Science.gov

Sample records for gamma emission tomography

  1. A new gamma camera for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Schotanus, Paul

    1988-06-01

    The detection of annihilation radiation employing radiation absorbed in a barium fluoride (BaF2) crystal is described. The resulting scintillation light is detected in a multiwire proportional chamber filled with a photosensitive vapor. The use of a high density fast scintillator with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. The physical background of the detection mechanism is explored and the performance parameters of a gamma camera using this principle are determined. The scintillation mechanism and physical characteristics of the BaF2 scintillator are examined. Ultraviolet scintillation materials consisting of rare earth doped fluorides are introduced.

  2. Gamma knife treatment for refractory epilepsy in seizure focus localized by positron emission tomography/CT★

    PubMed Central

    Bai, Xia; Wang, Xuemei; Wang, Hongwei; Zhao, Shigang; Han, Xiaodong; Hao, Linjun; Wang, Xiangcheng

    2012-01-01

    A total of 80 patients with refractory epilepsy were recruited from the Inner Mongolia Medical College Affiliated Hospital. The foci of 60% of the patients could be positioned using a combined positron emission tomography/CT imaging modality. Hyper- and hypometabolism foci were examined as part of this study. Patients who had abnormal metabolism in positron emission tomography/CT imaging were divided into intermittent-phase group and the seizure-phase group. The intermittent-phase group was further divided into a single-focus group and a multiple-foci group according to the number of seizure foci detected by imaging. Following gamma knife treatment, seizure frequency was significantly lower in the intermittent-phase group and the seizure-phase group. Wieser’s classification reached Grade I or II in nearly 40% of patients. Seizure frequency was significantly lower following treatment, but Wieser’s classification score was significantly higher in the seizure-phase group compared with the intermittent-phase group. Seizure frequency was significantly lower following treatment in the single-focus group, but Wieser’s classification score was significantly higher in the single-focus group as compared with the multiple-foci group. PMID:25317147

  3. A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, Eleftherios; Kopsinis, Yannis; Georgiou, Maria; Loudos, George

    2016-06-01

    State of the art data acquisition systems for small animal imaging gamma ray detectors often rely on free running Analog to Digital Converters (ADCs) and high density Field Programmable Gate Arrays (FPGA) devices for digital signal processing. In this work, a sub-sampling acquisition approach, which exploits a priori information regarding the shape of the obtained detector pulses is proposed. Output pulses shape depends on the response of the scintillation crystal, photodetector's properties and amplifier/shaper operation. Using these known characteristics of the detector pulses prior to digitization, one can model the voltage pulse derived from the shaper (a low-pass filter, last in the front-end electronics chain), in order to reduce the desirable sampling rate of ADCs. Fitting with a small number of measurements, pulse shape estimation is then feasible. In particular, the proposed sub-sampling acquisition approach relies on a bi-exponential modeling of the pulse shape. We show that the properties of the pulse that are relevant for Single Photon Emission Computed Tomography (SPECT) event detection (i.e., position and energy) can be calculated by collecting just a small fraction of the number of samples usually collected in data acquisition systems used so far. Compared to the standard digitization process, the proposed sub-sampling approach allows the use of free running ADCs with sampling rate reduced by a factor of 5. Two small detectors consisting of Cerium doped Gadolinium Aluminum Gallium Garnet (Gd3Al2Ga3O12 : Ce or GAGG:Ce) pixelated arrays (array elements: 2 × 2 × 5 mm3 and 1 × 1 × 10 mm3 respectively) coupled to a Position Sensitive Photomultiplier Tube (PSPMT) were used for experimental evaluation. The two detectors were used to obtain raw images and energy histograms under 140 keV and 661.7 keV irradiation respectively. The sub-sampling acquisition technique (10 MHz sampling rate) was compared with a standard acquisition method (52 MHz sampling

  4. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  5. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  6. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  7. High resolution gamma detector for small-animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    In this study, the performance of continuous miniature crystal element (cMiCE) detectors with LYSO crystals of different thickness were investigated. Potential designs of a cMiCE small animal positron emission tomography scanner were also evaluated by an analytical simulation approach. The cMiCE detector was proposed as a high sensitivity, low cost alternative to the prevailing discrete crystal detectors. A statistics based positioning (SBP) algorithm was developed to solve the scintillation position estimation problem and proved to be successful on a cMiCE detector with a 4 mm thick crystal. By assuming a Gaussian distribution, the distributions of the photomultiplier signals could be characterized by mean and variance, which are functions of scintillation position. After calibrating the detector on a grid of locations, a 2D table of the mean and variance can be built. The SBP algorithm searches the tables to find the location that maximizes the likelihood between the mean and variance of known positions and the incoming scintillation event. In this work, the performance of the SBP algorithm on cMiCE detectors with thicker crystals (6 and 8 mm) was studied. The stopping power of a cMiCE detector is 40% and 49% for 6 and 8 mm thick crystals respectively. The intrinsic spatial resolution is 1.2 mm and 1.4 mm FWHM for the center and corner sections of a 6 mm thick crystal detector, and 1.3 mm and 1.6 mm for center and corner of an 8 mm thick crystal detector. These results demonstrate that the cMiCE detector is a promising candidate for high resolution, high sensitivity PET applications. A maximum-likelihood (ML) clustering method was developed to empirically separate the experimental data set into two to four subgroups according to the depth-of-interaction of the detected photons. This method enabled us to build 2-DOI lookup tables (LUT) (mean and variance lookup tables for front group and back group). Using the 2-DOI SBP LUTs, the scintillation position and DOI

  8. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  9. MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Jacobsen, A. S.; Binda, F.; Cazzaniga, C.; Ericsson, G.; Eriksson, J.; Gorini, G.; Hellesen, C.; Hjalmarsson, A.; Kiptily, V. G.; Koskela, T.; Korsholm, S. B.; Kurki-Suonio, T.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Schneider, M.; Sharapov, S. E.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2017-05-01

    We demonstrate the measurement of a 2D MeV-range ion velocity distribution function by velocity-space tomography at JET. Deuterium ions were accelerated into the MeV-range by third harmonic ion cyclotron resonance heating. We made measurements with three neutron emission spectrometers and a high-resolution γ-ray spectrometer detecting the γ-rays released in two reactions. The tomographic inversion based on these five spectra is in excellent agreement with numerical simulations with the ASCOT-RFOF and the SPOT-RFOF codes. The length of the measured fast-ion tail corroborates the prediction that very few particles are accelerated above 2 MeV due to the weak wave-particle interaction at higher energies.

  10. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  11. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  12. Introduction to neutron stimulated emission computed tomography.

    PubMed

    Floyd, Carey E; Bender, Janelle E; Sharma, Amy C; Kapadia, Anuj; Xia, Jessie; Harrawood, Brian; Tourassi, Georgia D; Lo, Joseph Y; Crowell, Alexander; Howell, Calvin

    2006-07-21

    Neutron stimulated emission computed tomography (NSECT) is presented as a new technique for in vivo tomographic spectroscopic imaging. A full implementation of NSECT is intended to provide an elemental spectrum of the body or part of the body being interrogated at each voxel of a three-dimensional computed tomographic image. An external neutron beam illuminates the sample and some of these neutrons scatter inelastically, producing characteristic gamma emission from the scattering nuclei. These characteristic gamma rays are acquired by a gamma spectrometer and the emitting nucleus is identified by the emitted gamma energy. The neutron beam is scanned over the body in a geometry that allows for tomographic reconstruction. Tomographic images of each element in the spectrum can be reconstructed to represent the spatial distribution of elements within the sample. Here we offer proof of concept for the NSECT method, present the first single projection spectra acquired from multi-element phantoms, and discuss potential biomedical applications.

  13. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  14. [Tau Positron Emission Tomography].

    PubMed

    Higuchi, Makoto

    2017-07-01

    Accumulation of fibrillar tau protein aggregates is a neuropathological hallmark of Alzheimer's disease (AD) and related neurodegenerative dementias, including a subgroup of frontotemporal lobar degeneration (FTLD). Visualization of tau lesions in the brains of living subjects enables a pathology-based diagnosis of dementing illnesses in the prodromal stage, and offers objective measures of disease progression and outcomes of disease-modifying therapies. With this rationale, diverse classes of low-molecular-weight chemicals capable of binding to a β-pleated sheet structure have been developed to be used for in vivo positron emission tomography (PET) of tau pathologies. Clinical PET studies of AD patients with such tau probes have provided the following insights: (1) Tau fibrils accumulate in the hippocampal formation in an age-dependent manner that is independent of amyloid-beta peptide (Aβ) pathology; (2) The deposition of Aβ may trigger a spatial expansion of tau pathology, in transition from normal aging to advanced AD; and (3) Tau accumulation is intimately associated with local neuronal loss, leading to cortical atrophy and focal symptoms. In contrast, studies of FTLD have shown a limited performance of first-generation PET probes in capturing non-AD-type tau lesions. New compounds have accordingly been developed and clinically tested, proving to yield a high contrast for tau deposits with high specificity. These second-generation probes are being evaluated primarily by pharmaceutical companies, in line with their growing demands for neuroimaging-based biomarkers serving for clinical trials of anti-Aβ and anti-tau therapies. Meanwhile, a consortium flexibly linking academia and industry to facilitate the utilization of research tools, including tau PET probes, has been established in Japan, for the ultimate purpose of elucidating the molecular etiology of tauopathies and creating diagnostic and therapeutic agents based on such an understanding.

  15. Monte Carlo simulation of the basic features of the GE Millennium MG single photon emission computed tomography gamma camera.

    PubMed

    Vieira, L; Vaz, T F; Costa, D C; Almeida, P

    2014-01-01

    To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of (99m)Tc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann-Whitney-Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal-Wallis test to assess simulation accuracy for this parameter. There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤ 0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30 cm) with energy windows of 126-154 keV and 130-158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126-154 keV and 130-158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  16. Determination of the rod-wise fission gas release fraction in a complete fuel assembly using non-destructive gamma emission tomography

    NASA Astrophysics Data System (ADS)

    Holcombe, Scott; Andersson, Peter; Svärd, Staffan Jacobsson; Hallstadius, Lars

    2016-11-01

    A gamma tomography instrument has been developed at the Halden Boiling Water Reactor (HBWR) in cooperation between the Institute for Energy Technology, Westinghouse (Sweden) and Uppsala University. The instrument is used to record the gamma radiation field surrounding complete fuel assemblies and consists of a shielded enclosure with fixtures to accurately position the fuel and detector relative to each other. A High Purity Germanium detector is used for acquiring high-resolution spectroscopic data, allowing for analysis of multiple gamma-ray peaks. Using the data extracted from the selected peaks, tomographic reconstruction algorithms are used to reproduce the corresponding spatial gamma-ray source distributions within the fuel assembly. With this method, rod-wise data can be can be deduced without the need to dismantle the fuel. In this work, the tomographic device has been experimentally benchmarked for non-destructive rod-wise determination of the Fission Gas Release (FGR) fraction. Measurements were performed on the fuel-stack and gas-plenum regions of a complete fuel assembly, and quantitative tomographic reconstructions of the measurement data were performed in order to determine the rod-wise ratio of 85Kr in the gas plenum to 137Cs in the fuel stack. The rod-wise ratio of 85Kr/137Cs was, in turn, used to calculate the rod-wise FGR fraction. In connection to the tomographic measurements, the fuel rods were also measured individually using gamma scanning in order to provide an experimental benchmark for the tomographic method. Fuel rods from two donor driver fuel assemblies were placed into a nine-rod HBWR driver fuel assembly configuration. In order to provide a challenging measurement object and thus an appropriate benchmark for the tomographic method, five rods were taken from an assembly with a burnup of 51 MWd/kgUO2, and four rods were from an assembly with a burnup of 26 MWd/kgUO2. At the time of the measurements, the nine rods had cooled for

  17. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals

  18. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  19. Development of novel emission tomography system

    NASA Astrophysics Data System (ADS)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  20. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.

    2015-10-01

    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  1. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  2. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  3. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  4. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.

    PubMed

    Shiraishi, Shinya; Sakamoto, Fumi; Tsuda, Noriko; Yoshida, Morikatsu; Tomiguchi, Seiji; Utsunomiya, Daisuke; Ogawa, Hisao; Yamashita, Yasuyuki

    2015-01-01

    Myocardial perfusion imaging (MPI) may fail to detect balanced ischemia. We evaluated myocardial perfusion reserve (MPR) using Tl dynamic single-photon emission computed tomography (SPECT) and a novel cadmium zinc telluride (CZT) camera for predicting 3-vessel or left main coronary artery disease (CAD). METHODS AND RESULTS: A total of 55 consecutive patients with suspected CAD underwent SPECT-MPI and coronary angiography. The MPR index was calculated using the standard 2-compartment kinetic model. We analyzed the utility of MPR index, other SPECT findings, and various clinical variables. On multivariate analysis, MPR index and history of previous myocardial infarction (MI) predicted left main and 3-vessel disease. The area under the receiver operating characteristic curve was 0.81 for MPR index, 0.699 for history of previous MI, and 0.86 for MPR index plus history of previous MI. MPR index ≤1.5 yielded the highest diagnostic accuracy. Sensitivity, specificity, and accuracy were 86%, 78%, and 80%, respectively, for MPR index, 64%, 76%, 73% for previous MI, and 57%, 93%, and 84% for MPR index plus history of previous MI. Quantification of MPR using dynamic SPECT and a novel CZT camera may identify balanced ischemia in patients with left main or 3-vessel disease.

  5. A new method for measuring dynamic change of tracer distribution using dynamic single photon emission tomography with a slip-ring rotational gamma camera.

    PubMed

    Miyazaki, Y; Hashimoto, M; Kinuya, S; Murata, Y; Inoue, H; Shiozaki, J; Takimoto, M; Yoshioka, K; Nakajima, K; Taki, J

    2002-11-01

    The clinical applicability of dynamic single photon emission tomograpy (SPET) using a dual-head gamma camera equipped with a slip-ring rotational mechanism, referred to as serial SPET, was examined in the present investigation. Serial SPET enables the production of tomographic images for any arbitrary time frame from an arbitrary range of data to 360 degrees. In a pre-clinical evaluation, a correlation between radioactivity concentration and serial SPET counts was evaluated in a phantom with continuous changes in 99mTc concentration. A differential value was obtained from each pair of SPET images; moreover, moving average approximation processing was investigated with respect to the elimination of noise in the data. In 11 and one patient presenting with cerebrovascular disease and meningioma, respectively, changes in SPET counts were evaluated when 99mTc ethyl cysteinate dimer (99mTc-ECD) was continuously administered at a constant rate in the resting state. Furthermore, in six of 11 subjects with cerebrovascular disease, changes occurring in SPET counts were examined by using acetazolamide loading while continuously administering 99mTc-ECD at a constant rate. Consequently, serial SPET enabled the evaluation of changes in radioactivity concentration over time in both the phantom and preliminary clinical studies. Data analysis by differential processing utilizing moving average approximation processing enabled the detection of minor changes in radioactivity concentration. An increase of 15.1+/-5.4% was observed in SPET counts of the unaffected cerebral hemisphere with acetazolamide loading. The response of the affected hemisphere was less prominent. These findings suggest that serial SPET would be an effective technique for the pharmacokinetic analysis of radiopharmaceuticals.

  6. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  7. The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gascon, D.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Martinez, M.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Paredes, J. M.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Ward, J. E.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015 eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is ∼0.01° and energy resolution is ∼1% the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboard the Russian space observatory.

  8. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  9. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  10. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  11. Advanced instrumentation for Positron Emission Tomography

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs.

  12. Multiphase Flow Measurement by Dual Gamma Ray Tomography

    NASA Astrophysics Data System (ADS)

    Wu, Yingxiang; Cui, Bin; Li, Donghui; Schlaberg, H. Inaki; Zheng, Zhichu; Zhong, Xingfu

    2007-06-01

    This paper describes some of our research in three phase flow-rate measurement of oil/gas/water by processing tomography of dual gamma ray, including the instrumental designs on the technique of photons pulse counter, signals of sensor, preamplifier, filter and shaping amplifier, DC base shift correcting circuit, narrow windows of energy spectroscopy, programmable pulse count acquisition system; the FPGA (Field programmable gate array) based data acquisition and processing system for gamma ray tomography; and the oil-water-gas three phase volumetric fraction distributions from experiments on a test flow loop.

  13. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  14. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  15. Future direction of renal positron emission tomography.

