 MWd/kgUO2. At the time of the measurements, the nine rods had cooled for

  9. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  10. Development of novel emission tomography system

    NASA Astrophysics Data System (ADS)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  11. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  12. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  13. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.

    2015-10-01

    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  14. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  15. A new method for measuring dynamic change of tracer distribution using dynamic single photon emission tomography with a slip-ring rotational gamma camera.

    PubMed

    Miyazaki, Y; Hashimoto, M; Kinuya, S; Murata, Y; Inoue, H; Shiozaki, J; Takimoto, M; Yoshioka, K; Nakajima, K; Taki, J

    2002-11-01

    The clinical applicability of dynamic single photon emission tomograpy (SPET) using a dual-head gamma camera equipped with a slip-ring rotational mechanism, referred to as serial SPET, was examined in the present investigation. Serial SPET enables the production of tomographic images for any arbitrary time frame from an arbitrary range of data to 360 degrees. In a pre-clinical evaluation, a correlation between radioactivity concentration and serial SPET counts was evaluated in a phantom with continuous changes in 99mTc concentration. A differential value was obtained from each pair of SPET images; moreover, moving average approximation processing was investigated with respect to the elimination of noise in the data. In 11 and one patient presenting with cerebrovascular disease and meningioma, respectively, changes in SPET counts were evaluated when 99mTc ethyl cysteinate dimer (99mTc-ECD) was continuously administered at a constant rate in the resting state. Furthermore, in six of 11 subjects with cerebrovascular disease, changes occurring in SPET counts were examined by using acetazolamide loading while continuously administering 99mTc-ECD at a constant rate. Consequently, serial SPET enabled the evaluation of changes in radioactivity concentration over time in both the phantom and preliminary clinical studies. Data analysis by differential processing utilizing moving average approximation processing enabled the detection of minor changes in radioactivity concentration. An increase of 15.1+/-5.4% was observed in SPET counts of the unaffected cerebral hemisphere with acetazolamide loading. The response of the affected hemisphere was less prominent. These findings suggest that serial SPET would be an effective technique for the pharmacokinetic analysis of radiopharmaceuticals.

  16. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  17. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  18. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  19. Advanced instrumentation for Positron Emission Tomography

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs.

  20. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  1. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  2. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  3. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  4. Role of positron emission tomography/computed tomography in dementia.

    PubMed

    Hinds, Sidney R; Stocker, Derek J; Bradley, Yong C

    2013-09-01

    This article provides a clinically based review of positron emission tomography (PET) imaging for dementia. Significant advances in nuclear medicine and molecular imaging techniques have improved the understanding of the genetic and molecular processes that define neurodegenerative dementia diseases. Metabolic imaging remains constant in its ability to document neuronal loss and lost function. Amyloid-β radiotracers are useful in documenting amyloid deposition, differentiating origins of dementia and possibly predicting disease progression. These radiotracers may be useful in diagnosis-specific treatment. PET radiotracers have increased sensitivity and specificity to complement clinical presentation and other adjunct testing in the evaluation of dementia.

  5. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    PubMed

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p < 0.001) and pulmonary artery pressure (24 +/- 6 mm Hg vs 14 +/- 12 mm Hg, p = 0.01) and an increase in heart rate (67 +/- 10 bpm vs 75 +/- 14 beats/min, p = 0.001). Among the 34 patients who had perfusion imaging, the left ventricular ejection fraction remained unchanged or increased in 17 patients (group 1) (48% +/- 19% vs 49% +/- 21%, p not significant) and decreased (> or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  7. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  8. Imaging Prostate Cancer with Positron Emission Tomography

    DTIC Science & Technology

    2014-07-01

    AD_________________ Award Number: W81XWH-13-1-0125 TITLE: Imaging Prostate Cancer with Positron Emission Tomography...ABOVE ADDRESS. 1. REPORT DATE 2014 2. REPORT TYPE Annual 3. DATES COVERED 01 Sept 2013-31 Aug 2014 4. TITLE AND SUBTITLE Imaging Prostate Cancer ...proposal is to develop peptide based radiopharmaceuticals and evaluate them as PET imaging agents in preclinical animal models of prostate cancer

  9. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  10. Coded-Aperture Transaxial Tomography Using Modular Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Roney, Timothy Joseph

    Imaging in nuclear medicine involves the injection of a radioactive tracer into the body and subsequent detection of the radiation emanating from an organ of interest. Single -photon emission computed tomography (SPECT) is the branch of nuclear medicine that yields three-dimensional maps of the distribution of a tracer, most commonly as a series of two-dimensional slices. One major drawback to transaxial tomographic imaging in SPECT today is the rotation required of a gamma camera to collect the tomographic data set. Transaxial SPECT usually involves a large, single-crystal scintillation camera and an aperture (collimator) that together only satisfy a small portion of the spatial sampling requirements simultaneously. It would be very desirable to have a stationary data-collection apparatus that allows all spatial sampling in the data set to occur simultaneously. Aperture or detector motion (or both) is merely an inconvenience in most imaging situations where the patient is stationary. However, aperture or detector motion (or both) enormously complicate the prospect of tomograhically recording dynamic events, such as the beating heart, with radioactive pharmaceuticals. By substituting a set of small modular detectors for the large single-crystal detector, we can arrange the usable detector area in such a way as to collect all spatial samples simultaneously. The modular detectors allow for the possibility of using other types of stationary apertures. We demonstrate the capabilities of one such aperture, the pinhole array. The pinhole array is one of many kinds of collimators known as coded apertures. Coded apertures differ from conventional apertures in nuclear medicine in that they allow for overlapping projections of the object on the detector. Although overlapping projections is not a requirement when using pinhole arrays, there are potential benefits in terms of collection efficiency. There are also potential drawbacks in terms of the position uncertainty of

  11. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  12. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  13. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  14. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  15. NDA via gamma-ray active and passive computed tomography

    SciTech Connect

    Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

    1996-10-01

    Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

  16. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  17. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  18. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  19. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography.

    PubMed

    Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V

    2009-01-01

    The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.

  20. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  1. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  2. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  3. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  4. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography

    SciTech Connect

    Craciunescu, Teddy Tiseanu, Ion; Zoita, Vasile; Murari, Andrea; Kiptily, Vasily; Sharapov, Sergei; Lupelli, Ivan; Fernandes, Ana; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB

    2016-01-15

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

  5. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography.

    PubMed

    Craciunescu, Teddy; Murari, Andrea; Kiptily, Vasily; Lupelli, Ivan; Fernandes, Ana; Sharapov, Sergei; Tiseanu, Ion; Zoita, Vasile

    2016-01-01

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

  6. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  7. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  8. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  9. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  10. Classification of JET Neutron and Gamma Emissivity Profiles

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Kiptily, V.; Vega, J.; Contributors, JET

    2016-05-01

    In thermonuclear plasmas, emission tomography uses integrated measurements along lines of sight (LOS) to determine the two-dimensional (2-D) spatial distribution of the volume emission intensity. Due to the availability of only a limited number views and to the coarse sampling of the LOS, the tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET. In specific experimental conditions the availability of LOSs is restricted to a single view. In this case an explicit reconstruction of the emissivity profile is no longer possible. However, machine learning classification methods can be used in order to derive the type of the distribution. In the present approach the classification is developed using the theory of belief functions which provide the support to fuse the results of independent clustering and supervised classification. The method allows to represent the uncertainty of the results provided by different independent techniques, to combine them and to manage possible conflicts.

  11. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical.

  12. X- and gamma-ray tomography for nondestructive material testing

    NASA Astrophysics Data System (ADS)

    Cesareo, Roberto; Brunetti, Antonio; Lopes, Ricardo T.; Galli, Gianfranco; Rao, Donepudi V.; Castellano, Alfredo; Gigante, Giovanni E.; Mascarenhas, Sergio; Robert, Rene; Filho, Vitoldo S.; Gilardoni, Marco; Da Silva, Hamilton P.; Colosso, Piero Q.

    1999-09-01

    Various apparatus for x and (gamma) -ray computed tomography (CT) have been constructed by us during the last 20 years, with the aim of producing simple and low-cost systems for nondestructive testing. The first one was constructed in 1980 and used an Am241 radioactive source emitting 59.6 keV (gamma) -rays and a single NaI(Tl)-x ray detector. Successively, the radioactive source was substituted during the years by x-ray tubes, and the single detector by multi- detection system such as arrays of detectors and image intensifiers. The last CT-scanner employs a 160 kV x-ray tube and a 6' X 6' image intensifier coupled through a lens to a cooled CCD-camera. At the same time, also (gamma) CT-scanners were constructed for large size and/or high-density samples. These are based on Ir192 or Cs137 radioactive sources coupled to a single NaI(Tl)(gamma) -ray detector. The characteristics and properties of the CT-scanners based on the use of x-ray tubes, emitting x-rays in the energy range 20 - 100 keV, and on (gamma) emitting radioisotopes (Ir192 and Cs137) have been studied and will be described in this paper. Various types of objects have been studied: test objects and common objects such as tree trunks, wood fragments, nuts, ceramic samples, insulators and, etc. Samples have been imaged, after using iodine compounds as tracers.

  13. A Correlated Optical and Gamma Emission from GRB 081126A

    SciTech Connect

    Gendre, B.; Klotz, A.; Atteia, J. L.; Boeer, M.; Coward, D. M.; Imerito, A. C.

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  14. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.

    PubMed

    Sharma, A C; Harrawood, B P; Bender, J E; Tourassi, G D; Kapadia, A J

    2007-10-21

    A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in

  15. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  16. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  17. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  18. X- and {gamma}-ray computed tomography applications at LLNL

    SciTech Connect

    Roberson, G.P.; Martz, H.E.; Schneberk, D.J.; Azevedo, S.G.

    1993-04-01

    Members of the Nondestructive Evaluation (NDE) Section at the Lawrence Livermore National Laboratory (LLNL) have implemented the advanced three-dimensional imaging technique of x and {gamma}-ray computed tomography (CAT or CT) for industrial and scientific nondestructive evaluation. This technique provides internal and external views of materials, components, and assemblies nonintrusively. Our research and development includes building CT scanners as well as data preprocessing, image reconstruction, display and analysis algorithms. These capabilities have been applied for a variety of industrial and scientific NDE applications where objects can range in size from 1 mm{sup 3} to 1 m{sup 3}. Here we discuss the usefulness of Cr to evaluate: Ballistic target materials, high-explosives shape charges, missile nosetips, and reactor-fuel tubes.

  19. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  20. Recent progress in single sided gamma-ray tomography

    SciTech Connect

    Thoe, R.S.

    1994-04-01

    The use of scattered radiation for radiography has many potential advantages over conventional projection techniques: For high energy photons the scattering process strongly dominates all other processes. The intensity of scattered radiation is due directly to the electron density and highly insensitive to chemical composition. Finally, the use of scattered radiation allows the investigator to position the radiation source-on-the same side of the object as the detector. In this paper I will present some recent results of a set of measurements made with our uncollimated Compton backscattering tomography apparatus. This technique uses the Compton energy shift of scattered gamma rays to determine the scattering site. By measuring the spectrum of these scattered gamma rays it is then possible to determine the electron density of the object being investigated. I will give a brief description of the apparatus and present the results of numerous measurements made on a brass phantom with voids placed at various depths. These results imply that for this crude apparatus occlusions as small as one cubic millimeter may be located to an accuracy of about one millimeter at depths of about 15 millimeters in solid brass.

  1. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed...

  2. An online emission spectral tomography system with digital signal processor.

    PubMed

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei

    2009-03-30

    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  3. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  4. Positron emission tomography-computed tomography coregistration for diagnosis and intraoperative localization in recurrent nelson syndrome.

    PubMed

    Hintz, Eric B; Tomlin, Jeffery M; Chengazi, Vaseem; Vates, G Edward

    2013-06-01

    Recurrent pituitary disease presents unique challenges, including in some cases difficulty localizing a tumor radiographically. Here, we present the case of a patient with recurrent Nelson syndrome whose radiographic work-up was complicated by a significant parasellar metallic artifact. Positron emission tomography ultimately localized the lesion, and coregistration with computed tomography allowed for accurate intraoperative navigation. Additionally, we review a range of imaging techniques available in the evaluation of pituitary disease.

  5. Gamma-ray emission from young neutron stars

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

    1991-01-01

    The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

  6. Positron emission tomography in the evaluation of subdural hematomas

    SciTech Connect

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-12-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was /sup 68/Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes.

  7. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  8. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  9. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  10. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  11. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  12. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  13. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  14. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs). DATES... guidance entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET)...

  15. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  16. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  17. Positron emission tomography and computed tomography assessments of the aging human brain

    SciTech Connect

    de Leon, M.J.; George, A.E.; Ferris, S.H.; Christman, D.R.; Fowler, J.S.; Gentes, C.I.; Brodie, J.; Reisberg, B.; Wolf, A.P.

    1984-02-01

    The relationship between alterations in brain structure and brain function was studied in vivo in both young and elderly human subjects. Computed tomography revealed significant age-related ventricular and cortical sulcal dilatation. The cortical changes were most closely related to age. Positron emission tomography failed to show regional changes in brain glucose metabolic rate. The results suggest that the normal aging brain undergoes structural atrophic changes without incurring regional metabolic changes. Examination of the correlations between the structural and the metabolic measures revealed no significant relationships. These data are discussed with respect to the significant structure-function relationships that have been reported in Alzheimer disease. 27 references, 3 figures, 2 tables.

  18. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  19. [Ventricular volumes determined by single-photon emission computed tomography].

    PubMed

    Katohno, E; Ono, K; Owada, K; Fujino, A; Watanabe, N; Sato, M; Konno, I; Yaoita, H; Tsuda, F; Kariyone, S

    1987-06-01

    To determine right (RV) and left ventricular (LV) volumes, a new technique was developed using ECG-gated single-photon emission computed tomography (SPECT). RV volumes of nine patients and LV volumes of 22 patients measured by SPECT and biplane contrast cineangiography were compared. In addition, volume and ejection fraction (EF) of the RV and LV were obtained by SPECT for 10 normal controls, 21 patients with old myocardial infarction (OMI), eight patients with hypertrophic cardiomyopathy (HCM) and 12 patients with dilated cardiomyopathy (DCM), and these results were compared. The intracardiac blood pool was labeled with Tc-99m sodium pertechnetate and 32 images were recorded through 180 degrees by a rotating gamma-camera. End-diastolic and end-systolic counts during 50 msec were recorded during 50 or 60 cardiac cycles. These counting data were reconstructed as tomographic images of vertical long-axial slices with thickness of a pixel without any attenuation correction. The numbers of voxels within the % cut-off level were summed, and the sum was multiplied by the one voxel volume. The cut-off level for ventricular delineation was determined as 45% by phantom studies. 1. The values obtained from SPECT and contrast angiography correlated well. 2. In normal controls, LV end-diastolic and end-systolic volumes were significantly less than those of the RV (p less than 0.05, p less than 0.001) and LVEF was significantly greater than the RVEF (p less than 0.001). 3. In OMI (single vessel disease), both end-diastolic and end-systolic volumes of the LV were significantly greater than those of normals (p less than 0.01, p less than 0.001) and LVEF was significantly less. In HCM end-systolic volumes of the RV were significantly less (p less than 0.05) than those of the normals. 4. LV volume was greater and LVEF was extremely low both in DCM and in OMI (multivessel disease) compared to that of the normals. In DCM, RV end-systolic volumes was greater and RVEF was lower than

  20. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  1. Reconstruction of Emission Tomography Data Using Origin Ensembles

    PubMed Central

    Sitek, Arkadiusz

    2011-01-01

    A new statistical reconstruction method based on origin ensembles (OE) for emission tomography (ET) is examined. Using a probability density function (pdf) derived from first principles, an ensemble expectation of numbers of detected event origins per voxel is determined. These numbers divided by sensitivities of voxels and acquisition time provide OE estimates of the voxel activities. The OE expectations are shown to be the same as expectations calculated using the complete–data space. The properties of the OE estimate are examined. It is shown that OE estimate approximates maximum likelihood (ML) estimate for conditions usually achieved in practical applications in emission tomography. Three numerical experiments with increasing complexity are used to validate theoretical findings and demonstrate similarities of ML and OE estimates. Recommendations for achieving improved accuracy and speed of OE reconstructions are provided. PMID:21147594

  2. Technology related parameters affecting quantification in positron emission tomography imaging.

    PubMed

    Visvikis, D; Turzo, A; Bizais, Y; Cheze-Le Rest, C

    2004-07-01

    Some of the issues associated with positron emission tomography (PET) technology which still pose challenges for the recovery of quantitative images are discussed. Through these issues reference to what is today considered as the 'gold standard' in quantitative PET imaging is also presented. A brief comparison of 2-D and 3-D PET is given, together with a short discussion of combined PET/CT imaging devices.

  3. Current and future technological trends in positron emission tomography.

    PubMed

    Karp, J S; Freifelder, R

    1992-04-01

    Current trends in positron emission tomography (PET) instrumentation are examined, with an emphasis on providing information suitable to the prospective PET user. Basic principles underlying PET are explained and information on performance measurements, techniques, and quantitation are given in order to allow the user to compare and contrast different types of PET scanners. These scanner designs are described. Specific examples are given and the combination of PET with other modalities is discussed.

  4. Magnetic resonance imaging and positron emission tomography of band heterotopia.

    PubMed

    Miura, K; Watanabe, K; Maeda, N; Matsumoto, A; Kumagai, T; Ito, K; Kato, T

    1993-01-01

    A case of band heterotopia was reported with findings of positron emission tomography (PET). The patient was an 8-year-old girl who had mild mental retardation and intractable partial epilepsy. Her MRI showed another diffuse layer of gray matter underlying the normal-looking cortex and separated from it by an apparently normal layer of white matter. PET scan with [18F]fluorodeoxyglucose revealed that band heterotopia had the same degree of glucose metabolism as that of the overlying cortex.

  5. Revisiting stopping rules for iterative methods used in emission tomography.

    PubMed

    Guo, Hongbin; Renaut, Rosemary A

    2011-07-01

    The expectation maximization algorithm is commonly used to reconstruct images obtained from positron emission tomography sinograms. For images with acceptable signal to noise ratios, iterations are terminated prior to convergence. A new quantitative and reproducible stopping rule is designed and validated on simulations using a Monte-Carlo generated transition matrix with a Poisson noise distribution on the sinogram data. Iterations are terminated at the solution which yields the most probable estimate of the emission densities while matching the sinogram data. It is more computationally efficient and more accurate than the standard stopping rule based on the Pearson's χ(2) test.

  6. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  7. Gamma-Ray Bursts: Afterglow and Prompt Emission Models

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2008-10-01

    Swift observations have revealed interesting but puzzling data that demand a rethink of the origins of gamma-ray bursts (GRBs) and their afterglows. The chromatic breaks in X-ray/optical afterglow lightcurves stimulated several innovative suggestions, most invoking a non-forward-shock origin of the X-ray afterglows. The status of both the observational facts and the theoretical models is critically reviewed. Besides the late ``internal'' emission from a long-live central engine, most observed X-ray afterglows likely still include the contribution of the traditional forward shock component. The physical nature (e.g. energy dissipation mechanism, emission site, and radiation mechanism) of the GRB prompt emission is currently not identified. The motivations and issues of three proposed prompt emission sites are reviewed. Several independent methods, invoking prompt gamma-ray, X-ray, optical and GeV emission information, respectively, have been applied to constrain the unknown emission site. Tentative evidence suggests a large prompt emission radius. Finally, the implications of the broad band high quality data of the ``naked eye'' GRB 080319B for our understanding of the afterglow and prompt emission mechanisms are discussed.

  8. Dementias appear to have individual profiles in single photon emission computed tomography

    SciTech Connect

    Not Available

    1989-02-17

    A number of researchers are seeking clinical applications for single photon emission computed tomographic (SPECT) images of demented patients. They have found that dementias have somewhat individual SPECT profiles. The challenge now, they say, is to determine if the SPECT information is meaningful to the clinician and to develop more specific radiotracers, such as tracers for individual neuroreceptors. The initial work was done with positron emission tomography (PET), a sometimes more sensitive, but much more expensive technique. Recently, a number of centers began trying to duplicate the PET findings using SPECT. Developing SPECT could actually make dementia scanning fairly available, they say. Radiologists estimate that three fourths of the nation's nuclear medicine departments have SPECT scanning machines-either rotating or multiaperature gamma cameras.

  9. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  10. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-03-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  11. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  12. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  13. High Speed Gamma-Ray Tomography for Hydrocarbon Flow Applications

    NASA Astrophysics Data System (ADS)

    Hjertaker, Bjørn Tore; Johansen, Geir Anton

    2008-09-01

    A high speed gamma-ray tomograph consisting of five 500 mCi 241Am gamma-ray sources corresponding to 85 CdZnTe detectors has been designed and prototyped for monitoring of multiphase hydrocarbon flow, which includes acquisition of the individual flow components, i.e. the flow rates of oil, water and gas, emerging from a producing well. In order to accomplish multiphase monitoring, information on the physical distribution, i.e. the flow regime, of the individual flow components are required. Tomographic instrumentation has proven suitable for this purpose. The gamma-ray tomograph has demonstrated feasibility in a dual modality setup for flow regime identification during multiphase flow measurements along with a HFMF (High Frequency Magnetic Field) bulk sensor, which has sensitivity to the water component over the full WLR (Water Liquid Ratio) range. The tomograph is also used as a process verification tool during flow instrumentation development. A demonstration of this is the utilization of the gamma-ray tomograph during the development stage of the novel subsea online multiphase fluid sampling and analysis (SOFA) system.

  14. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  15. History and future technical innovation in positron emission tomography.

    PubMed

    Jones, Terry; Townsend, David

    2017-01-01

    Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.

  16. Single photon emission computed tomography in seizure disorders.

    PubMed Central

    Denays, R; Rubinstein, M; Ham, H; Piepsz, A; Noël, P

    1988-01-01

    Fourteen children with various seizure disorders were studied using a cerebral blood flow tracer, 123I iodoamphetamine (0.05 mCi/kg), and single photon emission computed tomography (SPECT). In the five patients with radiological lesions, SPECT showed congruent or more extensive abnormalities. Five of the nine children with a normal scan on computed tomography had abnormal SPECT studies consisting of focal hypoperfusion, diffuse hemispheric hypoperfusion, multifocal and bilateral hypoperfusion, or focal hyperperfusion. A focal lesion seen on SPECT has been found in children with tonic-clonic seizures suggesting secondarily generalised seizures. Moreover the pattern seen on SPECT seemed to be related to the clinical status. An extensive impairment found on SPECT was associated with a poor evolution in terms of intellectual performance and seizure frequency. Conversely all children with a normal result on SPECT had less than two seizures per year and normal neurological and intellectual development. Images Figure PMID:3264135

  17. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  18. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  19. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  20. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  1. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  2. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  3. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  4. Positron emission tomography: the conceptual idea using a multidisciplinary approach.