    PubMed

    Szabo, Zsolt; Xia, Jinsong; Mathews, William B; Brown, Phillip R

    2006-01-01

    Positron emission tomography (PET) is perfectly suited for quantitative imaging of the kidneys, and the recent improvements in detector technology, computer hardware, and image processing software add to its appeal. Multiple positron emitting radioisotopes can be used for renal imaging. Some, including carbon-11, nitrogen-13, and oxygen-15, can be used at institutions with an on-site cyclotron. Other radioisotopes that may be even more useful in a clinical setting are those that either can be obtained from radionuclide generators (rubidium-82, copper-62) or have a sufficiently long half-life for transportation (fluorine-18). The clinical use of functional renal PET studies (blood flow, glomerular filtration rate) has been slow, in part because of the success of concurrent technologies, including single-photon emission computed tomography (SPECT) and planar gamma camera imaging. Renal blood flow studies can be performed with O-15-labeled water, N-13-labeled ammonia, rubidium-82, and copper-labeled PTSM. With these tracers, renal blood flow can be quantified using a modified microsphere kinetic model. Glomerular filtration can be imaged and quantified with gallium-68 EDTA or cobalt-55 EDTA. Measurements of renal blood flow with PET have potential applications in renovascular disease, in transplant rejection or acute tubular necrosis, in drug-induced nephropathies, ureteral obstruction, before and after revascularization, and before and after the placement of ureteral stents. The most important clinical application for imaging glomerular function with PET would be renovascular hypertension. Molecular imaging of the kidneys with PET is rather limited. At present, research is focused on the investigation of metabolism (acetate), membrane transporters (organic cation and anion transporters, pepT1 and pepT2, GLUT, SGLT), enzymes (ACE), and receptors (AT1R). Because many nephrological and urological disorders are initiated at the molecular and organelle levels and may

  16. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  17. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    PubMed

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p < 0.001) and pulmonary artery pressure (24 +/- 6 mm Hg vs 14 +/- 12 mm Hg, p = 0.01) and an increase in heart rate (67 +/- 10 bpm vs 75 +/- 14 beats/min, p = 0.001). Among the 34 patients who had perfusion imaging, the left ventricular ejection fraction remained unchanged or increased in 17 patients (group 1) (48% +/- 19% vs 49% +/- 21%, p not significant) and decreased (> or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide.

    PubMed

    Edwards, W Barry; Akers, Walter J; Ye, Yunpeng; Cheney, Philip P; Bloch, Sharon; Xu, Baogang; Laforest, Richard; Achilefu, Samuel

    2009-01-01

    Integrins, particularly the alpha(v)beta(3) heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the alpha(v)beta(3) integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308) bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) and a lipophilic near-infrared (NIR) fluorescent dye cypate. The alpha(v)beta(3) integrin binding affinity and the internalization properties of LS308 mediated by the alpha(v)beta(3) integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of (111)In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT). The results show that LS308 has high affinity for alpha(v)beta(3) integrin and internalized preferentially via the alpha(v)beta(3) integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in alpha(v)beta(3)-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of alpha(v)beta(3) integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.

  19. Positron emission tomography/computed tomography in melanoma.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Fish, Lindsay M; Bradley, Yong C

    2013-09-01

    Fludeoxyglucose F 18 positron emission tomography/computed tomography (PET/CT) has been invaluable in the assessment of melanoma throughout the course of the disease. As with any modality, the studies are incomplete and more information will be gleaned as our experience progresses. Additionally, it is hoped that a newer PET agent in the pipeline will give us even greater success in the identification and subsequent treatment of melanoma. This article aims to examine the utilization of PET/CT in the staging, prognostication, and follow-up of melanoma while providing the physicians who order and interpret these studies practical guidelines and interpretive pitfalls. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  1. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  2. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  3. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  4. The diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.

    1990-01-01

    The EGRET (Energetic Gamma-Ray Experiment Telescope) detector will provide a much more detailed view of the diffuse galactic gamma ray intensity in terms of higher resolution, greater statistical significance, and broader energy range than earlier missions. These observations will furnish insight into a number of very important questions related to the dynamics and structure of the Galaxy. A diffuse emission model is being developed that incorporates the latest information on matter distribution and source functions. In addition, it is tailored to the EGRET instrument response functions. The analysis code of the model maintains flexibility to accommodate the quality of the data that is anticipated. The discussion here focuses on the issues of the distributions of matter, cosmic rays, and radiation fields, and on the important source functions that enter into the model calculation of diffuse emission.

  5. Coded-Aperture Transaxial Tomography Using Modular Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Roney, Timothy Joseph

    Imaging in nuclear medicine involves the injection of a radioactive tracer into the body and subsequent detection of the radiation emanating from an organ of interest. Single -photon emission computed tomography (SPECT) is the branch of nuclear medicine that yields three-dimensional maps of the distribution of a tracer, most commonly as a series of two-dimensional slices. One major drawback to transaxial tomographic imaging in SPECT today is the rotation required of a gamma camera to collect the tomographic data set. Transaxial SPECT usually involves a large, single-crystal scintillation camera and an aperture (collimator) that together only satisfy a small portion of the spatial sampling requirements simultaneously. It would be very desirable to have a stationary data-collection apparatus that allows all spatial sampling in the data set to occur simultaneously. Aperture or detector motion (or both) is merely an inconvenience in most imaging situations where the patient is stationary. However, aperture or detector motion (or both) enormously complicate the prospect of tomograhically recording dynamic events, such as the beating heart, with radioactive pharmaceuticals. By substituting a set of small modular detectors for the large single-crystal detector, we can arrange the usable detector area in such a way as to collect all spatial samples simultaneously. The modular detectors allow for the possibility of using other types of stationary apertures. We demonstrate the capabilities of one such aperture, the pinhole array. The pinhole array is one of many kinds of collimators known as coded apertures. Coded apertures differ from conventional apertures in nuclear medicine in that they allow for overlapping projections of the object on the detector. Although overlapping projections is not a requirement when using pinhole arrays, there are potential benefits in terms of collection efficiency. There are also potential drawbacks in terms of the position uncertainty of

  6. Simulation Study of Single Photon Emission Computed Tomography for Industrial Applications

    SciTech Connect

    Roy, Tushar; Sarkar, P. S.; Sinha, Amar

    2008-09-26

    SPECT (Single Photon Emission Computed Tomography) provides for an invaluable non-invasive technique for the characterization and activity distribution of the gamma-emitting source. For many applications of radioisotopes for medical and industrial application, not only the positional information of the distribution of radioisotopes is needed but also its strength. The well-established X-ray radiography or transmission tomography techniques do not yield sufficient quantitative information about these objects. Emission tomography is one of the important methods for such characterization. Application of parallel beam, fan beam and 3D cone beam emission tomography methods have been discussed in this paper. Simulation studies to test these algorithms have been carried out to validate the technique.

  7. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  8. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  9. [Positron emission tomography/computed tomography in rheumatology].

    PubMed

    Derlin, T

    2017-06-29

    Combined positron emission tomography/computed tomography (PET/CT) is a whole-body imaging procedure, which enables sensitive detection of inflammatory changes. It may be used to simultaneously obtain both precise anatomical and molecular information in order to comprehensively characterize diseases. The glucose analogue (18)F-fluorodeoxyglucose (FDG) represents a universally applicable radiotracer for imaging of inflammatory processes. Its accumulation in tissues can be semiquantitatively characterized by use of standardized uptake values (SUV). In principle, a broad spectrum of infectious and non-infectious inflammatory and malignant diseases can be imaged. (18)F-FDG PET/CT has become a valuable modality and is increasingly being used for evaluation of large vessel vasculitis and for evaluation of elevated systemic inflammatory markers without known cause. Beside the radiotracer (18)F-FDG, other radiopharmaceuticals enable a non-invasive analysis of additional parameters of inflammatory disorders, such as other metabolic pathways or the expression of surface receptors.

  10. NDA via gamma-ray active and passive computed tomography

    SciTech Connect

    Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

    1996-10-01

    Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

  11. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  12. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  13. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-09-27

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  14. Gamma ray emission and solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Ramaty, R.

    1978-01-01

    Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

  15. Estimation of linear functionals in emission tomography

    SciTech Connect

    Kuruc, A.

    1995-08-01

    In emission tomography, the spatial distribution of a radioactive tracer is estimated from a finite sample of externally-detected photons. We present an algorithm-independent theory of statistical accuracy attainable in emission tomography that makes minimal assumptions about the underlying image. Let f denote the tracer density as a function of position (i.e., f is the image being estimated). We consider the problem of estimating the linear functional {Phi}(f) {triple_bond} {integral}{phi}(x)f(x) dx, where {phi} is a smooth function, from n independent observations identically distributed according to the Radon transform of f. Assuming only that f is bounded above and below away from 0, we construct statistically efficient estimators for {Phi}(f). By definition, the variance of the efficient estimator is a best-possible lower bound (depending on and f) on the variance of unbiased estimators of {Phi}(f). Our results show that, in general, the efficient estimator will have a smaller variance than the standard estimator based on the filtered-backprojection reconstruction algorithm. The improvement in performance is obtained by exploiting the range properties of the Radon transform.

  16. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  17. Interpretation of the pulsed gamma ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma ray emission is produced by synchrotron radiation near the speed of light cylinder. This model can explain the energy flux, double pulse structure, and phase shift with respect to the radio of the gamma ray emission and offers approximate quantitative predictions for other X-ray and gamma-ray fluxes.

  18. Interpretation of the pulsed gamma-ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma-ray emission is produced by synchrotron radiation near the speed-of-light cylinder. This model can explain the energy flux, double pulse structure, and phase shift (with respect to the radio) of the gamma-ray emission, and offers approximate quantitative predictions for other X- and gamma-ray fluxes.

  19. Classification of JET Neutron and Gamma Emissivity Profiles

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Kiptily, V.; Vega, J.; Contributors, JET

    2016-05-01

    In thermonuclear plasmas, emission tomography uses integrated measurements along lines of sight (LOS) to determine the two-dimensional (2-D) spatial distribution of the volume emission intensity. Due to the availability of only a limited number views and to the coarse sampling of the LOS, the tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET. In specific experimental conditions the availability of LOSs is restricted to a single view. In this case an explicit reconstruction of the emissivity profile is no longer possible. However, machine learning classification methods can be used in order to derive the type of the distribution. In the present approach the classification is developed using the theory of belief functions which provide the support to fuse the results of independent clustering and supervised classification. The method allows to represent the uncertainty of the results provided by different independent techniques, to combine them and to manage possible conflicts.

  20. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography.

    PubMed

    Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V

    2009-01-01

    The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.

  1. A Correlated Optical and Gamma Emission from GRB 081126A

    SciTech Connect

    Gendre, B.; Klotz, A.; Atteia, J. L.; Boeer, M.; Coward, D. M.; Imerito, A. C.

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  2. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography.

    PubMed

    Craciunescu, Teddy; Murari, Andrea; Kiptily, Vasily; Lupelli, Ivan; Fernandes, Ana; Sharapov, Sergei; Tiseanu, Ion; Zoita, Vasile

    2016-01-01

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

  3. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography

    NASA Astrophysics Data System (ADS)

    Craciunescu, Teddy; Murari, Andrea; Kiptily, Vasily; Lupelli, Ivan; Fernandes, Ana; Sharapov, Sergei; Tiseanu, Ion; Zoita, Vasile

    2016-01-01

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

  4. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography

    SciTech Connect

    Craciunescu, Teddy Tiseanu, Ion; Zoita, Vasile; Murari, Andrea; Kiptily, Vasily; Sharapov, Sergei; Lupelli, Ivan; Fernandes, Ana; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB

    2016-01-15

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been used to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.

  5. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  6. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  7. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  8. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  9. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  10. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  11. Quantitative positron emission tomography in brain research.

    PubMed

    Heurling, Kerstin; Leuzy, Antoine; Jonasson, My; Frick, Andreas; Zimmer, Eduardo R; Nordberg, Agneta; Lubberink, Mark

    2017-09-01

    The application of positron emission tomography (PET) in brain research has increased substantially during the past 20years, and is still growing. PET provides a unique insight into physiological and pathological processes in vivo. In this article we introduce the fundamentals of PET, and the methods available for acquiring quantitative estimates of the parameters of interest. A short introduction to different areas of application is also given, including basic research of brain function and in neurology, psychiatry, drug receptor occupancy studies, and its application in diagnostics of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Our aim is to inform the unfamiliar reader of the underlying basics and potential applications of PET, hoping to inspire the reader into considering how the technique could be of benefit for his or her own research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  13. Imaging tumour hypoxia with positron emission tomography

    PubMed Central

    Fleming, I N; Manavaki, R; Blower, P J; West, C; Williams, K J; Harris, A L; Domarkas, J; Lord, S; Baldry, C; Gilbert, F J

    2015-01-01

    Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers. PMID:25514380

  14. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  15. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  16. Teflon laryngeal granuloma presenting as laryngeal cancer on combined positron emission tomography and computed tomography scanning.

    PubMed

    Ondik, M P; Kang, J; Bayerl, M G; Bruno, M; Goldenberg, D

    2009-05-01

    Positron emission tomography with 18F-fluorodeoxyglucose (18FDG) has been increasingly used in the diagnostic investigation of patients with neoplasms of the head and neck. Positron emission tomography and computed tomography have also proven useful for surveillance of thyroid cancers that no longer concentrate radioiodine. However, certain benign or inflammatory lesions can also accumulate 18F-fluorodeoxyglucose and lead to misdiagnosis. We review and discuss the pitfalls of using positron emission tomography and computed tomography for surveillance of thyroid cancer. We present the case of a 48-year-old woman who was diagnosed with a laryngeal neoplasm on integrated positron emission tomography and computed tomography scanning, after a routine ultrasound demonstrated an enlarged thyroid nodule. On physical examination, she had a laryngeal mass overlying an immobile vocal fold. The mass was biopsied and found to harbour a Teflon granuloma. Positron emission tomography positive Teflon granulomas have previously been reported in the nasopharynx and vocal folds, and should be considered in the differential diagnosis of patients who have undergone prior surgery involving Teflon injection. It is important for otolaryngologists and radiologists to recognise potential causes of false positive positron emission tomography and computed tomography findings, including Teflon granulomas.

  17. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical.

  18. Gamma ray and microwave emission from 1991 June events

    NASA Technical Reports Server (NTRS)

    Enome, Shinzo; Nakajima, Hiroshi; Hudson, Hugh S.; Schwartz, Richard

    1992-01-01

    The Sun showed unprecedented microwave activities in Jun. 1991, which produced four major and numerous weaker bursts and gamma ray emission measured by the Gamma Ray Observatory. The 4 Jun. 1991 event shows a sharp maximum around 03:41 UT and weak emission a few minutes before the maximum in the gamma ray record of the Burst and Transient Source Experiment (BATSE), with a preliminary estimated energy of 5 MeV. Although the 80-GHz and possible 35-GHz records show more prominent emission in the pre-maximum stage. This strongly suggests the first observational evidence for gamma ray and mm-wave emission from relativistic electrons. Comparisons of the other three major events on 6 Jun. at 01:00 UT, 9 Jun. at 01:34 UT, and 11 Jun. at 01:51 UT between gamma ray and microwave emission are also in progress.

  19. X- and gamma-ray tomography for nondestructive material testing

    NASA Astrophysics Data System (ADS)

    Cesareo, Roberto; Brunetti, Antonio; Lopes, Ricardo T.; Galli, Gianfranco; Rao, Donepudi V.; Castellano, Alfredo; Gigante, Giovanni E.; Mascarenhas, Sergio; Robert, Rene; Filho, Vitoldo S.; Gilardoni, Marco; Da Silva, Hamilton P.; Colosso, Piero Q.

    1999-09-01

    Various apparatus for x and (gamma) -ray computed tomography (CT) have been constructed by us during the last 20 years, with the aim of producing simple and low-cost systems for nondestructive testing. The first one was constructed in 1980 and used an Am241 radioactive source emitting 59.6 keV (gamma) -rays and a single NaI(Tl)-x ray detector. Successively, the radioactive source was substituted during the years by x-ray tubes, and the single detector by multi- detection system such as arrays of detectors and image intensifiers. The last CT-scanner employs a 160 kV x-ray tube and a 6' X 6' image intensifier coupled through a lens to a cooled CCD-camera. At the same time, also (gamma) CT-scanners were constructed for large size and/or high-density samples. These are based on Ir192 or Cs137 radioactive sources coupled to a single NaI(Tl)(gamma) -ray detector. The characteristics and properties of the CT-scanners based on the use of x-ray tubes, emitting x-rays in the energy range 20 - 100 keV, and on (gamma) emitting radioisotopes (Ir192 and Cs137) have been studied and will be described in this paper. Various types of objects have been studied: test objects and common objects such as tree trunks, wood fragments, nuts, ceramic samples, insulators and, etc. Samples have been imaged, after using iodine compounds as tracers.

  20. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.

    PubMed

    Sharma, A C; Harrawood, B P; Bender, J E; Tourassi, G D; Kapadia, A J

    2007-10-21

    A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in

  1. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  2. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  3. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  4. Positron-emission tomography and personality disorders.

    PubMed

    Goyer, P F; Andreason, P J; Semple, W E; Clayton, A H; King, A C; Compton-Toth, B A; Schulz, S C; Cohen, R M

    1994-02-01

    This study used positron-emission tomography to examine cerebral metabolic rates of glucose (CMRG) in 17 patients with DSM III-R diagnoses of personality disorder. Within the group of 17 personality disorder patients, there was a significant inverse correlation between a life history of aggressive impulse difficulties and regional CMRG in the frontal cortex of the transaxial plane approximately 40 mm above the canthomeatal line (CML) (r = -.56, p = 0.17). Diagnostic groups included antisocial (n = 6), borderline (n = 6), dependent (n = 2), and narcissistic (n = 3). Regional CMRG in the six antisocial patients and in the six borderline patients was compared to a control group of 43 subjects using an analysis of covariance with age and sex as covariates. In the borderline personality disorder group, there was a significant decrease in frontal cortex metabolism in the transaxial plane approximately 81 mm above the CML and a significant increase in the transaxial plane approximately 53 mm above the CML (F[1,45] = 8.65, p = .005; and F[1,45] = 7.68, p = .008, respectively.

  5. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  6. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  7. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    SPECT scan Overview By Mayo Clinic Staff A single-photon emission computerized tomography (SPECT) scan lets your doctor analyze the function of some of your internal organs. A SPECT scan is a type of nuclear imaging test, ...

  8. X- and {gamma}-ray computed tomography applications at LLNL

    SciTech Connect

    Roberson, G.P.; Martz, H.E.; Schneberk, D.J.; Azevedo, S.G.

    1993-04-01

    Members of the Nondestructive Evaluation (NDE) Section at the Lawrence Livermore National Laboratory (LLNL) have implemented the advanced three-dimensional imaging technique of x and {gamma}-ray computed tomography (CAT or CT) for industrial and scientific nondestructive evaluation. This technique provides internal and external views of materials, components, and assemblies nonintrusively. Our research and development includes building CT scanners as well as data preprocessing, image reconstruction, display and analysis algorithms. These capabilities have been applied for a variety of industrial and scientific NDE applications where objects can range in size from 1 mm{sup 3} to 1 m{sup 3}. Here we discuss the usefulness of Cr to evaluate: Ballistic target materials, high-explosives shape charges, missile nosetips, and reactor-fuel tubes.

  9. Radiofluorinated carbohydrates for positron emission tomography.

    PubMed

    Mun, Jiyoung

    2013-01-01

    2-Deoxy-2-[(18)F]fluoro-D-glucose (2-(18)FDG) has represented radiofluorinated carbohydrates as the most successful tracer for positron emission tomography (PET). 2-(18)FDG uptake depends on glucose metabolism, which is related to a disease progression. 2-(18)FDG has been widely used in oncology, neurology, cardiology, infectious diseases, and inflammation, to complement anatomical modalities such as CT and MRI. Followed by the success of 2-(18)FDG, various radiofluorinated carbohydrates have been evaluated as PET tracers, which include analogs of D-ribose, D-mannose, D-galactose, D-talose, D-fructose, D-allose, lactose, L-fucose, N-acetylneuraminic acid, and L-ascorbic acid. Among those radiofluorinated carbohydrates, several have implied potential for further development. 2-Deoxy-2-[(18)F]fluoro-D-galactose has been developed to assess liver function and diagnose hepatic carcinoma. 6-Deoxy-6-[(18)F]fluoro-D-fructose showed promising characteristics for diagnosis of breast cancer. Three radiofluorinated analogs of lactose have been designed as the substrates of the overexpressed hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in peritumoral pancreatic tissue for early diagnosis of pancreatic cancer. The metabolism of 6-[(18)F]fluoro-L-fucose suggested that it is a bioactive analog of L-fucose in the synthesis of glycoconjugate macromolecules. 6-Deoxy-6-[(18)F]fluoro-L-ascorbic acid was evaluated to assess antioxidant function of L-ascorbic acid in rodent models of transient global ischemia and glutathione deficiency.

  10. Determination of the gamma emission probabilities of 239Np

    NASA Astrophysics Data System (ADS)

    Jian-bo, Shang; li-li, Du; Tao, Bai; Yi-hua, Dai; Zhen-yuan, Zhong; Jie, Liu; Quan-lin, Shi

    2017-09-01

    239Np is an important nuclide as the decay daughter of 239U and it decays to 239Pu by emitting beta particles and gamma rays with a half life of 2.356 days. The data of the emission probabilities of its gamma-rays in the open references are consistent except for the main gamma-ray of 106.1 keV, the emission probability of which varies from 25.9% to 27.2%. To verify the emission probability of 106.1 keV gamma-ray of 239Np, a N-type coaxial HPGe detector was calibrated using 241Am, 133Ba, 60Co, 152Eu and 155Eu reference gamma sources to get the accurate efficiency of the 106.1 keV gamma-ray. 239Np was purified from solution containing 243Am, where 239Np is the alpha decay daughter of 243Am. The specific activity of 239Np solution was determined by a 4πβ (PC)-γ coincidence counting device. There were 6 gamma sources prepared to measure with the HPGe detector, and the activity of 239Np in each gamma source was calculated with the weights of the solution contained in it. The emission probability of 106.1 keV of 239Np is measured to be (25.4 ± 0.3)%, which is consistent with 25.34%, the value evaluated in 2014.

  11. Recent progress in single-sided gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Thoe, Robert S.

    1994-07-01

    The use of scattered radiation for radiography has many potential advantages over conventional projection techniques: for high energy photons the scattering process strongly dominates all other processes. The intensity of scattered radiation is due directly to the electron density and highly insensitive to chemical composition. Finally, the use of scattered radiation allows the investigator to position the radiation source on the same side of the object as the detector. In this paper I will present some recent results of a set of measurements made with our uncollimated Compton backscattering tomography apparatus. This technique uses the Compton energy shift of scattered gamma rays to determine the scattering site. By measuring the spectrum of these scattered gamma rays it is then possible to determine the electron density of the object being investigated. I will give a brief description of the apparatus and present the results of numerous measurements made on a brass phantom with voids placed at various depths. These results imply that for this crude apparatus occlusions as small as one cubic millimeter may be located to an accuracy of about one millimeter at depths of about 15 millimeters in solid brass.

  12. Recent progress in single sided gamma-ray tomography

    SciTech Connect

    Thoe, R.S.

    1994-04-01

    The use of scattered radiation for radiography has many potential advantages over conventional projection techniques: For high energy photons the scattering process strongly dominates all other processes. The intensity of scattered radiation is due directly to the electron density and highly insensitive to chemical composition. Finally, the use of scattered radiation allows the investigator to position the radiation source-on-the same side of the object as the detector. In this paper I will present some recent results of a set of measurements made with our uncollimated Compton backscattering tomography apparatus. This technique uses the Compton energy shift of scattered gamma rays to determine the scattering site. By measuring the spectrum of these scattered gamma rays it is then possible to determine the electron density of the object being investigated. I will give a brief description of the apparatus and present the results of numerous measurements made on a brass phantom with voids placed at various depths. These results imply that for this crude apparatus occlusions as small as one cubic millimeter may be located to an accuracy of about one millimeter at depths of about 15 millimeters in solid brass.

  13. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  14. Gamma-ray emission from young neutron stars

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

    1991-01-01

    The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

  15. Gamma-ray emission from young neutron stars

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

    1991-01-01

    The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

  16. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed...

  17. Gamma-Ray Emission from Microquasars

    NASA Astrophysics Data System (ADS)

    Kaufman Bernado, M. M.

    2005-04-01

    Microquasars, X-ray binary systems that generate relativistic jets, were discovered in our Galaxy in the last decade of the XXth century. Their name indicates that they are manifestations of the same physics as quasars but on a completely different scale. Parallel to this discovery, the EGRET instrument on board of the Compton Gamma Ray Observatory detected 271 point like gamma-ray sources 170 of which were not clearly identified with known objects. This marked the beginning of gamma-ray source population studies in the Galaxy. We present in this thesis models for gamma-ray production in microquasars with the aim to propose them as possible parent populations for different groups of EGRET unidentified sources. These models are developed for a variety of scenarios taking into account several possible combinations, i.e. black holes or neutron stars as the compact object, low mass or high mass stellar companions, as well as leptonic or hadronic gamma-ray production processes. We also show that the presented models for gamma-rays emitting microquasars can be used to explain observations from well known sources that are detected in energy ranges other than EGRET's. Finally, we include an alternative gamma-ray producing situation that does not involve microquasars but a specific unidentified EGRET source possibly linked to a magnetized accreting pulsar.

  18. An online emission spectral tomography system with digital signal processor.

    PubMed

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei

    2009-03-30

    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  19. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  20. Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques.

    PubMed

    Harrison, Robert L

    2010-01-05

    An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.

  1. Simulation of prompt gamma-ray emission during proton radiotherapy.

    PubMed

    Verburg, Joost M; Shih, Helen A; Seco, Joao

    2012-09-07

    The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue.

  2. Single photon emission computed tomography/computed tomography for malignant otitis externa: lesion not shown on planar image.

    PubMed

    Chen, Yu-Hung; Hsieh, Hung-Jen

    2013-01-01

    Malignant otitis externa is a severe and rare infection of the external acoustic meatus. Triphasic bone and (67)Ga scintigraphies are used to initial detect and follow-up the response of therapy. With single photon emission computed tomography/computed tomography images, the diagnostic sensitivity is higher. We presented a case with malignant otitis externa with initial negative planar scintigraphic finding. The lesion was detected by photon emission computed tomography/computed tomography images. We concluded that the photon emission computed tomography/computed tomography should be performed routinely for patients with suspected malignant otitis externa, even without evidence of lesion on planar images. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  4. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  5. Positron emission tomography in the evaluation of subdural hematomas

    SciTech Connect

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-12-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was /sup 68/Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes.

  6. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  7. Positron emission tomography-computed tomography coregistration for diagnosis and intraoperative localization in recurrent nelson syndrome.

    PubMed

    Hintz, Eric B; Tomlin, Jeffery M; Chengazi, Vaseem; Vates, G Edward

    2013-06-01

    Recurrent pituitary disease presents unique challenges, including in some cases difficulty localizing a tumor radiographically. Here, we present the case of a patient with recurrent Nelson syndrome whose radiographic work-up was complicated by a significant parasellar metallic artifact. Positron emission tomography ultimately localized the lesion, and coregistration with computed tomography allowed for accurate intraoperative navigation. Additionally, we review a range of imaging techniques available in the evaluation of pituitary disease.

  8. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography.

    PubMed

    Elumogo, Comfort O; Kochenderfer, James N; Civelek, A Cahid; Bluemke, David A

    2016-04-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose ((18)F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient.

  9. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography

    PubMed Central

    Elumogo, Comfort O.; Kochenderfer, James N.; Civelek, A. Cahid

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose (18F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient. PMID:27190776

  10. Simulating Gamma-Ray Emission in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  11. Single photon emission computed tomography/computed tomography of the skull in malignant otitis externa.

    PubMed

    Chakraborty, Dhritiman; Bhattacharya, Anish; Kamaleshwaran, Koramadai Karuppusamy; Agrawal, Kanhaiyalal; Gupta, Ashok Kumar; Mittal, Bhagwant Rai

    2012-01-01

    Malignant otitis externa is a severe, rare infective condition of the external auditory canal and skull base. The diagnosis is generally made from a range of clinical, laboratory, and imaging findings. Technetium 99m methylene diphosphonate bone scintigraphy is known to detect osteomyelitis earlier than computed tomography. The authors present a patient with bilateral malignant otitis externa where the extent of skull base involvement was determined on 3-phase bone scintigraphy with single photon emission computed tomography/computed tomography. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  13. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  14. Role of positron emission tomography/computed tomography in breast cancer.

    PubMed

    Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C

    2013-09-01

    Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  16. MR imaging and positron emission tomography of cortical heterotopia

    SciTech Connect

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  17. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  18. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  19. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  20. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs). DATES... guidance entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs...

  1. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  2. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Senda, M.; Yamashita, K.; Koide, H.; Saji, H.; Hashimoto, T.; Fudo, T.; Kambara, H.; Kawai, C.

    1988-07-01

    The diagnostic value of exercise /sup 201/Tl single photon emission computed tomography (SPECT) for assessing coronary artery disease (CAD) was comparatively evaluated with exercise (13N) ammonia positron emission tomography (PET). Fifty-one patients underwent both stress-delayed SPECT imaging using a rotational gamma camera and stress-rest PET imaging using a high resolution PET camera. Of 48 CAD patients, SPECT showed abnormal perfusion in 46 patients (96%), while PET detected perfusion abnormalities in 47 (98%). The sensitivity for detecting disease in individual coronary arteries (greater than 50% stenosis) was also similar for SPECT (81%) and PET (88%). When their interpretations were classified as normal, transient defect, and fixed defect in 765 myocardial segments, SPECT and PET findings were concordant in 606 segments (79%). However, 66 segments showed a fixed defect by SPECT but a transient defect by PET, whereas there were only nine segments showing a transient defect by SPECT and a fixed defect by PET. PET identified transient defects in 34% of the myocardial segments showing a fixed defect by SPECT. We conclude that both stress SPECT and PET showed high and similar sensitivities for detecting CAD and individual stenosed vessels. Since stress-delayed SPECT with single tracer injection detected fewer transient defects, it may underestimate the presence of myocardial ischemia, compared with high resolution PET imaging with two tracer injections.

  3. Gamma ray emission from the region of the galactic center

    NASA Technical Reports Server (NTRS)

    Dahlbacka, G. H.; Freier, P. S.; Waddington, C. J.

    1972-01-01

    A combination nuclear emulsion-spark chamber gamma ray (E=100 MeV) telescope was used to study the region of sky that includes the Galactic Center. 95% confidence upper limits on the flux from the reported sources G gamma 2 - 3 and Sgr gamma-1 were placed at 4.4 and 8.8 x 10 to the minus 5th power protons/sq cm-sec, and a similar limit on the emission from the Galactic Center as a point source (plus or minus .75 degrees) was placed at 3.3 x 10 to the minus 5th power protons/sq cm-sec. No enhanced emission was observed from the Galactic Plane (plus or minus 6 degrees) and an upper limit of 2 x 10 to the minus 4th power protons/sq cm-sec rad/ was obtained.

  4. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  5. Gamma-Ray Bursts: Afterglow and Prompt Emission Models

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2008-10-01

    Swift observations have revealed interesting but puzzling data that demand a rethink of the origins of gamma-ray bursts (GRBs) and their afterglows. The chromatic breaks in X-ray/optical afterglow lightcurves stimulated several innovative suggestions, most invoking a non-forward-shock origin of the X-ray afterglows. The status of both the observational facts and the theoretical models is critically reviewed. Besides the late ``internal'' emission from a long-live central engine, most observed X-ray afterglows likely still include the contribution of the traditional forward shock component. The physical nature (e.g. energy dissipation mechanism, emission site, and radiation mechanism) of the GRB prompt emission is currently not identified. The motivations and issues of three proposed prompt emission sites are reviewed. Several independent methods, invoking prompt gamma-ray, X-ray, optical and GeV emission information, respectively, have been applied to constrain the unknown emission site. Tentative evidence suggests a large prompt emission radius. Finally, the implications of the broad band high quality data of the ``naked eye'' GRB 080319B for our understanding of the afterglow and prompt emission mechanisms are discussed.

  6. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  7. Characterization of Silicon Photomultiplier Readout Designs for Use in Positron Emission Tomography Systems

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yi

    Geiger-mode avalanche photodiodes, or silicon photomultipliers, are promising light sensors for the next generation Positron Emission Tomography (PET) scanners. The sensor is being used in the scanner's gamma ray detector to measure scintillation light. This thesis describes the test results of three gamma ray detectors that utilize silicon photomultipliers. The first one is a commercial detector, and the other two are custom made. The detectors are tested for their 511 keV photon energy and timing resolution, as well as their ability to measure light from small scintillator crystals. The two custom made detectors had smaller active area, but outperformed the commercial detector in energy resolution. The introduction of buffer amplifiers improved the timing resolution of one detector. All three detectors had their crystal decoding ability limited by signal multiplexing and the sensor's dark noise. Finally, a detector design was proposed for the PET system being developed in our group.

  8. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-07-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  9. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-03-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  10. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  11. Physical processes and diagnostics of gamma-ray burst emission

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1992-01-01

    With improved data from BATSE and other instruments, it is important to develop a range of diagnostic tools to link gamma-ray burst observations with theory. I will review some of the physical processes which may take place to form the spectrum of gamma-ray burst sources, assuming that the bursts originate on strongly magnetized neutron stars. The important diagnostics that these processes provide to probe the emission region and how they might be used to interpret observed spectra will also be discussed.

  12. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  13. Gamma emission in precompound reactions: 2, Numerical application

    SciTech Connect

    Herman, M.; Reffo, G.; Hoering, A. |

    1992-09-01

    The analytically obtained results of the preceding paper on capture gamma ray reactions are used for a direct numerical calculation. It turns out that this formulation allows for a parameter free description of gamma emission in precompound reactions. As an example we choose reactions induced by 14.1 MeV neutrons incident on {sup 59}CO, {sup 93}Nb and {sup 181}Ta. The individual contributions of different terms to the total cross section are discussed in detail and a comparison to experimental data is pursued.

  14. Gamma emission in precompound reactions: 2, Numerical application

    SciTech Connect

    Herman, M.; Reffo, G. ); Hoering, A. Washington Univ., Seattle, WA . Inst. for Nuclear Theory)

    1992-01-01

    The analytically obtained results of the preceding paper on capture gamma ray reactions are used for a direct numerical calculation. It turns out that this formulation allows for a parameter free description of gamma emission in precompound reactions. As an example we choose reactions induced by 14.1 MeV neutrons incident on {sup 59}CO, {sup 93}Nb and {sup 181}Ta. The individual contributions of different terms to the total cross section are discussed in detail and a comparison to experimental data is pursued.

  15. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  16. [Ventricular volumes determined by single-photon emission computed tomography].