    PubMed

    Paans, Anne M J; van Waarde, Aren; Elsinga, Philip H; Willemsen, Antoon T M; Vaalburg, Willem

    2002-07-01

    Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.

  5. Positron emission tomography for use in microdosing studies.

    PubMed

    Wagner, Claudia Christina; Müller, Markus; Lappin, Graham; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET) imaging using microdoses of radiolabeled drug tracers is gaining increasing acceptance in modern clinical drug development. This approach is unique in that it allows for direct quantitative assessment of drug concentrations in the tissues targeted for treatment, thereby bridging the gap between pharmacokinetics and pharmacodynamics. Current applications of PET in anticancer, anti-infective and central nervous system drug research are reviewed herein. Situated at the interface of preclinical and clinical drug testing, PET microdosing is a powerful and highly innovative tool for pharmaceutical development.

  6. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  7. [Positron emission tomography: diagnostic imaging on a molecular level].

    PubMed

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  8. Positron Emission Tomography (PET) for benign and malignant disease

    PubMed Central

    Visioni, Anthony; Kim, Julian

    2011-01-01

    Synopsis Functional imaging using radiolabeled probes which specifically bind and accumulate in target tissues has improved the sensitivity and specificity of conventional imaging. Positron Emission Tomography using modified glucose probes (FDG-PET) has demonstrated improved diagnostic accuracy in differentiating benign from malignant lesions in the setting of solitary pulmonary nodules. In addition, FDG-PET has become a useful modality in pre-operative staging of patients with lung cancer and is being tested with many other malignancies for its ability to change patient management. This article provides an overview of the current status of FDG-PET and presents the challenges of moving towards routine use. PMID:21184913

  9. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  10. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  11. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in a Patient with HIV (-) Kaposi Sarcoma

    PubMed Central

    Cengiz, Arzu; Şavk, Ekin; Tataroğlu, Canten; Yürekli, Yakup

    2016-01-01

    Kaposi sarcoma (KS) is a vascular neoplasm that often manifests with multiple vascular nodules on the skin and other organs. Various imaging modalities can be used to display disease extent. Herein we present a 65-year-old female patient with human immunodeficiency virus negative KS along with her whole-body positron emission tomography/computed tomography imaging findings. PMID:27751977

  12. Rare case of an ovarian vein tumor thrombosis identified on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Fludeoxyglucose positron emission tomography/computed tomography is valuable in the identification of tumor thrombus and differentiating it from bland thrombus which has implications in initiating anticoagulation. We present a rare case of tumor thrombosis in ovarian vein, in a recurrent case of uterine carcinosarcoma. PMID:27833321

  13. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    PubMed Central

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  14. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    SciTech Connect

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  15. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  16. Ictal onset zone and seizure propagation delineated on ictal F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tripathi, Madhavi; Tripathi, Manjari; Garg, Ajay; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the utility of ictal F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in delineating the seizure onset zone in a child with complex partial seizures. Although F-18 FDG PET has been successfully used to delineate interictal hypometabolism, planned ictal FDG PET, in cases with prolonged seizure activity, can provide better spatial resolution than single-photon emission CT by delineating the seizure onset zone and propagation pathway.

  17. Gamma-ray tomography in forest and tree sciences

    NASA Astrophysics Data System (ADS)

    Habermehl, Adolf; Ridder, Hans-Werner

    1997-10-01

    In forestry and tree sciences computerized tomography allows the quantitative determination of the locally varying absorption coefficients for penetrating radiation within a thin slice of the trunk. The tomogram shows not only hollows, rot, knots and other defects but also the distribution of water in the invisible interior of the stem. Portable systems have been developed and built for computerized tomography of standing trees in forests and parks. They use the radio nuclide Cesium-137 as source of radiation. The MCT-3 is based on the translation-rotation- method. A bearing ring carries the shielded source of 13 GBq of Cs-137 and three scintillation detectors. The MCT-F is based on the fan-beam method and has 30 detectors. It has an inner diameter of 100 cm and a stronger source of 185 GBq. Equipment was used in forestry sciences and in tree-care to obtain information about decay, checks, heartwood formation and moisture content, for the detection of interior decay by fungi and its spread in a horizontal and vertical direction, for determining sapwood area dependent on fertilization, for evaluating development and treatment of tree wounds and for studying the influence of resin tapping on the water supply of pines.

  18. Computer Assisted Gamma and X-Ray Tomography: Applications to Multiphase Flow Systems.

    SciTech Connect

    Kumar, Sailesh B.; Dudukovic, Milorad P.; Toseland, Bernard A.

    1997-03-01

    The application of X-ray and gamma ray transmission tomography to the study of process engineering systems is reviewed. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  19. Positron emission tomography: physics, instrumentation, and image analysis.

    PubMed

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center.

  20. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    SciTech Connect

    Herraiz, J. L.; Sitek, A.

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  1. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    PubMed Central

    Herraiz, J. L.; Sitek, A.

    2015-01-01

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data. PMID:26520759

  2. Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging

    NASA Astrophysics Data System (ADS)

    Kapadia, A. J.

    Neutron stimulated emission computed tomography (NSECT) is being developed as a new medical-imaging technique to quantify spatial distributions of elements in a sample through inelastic scattering of fast neutrons and detection of the resulting gamma rays. It has the potential to diagnose several disorders in the human body that are characterized by changes in element concentration in the diseased tissue. NSECT is sensitive to several naturally occurring elements in the human body that demonstrate concentration changes in the presence of diseases. NSECT, therefore, has the potential to noninvasively diagnose such disorders with radiation dose that is comparable to other ionizing imaging modalities. This chapter discusses the development and progress of NSECT and presents an overview of the current status of the imaging technique.

  3. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  4. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    SciTech Connect

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-10-04

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ``mock`` waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements.

  5. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  6. Mycosis fungoides staged by 18F-flurodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Xu, Lu; Pang, Hua; Zhu, Jin; Chen, Xi; Guan, Lili; Wang, Jie; Chen, Jing; Liu, Ying

    2016-01-01

    Abstract Introduction: Mycosis fungoides is a kind of malignant lymphoma arising from T cells, but primarily occurs in skin, and it is the most common type of cutaneous lymphoma. Mycosis fungoides (MF) is a rare non-Hodgkin lymphoma but the most common type of primary cutaneous T-cell lymphomas. Because of unknown etiology and mechanism, and lack of typical clinical and histophysiological manifestations, the final diagnosis of MF is currently dependent on pathology and immunohistochemistry. Subsequently, tumor staging is very important. Different approaches would be taken according to varying degrees of cutaneous and extracutaneous lesions. Computed tomography (CT) scan has been chosen to stage tumors customarily. However, CT could only provide morphological information and analyze lymphadenopathy by the size criteria. 18F-flurodeoxyglucose positron emission tomography/computed tomography (PET/CT) could provide morphological information and metabolic conditions simultaneously, which is helpful to locate and stage lesion. Conclusion: 18F-flurodeoxyglucose PET/CT could identify cutaneous and extracutaneous lesions in patients with MF. It could provide the range of lesions and biopsy target. PMID:27828842

  7. Shifted helical computed tomography to optimize cardiac positron emission tomography-computed tomography coregistration: quantitative improvement and limitations.

    PubMed

    Johnson, Nils P; Pan, Tinsu; Gould, K Lance

    2010-10-01

    Positron emission tomography-computed tomography (PET-CT) uses CT attenuation correction but suffers from misregistration artifacts. However, the quantitative accuracy of helical versus cine CT in the same patient after optimized coregistration by shifting both CT data as needed for each patient is unknown. We studied 293 patients undergoing cardiac perfusion PET-CT using helical CT attenuation correction for comparison to cine CT. Objective, quantitative criteria identified perfusion abnormalities that were associated visually with PET-CT misregistration. Custom software shifted CT data to optimize coregistration with quantitative artifact improvement. The majority (58.1%) of cases with both helical and shifted helical CT data (n  = 93) had artifacts that improved or resolved by software shifting helical CT data. Translation of shifted helical CT was greatest in the x-direction (8.8 ± 3.3 mm) and less in the y- and z-directions (approximately 3.5 mm). The magnitude of differences in quantitative end points was greatest for helical (p  =  .0001, n  =  177 studies), less for shifted helical but significant (p  =  .0001, n  =  93 studies), and least for cine (not significant, n  =  161 studies) CT compared to optimal attenuation correction for each patient. Frequent artifacts owing to attenuation-emission misregistration are substantially corrected by software shifting helical CT scans to achieve proper coregistration that, however, remains on average significantly inferior to cine CT attenuation quantitatively.

  8. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  9. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  10. Dark matter properties implied by gamma ray interstellar emission models

    NASA Astrophysics Data System (ADS)

    Balázs, Csaba; Li, Tong

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  11. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  12. Flare gamma ray continuum emission from neutral pion decay

    NASA Technical Reports Server (NTRS)

    Alexander, David; Mackinnon, Alec L.

    1992-01-01

    We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.

  13. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  14. Application of gamma-ray active and passive computed tomography to nondestructively assay TRU waste

    SciTech Connect

    Martz, H.E.; Decman, D.J.; Roberson, G.P.; Johansson, E.M.; Keto, E.R.

    1996-05-01

    The authors have developed an active and passive computed tomography scanner for assaying radioactive waste drums. They describe the hardware and software components of the system used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using mock waste drums and calibrated radioactive sources. They describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content.

  15. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  16. Single-photon emission computed tomography/computed tomography in brain tumors.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  17. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    PubMed Central

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  18. Dual-mode capacitance and gamma-ray tomography using the Landweber reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Hjertaker, B. T.; Maad, R.; Johansen, G. A.

    2011-10-01

    A dual-mode tomography system based on electrical capacitance and gamma-ray tomography has been developed at the Department of Physics and Technology, University of Bergen. The objective of the dual-mode tomograph is to acquire cross-sectional images, i.e. tomograms, of hydrocarbon flow comprising oil, water and gas constituents. The capacitance tomograph utilizes an eight-electrode sensor set-up mounted around a PVC pipe structure which is sensitive to the electrical permittivity ɛr of the fluid. By using the capacitance tomograph, the produced water constituent can be separated from the gas and crude oil constituents, assuming that the liquid phase is oil continuous. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors mounted around the same pipe section as the capacitance sensor. The gamma-ray tomograph discriminates between the gas and the liquid phase, since these have different photon attenuation properties. As a result, the gamma-ray tomograph is able to distinguish the gas phase from the liquid phase of the hydrocarbon flow. Consequently, the dual-mode capacitance and gamma-ray tomography set-up is able to distinguish the oil, water and gas constituents of hydrocarbon flow. This paper presents the work that has been performed related to static characterization of the dual-mode tomograph using the Landweber reconstruction algorithm on polypropylene phantoms. The objective of the work has been to quantitatively evaluate the static imaging performance of the dual-mode tomograph with respect to relative spatial measurement errors, i.e. root mean square errors of the reconstructed tomograms compared to that of the phantom. The work shows that dual-mode tomography using electrical capacitance and gamma-ray sensors is feasible on hydrocarbon flow components using a pixel-to-pixel fusion procedure on separately

  19. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes, and Dwyer et al. [GRL, 40, 4067, 2013] recently quantified optical emissions associated with TGFs based on assumption that these emissions are similar to those produced by extensive air showers. In the present study, we quantify optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and acceleration of thermal runaway electrons produced by high-potential intra-cloud lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. Using Monte Carlo simulations, we show that electron energy distributions established from these two production mechanisms are inherently different over the full energy range, and also substantially different from those produced in extensive air showers. Moreover, we show that TGFs are

  20. Intrinsic Efficiency Calibration Considering Geometric Factors in Gamma-ray Computed Tomography for Radioactive Waste Assay

    SciTech Connect

    Liu, Zhe; Zhang, Li

    2015-07-01

    In radioactive waste assay with gamma-ray computed tomography, calibration for intrinsic efficiency of the system is important to the reconstruction of radioactivity distribution. Due to the geometric characteristics of the system, the non-uniformity of intrinsic efficiency for gamma-rays with different incident positions and directions are often un-negligible. Intrinsic efficiency curves versus geometric parameters of incident gamma-ray are obtained by Monte-Carlo simulation, and two intrinsic efficiency models are suggested to characterize the intrinsic efficiency determined by relative source-detector position and system geometry in the system matrix. Monte-Carlo simulation is performed to compare the different intrinsic efficiency models. Better reconstruction results of radioactivity distribution are achieved by both suggested models than by the uniform intrinsic efficiency model. And compared to model based on detector position, model based on point response increases reconstruction accuracy as well as complexity and time of calculation. (authors)

  1. Evaluation of the measurement geometries and data processing algorithms for industrial gamma tomography technology.

    PubMed

    Lee, N Y; Jung, S H; Kim, J B

    2009-01-01

    In this paper, we evaluated the measurement geometries and data processing algorithms for industrial gamma tomography technology. Several phantoms simulating industrial objects were tested in various conditions with the gamma-ray CT system developed in KAERI (Korea Atomic Energy Research Institute). Radiation was measured with lead shielded 24 1x1in Nal detectors. Regarding the parallel beam geometry, the EM algorithm showed the best resolution among the algebraic reconstruction technique (ART), simultaneous iterative reconstructive technique (SIRT) and expectation maximization (EM). However, the fan beam scanning was more time efficient than the parallel projection for the similar quality of reconstructed image. Future developments of the industrial gamma ray CT will be focused on a large-scale application which is more practical for a diagnosis in the petrochemical industry.

  2. Photon shielding for a positron emission tomography suite.

    PubMed

    Courtney, J C; Mendez, P; Hidalgo-Salvatierra, O; Bujenovic, S

    2001-08-01

    This paper provides information on the effects of distance and attenuation in lead sheet and gypsum board of the 0.511 MeV photon produced by positron annihilation. Exposure rates are projected external to an adult injected with 185 MBq (5 mCi) of 18F in a fluorodeoxyglucose solution and for the same activity in a small unshielded container. These data have been applied to estimate the shielding requirements for the Positron Emission Tomography (PET) suite operated by the Nuclear Medicine Department of Our Lady of the Lake Regional Medical Center. To assure that exposures are as low as reasonably achievable, lead was added to the walls of the room where the 18F is stored, handled, and injected into the patients. The PET scanner is installed in a room that formerly contained a Computerized Axial Tomography scanner; the existing 1.6 mm of lead sheet was left in place even though it is not required for personnel protection. During the initial phase of operation, a shield test program was conducted to estimate annual exposures to personnel inside and outside the suite. Projection of measured rates over a year of operation demonstrate that whole body doses are well below regulatory limits.

  3. Role of positron emission tomography in urological oncology.

    PubMed

    Rioja, Jorge; Rodríguez-Fraile, Macarena; Lima-Favaretto, Ricardo; Rincón-Mayans, Anibal; Peñuelas-Sánchez, Iván; Zudaire-Bergera, Juan Javier; Parra, Raul O

    2010-12-01

    • Positron emission tomography (PET) is a diagnostic tool using radiotracers to show changes in metabolic activities in tissues. We analysed the role of PET and PET/computed tomography (CT) in the diagnosis, staging, and follow-up of urological tumours. • A critical, non-structured review of the literature of the role of PET and PET/CT in urological oncology was conducted. • PET and PET/CT can play a role in the management of urological malignancies. For prostate cancer, the advances in radiotracers seems promising, with novel radiotracers yielding better diagnostic and staging results than 18F-fluorodeoxyglucose (18F-FDG). In kidney cancer, PET and PET/CT allow a proper diagnosis before the pathological examination of the surgical specimen. For testis cancer, PET and PET/CT have been shown to be useful in the management of seminoma tumours. In bladder cancer, these scans allow a better initial diagnosis for invasive cancer, while detecting occult metastases. • PET and its combined modality PET/CT have shown their potential in the diagnosis of urological malignancies. However, further studies are needed to establish the role of PET in the management of these diseases. Future applications of PET may involve fusion techniques such as magnetic resonance imaging with PET.

  4. Positron emission tomography in patients with clinically diagnosed Alzheimer's disease.

    PubMed Central

    McGeer, P L; Kamo, H; Harrop, R; Li, D K; Tuokko, H; McGeer, E G; Adam, M J; Ammann, W; Beattie, B L; Calne, D B

    1986-01-01

    Fourteen patients who had clinically diagnosed Alzheimer's disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer's disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer's disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 Fig. 8 Fig. 9 PMID:3512063

  5. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  6. Microdosing studies in humans: the role of positron emission tomography.

    PubMed

    Bauer, Martin; Wagner, Claudia Christina; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET)-microdosing comprises the administration of a carbon-11- or fluorine-18-labelled drug candidate to human subjects in order to describe the drug's concentration-time profile in body tissues targeted for treatment. As PET microdosing involves the administration of only microgram amounts of unlabelled drug, the potential toxicological risk to human subjects is very limited. Consequently, regulatory authorities require reduced preclinical safety testing as compared with conventional phase 1 studies. Microdose studies are gaining increasing importance in clinical drug research as they have the potential to shorten time-lines and cut costs along the critical path of drug development. Current applications of PET in anticancer, anti-infective and CNS system drug research are reviewed.

  7. The investigation of Alzheimer's disease with single photon emission tomography.

    PubMed Central

    Burns, A; Philpot, M P; Costa, D C; Ell, P J; Levy, R

    1989-01-01

    Twenty patients satisfying standard clinical criteria for Alzheimer's disease (AD) and six age-matched normal controls were studied using 99mTc hexamethyl-propyleneamine oxime and single photon emission tomography. The AD patients had lower regional cerebral blood flow (rCBF) in the temporal and posterior parietal lobes compared to controls. AD patients with apraxia and aphasia had lower rCBF in the lateral temporal and posterior parietal lobes than AD patients without these features. Within the AD group, correlations were found between neuropsychological tests and rCBF: praxis correlated with posterior parietal activity, memory with left temporal lobe activity and language with activity throughout the left hemisphere. Images PMID:2467967

  8. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  9. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  10. Respiratory motion correction in emission tomography image reconstruction.

    PubMed

    Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques

    2005-01-01

    In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  11. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  12. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  13. Positron emission tomography in CNS drug discovery and drug monitoring.

    PubMed

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  14. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  15. Translational neuroimaging: positron emission tomography studies of monoamine oxidase.

    PubMed

    Fowler, Joanna S; Logan, Jean; Volkow, Nora D; Wang, Gene-Jack

    2005-01-01

    Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and L -deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs.

  16. Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future.

    PubMed

    Ariza, Manuela; Kolb, Hartmuth C; Moechars, Dieder; Rombouts, Frederik; Andrés, José Ignacio

    2015-06-11

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation of the density and neocortical spread of neurofibrillary tangles (NFTs) with clinical AD disease progression offers an opportunity for the early diagnosis and staging using a noninvasive imaging technique such as positron emission tomography (PET). Thus, PET imaging of NFTs not only holds promise as a diagnostic tool but also may enable the development of disease modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to the identification of high affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.

  17. Differential diagnosis of depression: relevance of positron emission tomography

    SciTech Connect

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-09-11

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders.

  18. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  19. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    SciTech Connect

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. )

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  20. Optical emissions associated with terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.

    2015-02-01

    Terrestrial gamma ray flashes (TGFs) are high-energy photon bursts produced by high-energy electrons originating in the Earth's atmosphere through bremsstrahlung processes. In this paper, we present modeling studies on optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) and acceleration of thermal runaway electrons produced by high-potential intracloud lightning leaders. Numerical models developed in this study are first validated through the calculation of fluorescence emissions from air excited by energetic electrons and comparison with available laboratory observations. Detailed discussion of the role of excitation and ionization collisions on the formation of the electron energy distribution is presented. Moreover, using Monte Carlo simulations, we show that electron energy distributions established from the two TGF production mechanisms considered here are inherently different over the full energy range. The strong energy dependence of the capability of electrons to generate excited states responsible for optical emissions from neutral and ionized nitrogen molecules leads to intrinsic differences in optical emissions produced by different mechanisms of TGF production. We also show that TGFs are most likely accompanied by detectable levels of optical emissions and that the distinct optical features are of significant interest for constraining and validating current TGF production models.

  1. Principles and clinical applications of positron emission tomography.

    PubMed

    Gardner, S F; Green, J A; Bednarczyk, E M; Farnett, L; Miraldi, F

    1992-06-01

    The basics of positron emission tomography (PET) are presented, including the physics, instrumentation, and radiopharmaceuticals involved; the clinical and research applications; and the cost. In PET, organic molecules labeled with positron-emitting radionuclides are injected or inhaled, and the high-energy photons produced by annihilation events are detected by paired, integrated crystal detectors. A computer uses the lines of origin of these photons to reconstruct a three-dimensional map of a functioning organ system. The positron-emitting radionuclides most often used are carbon 11, oxygen 15, nitrogen 13, fluorine 18, and rubidium 82. PET imaging centers usually consist of a cyclotron facility, a radiochemistry facility, a PET scanner, and computers for image reconstruction. Radiopharmaceuticals used in PET may be divided into blood flow-imaging agents, metabolic imaging agents, and drug receptor-imaging agents. Although PET is still primarily a research tool, it has shown diagnostic potential in neurology, cardiology, and oncology. It has also shown promise as a tool for pharmacologic assessment, as in studies of the effects of the fluorinated quinolones on cerebral blood flow and glucose metabolism. PET may become important in drug development because it yields specific information relatively noninvasively. A single study carries an average break-even price tag of $1500-$2000; rigorous cost-benefit analyses should be conducted before society is asked to subsidize such costs. Positron emission tomography is a frontier technology for which valuable clinical applications are being discovered. Pharmacists can contribute enormously to PET applications and at the same time establish a unique subspecialty for the profession.

  2. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  3. Positron emission tomography as a diagnostic tool in oncology.

    PubMed

    Schiepers, C; Hoh, C K

    1998-01-01

    Early diagnosis in oncology is important for treatment by surgical intervention, which generally has the highest curative potential. For higher stages of disease involvement, initiation of rapid treatment is indicated to provide the patient with the optimal therapy regimen. Although this may not improve the prognosis, it will maintain the quality of life. Anatomic imaging modalities, such as CT, MR imaging, and US, are clinically important high-resolution imaging techniques that are well suited to reveal structural abnormalities. However, the differentiation of lesions as being benign or malignant is still problematic. Metabolic imaging modalities in nuclear medicine (NM), i.e., single photon emission computed tomography (SPECT) and positron emission tomography (PET), can reveal biochemical parameters of the lesions such as glucose, oxygen, or amino acid metabolism, or measure the receptor density status. These parameters may allow a completely new clinical perspective in the management and understanding of diseases such as cancer. Although PET has been around since the early 1960s, it has only recently emerged as a powerful diagnostic tool in oncology. Society has great difficulty accepting this clinical imaging modality because of its high cost and complexity. Current applications of PET in oncology have been in characterizing lesions, differentiating recurrent disease from treatment effects, staging tumors, evaluating the extent of disease, and therapy monitoring. Here, the role of PET in diagnosis, staging, and restaging of cancer is reviewed and compared with the other tumor imaging modalities. We cover articles published in the past 3 years. We utilize the typical radiology format, in which the contribution in each body area is reviewed (topographic orientation), instead of the more organ-based approach used in internal medicine.