    PubMed

    Katohno, E; Ono, K; Owada, K; Fujino, A; Watanabe, N; Sato, M; Konno, I; Yaoita, H; Tsuda, F; Kariyone, S

    1987-06-01

    To determine right (RV) and left ventricular (LV) volumes, a new technique was developed using ECG-gated single-photon emission computed tomography (SPECT). RV volumes of nine patients and LV volumes of 22 patients measured by SPECT and biplane contrast cineangiography were compared. In addition, volume and ejection fraction (EF) of the RV and LV were obtained by SPECT for 10 normal controls, 21 patients with old myocardial infarction (OMI), eight patients with hypertrophic cardiomyopathy (HCM) and 12 patients with dilated cardiomyopathy (DCM), and these results were compared. The intracardiac blood pool was labeled with Tc-99m sodium pertechnetate and 32 images were recorded through 180 degrees by a rotating gamma-camera. End-diastolic and end-systolic counts during 50 msec were recorded during 50 or 60 cardiac cycles. These counting data were reconstructed as tomographic images of vertical long-axial slices with thickness of a pixel without any attenuation correction. The numbers of voxels within the % cut-off level were summed, and the sum was multiplied by the one voxel volume. The cut-off level for ventricular delineation was determined as 45% by phantom studies. 1. The values obtained from SPECT and contrast angiography correlated well. 2. In normal controls, LV end-diastolic and end-systolic volumes were significantly less than those of the RV (p less than 0.05, p less than 0.001) and LVEF was significantly greater than the RVEF (p less than 0.001). 3. In OMI (single vessel disease), both end-diastolic and end-systolic volumes of the LV were significantly greater than those of normals (p less than 0.01, p less than 0.001) and LVEF was significantly less. In HCM end-systolic volumes of the RV were significantly less (p less than 0.05) than those of the normals. 4. LV volume was greater and LVEF was extremely low both in DCM and in OMI (multivessel disease) compared to that of the normals. In DCM, RV end-systolic volumes was greater and RVEF was lower than

  17. Positron emission tomography and computed tomography assessments of the aging human brain

    SciTech Connect

    de Leon, M.J.; George, A.E.; Ferris, S.H.; Christman, D.R.; Fowler, J.S.; Gentes, C.I.; Brodie, J.; Reisberg, B.; Wolf, A.P.

    1984-02-01

    The relationship between alterations in brain structure and brain function was studied in vivo in both young and elderly human subjects. Computed tomography revealed significant age-related ventricular and cortical sulcal dilatation. The cortical changes were most closely related to age. Positron emission tomography failed to show regional changes in brain glucose metabolic rate. The results suggest that the normal aging brain undergoes structural atrophic changes without incurring regional metabolic changes. Examination of the correlations between the structural and the metabolic measures revealed no significant relationships. These data are discussed with respect to the significant structure-function relationships that have been reported in Alzheimer disease. 27 references, 3 figures, 2 tables.

  18. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography.

    PubMed

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images.

  19. Positron emission tomography reveals a leiomyosarcoma causing proteinuria.

    PubMed

    Hegner, B; Krakamp, B; Hedde, J P; Brockmann, M; Weber, M; Schulze-Lohoff, E

    2003-08-01

    Obstruction of the renal veins may result in proteinuria and is frequently caused by thrombosis or tumorous processes. Since thrombosis and malignancy may occur simultaneously in the venous outflow of the kidneys, search for an underlying intraluminal tumor may be impeded by extensive thrombosis in the lumen of renal and caval veins. We report the case of a 30-year-old man with moderate proteinuria which was caused by an obstructing process of the vena cava inferior and the renal veins. While the obstructive mass was initially misdiagnosed as thrombosis, positron emission tomography helped to reveal the tumorous character of the lesion and fine-needle biopsy allowed rapid diagnosis of a leiomyosarcoma originating from the caval or renal veins. We conclude that undelayed diagnosis of the cause of renal and caval vein obstruction is facilitated by early positron emission tomography and subsequent fine-needle biopsy to identify possible tumorous lesions.

  20. Reconstruction of Emission Tomography Data Using Origin Ensembles

    PubMed Central

    Sitek, Arkadiusz

    2011-01-01

    A new statistical reconstruction method based on origin ensembles (OE) for emission tomography (ET) is examined. Using a probability density function (pdf) derived from first principles, an ensemble expectation of numbers of detected event origins per voxel is determined. These numbers divided by sensitivities of voxels and acquisition time provide OE estimates of the voxel activities. The OE expectations are shown to be the same as expectations calculated using the complete–data space. The properties of the OE estimate are examined. It is shown that OE estimate approximates maximum likelihood (ML) estimate for conditions usually achieved in practical applications in emission tomography. Three numerical experiments with increasing complexity are used to validate theoretical findings and demonstrate similarities of ML and OE estimates. Recommendations for achieving improved accuracy and speed of OE reconstructions are provided. PMID:21147594

  1. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  2. Magnetic resonance imaging and positron emission tomography of band heterotopia.

    PubMed

    Miura, K; Watanabe, K; Maeda, N; Matsumoto, A; Kumagai, T; Ito, K; Kato, T

    1993-01-01

    A case of band heterotopia was reported with findings of positron emission tomography (PET). The patient was an 8-year-old girl who had mild mental retardation and intractable partial epilepsy. Her MRI showed another diffuse layer of gray matter underlying the normal-looking cortex and separated from it by an apparently normal layer of white matter. PET scan with [18F]fluorodeoxyglucose revealed that band heterotopia had the same degree of glucose metabolism as that of the overlying cortex.

  3. Technology related parameters affecting quantification in positron emission tomography imaging.

    PubMed

    Visvikis, D; Turzo, A; Bizais, Y; Cheze-Le Rest, C

    2004-07-01

    Some of the issues associated with positron emission tomography (PET) technology which still pose challenges for the recovery of quantitative images are discussed. Through these issues reference to what is today considered as the 'gold standard' in quantitative PET imaging is also presented. A brief comparison of 2-D and 3-D PET is given, together with a short discussion of combined PET/CT imaging devices.

  4. Current and future technological trends in positron emission tomography.

    PubMed

    Karp, J S; Freifelder, R

    1992-04-01

    Current trends in positron emission tomography (PET) instrumentation are examined, with an emphasis on providing information suitable to the prospective PET user. Basic principles underlying PET are explained and information on performance measurements, techniques, and quantitation are given in order to allow the user to compare and contrast different types of PET scanners. These scanner designs are described. Specific examples are given and the combination of PET with other modalities is discussed.

  5. Revisiting stopping rules for iterative methods used in emission tomography.

    PubMed

    Guo, Hongbin; Renaut, Rosemary A

    2011-07-01

    The expectation maximization algorithm is commonly used to reconstruct images obtained from positron emission tomography sinograms. For images with acceptable signal to noise ratios, iterations are terminated prior to convergence. A new quantitative and reproducible stopping rule is designed and validated on simulations using a Monte-Carlo generated transition matrix with a Poisson noise distribution on the sinogram data. Iterations are terminated at the solution which yields the most probable estimate of the emission densities while matching the sinogram data. It is more computationally efficient and more accurate than the standard stopping rule based on the Pearson's χ(2) test.

  6. The AAPM/RSNA physics tutorial for residents. Clinical aspects of emission tomography.

    PubMed

    Miller, T R

    1996-05-01

    Characteristics of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that have an important impact on clinical interpretation include increased image contrast compared with that in planar imaging and enhanced three-dimensional perception of spatial relationships. Negative factors of tomographic imaging compared with planar imaging include generally inferior spatial resolution and noise and the increased complexity of performing high-quality studies. Areas in which tomography is of value include assessment of recurrent tumors and seizure foci in the brain, myocardial perfusion imaging, and bone scintigraphy, especially in the spine. SPECT studies performed with labeled red blood cells are useful in the diagnosis of cavernous hemangiomas of the liver. SPECT is a valuable adjunct to planar imaging in assessment of infections and tumors. PET studies performed with fluorine-18 fluorodeoxyglucose are currently generating great interest in oncology. Areas of research that have potential clinical impact include development of improved tomographic reconstruction algorithms, correction for nonuniform attenuation of gamma rays, and multimodality image registration.

  7. Dementias appear to have individual profiles in single photon emission computed tomography

    SciTech Connect

    Not Available

    1989-02-17

    A number of researchers are seeking clinical applications for single photon emission computed tomographic (SPECT) images of demented patients. They have found that dementias have somewhat individual SPECT profiles. The challenge now, they say, is to determine if the SPECT information is meaningful to the clinician and to develop more specific radiotracers, such as tracers for individual neuroreceptors. The initial work was done with positron emission tomography (PET), a sometimes more sensitive, but much more expensive technique. Recently, a number of centers began trying to duplicate the PET findings using SPECT. Developing SPECT could actually make dementia scanning fairly available, they say. Radiologists estimate that three fourths of the nation's nuclear medicine departments have SPECT scanning machines-either rotating or multiaperature gamma cameras.

  8. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  9. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  10. High-energy emission from gamma-ray bursts

    SciTech Connect

    Nolan, P.L.; Share, G.H.; Matz, S.; Chupp, E.L.; Forrest, D.J.; Rieger, E.

    1984-05-26

    We discuss broad-band continuum spectroscopy of 17 gamma-ray bursts above 0.3 MeV. The spectra were fitted by 3 trial functions, none of which provided an adequate fit to all the spectra. Most were too hard for a thermal bremsstarhlung function. Harder functional forms, such as thermal synchrotron or power-law, provide better fits for most of the spectra. The strong emission observed above 1 MeV raises some interesting theoretical questions.

  11. Antineutrino and gamma emission from the OSIRIS research reactor

    NASA Astrophysics Data System (ADS)

    Giot, Lydie; Fallot, Muriel

    2017-09-01

    For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  12. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  13. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  14. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    SciTech Connect

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  15. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  16. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  17. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  18. High Speed Gamma-Ray Tomography for Hydrocarbon Flow Applications

    NASA Astrophysics Data System (ADS)

    Hjertaker, Bjørn Tore; Johansen, Geir Anton

    2008-09-01

    A high speed gamma-ray tomograph consisting of five 500 mCi 241Am gamma-ray sources corresponding to 85 CdZnTe detectors has been designed and prototyped for monitoring of multiphase hydrocarbon flow, which includes acquisition of the individual flow components, i.e. the flow rates of oil, water and gas, emerging from a producing well. In order to accomplish multiphase monitoring, information on the physical distribution, i.e. the flow regime, of the individual flow components are required. Tomographic instrumentation has proven suitable for this purpose. The gamma-ray tomograph has demonstrated feasibility in a dual modality setup for flow regime identification during multiphase flow measurements along with a HFMF (High Frequency Magnetic Field) bulk sensor, which has sensitivity to the water component over the full WLR (Water Liquid Ratio) range. The tomograph is also used as a process verification tool during flow instrumentation development. A demonstration of this is the utilization of the gamma-ray tomograph during the development stage of the novel subsea online multiphase fluid sampling and analysis (SOFA) system.

  19. Sooting flame thermometry using emission/absorption tomography

    NASA Astrophysics Data System (ADS)

    Hall, Robert J.; Bonczyk, Paul A.

    1990-11-01

    A sooting flame temperature measurement technique has been demonstrated based on emission-absorption tomography. The approach applies the algorithms of Fourier transform tomography to deconvolve local soot absorption coefficient and Planck function (temperature) from sets of parallel line-of-sight measurements. The technique has the advantage that it is experimentally simple and does not require involved data reduction. For small particles, there is also no sensitivity of the inferred temperature to possibly uncertain medium parameters. Its main limitation seems to be that it will not work for vanishingly small absorption, but this could be overcome in practice by seeding and then performing all work at the wavelength of a seed resonance. While in principle limited to optically thin flames, accurate corrections for moderate optical thickness can often be made. A self-consistent comparison of measured global radiation from a sooting ethylene flame with a radiative transfer calculation based on measured temperature and soot absorption parameters has been performed.

  20. Sooting flame thermometry using emission/absorption tomography.

    PubMed

    Hall, R J; Bonczyk, P A

    1990-11-01

    A sooting flame temperature measurement technique has been demonstrated based on emission-absorption tomography. The approach applies the algorithms of Fourier transform tomography to deconvolve local soot absorption coefficient and Planck function (temperature) from sets of parallel line-of-sight measurements. The technique has the advantage that it is experimentally simple and does not require involved data reduction. For small particles, there is also no sensitivity of the inferred temperature to possibly uncertain medium parameters. Its main limitation seems to be that it will not work well for vanishingly small absorption, but this could be overcome in practice by seeding and then performing all work at the wavelength of a seed resonance. While in principle limited to optically thin flames, accurate corrections for moderate optical thickness can often be made. A self-consistent comparison of measured global radiation from a sooting ethylene flame with a radiative transfer calculation based on measured temperature and soot absorption parameters has been performed.

  1. Single photon emission computed tomography in seizure disorders.

    PubMed Central

    Denays, R; Rubinstein, M; Ham, H; Piepsz, A; Noël, P

    1988-01-01

    Fourteen children with various seizure disorders were studied using a cerebral blood flow tracer, 123I iodoamphetamine (0.05 mCi/kg), and single photon emission computed tomography (SPECT). In the five patients with radiological lesions, SPECT showed congruent or more extensive abnormalities. Five of the nine children with a normal scan on computed tomography had abnormal SPECT studies consisting of focal hypoperfusion, diffuse hemispheric hypoperfusion, multifocal and bilateral hypoperfusion, or focal hyperperfusion. A focal lesion seen on SPECT has been found in children with tonic-clonic seizures suggesting secondarily generalised seizures. Moreover the pattern seen on SPECT seemed to be related to the clinical status. An extensive impairment found on SPECT was associated with a poor evolution in terms of intellectual performance and seizure frequency. Conversely all children with a normal result on SPECT had less than two seizures per year and normal neurological and intellectual development. Images Figure PMID:3264135

  2. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  3. History and future technical innovation in positron emission tomography.

    PubMed

    Jones, Terry; Townsend, David

    2017-01-01

    Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.

  4. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  5. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  6. The Prompt and High Energy Emission of Gamma Ray Bursts

    SciTech Connect

    Meszaros, P.

    2009-05-25

    I discuss some recent developments concerning the prompt emission of gamma-ray bursts, in particular the jet properties and radiation mechanisms, as exemplified by the naked-eye burst GRB 080319b, and the prompt X-ray emission of XRB080109/SN2008d, where the progenitor has, for the first time, been shown to contribute to the prompt emission. I discuss then some recent theoretical calculations of the GeV/TeV spectrum of GRB in the context of both leptonic SSC models and hadronic models. The recent observations by the Fermi satellite of GRB 080916C are then reviewed, and their implications for such models are discussed, together with its interesting determination of a bulk Lorentz factor, and the highest lower limit on the quantum gravity energy scale so far.

  7. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  8. Long duration gamma-ray emission from thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.

    Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is

  9. Dark matter properties implied by gamma ray interstellar emission models

    NASA Astrophysics Data System (ADS)

    Balázs, Csaba; Li, Tong

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  10. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  11. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  12. Flare gamma ray continuum emission from neutral pion decay

    NASA Technical Reports Server (NTRS)

    Alexander, David; Mackinnon, Alec L.

    1992-01-01

    We investigate, in detail, the production of solar flare gamma ray emission above 100 MeV via the interaction of high energy protons with the ambient solar atmosphere. We restrict our considerations to the broadband gamma ray spectrum resulting from the decay of neutral pions produced in p-H reactions. Thick-target calculations are performed to determine the photon fluences. However, proton transport is not considered. Inferences about the form of the proton spectrum at 10-100 MeV have already been drawn from de-excitation gamma ray lines. Our aim is to constrain the proton spectrum at higher energies. Thus, the injected proton spectrum is assumed to have the form of a Bessel Function, characteristics of stochastic energy at higher energies. The detailed shape of the gamma ray spectra around 100 MeV is found to have a strong dependence on the spectral index of the power law and on the turnover energy (from Bessel function to power law). As would be expected, the harder the photon spectrum the wider the 100 MeV feature. The photon spectra are to be compared with observations and used to place limits upon the number of particles accelerated and to constrain acceleration models.

  13. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  14. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    ) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac Magnetic Resonance Imaging Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Cardiac Positron Emission Tomography Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite

  15. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes, and Dwyer et al. [GRL, 40, 4067, 2013] recently quantified optical emissions associated with TGFs based on assumption that these emissions are similar to those produced by extensive air showers. In the present study, we quantify optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and acceleration of thermal runaway electrons produced by high-potential intra-cloud lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. Using Monte Carlo simulations, we show that electron energy distributions established from these two production mechanisms are inherently different over the full energy range, and also substantially different from those produced in extensive air showers. Moreover, we show that TGFs are

  16. On the prompt gamma -ray emission radii of LGRBs

    NASA Astrophysics Data System (ADS)

    Zhang, Z.-B.

    A simple method has been used to measure the prompt emission radii of 27 Swift and 37 pre-Swift long gamma-ray bursts with known redshift and jet break time. I find that the prompt gamma -rays are emitted from a beamed jet with dynamic open angle narrower than its geometric open angle. It is also found that both Swift and pre-Swift long bursts occurred at a similarly upper-limited radius of ˜ 1016 cm, although Swift/BAT is more sensitive to long bursts than pre-Swift detectors did. These results are consistent with some previous expectations based on Swift early afterglow data, spectral cut-off energy or turbulence model.

  17. Positron Emission Tomography (PET) for benign and malignant disease

    PubMed Central

    Visioni, Anthony; Kim, Julian

    2011-01-01

    Synopsis Functional imaging using radiolabeled probes which specifically bind and accumulate in target tissues has improved the sensitivity and specificity of conventional imaging. Positron Emission Tomography using modified glucose probes (FDG-PET) has demonstrated improved diagnostic accuracy in differentiating benign from malignant lesions in the setting of solitary pulmonary nodules. In addition, FDG-PET has become a useful modality in pre-operative staging of patients with lung cancer and is being tested with many other malignancies for its ability to change patient management. This article provides an overview of the current status of FDG-PET and presents the challenges of moving towards routine use. PMID:21184913

  18. [Positron emission tomography: diagnostic imaging on a molecular level].