  4. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  5. VERY HIGH ENERGY gamma-RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS

    SciTech Connect

    Xue, R. R.; Fan, Y. Z.; Wei, D. M.; Tam, P. H.; Wagner, S. J.; Behera, B. E-mail: phtam@lsw.uni-heidelberg.d

    2009-09-20

    The synchrotron self-Compton (SSC) emission from gamma-ray burst (GRB) forward shock can extend to the very high energy (VHE; E{sub {gamma}} > 100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For five bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of {approx}<10 hr.

  6. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  7. Clinical applications of positron emission tomography/computed tomography treatment planning.

    PubMed

    Macapinlac, Homer A

    2008-03-01

    Positron emission tomography/computed tomography (PET/CT) has provided an incremental dimension to the management of cancer patients by allowing the incorporation of important molecular images in radiotherapy treatment planning, ie, direct evaluation of tumor metabolism, cell proliferation, apoptosis, hypoxia, and angiogenesis. The CT component allows 4D imaging techniques, allowing improvements in the accuracy of treatment delivery by compensating for tumor/normal organ motion, improving PET quantification, and correcting PET and CT image misregistration. The combination of PET and CT in a single imaging system to obtain a fused anatomical and functional image data is now emerging as a promising tool in radiotherapy departments for improved delineation of tumor volumes and optimization of treatment plans. PET has the potential to improve radiotherapy planning by minimizing unnecessary irradiation of normal tissues and by reducing the risk of geographic miss. PET influences treatment planning in a high proportion of cases and therefore radiotherapy dose escalation without PET may be futile. This article examines the increasing role of hybrid PET/CT imaging techniques in process of improving treatment planning in oncology with emphasis on non small cell lung cancer.

  8. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    PubMed

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  9. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  10. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  11. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. PMID:26097425

  12. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  13. Magnetosensory function in rats: localization using positron emission tomography.

    PubMed

    Frilot, Clifton; Carrubba, Simona; Marino, Andrew A

    2009-05-01

    The aim of this study was to show that low-strength electromagnetic fields (EMFs) produced evoked potentials in rats and to localize the activated region in the brain. In response to a 2.5-G, 60-Hz stimulus, onset- and offset-evoked potentials were detected (P < 0.05 in each of the 10 animals studied); the evoked potentials had the same magnitude, latency, and nonlinear relationship to the field seen in previous studies on rabbits and human subjects. The neuroanatomical region of activation associated with the electrophysiological effect was identified by positron emission tomography using fluorodeoxyglucose. Paired emission scans (the same animal with and without field treatment) from 10 additional rats were differenced and averaged to produce a t-statistic image using the pooled variance; the t value of each voxel was compared with a calculated critical t value to identify the activated voxels (P < 0.05). A brain volume of 13 mm(3) (15 voxels) located in the posterior, central cerebellum was found to have been activated by exposure to the field. Taken together, the results indicated that magnetosensory evoked potentials in the rats were associated with increased glucose utilization in the cerebellum, thereby supporting earlier evidence that EMF transduction occurred in the brain.

  14. Attenuation correction in emission tomography using the emission data—A review

    SciTech Connect

    Berker, Yannick Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  15. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  16. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  17. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  18. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left

  19. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  20. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography.

    PubMed

    Palmqvist, Sebastian; Mattsson, Niklas; Hansson, Oskar

    2016-04-01

    Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer's disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer's disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) study. All underwent (18)F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1-4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer's disease dementia. The results were replicated after adjustments of different factors and when using different cut-offs for amyloid-β abnormality

  1. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies

    SciTech Connect

    Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Haerting, H.-U.; Schubert, M.; Hampel, U.

    2013-03-15

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated {sup 137}Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0 Degree-Sign (horizontal) to 90 Degree-Sign (vertical).

  2. 18F-fluorodeoxyglucose positron-emission tomography-computed tomography to diagnose recurrent cancer

    PubMed Central

    You, J J; Cline, K J; Gu, C-S; Pritchard, K I; Dayes, I S; Gulenchyn, K Y; Inculet, R I; Dhesy-Thind, S K; Freeman, M A; Chan, A M; Julian, J A; Levine, M N

    2015-01-01

    Background: Sometimes the diagnosis of recurrent cancer in patients with a previous malignancy can be challenging. This prospective cohort study assessed the clinical utility of 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (18F-FDG PET-CT) in the diagnosis of clinically suspected recurrence of cancer. Methods: Patients were eligible if cancer recurrence (non-small-cell lung (NSCL), breast, head and neck, ovarian, oesophageal, Hodgkin's or non-Hodgkin's lymphoma) was suspected clinically, and if conventional imaging was non-diagnostic. Clinicians were asked to indicate their management plan before and after 18F-FDG PET-CT scanning. The primary outcome was change in planned management after 18F-FDG PET-CT. Results: Between April 2009 and June 2011, 101 patients (age, median 65 years; 55% female) were enroled from four cancer centres in Ontario, Canada. Distribution by primary tumour type was: NSCL (55%), breast (19%), ovarian (10%), oesophageal (6%), lymphoma (6%), and head and neck (4%). Of the 99 subjects who underwent 18F-FDG PET-CT, planned management changed after 18F-FDG PET-CT in 52 subjects (53%, 95% confidence interval (CI), 42–63%); a major change in plan from no treatment to treatment was observed in 38 subjects (38%, 95% CI, 29–49%), and was typically associated with 18F-FDG PET-CT findings that were positive for recurrent cancer (37 subjects). After 3 months, the stated post-18F-FDG PET-CT management plan was actually completed in 88 subjects (89%, 95% CI, 81–94%). Conclusion: In patients with suspected cancer recurrence and conventional imaging that is non-diagnostic, 18F-FDG PET-CT often provides new information that leads to important changes in patient management. PMID:25942398

  3. Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas.

    PubMed

    Tateishi, Ukihide; Hosono, Ako; Makimoto, Atsushi; Sakurada, Aine; Terauchi, Takashi; Arai, Yasuaki; Imai, Yutaka; Kim, Euishin Edmund

    2007-09-01

    The present study was conducted to clarify the diagnostic accuracy of 18F-fluoro-2-deoxy-D-glucose (18FDG) positron emission tomography (PET)/computed tomography (CT) in the staging in pediatric sarcomas. Fifty pediatric patients with histologically proven sarcomas who underwent 18FDG PET/CT before treatment were evaluated retrospectively for the detection of nodal and distant metastases. Diagnostic accuracy of 18FDG PET/CT in detecting nodal and distant metastases was compared with that of 18FDG PET and conventional imaging (CI). The images were reviewed and a diagnostic consensus was reached by 3 observers. REFERENCE standard was histologic examination in 15 patients and confirmation of an obvious progression in size of the lesions on follow-up examinations. Nodal metastasis was correctly assessed in 48 patients (96%) with PET/CT, in contrast to 43 patients (86%) with PET, and 46 patients (92%) with CI. Diagnostic accuracies of nodal metastasis in 3 modalities were similar. Using PET/CT, distant metastasis was correctly assigned in 43 patients (86%), whereas interpretation based on PET alone or CI revealed distant metastasis in 33 patients (66%) and 35 patients (70%), respectively. Diagnostic accuracy of distant metastasis with PET/CT was significantly higher than that of PET (P=0.002) or CI (P=0.008). False negative results regarding distant metastasis by PET/CT in 7 patients (14%) were caused by subcentimetric lesions (n=4), bone marrow lesion (n=2), and soft tissue lesions (n=1). PET/CT is more accurate and probably more cost-effective than PET alone or CI regarding distant metastasis in pediatric sarcomas.

  4. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    PubMed

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded.

  5. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  6. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  7. Neutrino emission from gamma-ray burst fireballs, revised.

    PubMed

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  8. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals.

  9. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  10. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  11. The economics of creating a positron emission tomography center.

    PubMed

    Lissak, R J

    2000-10-01

    Positron emission tomography (PET) scanning has been a powerful research tool since its inception. Changes in the marketplace that have allowed PET to move into the clinical environment include the commercial availability of appropriate radiopharmaceuticals, reimbursement of procedures by insurance companies, and increasing awareness of physicians of the benefits of PET. Facilities that are interested in clinical PET need to develop a process to purchase equipment with an appropriate business plan. This is necessary to assure financial viability and to convince hospital administrators of the viability. The creation of a successful PET program requires an understanding of all aspects relating to a center. The process begins with reviewing the mission statement of the facility. The next step is to prepare the feasibility study, which includes reviewing the existing marketplace and determining the volume, level of referring physicians' interest, and availability of radiopharmaceuticals. Finally, an appropriate pro forma needs to be constructed to facilitate the final decision concerning the potential financial viability of such an endeavor.

  12. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  13. [Methods and clinical applications of positron emission tomography in endocrinology].

    PubMed

    De Landsheere, C; Lamotte, D

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormone-dependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactin) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptine can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  14. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  15. Positron Emission Tomography Application to Drug Development and Research

    NASA Astrophysics Data System (ADS)

    Salvadori, Piero A.

    The research for the identification and development of new drugs represents a very complex process implying long times and massive investments. This process was not able to parallel the rate of discoveries made in the field of genomic and molecular biology and a gap created between demand of new drugs and the ability of pharmaceutical companies to select good candidates. Positron Emission Tomography, among the different Molecular Imaging modalities, could represent a new tool for the early assessment and screening of new drug candidates and, due to its physical performances and the characteristics of positron-labeled tracers, gain the role of "Biomarker" accepted by the Companies and the Regulatory Bodies of Drug Agencies. To fulfil this task PET has to exploit all of its special features such as data absolute quantification and modelling, high spatial resolution and dynamic imaging. Relevant efforts need to be directed to the careful design and validation of experimental protocols with the main goal of achieving consistency in multi- centric trials.

  16. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  17. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  18. Markerless motion tracking of awake animals in positron emission tomography.

    PubMed

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  19. Variation in Positron Emission Tomography Use After Colon Cancer Resection

    PubMed Central

    Bailey, Christina E.; Hu, Chung-Yuan; You, Y. Nancy; Kaur, Harmeet; Ernst, Randy D.; Chang, George J.

    2015-01-01

    Purpose: Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. Patients and Methods: We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Results: Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. Conclusion: PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. PMID:25852143

  20. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  1. Application of silicon photomultipliers to positron emission tomography.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2011-04-01

    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems.

  2. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  3. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  4. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  5. Positron Emission Tomography Detector Development for Plant Biology

    SciTech Connect

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S; Smith, M F

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  6. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  7. Simultaneous laser speckle imaging and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, p<0.001) when correcting for surface vessel structures taking into account the contribution of static scatterers while keeping the coherence factor constant. However, using the originally published relation, which allows a 900 times faster computation of blood flow maps, still provided a good correlation (R2 = 0.879, p<0.001). Given the good correlation between LSI and PET we used our data to calibrate the speckle ICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  8. On the nature of the gamma ray emission from CG 195 + 4

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.

    1981-01-01

    The observed gamma ray energy spectrum of CG 195 + 4 is compared with the predictions of various proposed emission models. It is shown that the observations favor an inverse Compton origin of the gamma ray emission from this source. A scenario is suggested in which ultraviolet and soft X-ray photons (E less than 20 keV) are scattered by relativistic electrons into the gamma ray regime.

  9. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit.

    PubMed

    Constantinidou, Anastasia; Hofman, Michael; O'Doherty, Michael; Acland, Katharine M; Healy, Ciaran; Harries, Mark

    2008-02-01

    Positron emission tomography (PET) is increasingly used for the staging and management of melanoma. The aim of this study was to evaluate the role of PET or PET/ computed tomography (CT) as a routine procedure in patients with positive sentinel node biopsy (SNB). Thirty patients with melanoma of Breslow thickness greater than 1 mm who had PET or PET/CT scans performed within 100 days after a positive SNB were reviewed retrospectively. Two patients (6%) had a positive PET scan, none of which were melanoma related. The first patient had a synchronous neuroendocrine thyroid tumour and the second patient had increased uptake in the chest wall, which proved to be old trauma. Lymph node dissection was positive in five cases (16%). With a median follow-up of 24 months, 21 patients remained disease free. In none of the 30 cases did the early PET scan after a positive SNB alter subsequent melanoma management. The role of PET scanning soon after a positive sentinel node biopsy seems to be of limited benefit. It is questionable whether any imaging is beneficial at this stage. The results of this review suggest that PET scanning might not be indicated for this group of patients.

  10. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  11. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  12. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  13. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  14. Positron emission tomography: a financial and operational analysis.

    PubMed

    Conti, P S; Keppler, J S; Halls, J M

    1994-06-01

    Positron emission tomography (PET) is an emerging clinical imaging technique that is facing the challenges of expansion in a period of imminent health care contraction and reform. Although PET began showing utility in clinical medicine in the mid-1980s [1], its proliferation into mainstream medical practice has not matched that of other new imaging technologies such as MR imaging. Many factors have contributed to this, including the changing health care economy, the high cost of PET, the length of time it takes to develop a PET facility, and its inherent complexity. In part because of the proliferation of the use of other technologies and the general explosion of costs, insurance carriers are now holding diagnostic techniques, including PET, to stricter standards of efficacy. New techniques must show improvement in long-term outcome of patients, a difficult task for diagnostic tools. In addition to these issues, PET is an expensive technology that requires highly trained multidisciplinary personnel. Questions have also been raised about the most appropriate mechanism for regulation of PET isotope preparation, leading to speculation about future regulatory requirements. The current pioneers of PET must meet these challenges in order for it to become a routine imaging technique. Because of its clinical value, PET will probably survive despite the challenges. For many reasons, though, not every hospital should necessarily develop PET services. Conversely, many hospitals without this technology should consider acquiring PET. The purpose of this article is to identify the financial, operational, and clinical challenges facing PET centers today, describe potential organizational configurations that may enable PET to survive in an antitechnology environment, and delineate which institutions should consider this new technology.

  15. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    PubMed

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  16. Super-resolution in respiratory synchronized positron emission tomography.

    PubMed

    Wallach, Daphné; Lamare, Frédéric; Kontaxakis, Giorgos; Visvikis, Dimitris

    2012-02-01

    Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast

  17. PDE regularization for Bayesian reconstruction of emission tomography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Zhang, Li; Xing, Yuxiang; Zhao, Ziran

    2008-03-01

    The aim of the present study is to investigate a type of Bayesian reconstruction which utilizes partial differential equations (PDE) image models as regularization. PDE image models are widely used in image restoration and segmentation. In a PDE model, the image can be viewed as the solution of an evolutionary differential equation. The variation of the image can be regard as a descent of an energy function, which entitles us to use PDE models in Bayesian reconstruction. In this paper, two PDE models called anisotropic diffusion are studied. Both of them have the characteristics of edge-preserving and denoising like the popular median root prior (MRP). We use PDE regularization with an Ordered Subsets accelerated Bayesian one step late (OSL) reconstruction algorithm for emission tomography. The OS accelerated OSL algorithm is more practical than a non-accelerated one. The proposed algorithm is called OSEM-PDE. We validated the OSEM-PDE using a Zubal phantom in numerical experiments with attenuation correction and quantum noise considered, and the results are compared with OSEM and an OS version of MRP (OSEM-MRP) reconstruction. OSEM-PDE shows better results both in bias and variance. The reconstruction images are smoother and have sharper edges, thus are more applicable for post processing such as segmentation. We validate this using a k-means segmentation algorithm. The classic OSEM is not convergent especially in noisy condition. However, in our experiment, OSEM-PDE can benefit from OS acceleration and keep stable and convergent while OSEM-MRP failed to converge.

  18. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  19. Simulation of emission tomography using grid middleware for distributed computing.

    PubMed

    Thomason, M G; Longton, R F; Gregor, J; Smith, G T; Hutson, R K

    2004-09-01

    SimSET is Monte Carlo simulation software for emission tomography. This paper describes a simple but effective scheme for parallel execution of SimSET using NetSolve, a client-server system for distributed computation. NetSolve (version 1.4.1) is "grid middleware" which enables a user (the client) to run specific computations remotely and simultaneously on a grid of networked computers (the servers). Since the servers do not have to be identical machines, computation may take place in a heterogeneous environment. To take advantage of diversity in machines and their workloads, a client-side scheduler was implemented for the Monte Carlo simulation. The scheduler partitions the total decay events by taking into account the inherent compute-speeds and recent average workloads, i.e., the scheduler assigns more decay events to processors expected to give faster service and fewer decay events to those expected to give slower service. When compute-speeds and sustained workloads are taken into account, the speed-up is essentially linear in the number of equivalent "maximum-service" processors. One modification in the SimSET code (version 2.6.2.3) was made to ensure that the total number of decay events specified by the user is maintained in the distributed simulation. No other modifications in the standard SimSET code were made. Each processor runs complete SimSET code for its assignment of decay events, independently of others running simultaneously. Empirical results are reported for simulation of a clinical-quality lung perfusion study.

  20. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  1. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  2. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  3. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  4. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Other Thyroid Cancers: Medullary, Anaplastic, Lymphoma and So Forth

    PubMed Central

    Araz, Mine; Çayır, Derya

    2017-01-01

    Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) is used in staging, restaging, and evaluation of therapy response in many cancers as well as differentiated thyroid carcinomas especially in non-iodine avid variants. Its potential in less frequent thyroid tumors like medullary, anaplastic thyroid cancers, thyroid lymphoma and metastatic tumors of the thyroid however, is not well established yet. The aim of this review is to provide an overview on the recent applications and indications of 18F-FDG PET/CT in these tumors and to focus on the controversies in the clinical setting. PMID:28291004

  5. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan.

    PubMed

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen ((68)Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. (68)Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for (68)Ga-PSMA PET/CT to evaluate the feasibility of (177)Lu-PSMA therapy.

  6. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a rare case of carcinoma stomach with concomitant silicosis

    PubMed Central

    Sasikumar, Arun; Joy, Ajith; Unni, Madhavan; Madhavan, Jayaprakash

    2016-01-01

    The role of fluorine-18 fluorodeoxyglucose. (18F-FDG) positron emission tomography. (PET)/computed tomography. (CT) in the initial staging of various malignancies is now well established. However, nonspecificity of FDG occasionally results in tracer uptake in benign lung lesions. The authors describe a complicated case of carcinoma stomach with multiple nodules and a cavitary lesion in lungs where 18F-FDG PET CT done for initial staging revealed FDG avid mass in stomach, FDG avid multiple mediastinal lymph nodes and multiple intensely FDG avid bilateral lung lesions. The FDG avid lung lesions turned out to be due to silicosis as confirmed by histopathology. PMID:27833322

  7. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  8. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    PubMed

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  9. Role of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the management of Askin's tumor.

    PubMed

    Santhosh, Sampath; Kashyap, Raghava; Bhattacharya, Anish; Kumar Jindal, Surinder; Rai Mittal, Bhagwant

    2013-07-01

    A primitive neuroectodermal tumor (PNET) of the thoraco-abdominal region is one of a group of small round cell tumors usually found in children and young adults, originally described by Askin et al. Most cases arise in the soft-tissues of the thorax, but may rarely occur within the lung with the symptoms of chest wall pain, pleural effusion and dyspnea. The authors present two cases demonstrating the utility of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the staging and prognosis of PNET of the chest wall.

  10. Breast cancer detection using neutron stimulated emission computed tomography: Prominent elements and dose requirements

    SciTech Connect

    Bender, Janelle E.; Kapadia, Anuj J.; Sharma, Amy C.; Tourassi, Georgia D.; Harrawood, Brian P.; Floyd, Carey E. Jr.

    2007-10-15

    Neutron stimulated emission computed tomography (NSECT) is being developed to noninvasively determine concentrations of trace elements in biological tissue. Studies have shown prominent differences in the trace element concentration of normal and malignant breast tissue. NSECT has the potential to detect these differences and diagnose malignancy with high accuracy with dose comparable to that of a single mammogram. In this study, NSECT imaging was simulated for normal and malignant human breast tissue samples to determine the significance of individual elements in determining malignancy. The normal and malignant models were designed with different elemental compositions, and each was scanned spectroscopically using a simulated 2.5 MeV neutron beam. The number of incident neutrons was varied from 0.5 million to 10 million neutrons. The resulting gamma spectra were evaluated through receiver operating characteristic (ROC) analysis to determine which trace elements were prominent enough to be considered markers for breast cancer detection. Four elemental isotopes ({sup 133}Cs, {sup 81}Br, {sup 79}Br, and {sup 87}Rb) at five energy levels were shown to be promising features for breast cancer detection with an area under the ROC curve (A{sub Z}) above 0.85. One of these elements - {sup 87}Rb at 1338 keV - achieved perfect classification at 10 million incident neutrons and could be detected with as low as 3 million incident neutrons. Patient dose was calculated for each gamma spectrum obtained and was found to range from between 0.05 and 0.112 mSv depending on the number of neutrons. This simulation demonstrates that NSECT has the potential to noninvasively detect breast cancer through five prominent trace element energy levels, at dose levels comparable to other breast cancer screening techniques.

  11. EndoTOFPET-US - A Miniaturised Calorimeter for Endoscopic Time-of-Flight Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zvolský, Milan; EndoTOFPET-US Collaboration

    2015-02-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for Ultrasound (US) Endoscopy and Positron Emission Tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional markers and developing new biomarkers for pancreas and prostate oncology. Exploiting the Time-of-Flight (TOF) information of the gamma rays allows for a more sensitive, more precise and lower radiation- dose imaging and intervention on small internal structures. The detection of the gamma rays is realised with the help of scintillator crystals with Silicon Photomultiplier (SiPM) read-out, aiming at a coincidence time resolution of 200 ps and a spatial resolution of ≈ 1 mm. For the endoscopic detector, digital SiPMs are utilised for the first time in an instrument planned for clinical applications. The functionality of the instrument as well as the challenges that accompany the high miniaturisation of the endoscopic detector and the asymmetric and variable geometry of the system, are presented. The demands on the system involve the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics, system integration as well as image reconstruction. The single detector components have been fully characterised and are performing up to specifications. Two dedicated ASIC chips have been developed for the project. The first PET images have been acquired with a test setup that consists solely of hardware and software developed within the collaboration and demonstrate that the data acquisition and reconstruction chain is operational. In this talk, the characterisation of the single components and the status of the detector integration and comissioning is presented.

  12. The diagnostic possibilities of positron emission tomography (PET): applications in oral and maxillofacial buccal oncology.

    PubMed

    Carranza-Pelegrina, Daniela; Lomeña-Caballero, Francisco; Soler-Peter, Marina; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2005-01-01

    The principles of positron emission tomography (PET), recently introduced as a diagnostic procedure into the health sciences, are described. The principle clinical applications apply to a particular group of specialties: cardiology, neurology, psychiatry, and above all oncology. Positron emission tomography is a non-invasive diagnostic imaging technique with clinical applications. It is an excellent tool for the study of the stage and possible malignancy of tumors of head and neck, the detection of otherwise clinically indeterminate metastases and lymphadenopathies, and likewise for the diagnosis of relapses. The only tracer with any practical clinical application is fluor-desoxyglucosa-F18 (FDG). PET detects the intense accumulation of FDG produced in malignant tumors due to the increased glycolytic rate of the neoplastic cells. With the introduction of hybrid systems that combine computerized tomography or magnetic resonance with positron emission tomography, important advances are being made in the diagnosis and follow-up of oncologic pathology of head and neck.

  13. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder.

    PubMed

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-05-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  14. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder

    PubMed Central

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-01-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  15. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  16. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  17. Evaluation of errors due to Compton scattering in gamma-ray emission imaging

    SciTech Connect

    Bruno, M.F.

    1983-12-01

    A set of computer simulation programs were developed to aid in the design of new instrumentation and in the design and evaluation of algorithms for scatter correction in positron emission computed tomography. 14 references, 15 figures, 3 tables. (ACR)

  18. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  19. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  20. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  1. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  2. Positron emission tomography imaging using radiolabeled inorganic nanomaterials.

    PubMed

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-02-17

    CONSPECTUS: Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  3. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  4. Practical implementation of tetrahedral mesh reconstruction in emission tomography.

    PubMed

    Boutchko, R; Sitek, A; Gullberg, G T

    2013-05-07

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  5. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  6. Gamma densitometry tomography of gas holdup spatial distribution in industrial scale bubble columns

    SciTech Connect

    Shollenberger, K.A.; Torczynski, J.R.; Adkins, D.R.; O`Hern, T.J.; Jackson, N.B.

    1995-12-31

    Gamma-densitometry tomography (GDT) experiments have been performed to measure gas holdup spatial variations in two bubble columns: a 0.19 m inside diameter Lucite column and a 0.48 m inside diameter stainless steel vessel. Air and water were used for the measurements. Horizontal scans at one vertical position in each column were made for several air flow rates. An axi-symmetric tomographic reconstruction algorithm based on the Abel transform has been used to calculate the time averaged gas holdup radial variation. Integration of these profiles over the column cross section has yielded area-averaged gas holdup results, which have been compared with volume-averaged gas holdups determined from differential pressure measurements and from the rise in the air/water interface during gas flow. The results agree reasonably well.

  7. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    PubMed Central

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  8. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative.

    PubMed

    McEwan, Louise M; Wong, David; Yaxley, John

    2017-03-28

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-flourodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  9. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    SciTech Connect

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-07-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab.

  10. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  11. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.; Han, K.S.

    1994-12-31

    The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

  12. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  13. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.

  14. GRB 090727 and Gamma-Ray Bursts with Early-time Optical Emission

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Kobayashi, S.; Gomboc, A.; Japelj, J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.

    2013-07-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  15. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography.

    PubMed

    Marchal, G; Young, A R; Baron, J C

    1999-05-01

    Early postischemic hyperperfusion (EPIH) has long been documented in animal stroke models and is the hallmark of efficient recanalization of the occluded artery with subsequent reperfusion of the tissue (although occasionally it may be seen in areas bordering the hypoperfused area during arterial occlusion). In experimental stroke, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called "reperfusion injury"). In humans, focal hyperperfusion in the subacute stage (i.e., more than 48 hours after onset) has been associated with tissue necrosis in most instances, but regarding the acute stage, its occurrence, its relations with tissue metabolism and viability, and its clinical prognostic value were poorly understood before the advent of positron emission tomography (PET), in part because of methodologic issues. By measuring both CBF and metabolism, PET is an ideal imaging modality to study the pathophysiologic mechanism of EPIH. Although only a few PET studies have been performed in the acute stage that have systematically assessed tissue and clinical outcome in relation to EPIH, they have provided important insights. In one study, about one third of the patients with first-ever middle cerebral artery (MCA) territory stroke studied within 5 to 18 hours after symptom onset exhibited EPIH. In most cases, EPIH affected large parts of the cortical MCA territory in a patchy fashion, together with abnormal vasodilation (increased cerebral blood volume), "luxury perfusion" (decreased oxygen extraction fraction), and mildly increased CMRO2, which was interpreted as postischemic rebound of cellular metabolism in structurally preserved tissue. In that study, the spontaneous outcome of the tissue exhibiting EPIH was good, with late

  16. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  17. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography

    PubMed Central

    Mattsson, Niklas

    2016-01-01

    See Rabinovici (doi:10.1093/brain/aww025) for a scientific commentary on this article. Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer’s disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer’s disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. All underwent 18F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1–4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer’s disease dementia. The results were replicated after

  18. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  19. An atlas of Doppler emission-line tomography of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Kaitchuck, Ronald H.; Schlegel, Eric M.; Honeycutt, R. Kent; Horne, Keith; Marsh, T. R.; White, J. C., II; Mansperger, Cathy S.

    1994-01-01

    Doppler emission-line tomography is a technique similar to medical tomography. In this atlas the emission-line profiles of cataclysmic variable stars, seen at different orbital phases, are transformed into velocity space images. This transformation makes many of the complex line profile changes easier to interpret. The emission contributions of the disk and the s-wave are clearly separated in these images, and any emission from the stream and the secondary star can often be identified. In this atlas, Doppler tomograms of Hbeta, He I lambda 4471, and He II lambda 4686 emission lines of 18 cataclysmic variable stars are presented. The Doppler images provide insights into the individual systems and a better technique for measuring and radial velocity amplitude of the white dwarf.

  20. Soft gamma-ray galactic ridge emission as unveiled by SPI aboard INTEGRAL

    SciTech Connect

    Knoedlseder, J.; Weidenspointner, G.; Jean, P.; Strong, A.; Diehl, R.; Cordier, B.; Schanne, S.

    2007-07-12

    The origin of the soft gamma-ray (200 keV - 1 MeV) galactic ridge emission is one of the long-standing mysteries in the field of high-energy astrophysics. Population studies at lower energies have shown that emission from accreting compact objects gradually recedes in this domain, leaving place to another source of gamma-ray emission that is characterised by a hard power-law spectrum extending from 100 keV up to 100 MeV The nature of this hard component has remained so far elusive, partly due to the lack of sufficiently sensitive imaging telescopes that would be able to unveil the spatial distribution of the emission. The SPI telescope aboard INTEGRAL allows now for the first time the simultaneous imaging of diffuse and point-like emission in the soft gamma-ray regime. We present here all-sky images of the soft gamma-ray continuum emission that clearly reveal the morphology of the different emission components. We discuss the implications of our results on the nature of underlying emission processes and we put our results in perspective of GLAST studies of diffuse galactic continuum emission.

  1. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  2. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  3. Photon-splitting limits to the hardness of emission in strongly magnetized soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1995-01-01

    Soft gamma repeaters are characterized by recurrent activity consisting of short-duration outbursts of high-energy emission that is typically of temperature less than 40 keV. One recent model of repeaters is that they originate in the environs of neutron stars with superstrong magnetic fields, perhaps greater than 10(exp 14) G. In such fields, the exotic process of magnetic photon splitting gamma yields gamma gamma acts very effectively to reprocess gamma-ray radiation down to hard X-ray energies. In this Letter, the action of photon splitting is considered in some detail, via the solution of photon kinetic equations, determining how it limits the hardness of emission in strongly magnetized repeaters, and thereby obtaining observational constraints to the field in SGR 1806-20.

  4. Detection of gamma-ray emission from the quasar PKS 0208-512

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1993-01-01

    High-energy gamma-ray emission has been detected from the quasar PKS 0208-512 in the energy range above 30 MeV by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory. This region of sky was observed in five different viewing periods, and evidence of time variability in the gamma-ray emission by more than a factor of 3 was found. At the maximum intensity between 1991 September 19 and October 3, the flux density above 100 MeV was (9.1 +/- 0.4) x 10 exp -7 gamma/sq cm per sec. The photon spectrum during this period may be expressed as a power law with an exponent of - 1.69 +/- 0.05 between 30 MeV and 4 GeV. This is the hardest quasar spectrum observed by EGRET up to the present time.

  5. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    SciTech Connect

    Kirby, J.; Lindquist, R.P.

    1994-06-01

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  6. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  7. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Campbell, Janice M. Wong, C. Oliver; Muzik, Otto; Marples, Brian; Joiner, Michael; Burmeister, Jay

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardized uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.

  8. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    PubMed Central

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome. PMID:26917907

  9. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  10. Using gamma-ray emission to measure areal density of ICF capsules

    SciTech Connect

    Hoffman, Nelson M; Wilson, Douglas C; Hermann, Hans W; Young, Carlton S

    2010-01-01

    Fusion neutrons streaming from a burning ICF capsule generate gamma rays via nuclear inelastic scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density ('{rho}R') and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, {sup 12}C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1-MeV neutrons from D+T fusion. These gamma rays can be measured by the Gamma Reaction History (GRH) experiment being built at the National Ignition Facility (NIF). A linear error analysis indicates the chief sources of uncertainty in inferred areal density.

  11. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography.

    PubMed

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where (18)F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on (18)F-FDG PET/CT.

  12. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography

    PubMed Central

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where 18F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on 18F-FDG PET/CT. PMID:28242978

  13. Utility of (18)F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma.

    PubMed

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of (18)F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that (18)F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels.

  14. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    PubMed Central

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  15. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas.

    PubMed

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-(18) fluorodeoxyglucose ((18)F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up.

  16. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas

    PubMed Central

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-18 fluorodeoxyglucose (18F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up. PMID:27095862

  17. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  18. Gamma-ray Emission in the Universe - A Possible Explanation by the Wave Modulation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2016-10-01

    The gamma-ray emission and other short wave emissions in the universe can be produced by a wave modulation of high orbiting frequencies (planets, satellites) by low orbiting frequencies (galaxies and so on) as cosmic bodies move in several orbits.

  19. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy

    SciTech Connect

    Pentlow, K.S.; Graham, M.C.; Lambrecht, R.M.; Cheung, N.K.; Larson, S.M. )

    1991-05-01

    Positron emission tomography (PET) is potentially useful for the quantitative imaging of radiolabeled antibodies, leading in turn to improved dosimetry in radioimmunotherapy. Iodine-124 is a positron-emitting nuclide with appropriate chemical properties and half-life (4.2 days) for such studies since the radiolabeling of antibodies with iodine is well understood and the half-life permits measurements over several days. Unfortunately, I-124 has a complex decay scheme with many high-energy gamma rays and a positron abundance of only 25%. It has therefore been largely ignored as a PET-imaging nuclide. However, measurements made with phantoms and animals under realistic conditions using a BGO-based PET scanner have shown that satisfactory imaging and quantitation can be achieved. Investigations of spatial resolution, the linearity of regional observed count rate versus activity in the presence of other activity, and the visualization and quantitation of activity in spheres with different surrounding background activities were carried out with phantoms up to 22 cm in diameter. Compared with F-18, spatial resolution was only slightly degraded (13.5 mm FWHM vs 12 mm FWHM) while linearity was the same over a 10:1 activity range (0.015 to 0.15 MBq/ml for I-124). The visualization and quantitation of spheres was also slightly degraded when using similar imaging times. Increasing the imaging time for I-124 reduced the difference. To verify that the technique would work in vivo, measurements were made of human neuroblastoma tumors in rats which had been injected with I-124 labeled 3F8 antibody. Although the number of samples was small, good agreement was achieved between image-based measurements and direct measurements of excised 4-g tumors. Thus quantitative imaging of I-124 labeled antibodies appears to be possible under realistic conditions.

  20. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  1. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  2. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    NASA Astrophysics Data System (ADS)

    Nikkinen, Paivi Helena

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional

  3. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    PubMed

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  4. RIT — A new robust iterative technique for image reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Tsupko-Sitnikov, Mikhail V.

    1991-02-01

    Emission tomography is a reliable tool for testing nuclear fuel elements. The conventional algebraic reconstruction methods of computer tomography are non-robust and can be fatally affected by outliers in the input data, i.e. by data having unexpectedly high errors due to some unpredictable effects. In the present paper, a robust iterative technique (RIT) for emission tomography is described. RIT is based on robust M-estimation methods and on a new algorithm for computing the M-estimates. RIT needs no filtering of the input data. It's computational expenses do not exceed those of SIRT method. RIT is included in the TOMODAT program and is being used for testing the fuel elements after irradiation in the reactors. The fuel distributions reconstructed by RIT are practically not affected by outliers in the input data, while the ART, SIRT and MENT give quite unstable results for the same spoiled data.

  5. 77 FR 71803 - Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  6. 77 FR 11553 - Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... good manufacturing practices (CGMP) for PET drugs. The procedures were finalized and an implementation... HUMAN SERVICES Food and Drug Administration Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and...

  7. A case of eosinophilic esophagitis discovered with positron emission tomography imaging: a case report

    PubMed Central

    2013-01-01

    Introduction Eosinophilic esophagitis was first reported in 1978, and since then it has been increasingly recognized as one of the major etiologies for dysphagia, food impaction, and food regurgitation. To the best of our knowledge, no case of eosinophilic esophagitis (excluding esophageal eosinophilia not responsive to proton pump inhibitor treatment) has previously been demonstrated on the basis of positron emission tomography imaging. Case presentation A 68-year-old Caucasian man presented with dysphagia to solids with recurrent regurgitation and weight loss of 7lb within the preceding 2 months. The patient attributed these symptoms to radiation therapy he had received 1 year earlier for squamous cell cancer of the lung. The patient underwent routine follow-up positron emission tomography imaging, which showed a hypermetabolic lesion in the posterior mediastinum and was increased at the level of the midesophagus. Conclusion To the best of our knowledge, this is the first reported case of eosinophilic esophagitis demonstrated by positron emission tomography imaging and confirmed with endoscopic evaluation and biopsies both after positron emission tomography imaging and a trial of proton pump inhibitor therapy. This could have an impact on the diagnostic evaluation of esophageal eosinophilic inflammation as well as eosinophilic infiltration of other gastrointestinal organs. PMID:23855975

  8. 76 FR 6144 - Positron Emission Tomography; Notice of Public Meeting; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... injection, ammonia N 13 injection, and sodium fluoride F 18 injection used in positron emission tomography... be submitted for FDG F 18 injection, ammonia N 13 injection, and sodium fluoride F 18 injection used..., ammonia N 13 injection, and sodium fluoride F 18 injection. FDA will present information designed...

  9. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  10. Brain tumor imaging with synthesized /sup 18/F-fluorophenylalanine and positron emission tomography

    SciTech Connect

    Mineura, K.; Kowada, M.; Shishido, F.

    1989-06-01

    Two patients with cerebral gliomas were studied with 18F-fluorophenylalanine, newly synthesized by the electrophilic substitution reaction, using positron emission tomography. The tracer accumulated markedly in the tumor lesion and delineated the extent of the lesion. This new tracer will be promising in the diagnosis of gliomas.

  11. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  12. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft...

  13. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  14. Geostatistics and the representative elementary volume of gamma ray tomography attenuation in rocks cores

    USGS Publications Warehouse

    Vogel, J.R.; Brown, G.O.

    2003-01-01

    Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.

  15. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  16. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K.-S.; Dogiel, V. A.; Ko, C. M.

    2017-02-01

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6‑2858 (or 3FGL J1745.6‑2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.

  17. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar.

  18. Gamma-ray Emission from the Surface of Martian Satellites as a Function of Elemental Composition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kouhei; Naito, Masayuki; Hasebe, Nobuyuki; Kusano, Hiroki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke

    Mars has two satellites, Phobos and Deimos. The Martian satellites have never been explored from the aspect of elemental composition. Their origins are still mysterious. Gamma-ray spectroscopy from the orbit of spacecraft is a powerful method to investigate elemental distribution and abundance of planets with no or thin atmosphere. In this work, gamma-ray emission from the Martian satellites was calculated as a function of elemental composition. Both chondritic and Martian compositions, which represent captured origin and giant impact origin, respectively, were assumed as elemental composition of Martian satellites. The gamma-ray fluxes induced by galactic cosmic rays at their surface were calculated for both of them. It was found that the elemental compositions of Martian satellites are clearly distinguished between chondritic or Martian by the gamma-ray emission rate ratios of Si/Fe and Ca/Fe and enable us to give strong constraint to the idea for the origin of the Martian satellites.

  19. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.

    PubMed

    Horger, Marius; Bares, Roland

    2006-10-01

    Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity

  20. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  1. Enhanced Gamma-Ray Emission from the Microquasar Cygnus X-3 Detected by AGILE

    NASA Astrophysics Data System (ADS)

    Piano, G.; Tavani, M.; Verrecchia, F.; Vercellone, S.; Munar-Adrover, P.; Bulgarelli, A.; Donnarumma, I.; Minervini, G.; Fioretti, V.; Pittori, C.; Lucarelli, F.; Striani, E.; Ursi, A.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-03-01

    The AGILE-GRID detector is revealing gamma ray emission above 100 MeV from the microquasar Cygnus X-3. Integrating from 2017-03-15 UT 00:00:00 to 2017-03-16 UT 00:00:00, a preliminary multi-source likelihood analysis finds a gamma-ray flux F( > 100 MeV) = (4.2 +/- 1.7) x 10^-6 photons/cm^2/s with a detection significance near 4 sigma.

  2. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  3. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  4. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  5. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  6. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  7. Ameloblastic carcinoma of the mandible with metastasis to the skull and lung: advanced imaging appearance including computed tomography, magnetic resonance imaging and positron emission tomography computed tomography

    PubMed Central

    Devenney-Cakir, B; Dunfee, B; Subramaniam, R; Sundararajan, D; Mehra, P; Spiegel, J; Sakai, O

    2010-01-01

    Ameloblastic carcinoma is a very rare malignant odontogenic tumour with characteristic histopathological and clinical features, which requires aggressive surgical treatment and surveillance and, therefore, differs from ameloblastoma. Metastasis typically occurs in the lung. Only one patient with metastasis to the skull has previously been described and no prior case reports have presented MRI and positron emission tomography-CT (PET-CT) imaging findings. We describe a case of ameloblastic carcinoma with metastasis to the skull and lung with emphasis on imaging features including MRI and PET-CT. PMID:20841465

  8. Gamma ray emission from middle aged supernova remnants interacting with molecular clouds

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, Roger A.

    2016-06-01

    Gamma ray emission from several middle aged supernova remnants (SNRs) has been detected in space-based GeV observations and ground-based TeV observations. The characteristic pion-decay signature identified in spectra of the remnants IC443 and W44 provides strong evidence for cosmic ray (CR) proton acceleration in SNRs. Multi-wavelength observations further reveal a spatial correlation between the molecular cloud (MC) interaction region and the gamma ray emitting region. Radio emission, however, was found not to be well-correlated with the high energy emission. Based on observed MC associations, two scenarios have been proposed to explain the observed gamma ray emission from these middle aged SNRs. In one, accelerated CR particles escape from the SNR and then illuminate nearby MCs, producing gamma ray emission, while the other involves direct interaction between the SNR and molecular clumps. Here I present a new model of the direct interaction type that involves the collision between MC clumps and a radiative SNR. The model can explain the discrepancy between radio and gamma ray emission morphology. The gamma ray spectra from these middle aged SNRs show steeping from GeV to TeV energies that is believed to be due to the limited acceleration time of CR particles. However, the spectral shape cannot be fitted by a simple exponential profile. We derive a time dependent solution for diffusive shock acceleration in the test particle limit and show that it is capable of explaining the observed spectral steepening at high energy.

  9. QUASI-PERIODIC PULSATIONS IN THE GAMMA-RAY EMISSION OF A SOLAR FLARE

    SciTech Connect

    Nakariakov, V. M.; Foullon, C.; Inglis, A. R.; Myagkova, I. N.

    2010-01-01

    Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop.

  10. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  11. [Positron emission tomography in neuroscience. An integrative part of clinical diagnostic methods and experimental research].

    PubMed

    Schaller, B

    2005-02-01

    The role of molecular neuroimaging techniques is increasing in the understanding of pathophysiological mechanism of diseases. To date, positron emission tomography is the most powerful tool for the non-invasive study of biochemical and molecular processes in humans and animals in vivo. With the development in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analyzed by PET. This opens up the exciting and rapidly field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. Besides its usefulness for basic research positron emission tomography has been proven to be superior to conventional diagnostic methods in several clinical indications. This is illustrated by detection of biological or anatomic changes that cannot be demonstrated by computed tomography or magnetic resonance imaging, as well as even before symptoms are expressed. The present review summarizes the clinical use of positron emission tomography in neuroscience that has helped elucidate the pathophysiology of a number of diseases and has suggested strategies in the treatment of these patients. Special reference is given to the neurovascular, neurodegenerative and neurooncological disease.

  12. Experimental investigation of the pebble bed structure by using gamma ray tomography

    NASA Astrophysics Data System (ADS)

    Ahmed, Fadha Shakir

    Pebble Bed Reactors offer a future for new nuclear energy plants. They are small, inherently safe, and can be competitive with fossil fuels. The fuel forms a randomly stacked pebble with non-uniform fuel densities. The thermal-mechanical behavior of pebble bed reactor core is depends strongly on the spatial variation of packing fraction in the bed and in particular on the number of contacts between pebbles, and between the pebbles and the blanket walls. To investigate these effects, experimental data to characterize bed structure are needed along with other numerical simulation and computational tools for validation. In this study, a powerful technique of high-energy gamma-ray computed tomography (CT scanner system) is employed for the first time for the quantification of the structure of pebble bed in term of the cross-sectional time-averaged void and distributions, it radial profiles and the statistical analysis. The alternative minimization (AM) iteration algorithm is used for image reconstruction. The spatial resolution of the CT scan is about 2 mm with 100 x 100 pixel used to reconstruct the cross-sectional image. Results of tomography with this advanced technique on three different pebble sizes at different axial levels are presented. The bed consisted of a glass spheres (Marbles) with a diameter d1= 1.27 cm, d2= 2.54 cm and d3= 5 cm in a Plexiglas cylinder with diameter D = 30.48 cm (D/d1 = 24, D/d2 = 12 and D/d3 = 6), and had an average void fraction epsilon1= 0.389, epsilon2 = 0.40 and epsilon 3 =0.43, respectively. The radial void fraction profile showed large oscillations with the bigger pebble diameters and the void fraction is higher on the wall with a minimum void fraction of 0.33 at 0.68 pebble diameter away from the wall. It was found that the void distribution in random packed bed depends strongly on the pebble diameter with respect to the bed diameter (D/d p) and the packing mode. The oscillation is quiet large with the smaller aspect ratio (D

  13. Gamma-ray emission from young supernova remnants: Hadronic or leptonic?

    NASA Astrophysics Data System (ADS)

    Gabici, Stefano; Aharonian, Felix

    2016-07-01

    The debate on the nature of the gamma-ray emission from young supernova remnants is still open. Ascribing such emission to hadronic rather than leptonic processes would provide an evidence for the acceleration of protons and nuclei, and this fact would fit with the very popular (but not proven) paradigm that supernova remnants are the sources of Galactic cosmic rays. Here, we discuss this issue with a particular focus on the best studied gamma-ray-bright supernova remnant: RX J1713.7-3946.