    PubMed

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  19. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  20. [Positron emission tomography and scintigraphy. Nuclear imaging in clinical orthopaedics].

    PubMed

    Kirsch, C M

    2006-09-01

    Nuclear medicine uses the function of organs or organ systems to diagnose and treat disease. The source of radiation is brought into the patient's body by means of a radioactive labelled pharmaceutical. Its way through the body is recorded by appropriate equipment on the outside. Of the many nuclear medical procedures, those primarily applicable to orthopaedic problems are explained here, such as bone scintigraphy, scintigraphy of inflammatory lesions, and tumour scintigraphy. Besides their use in diagnostics, therapeutic applications are covered as well. Using examples from clinical practice, "conventional" nuclear medicine and positron emission tomography are also covered.

  1. Positron emission tomography for use in microdosing studies.

    PubMed

    Wagner, Claudia Christina; Müller, Markus; Lappin, Graham; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET) imaging using microdoses of radiolabeled drug tracers is gaining increasing acceptance in modern clinical drug development. This approach is unique in that it allows for direct quantitative assessment of drug concentrations in the tissues targeted for treatment, thereby bridging the gap between pharmacokinetics and pharmacodynamics. Current applications of PET in anticancer, anti-infective and central nervous system drug research are reviewed herein. Situated at the interface of preclinical and clinical drug testing, PET microdosing is a powerful and highly innovative tool for pharmaceutical development.

  2. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  3. Spatial emission tomography reconstruction using Pitman-Yor process

    SciTech Connect

    Fall, Mame Diarra; Mohammad-Djafari, Ali; Barat, Eric; Comtat, Claude

    2009-12-08

    In this paper, we address the problem of emission tomography spatial reconstruction in three dimensions following a Bayesian nonparametric approach. Our model makes use of a generalization of the Dirichlet process called Pitman-Yor process. The problem in this approach is to deal with the infinite representation of the distribution in the inference. So we propose an efficient Markov Chain Monte-Carlo sampling scheme which is able to generate samples from the posterior distribution of the activity distribution. An application to 3D-PET reconstruction is presented.

  4. Positron emission tomography: the conceptual idea using a multidisciplinary approach.

    PubMed

    Paans, Anne M J; van Waarde, Aren; Elsinga, Philip H; Willemsen, Antoon T M; Vaalburg, Willem

    2002-07-01

    Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.

  5. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    SciTech Connect

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  6. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-01

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because 134Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as 40K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi4Ge3O12 (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from 134Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  7. Low background high efficiency radiocesium detection system based on positron emission tomography technology.

    PubMed

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-01

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because (134)Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as (40)K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi4Ge3O12 (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from (134)Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  8. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  9. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  10. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  11. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images. PMID:27385906

  12. The role of positron emission tomography/computed tomography in planning radiotherapy in endometrial cancer.

    PubMed

    Simcock, Bryony; Narayan, Kailash; Drummond, Elizabeth; Bernshaw, David; Wells, Elizabeth; Hicks, Rodney J

    2015-05-01

    The optimal method of assessing disease distribution in endometrial cancer is widely debated. Knowledge of disease distribution assists in planning adjuvant radiotherapy; in this study we used positron emission tomography/computed tomography (PET/CT) to assess disease distribution before radiotherapy. Seventy-three consecutive patients referred to the Peter MacCallum Cancer Centre for adjuvant radiotherapy for endometrial cancer, with either high-risk disease after a hysterectomy or recurrent disease, had a PET/CT before treatment. The findings on PET/CT and clinical course were recorded. PET/CT found additional disease in 35% of postoperative patients, changing planned treatment in 31%. In the group with known recurrence, additional disease was found in 72%, changing management in 36%. PET/CT is a valuable tool for planning radiotherapy in endometrial cancer.

  13. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  14. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  15. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    SciTech Connect

    Herraiz, J. L.; Sitek, A.

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  16. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    PubMed Central

    Herraiz, J. L.; Sitek, A.

    2015-01-01

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data. PMID:26520759

  17. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in a Patient with HIV (-) Kaposi Sarcoma

    PubMed Central

    Cengiz, Arzu; Şavk, Ekin; Tataroğlu, Canten; Yürekli, Yakup

    2016-01-01

    Kaposi sarcoma (KS) is a vascular neoplasm that often manifests with multiple vascular nodules on the skin and other organs. Various imaging modalities can be used to display disease extent. Herein we present a 65-year-old female patient with human immunodeficiency virus negative KS along with her whole-body positron emission tomography/computed tomography imaging findings. PMID:27751977

  18. Rare case of an ovarian vein tumor thrombosis identified on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Fludeoxyglucose positron emission tomography/computed tomography is valuable in the identification of tumor thrombus and differentiating it from bland thrombus which has implications in initiating anticoagulation. We present a rare case of tumor thrombosis in ovarian vein, in a recurrent case of uterine carcinosarcoma. PMID:27833321

  19. Optical emissions associated with terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.

    2015-02-01

    Terrestrial gamma ray flashes (TGFs) are high-energy photon bursts produced by high-energy electrons originating in the Earth's atmosphere through bremsstrahlung processes. In this paper, we present modeling studies on optical emissions resulting from the excitation of air molecules produced by the large population of electrons involved in TGF events based on two possible production mechanisms: relativistic runaway electron avalanches (RREAs) and acceleration of thermal runaway electrons produced by high-potential intracloud lightning leaders. Numerical models developed in this study are first validated through the calculation of fluorescence emissions from air excited by energetic electrons and comparison with available laboratory observations. Detailed discussion of the role of excitation and ionization collisions on the formation of the electron energy distribution is presented. Moreover, using Monte Carlo simulations, we show that electron energy distributions established from the two TGF production mechanisms considered here are inherently different over the full energy range. The strong energy dependence of the capability of electrons to generate excited states responsible for optical emissions from neutral and ionized nitrogen molecules leads to intrinsic differences in optical emissions produced by different mechanisms of TGF production. We also show that TGFs are most likely accompanied by detectable levels of optical emissions and that the distinct optical features are of significant interest for constraining and validating current TGF production models.

  20. Comparison of single-photon emission computed tomography with (123I)iodoamphetamine and xenon-enhanced computed tomography for assessing regional cerebral blood flow

    SciTech Connect

    Hellman, R.S.; Collier, B.D.; Tikofsky, R.S.; Kilgore, D.P.; Daniels, D.L.; Haughton, V.M.; Walsh, P.R.; Cusick, J.F.; Saxena, V.K.; Palmer, D.W.

    1986-12-01

    Regional CBF (rCBF) images obtained from xenon-enhanced computed tomography (XeCT) and single-photon emission computed tomography (SPECT) with N-isopropyl-p-(/sup 123/I)iodoamphetamine (IMP) done with a rotating gamma-camera were compared in nine patients. Both XeCT and SPECT/IMP demonstrated flow abnormalities at all sites of infarction identified by CT, while detecting reduced rCBF in areas normal by CT in eight of the nine patients. All areas that were abnormal on XeCT were abnormal on the comparable SPECT/IMP images. The major advantages of XeCT are its greater resolution and potential for noninvasive quantitation of rCBF, while the major advantage of SPECT/IMP is its visualization of the entire brain on transverse, coronal, and sagittal sections.

  1. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    PubMed Central

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  2. Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging

    NASA Astrophysics Data System (ADS)

    Kapadia, A. J.

    Neutron stimulated emission computed tomography (NSECT) is being developed as a new medical-imaging technique to quantify spatial distributions of elements in a sample through inelastic scattering of fast neutrons and detection of the resulting gamma rays. It has the potential to diagnose several disorders in the human body that are characterized by changes in element concentration in the diseased tissue. NSECT is sensitive to several naturally occurring elements in the human body that demonstrate concentration changes in the presence of diseases. NSECT, therefore, has the potential to noninvasively diagnose such disorders with radiation dose that is comparable to other ionizing imaging modalities. This chapter discusses the development and progress of NSECT and presents an overview of the current status of the imaging technique.

  3. Positron emission tomography: physics, instrumentation, and image analysis.

    PubMed

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center.

  4. Gamma-ray tomography in forest and tree sciences

    NASA Astrophysics Data System (ADS)

    Habermehl, Adolf; Ridder, Hans-Werner

    1997-10-01

    In forestry and tree sciences computerized tomography allows the quantitative determination of the locally varying absorption coefficients for penetrating radiation within a thin slice of the trunk. The tomogram shows not only hollows, rot, knots and other defects but also the distribution of water in the invisible interior of the stem. Portable systems have been developed and built for computerized tomography of standing trees in forests and parks. They use the radio nuclide Cesium-137 as source of radiation. The MCT-3 is based on the translation-rotation- method. A bearing ring carries the shielded source of 13 GBq of Cs-137 and three scintillation detectors. The MCT-F is based on the fan-beam method and has 30 detectors. It has an inner diameter of 100 cm and a stronger source of 185 GBq. Equipment was used in forestry sciences and in tree-care to obtain information about decay, checks, heartwood formation and moisture content, for the detection of interior decay by fungi and its spread in a horizontal and vertical direction, for determining sapwood area dependent on fertilization, for evaluating development and treatment of tree wounds and for studying the influence of resin tapping on the water supply of pines.

  5. Ictal onset zone and seizure propagation delineated on ictal F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tripathi, Madhavi; Tripathi, Manjari; Garg, Ajay; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the utility of ictal F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in delineating the seizure onset zone in a child with complex partial seizures. Although F-18 FDG PET has been successfully used to delineate interictal hypometabolism, planned ictal FDG PET, in cases with prolonged seizure activity, can provide better spatial resolution than single-photon emission CT by delineating the seizure onset zone and propagation pathway.

  6. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  7. VERY HIGH ENERGY gamma-RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS

    SciTech Connect

    Xue, R. R.; Fan, Y. Z.; Wei, D. M.; Tam, P. H.; Wagner, S. J.; Behera, B. E-mail: phtam@lsw.uni-heidelberg.d

    2009-09-20

    The synchrotron self-Compton (SSC) emission from gamma-ray burst (GRB) forward shock can extend to the very high energy (VHE; E{sub {gamma}} > 100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For five bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of {approx}<10 hr.

  8. Computer Assisted Gamma and X-Ray Tomography: Applications to Multiphase Flow Systems.

    SciTech Connect

    Kumar, Sailesh B.; Dudukovic, Milorad P.; Toseland, Bernard A.

    1997-03-01

    The application of X-ray and gamma ray transmission tomography to the study of process engineering systems is reviewed. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  9. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    SciTech Connect

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-10-04

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ``mock`` waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements.

  10. Extended Gamma-Ray Emission from Large Coronal Loops

    NASA Astrophysics Data System (ADS)

    Rank, G.; Debrunner, H.; Lockwood, J.; McConnell, M.; Ryan, J.; Schonfelder, V.

    In June 1991 the Sun produced a series of six X-class flares which were the most powerful events of the last solar cycle. All of them originated from the same active region NOAA 6659. Target-of-opportunity observations with CGRO yielded a wealth of data from hard X-rays to gamma-rays and additionally direct neutron measurements by COMPTEL. We have analyzed COMPTEL gamma-ray data and have compared them with the results from other instruments. The most remarkable finding from the June 1991 flares was the observation of prolonged gamma-ray emission. For all three flares high-energetic emission was measured by a number of instruments and lasted for several hours after the impulsive phase. The following table shows the observational coverage of the flares by high-energy instruments: || HXR || 2.2 MeV || 4--7 (1st hour) || > 50 MeV June 9 || BATSE || COMPTEL || COMPTEL || June 11 || BATSE || COMPTEL || COMPTEL || EGRET June 15 || BATSE || COMPTEL || || GAMMA-1 An early model by Ramaty & Mandzhavidze (1994) explained the extended emission as long-term trapping of accelerated particles in magnetic loops. The model was calculated to explain EGRET data of the 11 June 1991 flare. An important prediction from trapping models is the hardening of the spectrum of the trapped particles with time. We have compared time profiles of different parts of the gamma-ray spectrum, originating from particles with different energies, to test this prediction (Rank et al. 1996). We have used 2.2 MeV and 4--7 MeV data from COMPTEL, and for later times the 2.2 MeV flux from COMPTEL and the >50 MeV flux from EGRET and GAMMA-1, respectively. These observational results show that the shape of the proton spectrum does not change significantly during the extended phase, and thus contradict a scenario of trapped particles that would suffer energy-dependent energy losses. Other explanations, the continuous acceleration of particles throughout the extended phase in large, turbulent, magnetic loops (Ryan

  11. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  12. Gravitational waves versus X-ray and gamma-ray emission in a short gamma-ray burst

    SciTech Connect

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2014-06-01

    Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

  13. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  14. Mycosis fungoides staged by 18F-flurodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Xu, Lu; Pang, Hua; Zhu, Jin; Chen, Xi; Guan, Lili; Wang, Jie; Chen, Jing; Liu, Ying

    2016-01-01

    Abstract Introduction: Mycosis fungoides is a kind of malignant lymphoma arising from T cells, but primarily occurs in skin, and it is the most common type of cutaneous lymphoma. Mycosis fungoides (MF) is a rare non-Hodgkin lymphoma but the most common type of primary cutaneous T-cell lymphomas. Because of unknown etiology and mechanism, and lack of typical clinical and histophysiological manifestations, the final diagnosis of MF is currently dependent on pathology and immunohistochemistry. Subsequently, tumor staging is very important. Different approaches would be taken according to varying degrees of cutaneous and extracutaneous lesions. Computed tomography (CT) scan has been chosen to stage tumors customarily. However, CT could only provide morphological information and analyze lymphadenopathy by the size criteria. 18F-flurodeoxyglucose positron emission tomography/computed tomography (PET/CT) could provide morphological information and metabolic conditions simultaneously, which is helpful to locate and stage lesion. Conclusion: 18F-flurodeoxyglucose PET/CT could identify cutaneous and extracutaneous lesions in patients with MF. It could provide the range of lesions and biopsy target. PMID:27828842

  15. Is there any role of positron emission tomography computed tomography for predicting resectability of gallbladder cancer?

    PubMed

    Kim, Jaihwan; Ryu, Ji Kon; Kim, Chulhan; Paeng, Jin Chul; Kim, Yong-Tae

    2014-05-01

    The role of integrated (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET-CT) is uncertain in gallbladder cancer. The aim of this study was to show the role of PET-CT in gallbladder cancer patients. Fifty-three patients with gallbladder cancer underwent preoperative computed tomography (CT) and PET-CT scans. Their medical records were retrospectively reviewed. Twenty-six patients underwent resection. Based on the final outcomes, PET-CT was in good agreement (0.61 to 0.80) with resectability whereas CT was in acceptable agreement (0.41 to 0.60) with resectability. When the diagnostic accuracy of the predictions for resectability was calculated with the ROC curve, the accuracy of PET-CT was higher than that of CT in patients who underwent surgical resection (P=0.03), however, there was no difference with all patients (P=0.12). CT and PET-CT had a discrepancy in assessing curative resection in nine patients. These consisted of two false negative and four false positive CT results (11.3%) and three false negative PET-CT results (5.1%). PET-CT was in good agreement with the final outcomes compared to CT. As a complementary role of PEC-CT to CT, PET-CT tended to show better prediction about resectability than CT, especially due to unexpected distant metastasis.

  16. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications.

    PubMed

    Hampel, U; Bieberle, A; Hoppe, D; Kronenberg, J; Schleicher, E; Sühnel, T; Zimmermann, F; Zippe, C

    2007-10-01

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662 keV gamma photon energy and achieves a spatial image resolution of 0.2 line pairs/ mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  17. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    PubMed Central

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  18. Shifted helical computed tomography to optimize cardiac positron emission tomography-computed tomography coregistration: quantitative improvement and limitations.

    PubMed

    Johnson, Nils P; Pan, Tinsu; Gould, K Lance

    2010-10-01

    Positron emission tomography-computed tomography (PET-CT) uses CT attenuation correction but suffers from misregistration artifacts. However, the quantitative accuracy of helical versus cine CT in the same patient after optimized coregistration by shifting both CT data as needed for each patient is unknown. We studied 293 patients undergoing cardiac perfusion PET-CT using helical CT attenuation correction for comparison to cine CT. Objective, quantitative criteria identified perfusion abnormalities that were associated visually with PET-CT misregistration. Custom software shifted CT data to optimize coregistration with quantitative artifact improvement. The majority (58.1%) of cases with both helical and shifted helical CT data (n  = 93) had artifacts that improved or resolved by software shifting helical CT data. Translation of shifted helical CT was greatest in the x-direction (8.8 ± 3.3 mm) and less in the y- and z-directions (approximately 3.5 mm). The magnitude of differences in quantitative end points was greatest for helical (p  =  .0001, n  =  177 studies), less for shifted helical but significant (p  =  .0001, n  =  93 studies), and least for cine (not significant, n  =  161 studies) CT compared to optimal attenuation correction for each patient. Frequent artifacts owing to attenuation-emission misregistration are substantially corrected by software shifting helical CT scans to achieve proper coregistration that, however, remains on average significantly inferior to cine CT attenuation quantitatively.

  19. Short Gamma-Ray Bursts with Extended Emission

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  20. Application of gamma-ray active and passive computed tomography to nondestructively assay TRU waste

    SciTech Connect

    Martz, H.E.; Decman, D.J.; Roberson, G.P.; Johansson, E.M.; Keto, E.R.

    1996-05-01

    The authors have developed an active and passive computed tomography scanner for assaying radioactive waste drums. They describe the hardware and software components of the system used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using mock waste drums and calibrated radioactive sources. They describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content.

  1. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  2. Dual-mode capacitance and gamma-ray tomography using the Landweber reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Hjertaker, B. T.; Maad, R.; Johansen, G. A.

    2011-10-01

    A dual-mode tomography system based on electrical capacitance and gamma-ray tomography has been developed at the Department of Physics and Technology, University of Bergen. The objective of the dual-mode tomograph is to acquire cross-sectional images, i.e. tomograms, of hydrocarbon flow comprising oil, water and gas constituents. The capacitance tomograph utilizes an eight-electrode sensor set-up mounted around a PVC pipe structure which is sensitive to the electrical permittivity ɛr of the fluid. By using the capacitance tomograph, the produced water constituent can be separated from the gas and crude oil constituents, assuming that the liquid phase is oil continuous. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors mounted around the same pipe section as the capacitance sensor. The gamma-ray tomograph discriminates between the gas and the liquid phase, since these have different photon attenuation properties. As a result, the gamma-ray tomograph is able to distinguish the gas phase from the liquid phase of the hydrocarbon flow. Consequently, the dual-mode capacitance and gamma-ray tomography set-up is able to distinguish the oil, water and gas constituents of hydrocarbon flow. This paper presents the work that has been performed related to static characterization of the dual-mode tomograph using the Landweber reconstruction algorithm on polypropylene phantoms. The objective of the work has been to quantitatively evaluate the static imaging performance of the dual-mode tomograph with respect to relative spatial measurement errors, i.e. root mean square errors of the reconstructed tomograms compared to that of the phantom. The work shows that dual-mode tomography using electrical capacitance and gamma-ray sensors is feasible on hydrocarbon flow components using a pixel-to-pixel fusion procedure on separately

  3. Single-photon emission computed tomography/computed tomography in brain tumors.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  4. Gamma-ray bursts from synchrotron self-Compton emission

    NASA Astrophysics Data System (ADS)

    Stern, Boris E.; Poutanen, Juri

    2004-08-01

    The emission mechanism of gamma-ray bursts (GRBs) is still a matter of debate. The standard synchrotron energy spectrum of cooling electrons FE~E-1/2 is much too soft to account for the majority of the observed spectral slopes. An alternative in the form of quasi-thermal Comptonization in a high-compactness source has difficulties in reproducing the peak of the observed photon distribution below a few hundred keV. We show here that for typical parameters expected in the GRB ejecta the observed spectra in the 20-1000 keV energy range can be produced by inverse Compton scattering of the synchrotron radiation in a partially self-absorbed regime. If the particles are continuously accelerated/heated over the lifetime of a source rather than being instantly injected, a prominent peak develops in their distribution at a Lorentz factor γ~ 30-100, where synchrotron and inverse-Compton losses are balanced by acceleration and heating due to synchrotron self-absorption. The synchrotron peak should be observed at 10-100 eV, whereas the self-absorbed low-energy tail with FE~E2 can produce the prompt optical emission (as in the case of GRB 990123). The first Compton scattering radiation by nearly monoenergetic electrons can then be as hard as FE~E1, reproducing the hardness of most of the observed GRB spectra. The second Compton peak should be observed in the high-energy gamma-ray band, possibly being responsible for the 10-100 MeV emission detected in GRB 941017. A significant electron-positron pair production reduces the available energy per particle, moving the spectral peaks to lower energies as the burst progresses. The regime is very robust, operates in a broad range of parameter space and can explain most of the observed GRB spectra and their temporal evolution.

  5. Evidence for Temporally-Extended, High-Energy Emission from Gamma Ray Burst 990104

    NASA Technical Reports Server (NTRS)

    Wren, D. N.; Bertsch, D. L.; Ritz, S.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is well known that high-energy emission (MeV - GeV) has been observed in several gamma ray bursts and temporally-extended emission from lower-energy gamma rays through radio wavelengths is well established. Observations of extended, high-energy emission are, however, scarce. Here we present evidence for a gamma ray burst emission that is both high-energy and extended, coincident with lower energy emissions. For the very bright and long burst, GRB 990104, we show light curves and spectra that confirm emission above 50 MeV, approximately 152 seconds after the BATSE (Burst and Transient Source Experiment) trigger and initial burst emission. Between the initial output and the main peak, seen at both low and high energy, there was a period of approx. 100 s during which the burst was relatively quiet. This burst was found as part of an ongoing search for high-energy emission in gamma ray bursts.

  6. Evaluation of the measurement geometries and data processing algorithms for industrial gamma tomography technology.

    PubMed

    Lee, N Y; Jung, S H; Kim, J B

    2009-01-01

    In this paper, we evaluated the measurement geometries and data processing algorithms for industrial gamma tomography technology. Several phantoms simulating industrial objects were tested in various conditions with the gamma-ray CT system developed in KAERI (Korea Atomic Energy Research Institute). Radiation was measured with lead shielded 24 1x1in Nal detectors. Regarding the parallel beam geometry, the EM algorithm showed the best resolution among the algebraic reconstruction technique (ART), simultaneous iterative reconstructive technique (SIRT) and expectation maximization (EM). However, the fan beam scanning was more time efficient than the parallel projection for the similar quality of reconstructed image. Future developments of the industrial gamma ray CT will be focused on a large-scale application which is more practical for a diagnosis in the petrochemical industry.

  7. Intrinsic Efficiency Calibration Considering Geometric Factors in Gamma-ray Computed Tomography for Radioactive Waste Assay

    SciTech Connect

    Liu, Zhe; Zhang, Li

    2015-07-01

    In radioactive waste assay with gamma-ray computed tomography, calibration for intrinsic efficiency of the system is important to the reconstruction of radioactivity distribution. Due to the geometric characteristics of the system, the non-uniformity of intrinsic efficiency for gamma-rays with different incident positions and directions are often un-negligible. Intrinsic efficiency curves versus geometric parameters of incident gamma-ray are obtained by Monte-Carlo simulation, and two intrinsic efficiency models are suggested to characterize the intrinsic efficiency determined by relative source-detector position and system geometry in the system matrix. Monte-Carlo simulation is performed to compare the different intrinsic efficiency models. Better reconstruction results of radioactivity distribution are achieved by both suggested models than by the uniform intrinsic efficiency model. And compared to model based on detector position, model based on point response increases reconstruction accuracy as well as complexity and time of calculation. (authors)

  8. Role of positron emission tomography in urological oncology.

    PubMed

    Rioja, Jorge; Rodríguez-Fraile, Macarena; Lima-Favaretto, Ricardo; Rincón-Mayans, Anibal; Peñuelas-Sánchez, Iván; Zudaire-Bergera, Juan Javier; Parra, Raul O

    2010-12-01

    • Positron emission tomography (PET) is a diagnostic tool using radiotracers to show changes in metabolic activities in tissues. We analysed the role of PET and PET/computed tomography (CT) in the diagnosis, staging, and follow-up of urological tumours. • A critical, non-structured review of the literature of the role of PET and PET/CT in urological oncology was conducted. • PET and PET/CT can play a role in the management of urological malignancies. For prostate cancer, the advances in radiotracers seems promising, with novel radiotracers yielding better diagnostic and staging results than 18F-fluorodeoxyglucose (18F-FDG). In kidney cancer, PET and PET/CT allow a proper diagnosis before the pathological examination of the surgical specimen. For testis cancer, PET and PET/CT have been shown to be useful in the management of seminoma tumours. In bladder cancer, these scans allow a better initial diagnosis for invasive cancer, while detecting occult metastases. • PET and its combined modality PET/CT have shown their potential in the diagnosis of urological malignancies. However, further studies are needed to establish the role of PET in the management of these diseases. Future applications of PET may involve fusion techniques such as magnetic resonance imaging with PET.

  9. Positron emission tomography in patients with clinically diagnosed Alzheimer's disease.

    PubMed Central

    McGeer, P L; Kamo, H; Harrop, R; Li, D K; Tuokko, H; McGeer, E G; Adam, M J; Ammann, W; Beattie, B L; Calne, D B

    1986-01-01

    Fourteen patients who had clinically diagnosed Alzheimer's disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer's disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer's disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 Fig. 8 Fig. 9 PMID:3512063

  10. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  11. Cerebral blood flow and personality: a positron emission tomography study.

    PubMed

    Johnson, D L; Wiebe, J S; Gold, S M; Andreasen, N C; Hichwa, R D; Watkins, G L; Boles Ponto, L L

    1999-02-01

    This study sought to describe brain regions associated with the personality dimension of introversion/extraversion. Measures of cerebral blood flow (CBF) were obtained from 18 healthy subjects by means of [150]H20 positron emission tomography. Correlations of regional CBF with introversion/extraversion were calculated, and a three-dimensional map of those correlations was generated. Overall, introversion was associated with increased blood flow in the frontal lobes and in the anterior thalamus. Regions in the anterior cingulate gyrus, the temporal lobes, and the posterior thalamus were found to be correlated with extraversion. The findings of the study lend support to the notion that introversion is associated with increased activity in frontal lobe regions. Moreover, the study suggests that individual differences in introversion and extraversion are related to differences in a fronto-striato-thalamic circuit.

  12. Differential diagnosis of depression: relevance of positron emission tomography

    SciTech Connect

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-09-11

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders.

  13. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  14. Current good manufacturing practice for positron emission tomography drugs.

    PubMed

    2009-12-10

    The Food and Drug Administration (FDA) is issuing regulations on current good manufacturing practice (CGMP) for positron emission tomography (PET) drugs. The regulations are intended to ensure that PET drugs meet the requirements of the Federal Food, Drug, and Cosmetic Act (the act) regarding safety, identity, strength, quality, and purity. In this final rule, we are establishing CGMP regulations for approved PET drugs. For investigational and research PET drugs, the final rule states that the requirement to follow CGMP may be met by complying with these regulations or by producing PET drugs in accordance with the United States Pharmacopeia (USP) general chapter on compounding PET radiopharmaceuticals. We are establishing these CGMP requirements for PET drugs under the provisions of the Food and Drug Administration Modernization Act of 1997 (the Modernization Act). Elsewhere in this issue of the Federal Register, we are announcing the availability of a guidance entitled "PET Drugs--Current Good Manufacturing Practice (CGMP)."

  15. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  16. Respiratory motion correction in emission tomography image reconstruction.

    PubMed

    Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques

    2005-01-01

    In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  17. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  18. Positron emission tomography in CNS drug discovery and drug monitoring.

    PubMed

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  19. Microdosing studies in humans: the role of positron emission tomography.

    PubMed

    Bauer, Martin; Wagner, Claudia Christina; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET)-microdosing comprises the administration of a carbon-11- or fluorine-18-labelled drug candidate to human subjects in order to describe the drug's concentration-time profile in body tissues targeted for treatment. As PET microdosing involves the administration of only microgram amounts of unlabelled drug, the potential toxicological risk to human subjects is very limited. Consequently, regulatory authorities require reduced preclinical safety testing as compared with conventional phase 1 studies. Microdose studies are gaining increasing importance in clinical drug research as they have the potential to shorten time-lines and cut costs along the critical path of drug development. Current applications of PET in anticancer, anti-infective and CNS system drug research are reviewed.

  20. (68)Ga-labeled radiopharmaceuticals for positron emission tomography.

    PubMed

    Shetty, Dinesh; Lee, Yun-Sang; Jeong, Jae Min

    2010-12-01

    (68)Ga is a promising emerging radionuclide for positron emission tomography (PET). It is produced using a (68)Ge/(68)Ga-generator, and thus, would enable the cyclotron-independent distribution of PET. However, new (68)Ga-labeled radiopharmaceuticals that can replace (18)F-labeled agents like [(18)F]fluorodeoxyglucose (FDG) are needed. Most of the (68)Ga-labeled derivatives currently used are peptide agents, but the developments of other agents, such as amino acid derivatives, nitroimidazole derivatives, and glycosylated human serum albumin, are being actively pursued in many laboratories. Thus, appearance of new (68)Ga-labeled radiopharmaceuticals with high impact are expected in the near future. Here, we present an overview of (68)Ga-labeled agents in terms of their clinical significances and relevances to the management of certain tumors, and pertinent pre-clinical developments.

  1. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  2. The investigation of Alzheimer's disease with single photon emission tomography.

    PubMed Central

    Burns, A; Philpot, M P; Costa, D C; Ell, P J; Levy, R

    1989-01-01

    Twenty patients satisfying standard clinical criteria for Alzheimer's disease (AD) and six age-matched normal controls were studied using 99mTc hexamethyl-propyleneamine oxime and single photon emission tomography. The AD patients had lower regional cerebral blood flow (rCBF) in the temporal and posterior parietal lobes compared to controls. AD patients with apraxia and aphasia had lower rCBF in the lateral temporal and posterior parietal lobes than AD patients without these features. Within the AD group, correlations were found between neuropsychological tests and rCBF: praxis correlated with posterior parietal activity, memory with left temporal lobe activity and language with activity throughout the left hemisphere. Images PMID:2467967

  3. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals.

    PubMed

    Cai, Zhengxin; Anderson, Carolyn J

    2014-04-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. © 2013 The Authors. J. Label Compd. Radiopharm published by John Wiley & Sons Ltd.

  4. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  5. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    SciTech Connect

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. )

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  6. Translational neuroimaging: positron emission tomography studies of monoamine oxidase.

    PubMed

    Fowler, Joanna S; Logan, Jean; Volkow, Nora D; Wang, Gene-Jack

    2005-01-01

    Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and L -deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs.

  7. Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future.

    PubMed

    Ariza, Manuela; Kolb, Hartmuth C; Moechars, Dieder; Rombouts, Frederik; Andrés, José Ignacio

    2015-06-11

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation of the density and neocortical spread of neurofibrillary tangles (NFTs) with clinical AD disease progression offers an opportunity for the early diagnosis and staging using a noninvasive imaging technique such as positron emission tomography (PET). Thus, PET imaging of NFTs not only holds promise as a diagnostic tool but also may enable the development of disease modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to the identification of high affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.

  8. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  9. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  10. Positron emission tomography as a diagnostic tool in oncology.

    PubMed

    Schiepers, C; Hoh, C K

    1998-01-01

    Early diagnosis in oncology is important for treatment by surgical intervention, which generally has the highest curative potential. For higher stages of disease involvement, initiation of rapid treatment is indicated to provide the patient with the optimal therapy regimen. Although this may not improve the prognosis, it will maintain the quality of life. Anatomic imaging modalities, such as CT, MR imaging, and US, are clinically important high-resolution imaging techniques that are well suited to reveal structural abnormalities. However, the differentiation of lesions as being benign or malignant is still problematic. Metabolic imaging modalities in nuclear medicine (NM), i.e., single photon emission computed tomography (SPECT) and positron emission tomography (PET), can reveal biochemical parameters of the lesions such as glucose, oxygen, or amino acid metabolism, or measure the receptor density status. These parameters may allow a completely new clinical perspective in the management and understanding of diseases such as cancer. Although PET has been around since the early 1960s, it has only recently emerged as a powerful diagnostic tool in oncology. Society has great difficulty accepting this clinical imaging modality because of its high cost and complexity. Current applications of PET in oncology have been in characterizing lesions, differentiating recurrent disease from treatment effects, staging tumors, evaluating the extent of disease, and therapy monitoring. Here, the role of PET in diagnosis, staging, and restaging of cancer is reviewed and compared with the other tumor imaging modalities. We cover articles published in the past 3 years. We utilize the typical radiology format, in which the contribution in each body area is reviewed (topographic orientation), instead of the more organ-based approach used in internal medicine.

  11. Principles and clinical applications of positron emission tomography.

    PubMed

    Gardner, S F; Green, J A; Bednarczyk, E M; Farnett, L; Miraldi, F

    1992-06-01

    The basics of positron emission tomography (PET) are presented, including the physics, instrumentation, and radiopharmaceuticals involved; the clinical and research applications; and the cost. In PET, organic molecules labeled with positron-emitting radionuclides are injected or inhaled, and the high-energy photons produced by annihilation events are detected by paired, integrated crystal detectors. A computer uses the lines of origin of these photons to reconstruct a three-dimensional map of a functioning organ system. The positron-emitting radionuclides most often used are carbon 11, oxygen 15, nitrogen 13, fluorine 18, and rubidium 82. PET imaging centers usually consist of a cyclotron facility, a radiochemistry facility, a PET scanner, and computers for image reconstruction. Radiopharmaceuticals used in PET may be divided into blood flow-imaging agents, metabolic imaging agents, and drug receptor-imaging agents. Although PET is still primarily a research tool, it has shown diagnostic potential in neurology, cardiology, and oncology. It has also shown promise as a tool for pharmacologic assessment, as in studies of the effects of the fluorinated quinolones on cerebral blood flow and glucose metabolism. PET may become important in drug development because it yields specific information relatively noninvasively. A single study carries an average break-even price tag of $1500-$2000; rigorous cost-benefit analyses should be conducted before society is asked to subsidize such costs. Positron emission tomography is a frontier technology for which valuable clinical applications are being discovered. Pharmacists can contribute enormously to PET applications and at the same time establish a unique subspecialty for the profession.