  14. Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging.

    PubMed

    Chang, Ted T; Bourgeois, Austin C; Balius, Anastasia M; Pasciak, Alexander S

    2013-03-01

    Treatment activity for yttrium-90 ((90)Y) radioembolization when calculated by using the manufacturer-recommended technique is only partially patient-specific and may result in a subtumoricidal dose in some patients. The authors describe the use of quantitative (90)Y positron emission tomography/computed tomography as a tool to provide patient-specific optimization of treatment activity and evaluate this new method in a patient who previously received traditional (90)Y radioembolization. The modified treatment resulted in a 40-Gy increase in absorbed dose to tumor and complete resolution of disease in the treated area within 3 months.

  15. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose.

  16. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  17. Gamma-ray Emission from the Sun: A Study with EGRET Data and Perspectives for GLAST

    NASA Astrophysics Data System (ADS)

    Orlando, Elena; Strong, A. W.

    2008-03-01

    The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo (Orlando and Strong 2008,arXiv:0801.2178). The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun. This emission is expected to be readily detectable in the future by GLAST, and we describe the perspectives for what can be learned from this upcoming mission.

  18. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  19. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  20. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  1. Neutron-$\\gamma$ competition for β-delayed neutron emission

    SciTech Connect

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalism is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.

  2. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  3. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  4. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G. E-mail: wakely@uchicago.edu

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00{sup h}25{sup m}27.{sup s}0, + 64{sup 0}10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV){sup -}{Gamma} with {Gamma} = 1.95 {+-} 0.51{sub stat} {+-} 0.30{sub sys} and C = (1.55 {+-} 0.43{sub stat} {+-} 0.47{sub sys}) x 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is {approx}80 {mu}G, which may be interpreted as evidence for magnetic field amplification.

  5. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  6. Gamma-line emission from radioactivities produced in supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Timmes, F. X.

    1997-01-01

    The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.

  7. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  8. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Celik, O.; Harding, A. K.; Hays, E.; Johnson, T. J.; Pottschmidt, K.; Thompson, D. J.

    2009-01-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  9. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  10. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects

    SciTech Connect

    Brunken, R.; Schwaiger, M.; Grover-McKay, M.; Phelps, M.E.; Tillisch, J.; Schelbert, H.R.

    1987-09-01

    Positron emission tomography with /sup 13/N-ammonia and /sup 18/F-2-deoxyglucose was used to assess myocardial perfusion and glucose utilization in 51 myocardial segments with a stress thallium defect in 12 patients. Myocardial infarction was defined by a concordant reduction in segmental perfusion and glucose utilization, and myocardial ischemia was identified by preservation of glucose utilization in segments with rest hypoperfusion. Of the 51 segments studied, 36 had a fixed thallium defect, 11 had a partially reversible defect and 4 had a completely reversible defect. Only 15 (42%) of the 36 segments with a fixed defect and 4 (36%) of the 11 segments with a partially reversible defect exhibited myocardial infarction on study with positron tomography. In contrast, residual myocardial glucose utilization was identified in the majority of segments with a fixed (58%) or a partially reversible (64%) thallium defect. All of the segments with a completely reversible defect appeared normal on positron tomography. Apparent improvement in the thallium defect on delayed images did not distinguish segments with ischemia from infarction. Thus, positron emission tomography reveals evidence of persistent tissue metabolism in the majority of segments with a fixed or partially resolving stress thallium defect, implying that markers of perfusion alone may underestimate the extent of viable tissue in hypoperfused myocardial segments.

  11. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.

    PubMed

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions.

  12. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice

    PubMed Central

    Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas

    2016-01-01

    In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892

  13. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers.

    PubMed

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-11-28

    18-fluorodeoxygluocose positron emission tomography/computed tomography ((18)FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs.

  14. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers

    PubMed Central

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-01-01

    18-fluorodeoxygluocose positron emission tomography/computed tomography (18FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs. PMID:26644824

  15. Seeing the Unseen—Bioturbation in 4D: Tracing Bioirrigation in Marine Sediment Using Positron Emission Tomography and Computed Tomography

    PubMed Central

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  16. F18-fluorodeoxyglucose-positron emission tomography and computed tomography is not accurate in preoperative staging of gastric cancer

    PubMed Central

    Ha, Tae Kyung; Choi, Yun Young; Song, Soon Young

    2011-01-01

    Purpose To investigate the clinical benefits of F18-fluorodeoxyglucose-positron emission tomography and computed tomography (18F-FDG-PET/CT) over multi-detector row CT (MDCT) in preoperative staging of gastric cancer. Methods FDG-PET/CT and MDCT were performed on 78 patients with gastric cancer pathologically diagnosed by endoscopy. The accuracy of radiologic staging retrospectively was compared to pathologic result after curative resection. Results Primary tumors were detected in 51 (65.4%) patients with 18F-FDG-PET/CT, and 47 (60.3%) patients with MDCT. Regarding detection of lymph node metastasis, the sensitivity of FDG-PET/CT was 51.5% with an accuracy of 71.8%, whereas those of MDCT were 69.7% and 69.2%, respectively. The sensitivity of 18F-FDG-PET/CT for a primary tumor with signet ring cell carcinoma was lower than that of 18F-FDG-PET/CT for a primary tumor with non-signet ring cell carcinoma (35.3% vs. 73.8%, P < 0.01). Conclusion Due to its low sensitivity, 18F-FDG-PET/CT alone shows no definite clinical benefit for prediction of lymph node metastasis in preoperative staging of gastric cancer. PMID:22066108

  17. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    SciTech Connect

    Katagiri, H.; Yoshida, K.; Ballet, J.; Hewitt, J. W.; Kubo, H. E-mail: 13nm169s@gmail.com

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  18. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  19. Internal Energy Dissipation of Gamma-Ray Bursts Observed with Swift: Precursors, Prompt Gamma-Rays, Extended Emission, and Late X-Ray Flares

    NASA Astrophysics Data System (ADS)

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing

    2014-07-01

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  20. Internal energy dissipation of gamma-ray bursts observed with Swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares

    SciTech Connect

    Hu, You-Dong; Liang, En-Wei; Xi, Shao-Qiang; Peng, Fang-Kun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing E-mail: Zhang@physics.unlv.edu

    2014-07-10

    We jointly analyze the gamma-ray burst (GRB) data observed with Burst Alert Telescope (BAT) and X-ray Telescope on board the Swift mission to present a global view on the internal energy dissipation processes in GRBs, including precursors, prompt gamma-ray emission, extended soft gamma-ray emission, and late X-ray flares. The Bayesian block method is utilized to analyze the BAT light curves to identify various emission episodes. Our results suggest that these emission components likely share the same physical origin, which is the repeated activation of the GRB central engine. What we observe in the gamma-ray band may be a small part of more extended underlying activities. The precursor emission, which is detected in about 10% of Swift GRBs, is preferably detected in those GRBs that have a massive star core-collapse origin. The soft extended emission tail, on the other hand, is preferably detected in those GRBs that have a compact star merger origin. Bright X-ray emission is detected during the BAT quiescent phases prior to subsequent gamma-ray peaks, implying that X-ray emission may be detectable prior the BAT trigger time. Future GRB alert instruments with soft X-ray capability are essential for revealing the early stages of GRB central engine activities, and shedding light on jet composition and the jet launching mechanism in GRBs.

  1. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  2. Positron emission tomography scanning is coming to a hospital near you soon!

    PubMed

    Bashir, Humayun; Shabo, Gregory; Nunan, T O

    2008-04-01

    Positron emission tomography (PET) is still generally not available in the UK; however, there are plans to introduce a national service in England from April 2008. Plans are also at an advanced stage in Scotland and Wales. The main uses of PET are in preoperative staging of lung cancer, detection of recurrent colorectal cancer, and management of patients with lymphoma. Although these provide the bulk of the referral base, PET is also of use in specific situations in patients with less common cancers, such as head and neck cancer, gynaecological cancer, and melanoma. In its more common uses, PET has been shown to be cost effective. Positron emission tomography will play an increasing role in the evaluation of response to treatment to enable early separation of patients who are responding well to chemotherapy from those who are not responding and need to be transferred to another therapy.

  3. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  4. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  5. Brain single photon emission computed tomography: Newer activation and intervention studies

    SciTech Connect

    Tikofsky, R.S.; Hellman, R.S. )

    1991-01-01

    Single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) findings using non-xenon 133 tracers in combination with activation and intervention techniques are reviewed. Examination of the currently available data indicates that it is possible to detect the effects of a variety of activations and interventional procedures using SPECT rCBF with non-xenon 133 tracers. There are still many issues to be resolved before SPECT can reach the level of sophistication attained by xenon 133 and positron emission tomography in studying rCBF during activation or intervention. However, research to date indicates that SPECT rCBF studied with tracers other than xenon 133 has an excellent potential for increasing the ability to differentiate normal and pathological states. 97 refs.

  6. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-03-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  7. Pain and Opiate Receptors: Considerations for the Design of Positron Emission Tomography Studies

    PubMed Central

    Sadzot, B.; Frost, J. J.

    1990-01-01

    Opiate receptors in the brain are the target of endogenous opioids and of exogenous synthetic opiates. These receptors play a major role in the modulation of pain perception. Using the appropriate ligands, positron emission tomography now allows investigators to monitor neuroreceptors in vivo. We have used 11C-diprenorphine and the extremely potent mu opiate receptor agonist, 11C-carfentanil, to image the distribution of opiate receptors in the brain and to quantify their density, their affinity, and their occupancy. Several important aspects of the in vivo opiate receptor labeling with positron emission tomography in relation to the study of pain are considered in this paper. Monitoring receptor occupancy by opiate drugs as a function of pain relief has the potential to reveal better ways to treat pain. PMID:1964768

  8. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  9. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation.

    PubMed

    Villeneuve, Sylvia; Rabinovici, Gil D; Cohn-Sheehy, Brendan I; Madison, Cindee; Ayakta, Nagehan; Ghosh, Pia M; La Joie, Renaud; Arthur-Bentil, Samia Kate; Vogel, Jacob W; Marks, Shawn M; Lehmann, Manja; Rosen, Howard J; Reed, Bruce; Olichney, John; Boxer, Adam L; Miller, Bruce L; Borys, Ewa; Jin, Lee-Way; Huang, Eric J; Grinberg, Lea T; DeCarli, Charles; Seeley, William W; Jagust, William

    2015-07-01

    Amyloid-β, a hallmark of Alzheimer's disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-β positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-β deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-β positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard

  10. Single photon emission computed tomography in Alzheimer's disease. Abnormal iofetamine I 123 uptake reflects dementia severity

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Mueller, S.P.; Rosen, T.J.; English, R.; Nagel, J.S.; Growdon, J.H.

    1988-04-01

    To determine whether abnormalities in regional cerebral functional activity estimated by iofetamine hydrochloride I 123 and single photon emission computed tomography can be detected in mild or moderate as well as severe cases of Alzheimer's disease (AD), we performed iofetamine I 123-single photon emission computed tomography in 37 patients with probable AD (nine patients with mild, 18 patients with moderate, and ten patients with severe dementia) and nine age-matched control subjects. Iofetamine I 123 uptake was measured in right and left frontal, temporal, parietal, and occipital cortices. Mean (right and left) iofetamine I 123 activity was lowest in the parietal region of patients with AD and was significantly reduced in the other three regions compared with control subjects. Only in the parietal region was lower relative iofetamine I 123 activity associated with an impaired level of patient function and with cognitive deficit.

  11. NEUTRINO CONSTRAINTS TO THE DIFFUSE GAMMA-RAY EMISSION FROM ACCRETION SHOCKS

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2015-06-20

    Accretion of gas during the large-scale structure formation has been thought to give rise to shocks that can accelerate cosmic rays. This process then results in an isotropic extragalactic gamma-ray emission contributing to the extragalactic gamma-ray background (EGRB) observed by Fermi-LAT. Unfortunately, this emission has been difficult to constrain and thus presents an uncertain foreground to any attempts to extract a potential dark matter signal. Recently, IceCube has detected high-energy isotropic neutrino flux that could be of an extragalactic origin. In general, neutrinos can be linked to gamma rays since cosmic-ray interactions produce neutral and charged pions where neutral pions decay into gamma rays, while charged pions decay to give neutrinos. By assuming that isotropic high-energy IceCube neutrinos are entirely produced by cosmic rays accelerated in accretion shocks during the process of structure formation, we obtain the strongest constraint to the gamma-ray emission from large-scale structure formation (strong) shocks and find that they can make at best ∼20% of the EGRB, corresponding to neutrino flux with spectral index α{sub ν} = 2, or ∼10% for spectral index α{sub ν} = 2.46. Since typical objects where cosmic rays are accelerated in accretion shocks are galaxy clusters, observed high-energy neutrino fluxes can then be used to determine the gamma-ray emission of a dominant cluster type and constrain acceleration efficiency, and thus probe the process of large-scale structure formation.

  12. Pancreatic tuberculosis: Evaluation of therapeutic response using F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Srinivasan, Radhika; Mittal, Bhagwant Rai

    2014-10-01

    F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is a functional imaging technique that monitors glucose metabolism in tissues. Pulmonary tuberculosis (TB) has been reported to show intense uptake of FDG, with a decrease in metabolism of the tuberculous lesions after successful anti-tubercular treatment (ATT). The authors present a patient with pancreatic TB and demonstrate the usefulness of FDG PET/CT in monitoring the response to ATT.

  13. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2015-06-01

    The year 2014 has been an exciting year for the cardiovascular imaging community with significant advances in the realm of nuclear and multimodality cardiac imaging. In this new feature of the Journal of Nuclear Cardiology, we will summarize some of the breakthroughs that were published in the Journal in 2014 in 2 sister articles. This first article will concentrate on publications dealing with cardiac positron emission tomography (PET), computed tomography (CT), and neuronal imaging.

  14. The utility of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography for detecting lung and esophagus multiple primary cancers involved in the larynx: Two case reports.

    PubMed

    Wang, Qinying; Chai, Liang; Zhou, Shuihong

    2015-01-01

    Multiple primary cancers involved in the larynx of differentiating synchronous multiple primary cancers from metastasis can often be very difficult, especially when they have the same histology. However, it is very important because the therapeutic approach is completely different. Clinical situations like this appear to be increasing as a result of the recent popular use of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography. Herein, we report two cases of multiple primary cancers involved in the larynx.

  15. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease.

  16. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma

    PubMed Central

    Squier, Samuel Brian; Lewis, Jacob Ian; Accurso, Joseph Matthew; Jain, Manoj Kumar

    2016-01-01

    We present a case of a 17-year-old football player who had previously received multiple facet joint injections for presumed secondary osteoarthritis. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography imaging of the cervical spine demonstrated focal increased radiopharmaceutical activity in the right C2 lamina, which was associated with an osteolytic lesion with a central irregular sclerotic nidus. Surgical pathology confirmed an osteoid osteoma. PMID:27833319

  17. Tomography of a Gamma-ray Burst Progenitor and its Host Galaxy

    NASA Technical Reports Server (NTRS)

    Castro-Tirado, Alberto J.; Moller, Palle; Garcia-Segura, Guillermo; Gorosabel, Javier; Perez, Enrique; deUgartePostigo, Antonio; Solano, Enrique; BarradoyNavascues, David; CastroCeron, Jose Marie; Kouveliotou, Chryssa

    2005-01-01

    We have obtained near-infrared and high-resolution optical spectroscopy of the bright afterglow of the very intense gamma-ray burst recorded on 2002, October 4 (GRB 021004). Besides of line emission in the near-IR allowing an independent measurement of the systemic redshift (z = 2.3304 plus or minus 0.0005), we find several absorption line groups spanning a range of about 3,000 kilometers per second in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 kilometers per second and narrow lines with velocity widths of only approximately 20 kilometers per second. By analogy with QSO absorption line studies, the relative velocities, widths, and degrees of ionization of the lines ("line-locking", "ionization-velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf-Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of approximately 10 solar mass yr(sup -l).

  18. Reconstruction algorithm realization with FPGA based on the emission spectral tomography

    NASA Astrophysics Data System (ADS)

    Leng, Biyan; Wan, Xiong; Zhang, Zhimin; Deng, Xiaoming; Luo, Ningning

    2010-10-01

    Reconstruction for Emission Spectral Tomography(EST) is based on thick and fast digital signal processing all along, and the computation quantity is astronomical. With the acknowledgement of SIRT, the parallel computing of FPGA and the flexibility of NIOS II high-speed computing power are well used. Through the hardware description language VERILOG HDL and costuming macros module as well as the embedded system NIOS II, then achieved the purpose of the reconstruction for EST.

  19. Progressive degeneration of the right temporal lobe studied with positron emission tomography.

    PubMed Central

    Tyrrell, P J; Warrington, E K; Frackowiak, R S; Rossor, M N

    1990-01-01

    A 79 year old man with a twelve year progressive history of prosopagnosia and recent naming difficulty, in whom other intellectual skills were preserved, is described. Positron emission tomography (PET) revealed an area of right temporal lobe hypometabolism, with an additional area of less severe hypometabolism at the left temporal pole. This may represent an example of progressive focal cortical degeneration similar to that associated with primary progressive dysphasia, but affecting the right temporal lobe. Images PMID:2292695

  20. Cancer Localization in the Prostate with F-18 Fluorocholine Position Emission Tomography

    DTIC Science & Technology

    2008-01-01

    prostate cancer sextant localization on the basis of measured fluorocholine uptake. The data acquired thus far with conventional PET in 15 subjects...emission tomography (PET) detection of malignancy in anatomical sextants of the prostate gland. The rationale for evaluating fluorocholine as an...correlation with step-section prostate histopathology to assess the accuracy of sextant detection of prostate malignancy based on this technique. With

  1. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  2. Bimedial rectus hypermetabolism in convergence spasm as observed on positron emission tomography.

    PubMed

    Jeong, Seong-Hae; Oh, Young-Mi; Kim, Chae-Yong; Kim, Ji Soo

    2008-09-01

    A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.

  3. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    PubMed

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  4. X-Raying Extended Emission and Rapid Decay of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito

    2015-09-01

    Extended emission in short gamma-ray bursts (SGRBs) is a mystery. By conducting time-resolved spectral analyses of the nine brightest events observed by the Swift-XRT, we classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening for hundreds of seconds after the SGRB trigger and is also detected by the Swift-BAT. The other is a dim afterglow that only shows power-law decay over 104 s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the α-β correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests that the emission is from a photosphere or a patchy surface, and manifests the stopping via a central engine such as magnetic reconnection at the black hole.

  5. X-RAYING EXTENDED EMISSION AND RAPID DECAY OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Toyanago, Asuka; Nakamura, Takashi; Takahashi, Keitaro; Kashiyama, Kazumi; Ioka, Kunihito E-mail: yonetoku@astro.s.kanazawa-u.ac.jp

    2015-09-20

    Extended emission in short gamma-ray bursts (SGRBs) is a mystery. By conducting time-resolved spectral analyses of the nine brightest events observed by the Swift-XRT, we classify the early X-ray emission of SGRBs into two types. One is the extended emission with exponentially rapid decay, which shows significant spectral softening for  hundreds of seconds after the SGRB trigger and is also detected by the Swift-BAT. The other is a dim afterglow that only shows power-law decay over 10{sup 4} s. The correlations between the temporal decay and spectral indices of the extended emissions are inconsistent with the α–β correlation expected for the high-latitude curvature emission from a uniform jet. The observed too-rapid decay suggests that the emission is from a photosphere or a patchy surface, and manifests the stopping via a central engine such as magnetic reconnection at the black hole.

  6. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    SciTech Connect

    Gordin, Arie . E-mail: ariegor@hotmail.com; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-06-01

    Purpose: To assess the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients.

  7. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  8. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  9. Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer's disease

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Rosen, T.J.; Nagel, J.S.; English, R.J.; Growdon, J.H. )

    1990-04-01

    To determine the diagnostic accuracy of iofetamine hydrochloride I 123 (IMP) with single photon emission computed tomography in Alzheimer's disease, we studied 58 patients with AD and 15 age-matched healthy control subjects. We used a qualitative method to assess regional IMP uptake in the entire brain and to rate image data sets as normal or abnormal without knowledge of subjects'clinical classification. The sensitivity and specificity of IMP with single photon emission computed tomography in AD were 88% and 87%, respectively. In 15 patients with mild cognitive deficits (Blessed Dementia Scale score, less than or equal to 10), sensitivity was 80%. With the use of a semiquantitative measure of regional cortical IMP uptake, the parietal lobes were the most functionally impaired in AD and the most strongly associated with the patients' Blessed Dementia Scale scores. These results indicated that IMP with single photon emission computed tomography may be a useful adjunct in the clinical diagnosis of AD in early, mild disease.

  10. Variable VHE gamma-ray emission from Markarian 501

    SciTech Connect

    Albert, Jordi

    2007-02-06

    The blazar Markarian 501 (Mrk 501) was observed at energies above 100 GeV with the MAGIC telescope from May through July 2005. The high sensitivity of the instrument enabled the determination of the flux and spectrum of the source on a night-by-night basis. Throughout our observational campaign, the flux from Mrk 501 was found to vary by an order of magnitude, and to be correlated with spectral changes. Intra-night flux variability with flux-doubling times down to 2 minutes was also observed. The strength of variability increased with the energy of the {gamma}-ray photons. The energy spectra were found to harden significantly with increasing flux, and a spectral peak clearly showed up during very active states. The position of the spectral peak seems to be correlated with the source luminosity.

  11. DETECTION OF EXTENDED VHE GAMMA RAY EMISSION FROM G106.3+2.7 WITH VERITAS

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Chow, Y. C.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Butt, Y.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W. E-mail: wakely@uchicago.ed

    2009-09-20

    We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3sigma (pre-trials) detection has a full angular extent of roughly 0.{sup 0}6 by 0.{sup 0}4. Most notably, the centroid of the VHE emission is centered near the peak of the coincident {sup 12}CO (J = 1-0) emission, 0.{sup 0}4 away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N {sub 0}(E/3 TeV){sup -G}AMMA with a differential index of GAMMA = 2.29 +- 0.33{sub stat} +- 0.30{sub sys} and a flux of N{sub 0} = (1.15 +- 0.27{sub stat} +- 0.35{sub sys}) x 10{sup -13} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context.