  12. Integrated telemedicine applications and services for oncological positron emission tomography.

    PubMed

    Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel

    2006-01-01

    TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology.

  13. Low Utility of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Detecting Hepatocellular Carcinoma in Patients Before Liver Transplantation.

    PubMed

    Alotaibi, Faisal; Kabbani, Monther; Abaalkhail, Faisal; Chorley, Alicia; Elbeshbeshy, Hany; Al-Hamoudi, Waleed; Alabbad, Saleh; Boehnert, Markus U; Alsofayan, Mohammad; Al-Kattan, Wael; Ahmed, Baderaldeen; Broering, Dieter; Al Sebayel, Mohamed; Elsiesy, Hussien

    2017-02-01

    Our program routinely used fluorodeoxyglucose-positron emission tomography/computed tomography as part of the liver transplant evaluation of patients with hepatocellular carcinoma. The aim of this study was to evaluate the role of this imaging modality in the pretransplant work-up. This was a retrospective chart review of our liver transplant database from January 2011 to December 2014 for all patients with hepatocellular carcinoma who underwent a liver transplant. Collected data included age, sex, cause of liver disease, imaging modality, fluorodeoxyglucose-positron emission tomography/computed tomography results, explant tissue analysis, type of transplant, and transplant outcome. During the study period, 275 liver transplants were performed. Fifty-three patients had hepatocellular carcinoma; 41 underwent fluorodeoxyglucose-positron emission tomography/computed tomography. Twenty-nine patients underwent living-donor liver transplant, and 12 patients underwent deceased-donor liver transplant. One of the 41 patients with negative FDG-imaging results had no evidence of hepatocellular carcinoma in the explant and was excluded from the study. The patients' average age was 58 years (range, 22-72 y), and 28 patients were men. The cause of liver disease was hepatitis C virus in 24 patients, cryptogenic cirrhosis in 12 patients, and hepatitis B virus in 5 patients. One patient had no hepatocellular carcinoma on explants and was excluded from the study. Twenty-five patients had hepatocellular carcinoma that met the Milan criteria, 7 were within the UCSF (University of California, San Francisco) criteria, and 8 exceeded the UCSF criteria. Of the 40 patients, 11 had positive fluorodeoxyglucose-positron emission tomography/computed tomography results (27.5%) with evidence of hepatocellular carcinoma in the explant; the remaining 29 patients (72.5%) had negative results. The fluorodeoxyglucose-positron emission tomography/computed tomography results were positive in 16% (4 of

  14. Orbital positron emission tomography/computed tomography (PET/CT) imaging findings in graves ophthalmopathy

    PubMed Central

    2013-01-01

    Background We aimed to describe orbital positron emission tomography/computed tomography (PET/CT) imaging findings, both structural and metabolic, in different clinical stages of Graves ophthalmopathy (GO). This prospective, observational, cross-sectional study examined 32 eyes of 16 patients with GO. Methods Patients were assessed with a complete ophthalmological evaluation and assigned a VISA classification for GO. All patients underwent serum thyroid hormone measurement, antibody profile, and 18-fluorodeoxyglucose positron emission tomography/computed tomography (18-FDG PET/CT) of the orbits. The 18-FDG uptake on PET images was expressed in terms of maximum standard uptake value (SUVmax). CT images were analyzed, and orbital structures were measured in millimeters. Vision, inflammation, strabismus, and overall appearance were assessed according to the VISA classification system, thyroid hormone levels, antibody values, 18-FDG uptake, and thickness of orbital structures. Results Altogether, 32 eyes of 16 patients (10 women, 6 men; mean age 44.31 ± 13 years, range 20–71 years) were included. Three patients were hypothyroid, seven were euthyroid, and six were hyperthyroid. CT measurements of extraocular muscle diameter were elevated (P < 0.05), and muscle 18-FDG uptake values were increased. Eyes with a clinical VISA inflammation score of ≤ 4 had an average extraocular muscle SUVmax of 3.09, and those with a score of ≥ 5 had an average SUVmax of 3.92 (P = 0.09), showing no clear correlation between clinically observed inflammation and 18-FDG uptake. 18-FDG uptake values also did not show a correlation with extraocular muscle diameter as measured by CT (R2 = 0.0755, P > 0.05). Conclusions We demonstrated a lack of correlation between 18-FDG extraocular muscle uptake and either clinical inflammation score or muscle diameter. Although 18-FDG uptake has been used as an inflammation marker in other pathologies, inflammation in GO may

  15. Neutrino emission from gamma-ray burst fireballs, revised.

    PubMed

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  16. On the nature of the gamma ray emission from CG 195 + 4

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.

    1981-01-01

    The observed gamma ray energy spectrum of CG 195 + 4 is compared with the predictions of various proposed emission models. It is shown that the observations favor an inverse Compton origin of the gamma ray emission from this source. A scenario is suggested in which ultraviolet and soft X-ray photons (E less than 20 keV) are scattered by relativistic electrons into the gamma ray regime.

  17. Attenuation correction in emission tomography using the emission data—A review

    SciTech Connect

    Berker, Yannick Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  18. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  19. Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography.

    PubMed

    Akers, Walter J; Edwards, W Barry; Kim, Chulhong; Xu, Baogang; Erpelding, Todd N; Wang, Lihong V; Achilefu, Samuel

    2012-03-01

    The identification of cancer cells in the lymph nodes surrounding a tumor is important in establishing a prognosis. Optical detection techniques such as fluorescence and photoacoustic tomography (PAT) have been reported in preclinical studies for noninvasive sentinel lymph node (SLN) mapping. A method for validation of these techniques is needed for clinical trials. We report the use of a multimodal optical-radionuclear contrast agent as a validation tool for PAT in a preclinical model. Methylene blue (MB) was radiolabeled with (125)I for multimodal SLN mapping and used in conjunction with MB to assess the feasibility of multimodal SLN mapping in a rat model by PAT and single-photon emission computed tomography (SPECT). MB provided sufficient contrast for identifying SLNs noninvasively with a PAT system adapted from a clinical ultrasound imaging system. The signal location was corroborated by SPECT using (125)I labeled MB. The translation of PAT into the clinic can be facilitated by a direct comparison with established imaging methods using a clinically relevant dual SPECT and photoacoustic imaging agent. The new high-resolution PAT is a promising technology for the sensitive and accurate SLN detection in cancer patients. Copyright © 2012 Mosby, Inc. All rights reserved.

  20. Magnetosensory function in rats: localization using positron emission tomography.

    PubMed

    Frilot, Clifton; Carrubba, Simona; Marino, Andrew A

    2009-05-01

    The aim of this study was to show that low-strength electromagnetic fields (EMFs) produced evoked potentials in rats and to localize the activated region in the brain. In response to a 2.5-G, 60-Hz stimulus, onset- and offset-evoked potentials were detected (P < 0.05 in each of the 10 animals studied); the evoked potentials had the same magnitude, latency, and nonlinear relationship to the field seen in previous studies on rabbits and human subjects. The neuroanatomical region of activation associated with the electrophysiological effect was identified by positron emission tomography using fluorodeoxyglucose. Paired emission scans (the same animal with and without field treatment) from 10 additional rats were differenced and averaged to produce a t-statistic image using the pooled variance; the t value of each voxel was compared with a calculated critical t value to identify the activated voxels (P < 0.05). A brain volume of 13 mm(3) (15 voxels) located in the posterior, central cerebellum was found to have been activated by exposure to the field. Taken together, the results indicated that magnetosensory evoked potentials in the rats were associated with increased glucose utilization in the cerebellum, thereby supporting earlier evidence that EMF transduction occurred in the brain.

  1. Clinical applications of positron emission tomography/computed tomography treatment planning.

    PubMed

    Macapinlac, Homer A

    2008-03-01

    Positron emission tomography/computed tomography (PET/CT) has provided an incremental dimension to the management of cancer patients by allowing the incorporation of important molecular images in radiotherapy treatment planning, ie, direct evaluation of tumor metabolism, cell proliferation, apoptosis, hypoxia, and angiogenesis. The CT component allows 4D imaging techniques, allowing improvements in the accuracy of treatment delivery by compensating for tumor/normal organ motion, improving PET quantification, and correcting PET and CT image misregistration. The combination of PET and CT in a single imaging system to obtain a fused anatomical and functional image data is now emerging as a promising tool in radiotherapy departments for improved delineation of tumor volumes and optimization of treatment plans. PET has the potential to improve radiotherapy planning by minimizing unnecessary irradiation of normal tissues and by reducing the risk of geographic miss. PET influences treatment planning in a high proportion of cases and therefore radiotherapy dose escalation without PET may be futile. This article examines the increasing role of hybrid PET/CT imaging techniques in process of improving treatment planning in oncology with emphasis on non small cell lung cancer.

  2. Quality Assurance of Positron Emission Tomography/Computed Tomography for Radiation Therapy

    SciTech Connect

    Xing Lei

    2008-05-01

    Recent advances in radiation delivery techniques, such as intensity-modulated radiation therapy, provide unprecedented ability to exquisitely control three-dimensional dose distribution. Development of on-board imaging and other image-guidance methods significantly improved our ability to better target a radiation beam to the tumor volume. However, in reality, accurate definition of the location and boundary of the tumor target is still problematic. Biologic and physiologic imaging promises to solve the problem in a fundamental way and has a more and more important role in patient staging, treatment planning, and therapeutic assessment in radiation therapy clinics. The last decade witnessed a dramatic increase in the use of positron emission tomography and computed tomography in radiotherapy practice. To ensure safe and effective use of nuclide imaging, a rigorous quality assurance (QA) protocol of the imaging tools and integration of the imaging data must be in place. The application of nuclide imaging in radiation oncology occurs at different levels of sophistication. Quantitative use of the imaging data in treatment planning through image registration and standardized uptake value calculation is often involved. Thus, QA should not be limited to the performance of the scanner, but should also include the process of implementing image data in treatment planning, such as data transfer, image registration, and quantitation of data for delineation of tumors and sensitive structures. This presentation discusses various aspects of nuclide imaging as applied to radiotherapy and describes the QA procedures necessary for the success of biologic image-guided radiation therapy.

  3. Extracardiac abnormalities on rubidium-82 cardiac positron emission tomography/computed tomography.

    PubMed

    Mirpour, Sahar; Khandani, Amir H

    2011-04-01

    The role of rubidium-82 (Rb) in recognizing extracardiac diseases is minimally investigated. The aim of this study was to evaluate the frequency and incremental added value of extracardiac findings on Rb cardiac positron emission tomography/computed tomography (PET/CT) studies. The study included all consecutive patients who were referred from July 2008 to June 2010 for Rb cardiac PET/CT to our institution. A blinded reader reviewed the images retrospectively to assess abnormal extracardiac PET findings. Images of 406 patients (142 men; 264 women) with a mean age±standard deviation of 59.72±12.93 years (range: 18-91 years) were reviewed. Incidental extracardiac abnormalities were found in 67 of 406 patients (16.5%). Among them, eight patients had malignant etiologies (1.9%). Incidental extracardiac findings were present in a significant portion of patients undergoing Rb cardiac PET/CT studies. Although most of the extracardiac findings on Rb cardiac PET/CT studies represented clinically known pathologies, these incidental findings on routine Rb cardiac PET/CT scans may have a significant clinical impact on a small number of patients, and offer the referring physician the chance to obtain additional clinically relevant information.

  4. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    PubMed

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  5. [Positron-emission tomography/computed tomography: artifacts and pitfalls in cancer patients].

    PubMed

    Gorospe Sarasúa, L; Echeveste Aizpurúa, J; Raman, S

    2006-01-01

    Diagnostic accuracy and correct initial staging (or restaging) are fundamental in the management of oncological patients and can directly influence therapeutic decisions. The combination of positron-emission tomography (PET) and computed tomography (CT) in a single scanner (PET/TC) represents an important achievement in the fields of oncology, nuclear medicine, and radiology. These scanners allow morphologic images (obtained by CT) to be fused and correlated with metabolic images (obtained by PET) to a high degree of accuracy. In addition to an understanding of the physiopathology of cancer and the behavior of the different types of neoplasms, the correct interpretation of PET/CT images requires in-depth knowledge of the physiological distribution of the F-18 fluorodeoxyglucose molecule (FDG, currently the most widely used marker in oncology), of the frequent physiological variations in its distribution, and of the possible causes of non-malignant pathological FDG uptake. Furthermore, the use of CT data to correct attenuation and reconstruct PET images in PET/CT scanners can generate some characteristic artifacts specific to this new diagnostic tool, and these can lead to misinterpretation with potential therapeutic implications. This article reviews and illustrates some of the most common artifacts and pitfalls that can appear in PET/CT studies. The detection and correct interpretation of these findings are essential for the appropriate management of oncologic patients.

  6. Small Animal Imaging using a Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution

    PubMed Central

    DiFilippo, Frank P.; Patel, Sagar; Asosingh, Kewal; Erzurum, Serpil

    2013-01-01

    Considering the high cost of dedicated small animal positron emission tomography/computed tomography (PET/CT), an acceptable alternative in many situations might be clinical PET/CT. However spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling) were investigated. National Electrical Manufacturers Association (NEMA) NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, both as conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF) modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2-mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies. PMID:22554485

  7. Positron emission tomography-computed tomography in the management of lung cancer: An update

    PubMed Central

    Sharma, Punit; Singh, Harmandeep; Basu, Sandip; Kumar, Rakesh

    2013-01-01

    This communication presents an update on the current role of positron emission tomography-computed tomography (PET-CT) in the various clinical decision-making steps in lung carcinoma. The modality has been reported to be useful in characterizing solitary pulmonary nodules, improving lung cancer staging, especially for the detection of nodal and metastatic site involvement, guiding therapy, monitoring treatment response, and predicting outcome in non-small cell lung carcinoma (NSCLC). Its role has been more extensively evaluated in NSCLC than small cell lung carcinoma (SCLC). Limitations in FDG PET-CT are encountered in cases of tumor histotypes characterized by low glucose uptake (mucinous forms, bronchioalveolar carcinoma, neuroendocrine tumors), in the assessment of brain metastases (high physiologic 18F-FDG uptake in the brain) and in cases presenting with associated inflammation. The future potentials of newer PET tracers beyond FDG are enumerated. An evolving area is PET-guided assessment of targeted therapy (e.g., EGFR and EGFR tyrosine kinase overexpression) in tumors which have significant potential for drug development. PMID:24455612

  8. Positron emission tomography/computer tomography in gastrointestinal malignancies: current potential and challenges.

    PubMed

    Tind, Sofie; Vestergaard, Sys; Farahani, Ziba A; Hess, Søren

    2017-10-01

    The use of 18F-Fluoro-D-deoxy-glucose -positron emission tomography/computed tomography (FDG-PET/CT) in gastrointestinal (GI)-malignancies may not be as straightforward as in many other cancers, but the potential is clearly there in select clinical settings. The challenges include the relative non-specificity of FDG, the variable degrees of physiologic FDG-uptake, and the heterogeneous FDG-uptake in different cell types within the GI-domain, which all together hamper the use in primary diagnostics. In general, the literature is older, heterogeneous, and based on stand-alone PET, which is now largely considered obsolete. There is emerging evidence for use of hybrid PET/CT, but the literature is still relatively sparse. The main indications are preoperative staging of distant metastases, not only in limited disease but also before curative treatment of limited metastatic disease. Controversies remain concerning liver metastases but improved technology boast well for the future role of FDG-PET/CT not least concerning equivocal findings on conventional imaging. In our opinion, an important upcoming indication is early response assessment, perhaps mostly in the neoadjuvant settings of upper GI-malignancies, but standardization of response assessment criteria is lacking before a more widespread implementation is feasible. Finally, there seems to be a significant role in recurrence detection, especially in CRC.

  9. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  10. A novel phantom design for emission tomography enabling scatter- and attenuation-"free" single-photon emission tomography imaging.

    PubMed

    Larsson, S A; Jonsson, C; Pagani, M; Johansson, L; Jacobsson, H

    2000-02-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99mTcO4- depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain "ideal" experimental images (essentially built up by primary photons) for comparison with "real

  11. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. PMID:26097425

  12. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  13. Prompt gamma-ray burst emission from gradual magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Giannios, Dimitrios

    2017-07-01

    We considered a model for the prompt phase of gamma-ray burst emission arising from a magnetized jet undergoing gradual energy dissipation due to magnetic reconnection. The dissipated magnetic energy is translated to bulk kinetic energy and to acceleration of particles. The energy in these particles is released via synchrotron radiation as they gyrate around the strong magnetic fields in the jet. At small radii, the optical depth is large, and the radiation is reprocessed through Comptonization into a narrow, strongly peaked component. At larger distances the optical depth becomes small and radiation escapes the jet with a non-thermal distribution. The obtained spectra typically peak around ≈300 keV (as observed) and with spectral indices below and above the peak that are, for a broad range of the model parameters, close to the observed values. The small radius of dissipation causes the emission to become self-absorbed at a few keV and can sufficiently suppress the optical and X-ray fluxes within the limits required by observations.

  14. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  15. AGILE DETECTION OF DELAYED GAMMA-RAY EMISSION FROM THE SHORT GAMMA-RAY BURST GRB 090510

    SciTech Connect

    Giuliani, A.; Vianello, G.; Mereghetti, S.; Caraveo, P.; Chen, A. W.; Contessi, T.; Barbiellini, G.; Longo, F.; Moretti, E.; Cattaneo, P. W.