  12. New Limits on Gamma-Ray Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10-11 photons cm-2 s-1 (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 1044 photons s-1. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  13. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    SciTech Connect

    Saz Parkinson, P. M.

    2007-07-12

    Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90%) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

  14. Fast Radio Bursts with Extended Gamma-Ray Emission?

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-02-01

    We consider some general implications of bright γ-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ-ray energy is comparable to that of the early afterglow or extended emission of short γ-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  15. Compact sources as the origin of the soft gamma-ray emission of the Milky Way.

    PubMed

    Lebrun, F; Terrier, R; Bazzano, A; Bélanger, G; Bird, A; Bouchet, L; Dean, A; Del Santo, M; Goldwurm, A; Lund, N; Morand, H; Parmar, A; Paul, J; Roques, J-P; Schönfelder, V; Strong, A W; Ubertini, P; Walter, R; Winkler, C

    2004-03-18

    The Milky Way is known to be an abundant source of gamma-ray photons, now determined to be mainly diffuse in nature and resulting from interstellar processes. In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did not allow for a clear estimate of the contribution from such sources. Even the best imaging experiment revealed only a few point sources, accounting for about 50% of the total Galactic flux. Theoretical studies were unable to explain the remaining intense diffuse emission. Investigating the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium. Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes.

  16. High-energy emissions from the gamma-ray binary LS 5039

    SciTech Connect

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.; Tam, P. H. T.; Kong, A. K. H.; Hui, C. Y. E-mail: gene930@connect.hku.hk

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  17. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    SciTech Connect

    Perley, D. A.; Metzger, B. D.; Butler, N. R.; Bloom, J. S.; Miller, A. A.; Filippenko, A. V.; Li, W.; Granot, J.; Sakamoto, T.; Gehrels, N.; Ramirez-Ruiz, E.; Bunker, A.; Chen, H.-W.; Glazebrook, K.; Hall, P. B.; Hurley, K. C.; Kocevski, D.; Norris, J.

    2009-05-10

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  18. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS

    SciTech Connect

    Aliu, E.; Errando, M.; Archambault, S.; Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Duke, C.; Dumm, J.; Dwarkadas, V. V.; Falcone, A. E-mail: smcarthur@ulysses.uchicago.edu; and others

    2013-02-10

    We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0. Degree-Sign 30 (0. Degree-Sign 24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N {sub 0}(E/3 TeV){sup -{Gamma}}, with a differential spectral index of {Gamma} = 2.2 {+-} 0.2{sub stat} {+-} 0.3{sub sys}, and normalization N {sub 0} = (9.1 {+-} 1.3{sub stat} {+-} 1.7{sub sys}) Multiplication-Sign 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux, F {sub {gamma}} = 4.0 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.

  19. DETECTION OF GAMMA-RAY POLARIZATION IN PROMPT EMISSION OF GRB 100826A

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Sakashita, Tomonori; Morihara, Yoshiyuki; Takahashi, Takuya; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji; Kubo, Shin

    2011-12-20

    We report the polarization measurement in prompt {gamma}-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter on board the small solar-power-sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% (3.5{sigma}) confidence level, and the average polarization degree ({Pi}) of 27% {+-} 11% with 99.4% (2.9{sigma}) confidence level. Here the quoted errors are given at 1{sigma} confidence level for the two parameters of interest. The systematic errors have been carefully included in this analysis, unlike other previous reports. Such a high {Pi} can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of {approx}{Gamma}{sup -1}. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more detail.

  20. Chemical effects of CeL(gamma4) emission spectra for Ce compounds.

    PubMed

    Hayashi, Hisashi; Takehara, Yuki; Kawamura, Naomi; Mizumaki, Masaichiro

    2010-01-01

    High-resolution CeL(gamma4) emission spectra of CeF(3), Ce(2)S(3), CeF(4), and CeO(2) have been measured using a multicrystal, multidetector spectrometer. The spectra exhibited substantial differences depending on the chemical environment of the Ce ions. By comparing the observed CeO(2) spectrum with the band calculations, we determined that the observed chemical effects of the main emission line were primarily attributable to the transitions of the Ce5p band; the high-energy tail at around 6.539 keV was assigned to the ligand p-->Ce2s cross transition. Further, a key difference between CeL(gamma4) and EuL(gamma4) is discussed with reference to CeL(1)- and EuL(1)-X-ray absorption fine-structures (XAFS). Possible applications of CeL(gamma4) emissions to material characterization are also suggested.

  1. A LEPTONIC MODEL OF STEADY HIGH-ENERGY GAMMA-RAY EMISSION FROM Sgr A*

    SciTech Connect

    Kusunose, Masaaki; Takahara, Fumio E-mail: takahara@vega.ess.sci.osaka-u.ac.jp

    2012-03-20

    Recent observations of Sgr A* by Fermi and HESS have detected steady {gamma}-ray emission in the GeV and TeV bands. We present a new model to explain the GeV {gamma}-ray emission by inverse Compton scattering by nonthermal electrons supplied by the NIR/X-ray flares of Sgr A*. The escaping electrons from the flare regions accumulate in a region with a size of {approx}10{sup 18} cm and magnetic fields of {approx}< 10{sup -4} G. Those electrons produce {gamma}-rays by inverse Compton scattering off soft photons emitted by stars and dust around the central black hole. By fitting the GeV spectrum, we find constraints on the magnetic field and the energy density of optical-UV radiation in the central 1 pc region around the supermassive black hole. While the GeV spectrum is well fitted by our model, the TeV {gamma}-rays, whose spectral index is different from that of the GeV emission, may be from different sources such as pulsar wind nebulae.

  2. Characterization of pulmonary lesions in patients with suspected lung cancer: computed tomography versus [¹⁸F] fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Harders, Stefan Walbom; Madsen, Hans Henrik; Hjorthaug, Karin; Arveschoug, Anne Kirstine; Rasmussen, Torben Riis; Meldgaard, Peter; Andersen, Johanne Bach; Pilegaard, Hans Kristian; Hager, Henrik; Rehling, Michael; Rasmussen, Finn

    2012-10-16

    Pulmonary nodules are of high clinical importance, given they may prove to be an early manifestation of lung cancer. Pulmonary nodules are small, focal, radiographic opacities that may be solitary or multiple. A solitary pulmonary nodule is a single, small (<-30 mm in diameter) opacity. Larger opacities are called masses and are often malignant. As imaging techniques improve and more nodules are detected, the optimal management of pulmonary nodules remains unclear. However, the question of malignancy of any given nodule remains the same. A standard contrast-enhanced computed tomography (CT) scan is often the first examination, followed by a number of other examinations. The purpose of this study was to examine the clinical feasibility of CT versus integrated [18F]fluorodeoxyglucose-positron emission tomography (PET)/low-dose CT scan in patients with suspected lung cancer and pulmonary lesions on CT. All results were controlled for reproducibility. We found that when used early in the work-up of the lesions, CT raised the prevalence of lung cancer in the population to the point where further diagnostic imaging examination could be considered futile. We also found that the overall diagnostic accuracy, as well as the classification probabilities and predictive values of the two modalities were not significantly different; the reproducibility of these results was substantial.

  3. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    SciTech Connect

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  4. Short and long gamma-ray bursts: same emission mechanism?

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Nava, L.

    2011-11-01

    We study the spectral evolution on second and subsecond time-scales in 11 long and 12 short gamma-ray bursts (GRBs) with peak flux >8.5 × 10-6 erg cm-2 s (8 keV-35 MeV) detected by the Fermi satellite. The peak flux correlates with the time-averaged peak energy in both classes of bursts. The peak energy evolution, as a function of time, tracks the evolution of the flux on short time-scales in both short and long GRBs. We do not find evidence of a hard-to-soft spectral evolution. While short GRBs have observed peak energies larger than few MeV during most of their evolution, long GRBs can start with a softer peak energy (of few hundreds keV) and become as hard as short ones (i.e. with Eobspeak larger than few MeV) at the peak of their light curve. Six GRBs in our sample have a measured redshift. In these few cases we find that their correlations between the rest frame Epeak and the luminosity Liso are less scattered than their correlations in the observer frame between the peak energy Eobspeak and the flux P. We find that the rest frame Epeak of long bursts can be as high or even larger than that of short GRBs and that short and long GRBs follow the same Epeak(t)-Liso(t) correlation, despite the fact that they likely have different progenitors.

  5. COS-B gamma ray sources beyond the predicted diffuse emission

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  6. High energy (gamma)-ray emission from the starburst nucleus of NGC 253

    SciTech Connect

    Domingo-Santamaria, E; Torres, D F

    2005-06-15

    The high density medium that characterizes the central regions of starburst galaxies and its power to accelerate particles up to relativistic energies make these objects good candidates as {gamma}-rays sources. In this paper, a self-consistent model of the multifrequency emission of the starburst galaxy NGC 253, from radio to gamma-rays, is presented. The model is in agreement with all current measurements and provides predictions for the high energy behavior of the NGC 253 central region. Prospects for observations with the HESS array and GLAST satellite are especially discussed.

  7. AGILE Detection of Enhanced Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Piano, G.; Tavani, M.; Munar-Adrover, P.; Bulgarelli, A.; Verrecchia, F.; Donnarumma, I.; Minervini, G.; Fioretti, V.; Pittori, C.; Lucarelli, F.; Vercellone, S.; Striani, E.; Ursi, A.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-03-01

    The AGILE-GRID detector is revealing gamma ray emission above 100 MeV from a source positionally consistent with the microquasar Cygnus X-3. Integrating from 2017-02-27 UT 03:00:00 to 2017-03-01 UT 03:00:00 (MJD 57811.125 - 57813.125), a preliminary multi-source likelihood analysis detects a gamma-ray flux F( > 100 MeV) = (3 +/- 1) x 10^-6 photons/cm^2/s with a detection significance near 4 sigma.

  8. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    NASA Astrophysics Data System (ADS)

    Rojas-Bravo, César; Araya, Miguel

    2016-11-01

    Recent studies have found a positive correlation between the star formation rate (SFR) of galaxies and their gamma-ray luminosity. Galaxies with a high SFR are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative `Pass 8' data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma-ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitters as previously thought.

  9. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  10. NEW LIMITS ON GAMMA-RAY EMISSION FROM GALAXY CLUSTERS

    SciTech Connect

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S. E-mail: xdai@ou.edu

    2014-11-01

    Galaxy clusters are predicted to produce γ-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 78 richest nearby clusters (z < 0.12) from the Two Micron All Sky Survey cluster catalog. We obtain the lowest limit on the photon flux to date, 2.3 × 10{sup –11} photons cm{sup –2} s{sup –1} (95% confidence) per cluster in the 0.8-100 GeV band, which corresponds to a luminosity limit of 3.5 × 10{sup 44} photons s{sup –1}. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and γ-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure.

  11. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    SciTech Connect

    Kramar, M.; Lin, H.; Tomczyk, S. E-mail: lin@ifa.hawaii.edu

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  12. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma.

    PubMed

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley Pl; Sagebiel, Richard W; Iii, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan.

  13. Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

    SciTech Connect

    Chang Guoping; Chang Tingting; Pan Tinsu; Clark, John W.; Mawlawi, Osama R.

    2012-05-01

    Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

  14. Improving 18F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies

    PubMed Central

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-18F-fluoro-D-glucose (18F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  15. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  16. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary.

    PubMed

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-11-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged.

  17. The value of combining single photon emission computerised tomography and computerised tomography in the investigation of spondylolysis.

    PubMed

    Gregory, P L; Batt, M E; Kerslake, R W; Scammell, B E; Webb, J F

    2004-10-01

    The aim of this study was to assess the diagnostic value of combining single photon emission computerised tomography (SPECT) with reverse gantry computerised tomography (rg-CT) in the investigation of spondylolysis. Patient characteristics and imaging results in 118 patients, aged 8-44 years, with low back pain (LBP) were analysed. SPECT showed increased scintigraphic uptake in 80 patients, and spondylolysis was identified on rg-CT in 53. The Cohen Kappa ratio of 0.362 (95% CI: 0.198-0.526) suggests only fair agreement for the result of increased scintigraphic activity with the finding of spondylolysis on rg-CT. We conclude that these investigations give mutually exclusive information, which leads to four diagnostic categories. When there was increased scintigraphic activity on SPECT, 58.8% (95% CI: 48.0-69.5%) of patients had spondylolysis on rg-CT. With rest from provoking activities, these lesions may heal. We interpret the findings of increased scintigraphic activity, but no spondylolysis demonstrated on rg-CT as indicating a bone stress response. These also require rest from provoking activity to prevent a stress fracture developing. In this study, 84.2% (95% CI: 72.67-95.8%) of those patients without increased activity on SPECT had no spondylolysis identified on rg-CT. These patients may need further investigations such as magnetic resonance imaging (MRI) to diagnose pathology, which typically does not involve the posterior elements--but rest from sport may not be so important. There were five patients in our study, without increased scintigraphic activity, but in whom bilateral chronic-appearing (wide separation, smooth sclerotic bone margins) spondylolyses were identified at L5. These all were anticipated from previous plain radiographs or MRI. This group will almost certainly not heal, and if the spondylolyses are the cause of pain these vertebrae will need stabilisation by surgery if physiotherapy fails.

  18. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary

    PubMed Central

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-01-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged. PMID:27895731

  19. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  20. The High-energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.; VonMintigny, C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approx. = 1.7-1.8 and column density N(sub H) approx. = 5 x 10(exp 21)/ sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approx. 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with Energetic Gamma Ray Experiment Telescope (EGRET). The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approx. = 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approx. 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  1. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  2. GABA A receptor abnormalities in Prader-Willi syndrome assessed with positron emission tomography and [11C]flumazenil.

    PubMed

    Lucignani, Giovanni; Panzacchi, Andrea; Bosio, Laura; Moresco, Rosa Maria; Ravasi, Laura; Coppa, Isabella; Chiumello, Giuseppe; Frey, Kirk; Koeppe, Robert; Fazio, Ferruccio

    2004-05-01

    Prader-Willi syndrome (PWS) is a multi-system disorder characterized clinically by abnormal mental and physical development. PWS patients have a deletion in an imprinted region on paternal chromosome 15 (15q11-13), maternal disomy for this segment, or rarely, a chromosomal imprinting center deletion that gives rise to suppression of the equivalent paternal genes. Within the affected segment of chromosome 15 are genes encoding the alpha(5), beta(3) and gamma(3) subunits of the gamma-aminobutyric acid type-A (GABA(A)) receptor. Therefore, altered neurobehavioral function could arise in PWS due directly to altered GABA(A) receptor composition and expression, or alternatively, from brain developmental and maturational effects of these or other genes in the imprinted region. The aim of the present study was to assess cerebral GABA(A) receptors in PWS with the use of positron emission tomography of the benzodiazepine binding site employing [11C]flumazenil ([11C]FMZ). A reduction in [11C]FMZ binding was found predominantly in the cingulate, frontal and temporal neocortices and insula in six adult PWS patients compared to nine normal subjects. A possible role for the deleted beta(3) subunit gene in PWS is supported in part by the wide cortical distribution of its mRNA expression and the effects of experimental knockouts on benzodiazepine binding described in prior studies. Altered GABA(A) receptor composition or number in these cortical regions may account for neurobehavioral abnormalities in PWS including mild mental retardation, poor impulse control, and impaired responses to somatic pain.

  3. Development and Operation of a High Resolution Positron Emission Tomography System to Perform Metabolic Studies on Small Animals.

    NASA Astrophysics Data System (ADS)

    Hogan, Matthew John

    A positron emission tomography system designed to perform high resolution imaging of small volumes has been characterized. Two large area planar detectors, used to detect the annihilation gamma rays, formed a large aperture stationary positron camera. The detectors were multiwire proportional chambers coupled to high density lead stack converters. Detector efficiency was 8%. The coincidence resolving time was 500 nsec. The maximum system sensitivity was 60 cps/(mu)Ci for a solid angle of acceptance of 0.74(pi) St. The maximum useful coincidence count rate was 1500 cps and was limited by electronic dead time. Image reconstruction was done by performing a 3-dimensional deconvolution using Fourier transform methods. Noise propagation during reconstruction was minimized by choosing a 'minimum norm' reconstructed image. In the stationary detector system (with a limited angle of acceptance for coincident events) statistical uncertainty in the data limited reconstruction in the direction normal to the detector surfaces. Data from a rotated phantom showed that detector rotation will correct this problem. Resolution was 4 mm in planes parallel to the detectors and (TURN)15 mm in the normal direction. Compton scattering of gamma rays within a source distribution was investigated using both simulated and measured data. Attenuation due to scatter was as high as 60%. For small volume imaging the Compton background was identified and an approximate correction was performed. A semiquantitative blood flow measurement to bone in the leg of a cat using the ('18)F('-) ion was performed. The results were comparable to investigations using more conventional techniques. Qualitative scans using ('18)F labelled deoxy -D-glucose to assess brain glucose metabolism in a rhesus monkey were also performed.

  4. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    NASA Technical Reports Server (NTRS)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R < 1018 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea < 6 keV suggest a magnetic field strength of B approx. 10(exp 5) G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of approx. 2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can

  5. Quantification of the activity of tritium produced during the routine synthesis of (18)F fluorodeoxyglucose for positron emission tomography.

    PubMed

    Marshall, C; Talboys, M A; Bukhari, S; Evans, W D

    2014-06-01

    Gamma emitting radioactive by-products generated during the cyclotron irradiation of (18)O labelled water by protons to produce (18)FDG (fluorodeoxyglucose) for positron emission tomography are well characterised. However, the production of tritium ((3)H) through the (18)O(p,t)(16)O nuclear reaction has not been investigated in detail. The aim of this study was to measure tritium activity produced during a large number of (18)FDG production runs in order to obtain a better perspective on its impact on radioactive waste management, particularly as regards storage and disposal. Tritium was assayed by liquid scintillation counting in recovered (18)O water from 24 separate production runs. The mean (SD) values of activity and activity concentration were 170 (20) kBq and 81 (8) kBq ml(-1) respectively. Both quantities were positively correlated with the activity of (18)F. Tritium was detected in much lower concentration in water used to rinse the target vessel. The activity of tritium is such that it is exempt from regulatory control and may be combined with bulk non-active waste for disposal as Very Low Level Waste. However, variations in the irradiation conditions or the procedures for the collection of recovered water might result in its classification as Low Level Waste, necessitating a more complex disposal regime.

  6. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Hui, C. Y.; Wu, E. M. H.; Takata, J.; Cheng, K. S. E-mail: cyhui@cnu.ac.kr

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  7. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  8. Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U

    SciTech Connect

    Ishii, K.; Okamoto, A.; Kitajima, S.; Sasao, M.; Shinohara, K.; Ishikawa, M.; Baba, M.; Isobe, M.

    2010-10-15

    A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.

  9. Positron emission tomography demonstrated localized luxury perfusion in subacute sclerosing panencephalitis.

    PubMed

    Yoshikawa, H; Fueki, N; Yoneyama, H; Ogawa, M; Sakuragawa, N

    1990-10-01

    Positron emission tomography (PET) was performed on two patients in different stages of subacute sclerosing panencephalitis (SSPE) and compared with the concurrent computed tomography (CT) findings and clinical status. Case 1, which was in stage II, showed luxury perfusion in the anterior half of the cerebrum and decreases of cerebral blood flow and oxygen metabolism in the right frontal watershed zone, where CT showed low density. Case 2, which was in stage III, showed marked decreases of cerebral blood flow and cerebral metabolic rate of oxygen in all regions except the occipital region. The present PET study demonstrated that SSPE showed inflammatory-destructive progression and rostral-caudal progression. Further, it was suspected that low density on CT scan, especially in the watershed zone, resulted partly from disturbances in cerebral circulation.

  10. Positron emission tomography in minor ischemic stroke using oxygen-15 steady-state technique

    SciTech Connect

    Pozzilli, C.; Itoh, M.; Matsuzawa, T.; Fukuda, H.; Abe, Y.; Sato, T.; Takeda, S.; Ido, T.

    1987-04-01

    A study with positron emission tomography (PET) was performed on 10 patients with ischemic stroke and mild disability. The patients underwent cerebral angiography, x-ray computed tomography (CT) scan and regional cerebral measurements of CBF, CMRO2, oxygen extraction ratio (OER), and cerebral blood volume (CBV). Only minor arterial involvement was detected by angiography. In all patients, PET images of functional defects were more extensive than the corresponding CT hypodensity, and there were statistically significant reductions in CBF, CMRO2, and CBF/CBV ratio as compared with control subjects. Half of the regions analyzed in the affected hemisphere demonstrated a disruption of the normal coupling between CBF and CMRO2 as reflected by OER values significantly higher or lower than those of the corresponding region of the contralateral hemisphere. The pathophysiological pattern of high OER combined with a reduction in CBF proportionally greater than the reduction in CMRO2 was particularly indicative of regional chronic hemodynamic compromise in these patients.

  11. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases.

  12. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  13. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography.

    PubMed

    Leenders, K L; Frackowiak, R S; Quinn, N; Marsden, C D

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilisation, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilisation paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-[18F]-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  14. Hemiballismus: Study of a case using positron emission tomography with 18fluoro-2-deoxyglucose

    SciTech Connect

    Dubinsky, R.M.; Greenberg, M.; Di Chiro, G.; Baker, M.; Hallett, M. )

    1989-01-01

    A 64-year-old man had right-sided persistent hemiballismus. Cerebral computed tomography (CT) and 0.5-T magnetic resonance imaging (MRI) showed no abnormalities, but 1.5-T MRI showed decreased signal intensity of the putamina, greater on the left than on the right. The subthalamic area was normal on CT and MRI. Positron emission tomography with 18fluoro2-deoxyglucose showed marked hypometabolism of the left putamen (60% of the right) and hypermetabolism of the left parietal lobe (138% of the right). The decreased metabolism of the left putamen may indicate a reduction in neuronal firing. The pathophysiology of the hemiballismus in this case may be loss of tonic inhibition of the lateral globus pallidus from the putamen, leading in turn to greater inhibition of the subthalamic nucleus, less excitation of the medial globus pallidus, and less inhibition of the thalamus and motor cortex, and thus allowing expression of the ballistic movements.

  15. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  16. PHASE-AVERAGED SPECTRA AND LUMINOSITIES OF GAMMA-RAY EMISSIONS FROM YOUNG ISOLATED PULSARS

    SciTech Connect

    Li, X.; Jiang, Z. J.; Zhang, L.

    2013-03-10

    We study the phase-averaged spectra and luminosities of {gamma}-ray emissions from young, isolated pulsars within a revised outer gap model. In the revised version of the outer gap, there are two possible cases for the outer gaps: the fractional size of the outer gap is estimated through the photon-photon pair process in the first case (Case I), and is limited by the critical field lines in the second case (Case II). The fractional size is described by Case I if the fractional size at the null charge surface in Case I is smaller than that in Case II, and vice versa. Such an outer gap can extend from the inner boundary, whose radial distance to the neutron star is less than that of the null charge surface to the light cylinder for a {gamma}-ray pulsar with a given magnetic inclination. When the shape of the outer gap is determined, assuming that high-energy emission at an averaged radius of the field line in the center of the outer gap, with a Gaussian distribution of the parallel electric field along the gap height, represents typical emission, the phase-averaged {gamma}-ray spectrum for a given pulsar can be estimated in the revised model with three model parameters. We apply the model to explain the phase-averaged spectra of the Vela (Case I) and Geminga (Case II) pulsars. We also use the model to fit the phase-averaged spectra of 54 young, isolated {gamma}-ray pulsars, and then calculate the {gamma}-ray luminosities and compare them with the observed data from Fermi-LAT.

  17. Very high energy gamma-ray emission from Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Saxon, Dana Boltuch

    Supernova remnant (SNR) G120.1+1.4 (also known as Tycho's SNR) is the remnant of one of only five confirmed historical supernovae. As such, it has been well studied across the electromagnetic spectrum. This thesis describes the first statistically significant detection of very high energy (VHE) (˜ 100 GeV to 100 TeV) gamma rays from Tycho's SNR, reported in 2011 by the VERITAS collaboration. The analysis that led to that detection was performed by this author, and this dissertation will discuss the process in detail. Subsequently, a statistically significant detection in high energy (HE) (˜ 30 MeV to 100 GeV) gamma rays was reported by other authors using data from the Fermi Gamma-Ray Space Telescope. Comparison of models to the spectral energy distribution of the photon flux from this remnant in HE and VHE gamma rays favors a hadronic origin for the emission, particularly when combined with current X-ray data, although a leptonic origin cannot be ruled out at this time. This is significant because a confirmed hadronic origin for the gamma-ray emission would identify this SNR as a site of cosmic ray acceleration, providing observational evidence for the idea that SNRs are the source of the Galactic cosmic ray population. Chapter 1 of this dissertation will provide historical background on Tycho's SNR, along with a summary of modern observations of the remnant across the electromagnetic spectrum. Chapter 2 is a discussion of the role played by SNRs in the process of cosmic ray acceleration, including both theoretical underpinnings and observational evidence. Chapter 3 provides an overview of the field of VHE gamma-ray astronomy, with discussions of gamma-ray production mechanisms and gamma-ray source classes. Chapter 4 describes the instruments used to observe HE and VHE gamma rays. Chapter 5 is a discussion of general analysis methods and techniques for data from Imaging Atmospheric Cherenkov Telescopes (IACTs). Chapter 6 provides details about the specific

  18. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  19. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy

    NASA Astrophysics Data System (ADS)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; La Rosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed [1-3]. Here, the 11B(p,α)2α nuclear fusion reaction channel, where three alpha particles are produced with an average energy around 4 MeV, is considered [4]. These alphas are able to penetrate the cells nucleus and strongly damage their DNA. In addition, gamma prompts emitted by the proton Boron nuclear reactions can be used for on-line proton beam imaging purposes. In this work an experimental study of the gamma prompt emissions from the proton Boron nuclear reactions has been carried out with the main aim to understand and quantify the most probable emission for future clinical applications.

  20. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  1. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Kuulkers, E.

    2016-06-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission. This work has been possible thanks to a Memorandum of Understanding with the LIGO-Virgo scientific collaboration and is presented on behalf of a larger collaboration.

  2. Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring

    PubMed Central

    Pinto, Marco; Dauvergne, Denis; Freud, Nicolas; Krimmer, Jochen; Létang, Jean M.; Testa, Etienne

    2016-01-01

    Monte Carlo tools have been long used to assist the research and development of solutions for proton therapy monitoring. The present work focuses on the prompt-gamma emission yields by comparing experimental data with the outcomes of the current version of Geant4 using all applicable proton inelastic models. For the case in study and using the binary cascade model, it was found that Geant4 overestimates the prompt-gamma emission yields by 40.2 ± 0.3%, even though it predicts the prompt-gamma profile length of the experimental profile accurately. In addition, the default implementations of all proton inelastic models show an overestimation in the number of prompt gammas emitted. Finally, a set of built-in options and physically sound Geant4 source code changes have been tested in order to try to improve the discrepancy observed. A satisfactory agreement was found when using the QMD model with a wave packet width equal to 1.3 fm2. PMID:26858937

  3. Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring.

    PubMed

    Pinto, Marco; Dauvergne, Denis; Freud, Nicolas; Krimmer, Jochen; Létang, Jean M; Testa, Etienne

    2016-01-01

    Monte Carlo tools have been long used to assist the research and development of solutions for proton therapy monitoring. The present work focuses on the prompt-gamma emission yields by comparing experimental data with the outcomes of the current version of Geant4 using all applicable proton inelastic models. For the case in study and using the binary cascade model, it was found that Geant4 overestimates the prompt-gamma emission yields by 40.2 ± 0.3%, even though it predicts the prompt-gamma profile length of the experimental profile accurately. In addition, the default implementations of all proton inelastic models show an overestimation in the number of prompt gammas emitted. Finally, a set of built-in options and physically sound Geant4 source code changes have been tested in order to try to improve the discrepancy observed. A satisfactory agreement was found when using the QMD model with a wave packet width equal to 1.3 fm(2).

  4. GeV emission from gamma-ray bursts: a radiative fireball?

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A.

    2010-04-01

    We study the emission observed at energies >100 MeV of 11 gamma-ray bursts (GRBs) detected by the Fermi-Large Area Telescope (LAT) until 2009 October. The GeV emission has three main properties: (i) its duration is often longer than the duration of the softer emission detected by the Gamma Burst Monitor onboard Fermi (this confirms earlier results from the Energetic Gamma-Ray Experiment Telescope); (ii) its spectrum is consistent with Fν ~ ν-1 and does not show strong spectral evolution; and (iii) for the brightest bursts the flux detected by the LAT decays as a power law with a typical slope t-1.5. We argue that the observed >0.1 GeV flux can be interpreted as afterglow emission shortly following the start of the prompt phase emission as seen at smaller frequencies. The decay slope is what is expected if the fireball emission is produced in the radiative regime, i.e. all dissipated energy is radiated away. We also argue that the detectability in the GeV energy range depends on the bulk Lorentz factor Γ of the bursts, being strongly favoured in the case of large Γ. This implies that the fraction of bursts detected at high energies corresponds to the fraction of bursts having the largest Γ. The radiative interpretation can help to explain why the observed X-ray and optical afterglow energetics are much smaller than the energetics emitted during the prompt phase, despite the fact that the collision with the external medium should be more efficient than internal shocks in producing the radiation that we see.

  5. DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

    NASA Astrophysics Data System (ADS)

    Xu, Zun-Lei; Caragiulo, Micaela; Chang, Jin; Duan, Kai-Kai; Fan, Yi-Zhong; Gargano, Fabio; Lei, Shi-Jun; Li, Xiang; Liang, Yun-Feng; Mazziotta, M. Nicola; Shen, Zhao-Qiang; Su, Meng; Tykhonov, Andrii; Yuan, Qiang; Zimmer, Stephan; Dampe Collaboration; Li, Bin; Zhao, Hai-Bin; Cneost Group

    2016-12-01

    The DArk Matter Particle Explorer (DAMPE), has detected variable gamma-ray emission from a source positionally coincident with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69) with redshift of z=1.037 (Schmidt 1965, ApJ, 141, 1295) and coordinates (J2000.0, from VLBI) of R.A.: 338.151704 deg, Dec.: 11.730807 deg (Johnston et al. 1995, AJ, 110, 880).

  6. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  7. An upper limit on the high-energy gamma-ray emission of Vela X-1

    NASA Technical Reports Server (NTRS)

    Mattox, J. R.; Oegelman, H.; Kanbach, G.

    1989-01-01

    The possibility of high-energy gamma-ray emission from the X-ray binary Vela X-1 was investigated by analyzing the COS-B satellite observations, using the COS-B X-ray detector for a phase coherent analysis in the search of rotational periodicity. The rotational upper limit is compared to the X-ray, TeV, and PeV fluxes reported by Chodil et al. (1967), North et al. (1984), and Protheroe et al. (1984), respectively. It was found that, under certain conditions, the upper limit determined here is not inconsistent with the reports of TeV and PeV emission.

  8. Contribution of Point Sources to the Soft Gamma-Ray Galactic Emission

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Lebrun, F.; Bélanger, G.; Goldwurm, A.; Strong, A. W.; Schoenfelder, V.; Bouchet, L.; Roques, J. P.; Parmar, A.

    2004-10-01

    The nature of the soft gamma-ray (20-200 keV) Galactic emission has been a matter of debate for a long time. Previous experiments have tried to sep- arate the point source contribution from the real in- terstellar emission, but with a rather poor spatial res- olution, they concluded that the interstellar emission could be a large fraction of the total Galactic emis- sion. INTEGRAL, having both high resolution and high sensitivity, is well suited to reassess more pre- cisely this problem. Using the INTEGRAL core pro- gram Galactic Center Deep Exposure (GCDE), we estimate the contribution of detected point sources to the total Galactic flux. Key words: Interstellar emission; INTEGRAL; IBIS/ISGRI.

  9. EARLY THERMAL X-RAY EMISSION FROM LONG GAMMA-RAY BURSTS AND THEIR CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-02-10

    We performed a series of hydrodynamical calculations of an ultrarelativistic jet propagating through a massive star and the circumstellar matter (CSM) to investigate the interaction between the ejecta and the CSM. We succeed in distinguishing two qualitatively different cases in which the ejecta are shocked and adiabatically cool. To examine whether the cocoon expanding at subrelativistic speeds emits any observable signal, we calculate the expected photospheric emission from the cocoon. It is found that the emission can explain early thermal X-ray emission recently found in some long gamma-ray bursts (GRBs). The result implies that the difference of the circumstellar environment of long GRBs can be probed by observing their early thermal X-ray emission.

  10. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  11. COSMIC-RAY STREAMING FROM SUPERNOVA REMNANTS AND GAMMA-RAY EMISSION FROM NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Yan Huirong; Lazarian, A.; Schlickeiser, R.

    2012-02-01

    High-energy gamma-ray emission has been detected recently from supernova remnants (SNRs) and their surroundings. The existence of molecular clouds near some of the SNRs suggests that the gamma rays originate predominantly from p-p interactions with cosmic rays (CRs) accelerated at a closeby SNR shock wave. Here we investigate the acceleration of CRs and the gamma-ray production in the cloud self-consistently by taking into account the interactions of the streaming instability and the background turbulence both at the shock front and in the ensuing propagation to the clouds. We focus on the later evolution of SNRs, when the conventional treatment of the streaming instability is valid but the magnetic field is enhanced due to Bell's current instability and/or the dynamo generation of magnetic field in the precursor region. We calculate the time dependence of the maximum energy of the accelerated particles. This result is then used to determine the diffusive flux of the runaway particles escaping the shock region, from which we obtain the gamma spectrum consistent with observations. Finally, we check the self-consistency of our results by comparing the required level of diffusion with the level of the streaming instability attainable in the presence of turbulence damping. The energy range of CRs subject to the streaming instability is able to produce the observed energy spectrum of gamma rays.

  12. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    NASA Astrophysics Data System (ADS)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  13. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  14. The High-Energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approximate 1.7-1.8 and column density N(sub H) approximately 5 x 10(exp 21) /sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approximately 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with EGRET. The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approximately 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approximately 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  15. Gamma-ray Spectral Characteristics of Thermal and Non-thermal Emission from Three Black Holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.; Wheaton, William A.

    2004-01-01

    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high (gamma)-ray intensity state ((gamma)2, for Cygnus X-l), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >= 3) that extended to 1 MeV or beyond. When the sources were in the low-intensity state ((gamma)0, for Cygnus X-l), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to 1 MeV can be characterized by a single power law with a relatively harder photon index 2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the 400 KeV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (10 keV) energies. The presence of the power-law component in both the high- and low-intensity gammaray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  16. GAMMA-RAY EMISSION FROM SUPERNOVA REMNANT INTERACTION WITH MOLECULAR CLUMPS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, R.

    2014-01-01

    Observations of the middle-aged supernova remnants IC 443, W28, and W51C indicate that the brightnesses at GeV and TeV energies are correlated with each other and with regions of molecular clump interaction, but not with the radio synchrotron brightness. We suggest that the radio emission is primarily associated with a radiative shell in the interclump medium of a molecular cloud, while the Gamma-ray emission is primarily associated with the interaction of the radiative shell with molecular clumps. The shell interaction produces a high pressure region, so that the Gamma-ray luminosity can be approximately reproduced even if shock acceleration of particles is not efficient, provided that energetic particles are trapped in the cooling shell. In addition, the GeV through TeV emission can be produced in the interaction region if the trapping occurs to sufficiently high energies. Alternatively, diffusive acceleration may be efficient; in this case the observed GeV emission can be approximately reproduced, but not the TeV emission.

  17. MAGIC CONSTRAINTS ON {gamma}-RAY EMISSION FROM CYGNUS X-3

    SciTech Connect

    Aleksic, J.; Blanch, O.; Antonelli, L. A.; Bonnoli, G.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bastieri, D.; Gonzalez, J. Becerra; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Boller, A.; Bock, R. K.; Tridon, D. Borla; Bordas, P.; Bosch-Ramon, V. E-mail: tysaito@mpp.mpg.d

    2010-09-20

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy {gamma} rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hr between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced {gamma}-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10{sup -12} photons cm{sup -2} s{sup -1} (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.

  18. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-06-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10-13 TeV cm-2 s-1 for the Geminga pulsar and 3.5 × 10-12 TeV cm-2 s-1 for the surrounding nebula at 50 GeV are the mostconstraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

  19. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  20. Study of the Diffuse Gamma-Ray Emission from the Galactic Plane with ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Branchini, P.; Budano, A.; Camarri, P.; Cao, Z.; Cardarelli, R.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liguori, G.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; Ning, C. C.; Panareo, M.; Perrone, L.; Pistilli, P.; Ruggieri, F.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.; ARGO-YBJ Collaboration

    2015-06-01

    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25° < l < 100° and Galactic latitudes |b|\\lt 5{}^\\circ . The energy range covered by this analysis, from ˜350 GeV to ˜2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40° < l < 100° and 65° < l < 85° (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.

  1. High energy neutron and pion-decay gamma-ray emissions from solar flares

    NASA Astrophysics Data System (ADS)

    Chupp, Edward L.; Ryan, James M.

    2009-01-01

    Solar flare gamma-ray emissions from energetic ions and electrons have been detected and measured to GeV energies since 1980. In addition, neutrons produced in solar flares with 100 MeV to GeV energies have been observed at the Earth. These emissions are produced by the highest energy ions and electrons accelerated at the Sun and they provide our only direct (albeit secondary) knowledge about the properties of the accelerator(s) acting in a solar flare. The solar flares, which have direct evidence for pion-decay gamma-rays, are unique and are the focus of this paper. We review our current knowledge of the highest energy solar emissions, and how the characteristics of the acceleration process are deduced from the observations. Results from the RHESSI, INTEGRAL and CORONAS missions will also be covered. The review will also cover the solar flare capabilities of the new mission, FERMI GAMMA RAY SPACE TELESCOPE, launched on 2008 June 11. Finally, we discuss the requirements for future missions to advance this vital area of solar flare physics.

  2. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  3. Fluorodeoxyglucose positron emission tomography (FDG-PET) for monitoring lymphadenopathy in the autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Rao, V Koneti; Carrasquillo, Jorge A; Dale, Janet K; Bacharach, Stephen L; Whatley, Millie; Dugan, Faith; Tretler, Jean; Fleisher, Thomas; Puck, Jennifer M; Wilson, Wyndham; Jaffe, Elaine S; Avila, Nilo; Chen, Clara C; Straus, Stephen E

    2006-02-01

    Autoimmune lymphoproliferative syndrome (ALPS) is associated with mutations that impair the activity of lymphocyte apoptosis proteins, leading to chronic lymphadenopathy, hepatosplenomegaly, autoimmunity, and an increased risk of lymphoma. We investigated the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) in discriminating benign from malignant lymphadenopathy in ALPS. We report that FDG avidity of benign lymph nodes in ALPS can be high and, hence, by itself does not imply presence of lymphoma; but FDG-PET can help guide the decision for selecting which of many enlarged nodes in ALPS patients to biopsy when lymphoma is suspected.

  4. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    PubMed

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  5. [Principles and applications of positron emission tomography (PET) in cardiology. PET in Mexico: a reality].

    PubMed

    Alexanderson Rosas, Erick; Kerik, Nora E; Unzek Freiman, Samuel; Fermon Schwaycer, Salomón

    2002-01-01

    Positron emission tomography (PET) offers the unique capability of measuring non-invasive by the regional myocardial substrate flow and the biochemical reaction index in millimol per minute per gram of myocardial tissue. PET also allows for the assessment or quantification of regional myocardial blood flow, cardiac metabolism, ventricular function, myocardial viability, as well as autonomous nervous system, research and evaluating of dilated myocardiopathy and of ventricular hypertrophy. PET's success is based on the radioisotopes properties, their very short half-life allows for the administration of large doses.

  6. Revocation of regulation on positron emission tomography drug products--FDA. Final rule; revocation.

    PubMed

    1997-12-19

    The Food and Drug Administration (FDA) is revoking a regulation on positron emission tomography (PET) radiopharmaceutical drug products. The regulation permits FDA to approve requests from manufacturers of PET drugs for exceptions or alternatives to provisions of the current good manufacturing practice (CGMP) regulations. FDA is taking this action in accordance with provisions of the Food and Drug Administration Modernization Act of 1997 (Modernization Act). Elsewhere in this issue of the Federal Register, FDA is publishing a notice revoking two notices concerning certain guidance documents on PET drugs and the guidance documents to which the notices relate.

  7. Current status and future needs for standards of radionuclides used in positron emission tomography.

    PubMed

    Zimmerman, B E

    2013-06-01

    Positron Emission Tomography (PET) is being increasingly used as a quantitative technique for detecting disease and monitoring patient progress during treatment. To ensure the validity of the quantitative information derived from the imaging data, it is imperative that all radioactivity measurements that are part of the imaging procedure be traceable to national or international standards. This paper reviews the current status of standards for positron emitting radionuclides (e.g., (18)F, (68)Ge/(68)Ga, and (124)I) and suggests needs for future work.

  8. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F).

  9. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    SciTech Connect

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  10. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  11. Neuro-imaging and positron emission tomography of congenital homonymous hemianopsia.

    PubMed

    Bosley, T M; Kiyosawa, M; Moster, M; Harbour, R; Zimmerman, R; Savino, P J; Sergott, R C; Alavi, A; Reivich, M

    1991-04-15

    Congenital homonymous hemianopsia is an uncommon asymptomatic visual field defect discovered typically in young adult life that is caused by a diverse group of insults to the retrochiasmal afferent visual system occurring prenatally, at birth, or during early childhood. We treated eight patients with congenital homonymous hemianopsia; seven with damage involving the optic radiations and one with an abnormality of the optic tract. We performed positron emission tomography using 18F-fluoro-2-deoxyglucose on two patients with dense homonymous hemianopsias, lesions of the contralateral optic radiations, and largely intact occipital cortex. These studies showed minimal abnormalities in resting visual cortex glucose metabolism of the affected visual cortex.

  12. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  13. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility.

    PubMed

    da Silva, Teógenes A; Guimarães, Margarete C; Meireles, Leonardo S; Teles, Luciana L D; Lacerda, Marco Aurélio S

    2016-11-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent Hp(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility.

  14. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    SciTech Connect

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Meyer, G.A.; Schwab, J.P.; Flatley, T.J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.; Knobel, J.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT.

  15. Positron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  16. CONSTRAINTS ON THE SYNCHROTRON EMISSION MECHANISM IN GAMMA-RAY BURSTS

    SciTech Connect

    Beniamini, Paz; Piran, Tsvi E-mail: tsvi.piran@mail.huji.ac.il

    2013-05-20

    We reexamine the general synchrotron model for gamma-ray bursts' (GRBs') prompt emission and determine the regime in the parameter phase space in which it is viable. We characterize a typical GRB pulse in terms of its peak energy, peak flux, and duration and use the latest Fermi observations to constrain the high-energy part of the spectrum. We solve for the intrinsic parameters at the emission region and find the possible parameter phase space for synchrotron emission. Our approach is general and it does not depend on a specific energy dissipation mechanism. Reasonable synchrotron solutions are found with energy ratios of 10{sup -4} < {epsilon}{sub B}/{epsilon}{sub e} < 10, bulk Lorentz factor values of 300 < {Gamma} < 3000, typical electrons' Lorentz factor values of 3 Multiplication-Sign 10{sup 3} < {gamma}{sub e} < 10{sup 5}, and emission radii of the order 10{sup 15} cm < R < 10{sup 17} cm. Most remarkable among those are the rather large values of the emission radius and the electron's Lorentz factor. We find that soft (with peak energy less than 100 keV) but luminous (isotropic luminosity of 1.5 Multiplication-Sign 10{sup 53}) pulses are inefficient. This may explain the lack of strong soft bursts. In cases when most of the energy is carried out by the kinetic energy of the flow, such as in the internal shocks, the synchrotron solution requires that only a small fraction of the electrons are accelerated to relativistic velocities by the shocks. We show that future observations of very high energy photons from GRBs by CTA could possibly determine all parameters of the synchrotron model or rule it out altogether.

  17. Measurement of direct photon emission in the K(L) ---> pi+ pi- gamma decay mode

    SciTech Connect

    Abouzaid, E.; Arenton, M.; Barker, A.R.; Bellantoni, L.; Bellavance, A.; Blucher, E.; Bock, G.J.; Cheu, E.; Coleman, R.; Corcoran, M.D.; Corti, G.; /Virginia U. /Wisconsin U., Madison

    2006-04-01

    In this paper the KTeV collaboration reports the analysis of 112.1 x 10{sup 3} candidate K{sub L} {yields} {pi}{sup +}{pi}{sup -}{gamma} decays including a background of 671 {+-} 41 events with the objective of determining the photon production mechanisms intrinsic to the decay process. These decays have been analyzed to extract the relative contributions of the Cp violating bremsstrahlung process and the CP conserving M1 and CP violating E1 direct photon emission processes. The M1 direct photon emission amplitude and its associated vector form factor parameterized as |{bar g}{sub M1}|(1 + a{sub 1}/a{sub 2}/(M{sub {rho}}{sup 2}-M{sub K}{sup 2}) + 2M{sub K}E{sub {gamma}}) have been measured to be |{bar g}{sub M1}| = 1.198 {+-} 0.035(stat) {+-} 0.086(syst) and a{sub 1}/a{sub 2} = =0.738 {+-} 0.007(stat) {+-} 0.018(syst) GeV{sup 2}/c{sup 2} respectively. An upper limit for the CP violating E1 direct emission amplitude |g{sub E1}| {le} 0.1 (90%CL) has been found. The overall ratio of direct photon emission (DE) to total photon emission including the bremsstrahlung process (IB) has been determined to be DE/(DE + IB) = 0.689 {+-} 0.021 for E{sub {gamma}} {ge} 20 MeV.