    2010-01-10

    Short gamma-ray bursts (GRBs), typically lasting less than 2 s, are a special class of GRBs of great interest. We report the detection by the AGILE satellite of the short GRB 090510 which shows two clearly distinct emission phases: a prompt phase lasting {approx}200 ms and a second phase lasting tens of seconds. The prompt phase is relatively intense in the 0.3-10 MeV range with a spectrum characterized by a large peak/cutoff energy near 3 MeV; in this phase, no significant high-energy gamma-ray emission is detected. At the end of the prompt phase, intense gamma-ray emission above 30 MeV is detected showing a power-law time decay of the flux of the type t {sup -1.3} and a broadband spectrum remarkably different from that of the prompt phase. It extends from sub-MeV to hundreds of MeV energies with a photon index {alpha} {approx_equal} 1.5. GRB 090510 provides the first case of a short GRB with delayed gamma-ray emission. We present the timing and spectral data of GRB 090510 and briefly discuss its remarkable properties within the current models of gamma-ray emission of short GRBs.

  16. Role of positron emission tomography in thyroid and neuroendocrine tumours.

    PubMed

    Treglia, Giorgio; Kroiss, Alexander S; Piccardo, Arnoldo; Lococo, Filippo; Santhanam, Prasanna; Imperiale, Alessio

    2017-09-25

    Positron emission tomography (PET) is an established imaging method in oncology. PET/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI) are hybrid techniques which combine morphological information obtained by CT and MRI with functional data provided by PET. Several radiotracers evaluating different metabolic pathways or receptor status can be used as PET radiotracers to assess endocrine tumours such as thyroid tumours or neuroendocrine neoplasms (NENs). This review is focused to describe the role of PET imaging using different radiotracers in patients with thyroid tumours and NENs. The role of PET imaging with different radiotracers in several endocrine tumours including thyroid tumours, gastroenteropancreatic neoplasms (GEP-NENs), lung neuroendocrine neoplasms (LNENs), pheochromocytomas (PCC) and paragangliomas (PGL), and multiple endocrine neoplasia (MEN) syndromes has been described. Fluorine-18 fluorodeoxyglucose (18F-FDG) PET evaluating the glucose metabolism provides useful diagnostic and prognostic information in patients with thyroid tumours. Iodine-124 (124I) assessing the iodine metabolism (124I) PET may be used for dosimetry and diagnostic purposes in thyroid tumours. In patients with NENs specific radiotracers can be used for diagnostic purposes such as somatostatin analogues labeled with gallium-68 (68Ga-DOTA-peptides) evaluating somatostatin receptor expression and fluorine-18 fluorodihydroxyphenylalanine (18F- FDOPA) assessing the uptake, decarboxylation and storage of amine precursors. One advantage of 68Ga-DOTA-peptides PET is to select patients with well-differentiated and inoperable NENs for peptide receptor radionuclide therapy (PRRT). 18F-FDG PET may provide useful prognostic information in patients with high-grade NENs. PET imaging with different radiotracers is a useful functional imaging technique in the work-up of several endocrine tumours.

  17. SPATIALLY EXTENDED BRACKETT GAMMA EMISSION IN THE ENVIRONMENTS OF YOUNG STARS

    SciTech Connect

    Beck, Tracy L.; Bary, Jeffery S.; McGregor, Peter J. E-mail: jbary@colgate.ed

    2010-10-20

    The majority of atomic hydrogen Br{gamma} emission detected in the spectra of young stellar objects is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band integral field unit spectroscopic study of Br{gamma} emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau, and XZ Tau. We spatially resolve Br{gamma} emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Br{gamma} line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Br{gamma} is typically less than {approx}10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the mass outflow rate using simple assumptions about the hydrogen emission region and compare this to the derived mass accretion rate. We detect extended Br{gamma} in the vicinity of the more obscured targets in our sample and conclude that spatially extended Br{gamma} emission may exist toward other stars, but unattenuated photospheric flux probably limits its detectability.

  18. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left

  19. Peculiarities in the Emission of Radio-Loud and Radio-Quiet Gamma Pulsars and Gamma-Quiet Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I.; Timirkeeva, M.

    2017-06-01

    Comparison of three pulsar samples — radio pulsars (R), gamma pulsars (γ) and pulsars with emission in both ranges (γ+R) — has been carried out. It was shown that magnetic fields at the light cylinder are two orders of magnitude higher in gamma pulsars (=3.60 - 3.95 G) when compared with radio pulsars (=1 .75 G). Losses of rotation energy in these objects differ much more (log dE/dt=35.37 -35.53 and 32.60, correspondingly). Gamma pulsars form two groups separated in space. The conclusion is made that generation of gamma emission takes place at the light cylinder and can be caused by the synchrotron mechanism.

  20. Comparison of gamma-densitometry tomography and electrical-impedance tomography for determining material distribution in liquid-solid flows

    SciTech Connect

    Shollenberger, K.A.; Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Ceccio, S.L.; George, D.L.

    1997-03-01

    The spatial distribution of materials in multiphase flows is of importance to many industrial processes. For example, in indirect coal liquefaction, a reactive gas is bubbled through a catalyst-laden liquid (slurry), and a spatially nonuniform gas distribution can reduce process efficiency by inducing large-scale buoyancy-driven recirculating flows. Gamma-densitometry tomography (GDT) and electrical-impedance tomography (EIT) are techniques with the potential of providing spatially resolved information on material distribution in multiphase flows. GDT and EIT have both been applied to a liquid-solid flow for comparison purposes. The experiment consisted of a cylinder (19 cm diameter) filled with water, in which 80 {micro}m glass spheres were suspended by a mixer to achieve solid volume fractions of 0.01, 0.02, and 0.03. Both GDT and EIT revealed a relatively uniform distribution of solids in the measurement plane, and the average solid volume fractions from both techniques were in good agreement.

  1. Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.; O'HERN,TIMOTHY J.; CECCIO,S.L.

    2000-03-28

    Experiments are presented in which electrical-impedance tomography (EIT) and gamma-densitometry tomography (GDT) measurements were combined to simultaneously measure the solid, liquid, and gas radial distributions in a vertical three-phase flow. The experimental testbed was a 19.05-cm diameter bubble column in which gas is injected at the bottom and exits out the top while the liquid and solid phases recirculate. The gas phase was air and the liquid phase was deionized water with added electrolytes. Four different particle classes were investigated for the solid phase: 40--100 {micro}m and 120--200 {micro}m glass beads (2.41 g/cm{sup 3}), and 170--260 {micro}m and 200--700 {micro}m polystyrene beads (1.04 g/cm{sup 3}). Superficial gas velocities of 3 to 30 cm/s and solid volume fractions up to 0.30 were examined. For all experimental conditions investigated, the gas distribution showed only a weak dependence on both particle size and density. Average gas volume fraction as a function of superficial gas velocity can be described to within {+-} 0.04 by curve passing through the center of the data. For most cases the solid particle appeared to be radically uniformly dispersed in the liquid.

  2. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography.

    PubMed

    Palmqvist, Sebastian; Mattsson, Niklas; Hansson, Oskar

    2016-04-01

    Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer's disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer's disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) study. All underwent (18)F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1-4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer's disease dementia. The results were replicated after adjustments of different factors and when using different cut-offs for amyloid-β abnormality

  3. Method for Studying the Myocardial Blood Flow Reserve by Load Dynamic Single-Photon Emission Computed Tomography.

    PubMed

    Mochula, A V; Zavadovsky, K V; Lishmanov, Yu B

    2016-04-01

    We developed a method for collection and processing of scintigraphic data to estimate myocardial reserve in a gamma-chamber with cadmium-zinc-telluride detectors. Dynamic single-photon emission computed tomography of the heart with (99m)Tc-Technetril was performed in 16 coronary heart disease patients at rest and during pharmacological load. During data processing, regions of interest from the cavity and the myocardium of the left ventricle were formed and activity-time curves were constructed. The index of myocardial blood fl ow reserve was calculated as the difference between two ratios of the mean gamma-count from the myocardial area to the area under the left ventricle cavity curve (peak) during load and at rest. The mean indices of myocardial reserve in healthy volunteers and patients with coronary artery atherosclerosis were 1.86 (1.59; 2.20) and 1.39 (1.12; 1.69), respectively. The development of the method for studying myocardial reserve by single-photon emission computed tomography is an urgent problem and requires further investigations.

  4. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies

    SciTech Connect

    Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Haerting, H.-U.; Schubert, M.; Hampel, U.

    2013-03-15

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated {sup 137}Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0 Degree-Sign (horizontal) to 90 Degree-Sign (vertical).

  5. Compact high-resolution gamma-ray computed tomography system for multiphase flow studies.

    PubMed

    Bieberle, A; Nehring, H; Berger, R; Arlit, M; Härting, H-U; Schubert, M; Hampel, U

    2013-03-01

    In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated (137)Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical).

  6. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  7. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  8. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  9. Markerless motion tracking of awake animals in positron emission tomography.

    PubMed

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  10. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  11. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    PubMed

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.

    PubMed

    Saha, G B; MacIntyre, W J; Go, R T

    1992-07-01

    Positron emission tomography (PET) requires positron-emitting radionuclides that emit 511-keV photons detectable by PET imagers. Positron-emitting radionuclides are commonly produced in charged particle accelerators, eg, linear accelerators or cyclotrons. The most widely available radiopharmaceuticals for PET imaging are carbon-11-, nitrogen-13-, and oxygen-15-labeled compounds, many of which, either in their normal state or incorporated in other compounds, serve as physiological tracers. Other useful PET radiopharmaceuticals include fluorine-18-, bromine-75-, gallium-68 (68Ga)-, rubidium-82 (82Rb)-, and copper-62 (62Cu)-labeled compounds. Many positron emitters have short half-lives and thus require on-site cyclotrons for application, and others (68Ga, 82Rb, and 62Cu) are available from radionuclides generators using relatively long-lived parent radionuclides. This review is divided into two sections: cyclotrons and PET radiopharmaceuticals for clinical imaging. In the cyclotron section, the principle of operation of the cyclotron, types of cyclotrons, medical cyclotrons, and production of radionuclides are discussed. In the section on PET radiopharmaceuticals, the synthesis and clinical use of PET radiopharmaceuticals are described.

  13. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  14. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  15. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  16. Positron Emission Tomography Application to Drug Development and Research

    NASA Astrophysics Data System (ADS)

    Salvadori, Piero A.

    The research for the identification and development of new drugs represents a very complex process implying long times and massive investments. This process was not able to parallel the rate of discoveries made in the field of genomic and molecular biology and a gap created between demand of new drugs and the ability of pharmaceutical companies to select good candidates. Positron Emission Tomography, among the different Molecular Imaging modalities, could represent a new tool for the early assessment and screening of new drug candidates and, due to its physical performances and the characteristics of positron-labeled tracers, gain the role of "Biomarker" accepted by the Companies and the Regulatory Bodies of Drug Agencies. To fulfil this task PET has to exploit all of its special features such as data absolute quantification and modelling, high spatial resolution and dynamic imaging. Relevant efforts need to be directed to the careful design and validation of experimental protocols with the main goal of achieving consistency in multi- centric trials.

  17. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  18. Brain activity following esophageal acid infusion using positron emission tomography

    PubMed Central

    Kobayashi, Shigeyuki; Abe, Yasuhiko; Tashiro, Manabu; Koike, Tomoyuki; Iijima, Katsunori; Imatani, Akira; Ohara, Shuichi; Watanabe, Satoshi; Fukudo, Shin; Shimosegawa, Tooru

    2010-01-01

    AIM: To investigate symptoms and brain activity following esophageal acid infusion. METHODS: Fifteen healthy volunteers were recruited for the study. Hydrochloric acid (pH 1 and 2) and distilled water (pH 7) were randomly and repeatedly infused into the esophagus. The brain activity was evaluated by positron emission tomography. The severity of heartburn elicited by the infusion was rated on an auditory analog scale of 0-10. RESULTS: The severity of heartburn following each infusion showed a step-wise increase with increasing acidity of the perfusate. The heartburn scores were significantly higher in the second pH 1 infusion compared with the first infusion. Acid and distilled water infusion induced activation of various brain areas such as the anterior insula, temporal gyrus, and anterior/posterior cingulate cortex. At pH 1 or 2, in particular, activation was observed in some emotion-related brain areas such as the more anterior part of the anterior cingulate cortex, parahippocampal gyrus, or the temporal pole. Strong activation of the orbitofrontal cortex was found by subtraction analysis of the two second pH 1 infusions, with a significant increase of heartburn symptoms. CONCLUSION: Emotion-related brain areas were activated by esophageal acid stimulation. The orbitofrontal area might be involved in symptom processing, with esophageal sensitization induced by repeated acid stimulation. PMID:21086568

  19. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  20. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  1. Application of silicon photomultipliers to positron emission tomography.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2011-04-01

    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems.

  2. [Methods and clinical applications of positron emission tomography in endocrinology].

    PubMed

    De Landsheere, C; Lamotte, D

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormone-dependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactin) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptine can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  3. European health telematics networks for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  4. The economics of creating a positron emission tomography center.

    PubMed

    Lissak, R J

    2000-10-01

    Positron emission tomography (PET) scanning has been a powerful research tool since its inception. Changes in the marketplace that have allowed PET to move into the clinical environment include the commercial availability of appropriate radiopharmaceuticals, reimbursement of procedures by insurance companies, and increasing awareness of physicians of the benefits of PET. Facilities that are interested in clinical PET need to develop a process to purchase equipment with an appropriate business plan. This is necessary to assure financial viability and to convince hospital administrators of the viability. The creation of a successful PET program requires an understanding of all aspects relating to a center. The process begins with reviewing the mission statement of the facility. The next step is to prepare the feasibility study, which includes reviewing the existing marketplace and determining the volume, level of referring physicians' interest, and availability of radiopharmaceuticals. Finally, an appropriate pro forma needs to be constructed to facilitate the final decision concerning the potential financial viability of such an endeavor.

  5. SAKE: a new quantification tool for positron emission tomography studies.

    PubMed

    Veronese, Mattia; Rizzo, Gaia; Turkheimer, Federico E; Bertoldo, Alessandra

    2013-07-01

    In dynamic positron emission tomography (PET) studies, spectral analysis (SA) refers to a data-driven quantification method, based on a single-input single-output model for which the transfer function is described by a sum of exponential terms. SA allows to quantify numerosities, amplitudes and eigenvalues of the transfer function allowing, in this way, to separate kinetic components of the tissue tracer activity with minimal model assumptions. The SA model can be solved with a linear estimator alone or with numerical filters, resulting in different types of SA approaches. Once estimated the number, amplitudes and eigenvalues of the transfer function, one can distinguish the presence in the system of irreversible and/or reversible components as well as derive parameters of physiological significance. These characteristics make it an appealing alternative method to compartmental models which are widely used for the quantitative analysis of dynamic studies acquired with PET. However, despite its applicability to a large number of PET tracers, its implementation is not straightforward and its utilization in the nuclear medicine community has been limited especially by the lack of an user-friendly software application. In this paper we proposed SAKE, a computer program for the quantitative analysis of PET data through the main SA methods. SAKE offers a unified pipeline of analysis usable also by people with limited computer knowledge but with high interest in SA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals.

  7. Variation in Positron Emission Tomography Use After Colon Cancer Resection

    PubMed Central

    Bailey, Christina E.; Hu, Chung-Yuan; You, Y. Nancy; Kaur, Harmeet; Ernst, Randy D.; Chang, George J.

    2015-01-01

    Purpose: Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. Patients and Methods: We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Results: Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. Conclusion: PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. PMID:25852143

  8. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  9. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  10. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  11. Simultaneous laser speckle imaging and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, p<0.001) when correcting for surface vessel structures taking into account the contribution of static scatterers while keeping the coherence factor constant. However, using the originally published relation, which allows a 900 times faster computation of blood flow maps, still provided a good correlation (R2 = 0.879, p<0.001). Given the good correlation between LSI and PET we used our data to calibrate the speckle ICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  12. Positron Emission Tomography Detector Development for Plant Biology

    SciTech Connect

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S; Smith, M F

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  13. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance.

    PubMed

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-10-01

    Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of "stochastic resonance" to improve visual perception of the PET-CT image having a required threshold counts. PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude "4" in which 88% structural and 95% feature similarity of the input images was retained. This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose.

  14. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    PubMed

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded.

  15. Does positron emission tomography/computed tomography change management in colorectal cancer?

    PubMed

    Falconer, Rachel; Connor, Saxon; Balasingam, Adrian; Eglinton, Tim

    2016-10-27

    Positron emission tomography/computed tomography (PET/CT) is used pre-operatively in patients with metastatic or recurrent colorectal cancer to identify those who have potentially curative disease. However, a recent randomized trial questioned the added benefit of PET/CT over conventional imaging in patients with liver metastases. The aim of this study was to determine the proportion of patients with colorectal cancer in whom PET/CT altered surgical management, in a single tertiary centre. This was a retrospective study of all patients with colorectal cancer who had a PET/CT for colorectal cancer, funded by the Canterbury District Health Board between 2010 and 2014. Some 111 PET/CT scans were performed on 105 patients. A total of 38% of PET/CT were for patients with known or suspected liver metastases, 23% for suspected local recurrence and 18% for known or suspected lung metastases. Five scans were for post-operative patients with a rising