  18. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  19. Very Large Array Detects Radio Emission from Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1997-05-01

    Astronomers have used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope to make the first detection of radio emission from a cosmic gamma-ray burst. This sheds the first light on longstanding questions about the actual physics of these mysterious, tremendously energetic events. "The mere discovery of radio emission from this gamma-ray burst rules out some theoretical models," said Dale Frail of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "We are still observing it and each additional observation will help further discriminate among competing models." "This detection may finally tell us what these mysterious gamma-ray bursts are, helping to resolve one of the biggest mysteries in astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The VLA detection was made by some of the same scientists who announced yesterday that optical observations showed that gamma-ray bursts come from great distances. In addition to Frail, the VLA astronomers are: Shri Kulkarni of Caltech and the BeppoSAX Gamma-Ray Burst Team, consisting of Luciano Nicastro, Eliana Palazi, Enrico Costa, Marco Feroci, Luigi Piro, Fillipo Frontera, and John Heise. The burst of gamma rays was detected May 8 by the Italian-Dutch satellite BeppoSAX. Hundreds of such bursts have been recorded by satellites in the past 30 years, but last week's event already has become the most scientifically significant of them all. For years, the difficulty of precisely locating the bursts' position in the sky made it nearly impossible to study them with optical and radio instruments. In late 1996, this situation improved with the launch of BeppoSAX, which can pinpoint the bursts' location much more accurately than previous spacecraft. Following BeppoSAX discoveries, optical and radio astronomers have been able to make quick observations of the burst locations. The largest unanswered question about gamma-ray bursts has been their

  20. Enhanced high-energy gamma-ray emission from the microquasar Cygnus X-3 detected by Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Loh, Alan; Corbel, Stephane

    2017-02-01

    Following the recent decrease of the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 as seen by the Swift/Burst Alert Telescope (https://swift.gsfc.nasa.gov/results/transients/CygX-3/), the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed significant gamma-ray emission originating from the microquasar.

  1. Evidence of Pre-Equilibrium {gamma}-Ray Emission in Heavy Ion Collisions at Intermediate Incident Energies

    SciTech Connect

    S. Tudisco; F. Amorini; G. Cardella; A. Di Pietro; P. Figuera; G. Lanzalone; A. Musumarra; M. Papa; G. Pappalardo; S. Pirrone; F. Rizzo

    1999-12-31

    The experimental results of {sup 40}Ca + {sup 48}Ca,{sup 40}Ca,{sup 46}Ti reactions are reported. The comparison between {gamma}-ray spectra measured in coincidence with fusion evaporation residues for the three colliding systems shows a clear evidence of pre-equilibrium {gamma}-rays emission in the region around 10 MeV. BNV simulations also predict this emission. The saturation of GDR strength with temperature has been found with some dependence on the colliding system.

  2. Inverse Compton Origin of the Hard X-ray and Soft gamma-ray Emission from the Galactic Ridge

    SciTech Connect

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; Orlando, Elena; Bouchet, Laurent

    2008-09-30

    A recent re-determination of the non-thermal component of the hard X-ray to soft {gamma}-ray emission from the Galactic ridge, using the SPI instrument on the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) Observatory, is shown to be well reproduced as inverse-Compton emission from the interstellar medium. Both cosmic-ray primary electrons and secondary electrons and positrons contribute to the emission. The prediction uses the GALPROP model and includes a new calculation of the interstellar radiation field. This may solve a long-standing mystery of the origin of this emission, and potentially opens a new window on Galactic cosmic rays.

  3. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes

  4. Incidental abnormal FDG uptake in the prostate on 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography scans.

    PubMed

    Kang, Pil Moon; Seo, Won Ik; Lee, Sun Seong; Bae, Sang Kyun; Kwak, Ho Sup; Min, Kweonsik; Kim, Wansuk; Kang, Dong Il

    2014-01-01

    18-fluoro-2-deoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) scans are commonly used for the staging and restaging of various malignancies, such as head and neck, breast, colorectal and gynecological cancers. However, the value of FDG PET/CT for detecting prostate cancer is unknown. The aim of this study was to evaluate the clinical value of incidental prostate 18F-FDG uptake on PET/CT scans. We reviewed 18F-FDG PET/CT scan reports from September 2009 to September 2013, and selected cases that reported focal/diffuse FDG uptake in the prostate. We analyzed the correlation between 18F-FDG PET/CT scan findings and data collected during evaluations such as serum prostate-specific antigen (PSA) levels, digital rectal examination (DRE), transrectal ultrasound (TRUS), and/or biopsy to confirm prostate cancer. Of a total of 18,393 cases, 106 (0.6%) exhibited abnormal hypermetabolism in the prostate. Additional evaluations were performed in 66 patients. Serum PSA levels were not significantly correlated with maximum standardized uptake values (SUVmax) in all patients (rho 0.483, p=0.132). Prostate biopsies were performed in 15 patients, and prostate cancer was confirmed in 11. The median serum PSA level was 4.8 (0.55-7.06) ng/mL and 127.4 (1.06-495) ng/mL in the benign and prostate cancer groups, respectively. The median SUVmax was higher in the prostate cancer group (mean 10.1, range 3.8-24.5) than in the benign group (mean 4.3, range 3.1-8.8), but the difference was not statistically significant (p=0.078). There was no significant correlation between SUVmax and serum PSA, prostatic volume, or Gleason score. 18F-FDG PET/CT scans did not reliably differentiate malignant or benign from abnormal uptake lesions in the prostate, and routine prostate biopsy was not usually recommended in patients with abnormal FDG uptake. Nevertheless, patients with incidental prostate uptake on 18F-FDG PET/ CT scans should not be ignored and should be undergo

  5. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  6. Endobronchial ultrasound-guided transbronchial needle aspiration of hilar and mediastinal lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Minami, Daisuke; Takigawa, Nagio; Oda, Naohiro; Ninomiya, Takashi; Kubo, Toshio; Ohashi, Kadoaki; Sato, Akiko; Hotta, Katsuyuki; Tabata, Masahiro; Kaji, Mitsumasa; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-01-01

    Objective Endobronchial ultrasound-guided transbronchial needle aspiration is of diagnostic value in hilar/mediastinal (N1/N2) lymph node staging. We assessed the utility of endobronchial ultrasound-guided transbronchial needle aspiration in lung cancer patients with N1/N2 lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Methods Fifty lung cancer patients with N1/N2 disease on 18F-fluorodeoxyglucose positron emission tomography/computed tomography underwent endobronchial ultrasound-guided transbronchial needle aspiration for pathological lymph nodes between November 2012 and April 2015. The diagnostic performance of endobronchial ultrasound-guided transbronchial needle aspiration, lymph node site and size, number of needle passes and complications were evaluated retrospectively from patients' medical records. Malignancy was defined as a maximum standardized uptake value (SUVmax) >2.5. Results The median longest diameter of the 61 lymph nodes (29 subcarinal, 21 right lower paratracheal, 6 left lower paratracheal, 4 right hilar and 1 upper paratracheal) was 23.4 mm (range: 10.4–45.7); the median number of needle passes was 2 (range: 1–5). There were no severe complications. A definitive diagnosis was made by endobronchial ultrasound-guided transbronchial needle aspiration in 39 patients (31 adenocarcinomas, 3 small-cell carcinomas, 2 squamous-cell carcinomas, 3 large-cell neuroendocrine carcinomas). In the remaining 11 patients, the diagnosis was indefinite: insufficient endobronchial ultrasound-guided transbronchial needle aspiration material was collected in two patients and non-specific lymphadenopathy was confirmed by endobronchial ultrasound-guided transbronchial needle aspiration or thoracotomy in the other nine patients. The mean lymph node SUVmax was 7.09 (range: 2.90–26.9) and was significantly higher in true-positive than in false-positive nodes (P < 0.05, t-test). Non-specific lymphadenopathy was

  7. Review of Cardiovascular Imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron Emission Tomography, Computed Tomography and Magnetic Resonance.

    PubMed

    AlJaroudi, Wael; Hage, Fadi G

    2017-02-13

    Several original articles and editorials have been published in the Journal of Nuclear Cardiology last year. It has become a tradition at the beginning of each year to summarize some of these key articles (AlJaroudi and Hage in J Nucl Cardiol 22:507-512, 2015, 23:122-130, 2016; Hage and AlJaroudi in J Nucl Cardiol 22:714-719, 2015; 23:493-498, 2016). In this part one, we will discuss some of the progress made in patients with infiltrative disease, cardiomyopathies (non-ischemic, ischemic, and diabetic), hybrid and molecular imaging, using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.

  8. Focal thyroid incidentaloma on whole body fluorodeoxyglucose positron emission tomography/computed tomography in known cancer patients: A case-based discussion with a series of three examples.

    PubMed

    Targe, Mangala; Basu, Sandip

    2015-01-01

    The importance, imaging characteristics and outcome of focal thyroid incidentaloma on fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) have been illustrated in this report. This is drawn from a series of three case examples of proven malignancy at different locations, with three different thyroid cytopathological diagnoses. Subsequently, a case-based discussion on present consensus of the management of this entity has been undertaken including certain specific aspects of PET-CT interpretation and its role in this setting.

  9. Calcified peritoneal metastasis identified on 18F-fluoride positron emission tomography/computed tomography: Importance of extraosseous uptake of F-18 fluoride.

    PubMed

    Verma, Priyanka; Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    F-18 NaF positron emission tomography/computed tomography (PET/CT) is used for the evaluation of malignant and nonmalignant osseous disease. Extraosseous uptake of 18 fluoride-NaF has been observed in the arterial vasculature, gastrointestinal tract, and genitourinary tract. We describe a case of a woman with carcinoma of unknown primary in whom F-18 NaF PET/CT showed tracer uptake in the calcified peritoneal metastasis. Extraosseous findings on F-18 NaF PET/CT, though rare, may be visualized and may result in important management changes.

  10. Skeletal muscle metastases as the initial manifestation of an unknown primary lung cancer detected on F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Singh, Navneet; Harisankar, Chidambaram Natarajan Balasubramanian; Mittal, Bhagwant Rai

    2013-01-01

    Skeletal muscle metastasis as the initial presentation of the unknown primary lung cancer is unusual. A 65-year-old male patient presented with pain and swelling of the right forearm. Fine needle aspiration of the swelling revealed metastatic squamous cell carcinoma. The patient underwent whole body F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to identify the site of the primary malignancy. The authors present PET/CT images showing FDG-avid metastases to the skeletal muscles along with a previously unknown primary tumor in the right lung, in a patient presenting with initial muscular symptoms without any pulmonary manifestations.

  11. Tc-99m Sulfur Colloid Lymphoscintigraphy with Single-photon Emission Computed Tomography/Computed Tomography in a Case of Acquired Vulval Lymphangiomas

    PubMed Central

    Tulsyan, Shruti; Tripathi, Madhavi; Das, Kalpa; Yadav, Divya; Shamim, Shamim Ahmed; Damle, Nishikant; Bal, Chandrasekhar

    2017-01-01

    We describe the lymphoscintigraphy findings of a 25-year-old female patient who was undergoing presurgical workup for lymphangiomas of the vulva. She had a history of treatment for disseminated tuberculosis 6 years back and presented with herpetiform oozing vesicles in the external genitalia. Single-photon emission computed tomography/computed tomography (SPECT/CT) confirmed cutaneous tracer accumulation in the vulval lesions and demonstrated the presence of densely calcified inguinal nodes secondary to healed tuberculosis as the etiology of secondary lymphangioma. PMID:28242996

  12. Prostate-specific Membrane Antigen-targeted Ligand Positron Emission Tomography/Computed Tomography and Immunohistochemical Findings in a Patient With Synchronous Metastatic Penile and Prostate Cancer.

    PubMed

    Froehner, Michael; Kuithan, Friederike; Zöphel, Klaus; Heberling, Ulrike; Laniado, Michael; Wirth, Manfred P

    2017-03-01

    A 68-year-old man presented with synchronous metastatic penile and prostate cancer. 68Ga-labeled prostate-specific membrane antigen-targeted ligand positron emission tomography/computed tomography (PSMA-PET/CT) revealed tracer uptake in inguinal, pelvic, and retroperitoneal metastases. Lymph node biopsies and immunohistochemical staining revealed that both cancers involved the lymph nodes and expressed PSMA. In the deposits of penile squamous cell carcinoma, PSMA expression was seen in tumor vessels and may explain the PSMA-PET/CT positivity of inguinal nodes involved in squamous cell carcinoma. The interpretation of imaging in synchronous tumors should take this fact into consideration.

  13. An Incidental Solitary Plasmacytoma of Bone Mimicking Neuroendocrine Tumor Metastasis on 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography

    PubMed Central

    Şimşek, Duygu Has; Kuyumcu, Serkan; Bilgiç, Bilge; Işık, Emine Göknur; Türkmen, Cüneyt; Adalet, Işık

    2016-01-01

    A 54-year-old woman with suspicion of neuroendocrine tumor (NET) was referred for 68Ga-DOTATATE positron emission tomography/computed tomography (CT) imaging due to clinical findings. A well-defined osteolytic lesion on the corpus of the third lumbar vertebra was evident on CT images with mild uptake of 68Ga-DOTATATE, which led to suspicion of NET metastasis. Histopathologic examination revealed solitary plasmacytoma of the bone. The patient received local external radiotherapy for plasmacytoma. This case indicatesthat other diseases expressing somatostatin receptors may be inaccurately reported as tumor recurrence and highlights the importance of meticulous evaluation of positive findings. PMID:27751979

  14. “Drop” Metastases from an Operated Case of Intracranial Anaplastic Ependymoma Identified on Fluoro-2-deoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2017-01-01

    The seeding of tumor through cerebrospinal fluid (CSF) from primary intracranial tumors is very rare, often goes undetected, and is usually identified only on autopsy. CSF cytology along with magnetic resonance imaging constitutes the standard approach of diagnosing this grave condition. Use of fluoro-2-deoxyglucose positron emission tomography/computed tomography (PET/CT) in indentifying spinal metastases from primary intracranial malignancies is very limited and has been reported in patients with metastatic glioblastoma multiforme and medulloblastomas. We present a rare case of metastatic anaplastic ependymoma to show the potentially clinically utility of PET/CT in diagnosing leptomeningeal or the so-called “drop” metastases. PMID:28242994

  15. Potassium Chloride Infusion as the Cause of Altered Bio Distribution of 18F-Fluorodeoxyglucose on Whole-Body Positron Emission Tomography-Computed Tomography Scan

    PubMed Central

    Mahajan, Shimpi Madhuri; Natasha, Singh; Sudeshna, Maitra; Pereira, Melvika

    2017-01-01

    18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography is a standard diagnostic imaging tool in many types of cancer. Its physiological in vivo distribution includes the brain, liver, heart, kidneys, and urinary tract at 1 h after tracer injection. Skeletal muscle is known to show variable amounts of 18F-FDG uptake because it has a relatively high-glucose metabolism. We report a case of a 20-year-old patient with gross 18F-FDG uptake involving multiple muscle groups and its likely correlation to potassium chloride infusion before 18F-FDG injection. PMID:28217028

  16. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  17. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  18. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease. PMID:26917901

  19. Ocular Granulocytic Sarcoma as an Initial Clinical Presentation of Acute Myeloid Leukemia Identified on Flurodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2017-01-01

    Granulocytic sarcoma (GS) or chloroma, rare extramedullary manifestation of acute myeloid leukemia and not infrequently, can be presenting clinical feature. Multiple studies have demonstrated the clinical utility of fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in early detection and follow-up assessment of GS after chemotherapy. Commonly involved areas include bones, lymph nodes, breasts, and skin and not uncommonly, the disease can be multifocal. We present a rare case of ocular GS, where FDG-PET/CT in addition to the identifying the ocular mass, revealed multiple clinically occult extramedullary lesions. PMID:28242990

  20. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  1. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  2. A NOVEL PARADIGM FOR SHORT GAMMA-RAY BURSTS WITH EXTENDED X-RAY EMISSION

    SciTech Connect

    Rezzolla, Luciano; Kumar, Pawan

    2015-04-01

    The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts (SGRBs), such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. However, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a subclass of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emission is produced before the corresponding emission in the gamma-band, though it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between short and long GRBs.

  3. Pneumococcal aortitis, report of a case with emphasis on the contribution to diagnosis of positron emission tomography using fluorinated deoxyglucose.

    PubMed

    Hoogendoorn, E H; Oyen, W J G; van Dijk, A P J; van der Meer, J W M

    2003-01-01

    We describe an 82-year-old male with pneumococcal aortitis of the descending aorta, visualized by echocardiography and positron emission tomography using fluorinated deoxyglucose (FDG-PET). Computed tomography is considered to be the best diagnostic imaging modality in infected aortic lesions; in this case, the use of FDG-PET, which gives the opportunity to distinguish between inflammatory and non-inflammatory aortic aneurysms, made an important contribution to the diagnosis.

  4. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  5. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  6. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  7. Upper limits to pulsed gamma ray emission from PSR 0833-45, 1747-46, and 1818-04

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Dunphy, P. P.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.

    1982-01-01

    Pulsed gamma ray emission from three pulsars (PSR 0833-45, 1747-46, and 1818-04) have been sought on a balloon flight of the University of New Hampshire Large Gamma Ray Telescope, which incorporates a shielded sodium iodide scintillator array, and was launched from Alice Springs, Australia. Over the energy range 0.1 - 10 MeV, no evidence is found for pulsed gamma rays, and upper limits are set for Vela which are comparable to, or below, the extrapolation to lower energies of the pulsed emission reported by SAS-2 and COS-B.

  8. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  9. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  10. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts.

    PubMed

    Bustamante, Mauricio; Baerwald, Philipp; Murase, Kohta; Winter, Walter

    2015-04-10

    Gamma-ray bursts (GRBs) are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of GRBs, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. Here we consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows.

  11. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B

    2017-03-01

    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum

  12. Gamma-ray emission from Cassiopeia A produced by accelerated cosmic rays

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Pühlhofer, G.; Völk, H. J.

    2003-03-01

    The nonlinear kinetic model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the relevant properties of Cassiopeia A (Cas A). In order to reproduce the SNR's observed size, expansion rate and thermal X-ray emission we employ a piecewise homogeneous model for the progenitor's circumstellar medium developed by Borkowski et al. (\\cite{Borkowski_ApJ_1996_466}). It consists of a tenuous inner wind bubble, a dense shell of swept-up red supergiant wind material, and a subsequent red supergiant wind region. A quite large SNR interior magnetic field Bd~ 1 mG is required to give a good fit for the radio and X-ray synchrotron emission. The steep radio spectrum is consistent with efficient proton acceleration which produces a significant shock modification and leads to a steep electron spectrum at energies epsilon e<1 GeV. The calculated integral gamma -ray flux from Cas A, Fgamma ~ epsilon gamma -1, is dominated by pi 0-decay gamma -rays due to relativistic protons. It extends up to roughly 30 TeV if CR diffusion is as strong as the Bohm limit. At TeV energies it satisfactorily agrees with the value 5.8x 10-13 cm-2 s-1 detected by the HEGRA collaboration.

  13. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  14. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  15. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  16. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  17. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    SciTech Connect

    Hooper, Dan; Linden, Tim E-mail: trlinden@uchicago.edu

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  18. Implications of the pion-decay gamma emission and neutron observations with CORONAS-F/SONG

    NASA Astrophysics Data System (ADS)

    Kurt, V.; Yushkov, B.; Kudela, K.

    2013-05-01

    We analyzed the high-energy gamma and neutron emissions observed by the SONG instrument onboard the CORONAS-F satellite during August 25, 2001, October 28, 2003, November 4, 2003, and January 20, 2005 solar flares. These flares produced neutrons and/or protons recorded near Earth. The SONG response was consistent with detection of the pion-decay gamma emission and neutrons in these events. We compared time profiles of various electromagnetic emissions and showed that the maximum of the pion-decay-emission coincided in time best of all with the soft X-ray derivative, dISXR/dt, maximum. We evaluated the energy of accelerated ions and compared it with the energy deposited by accelerated electrons. The ion energy becomes comparable or even higher than the electron energy from a certain step of flare development. So the time profile of dISXR/dt is a superposition of energy deposited by both fractions of accelerated particles. This result allowed us to use a time profile of dISXR/dt as a real proxy of time behavior of the energy release at least during major flare analysis. In particular the time interval when the dISXR/dt value exceeds 0.9 of its maximum can be used as a unified reference point for the calculations of time delay between the high-energy proton acceleration and GLE onset. Analysis of the total set of pion-decay emission observations shows that such temporal closeness of pion-decay emission maximum and the soft X-ray derivative maximum is typical but not obligatory.

  19. Validation of accuracy in image co-registration with computed tomography and magnetic resonance imaging in Gamma Knife radiosurgery.

    PubMed

    Nakazawa, Hisato; Mori, Yoshimasa; Komori, Masataka; Shibamoto, Yuta; Tsugawa, Takahiko; Kobayashi, Tatsuya; Hashizume, Chisa

    2014-09-01

    The latest version of Leksell GammaPlan (LGP) is equipped with Digital Imaging and Communication in Medicine (DICOM) image-processing functions including image co-registration. Diagnostic magnetic resonance imaging (MRI) taken prior to Gamma Knife treatment is available for virtual treatment pre-planning. On the treatment day, actual dose planning is completed on stereotactic MRI or computed tomography (CT) (with a frame) after co-registration with the diagnostic MRI and in association with the virtual dose distributions. This study assesses the accuracy of image co-registration in a phantom study and evaluates its usefulness in clinical cases. Images of three kinds of phantoms and 11 patients are evaluated. In the phantom study, co-registration errors of the 3D coordinates were measured in overall stereotactic space and compared between stereotactic CT and diagnostic CT, stereotactic MRI and diagnostic MRI, stereotactic CT and diagnostic MRI, and stereotactic MRI and diagnostic MRI co-registered with stereotactic CT. In the clinical study, target contours were compared between stereotactic MRI and diagnostic MRI co-registered with stereotactic CT. The mean errors of coordinates between images were < 1 mm in all measurement areas in both the phantom and clinical patient studies. The co-registration function implemented in LGP has sufficient geometrical accuracy to assure appropriate dose planning in clinical use.

  20. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography.

    PubMed

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444-555 MBq (12-15 mCi) of (99m)Tc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant.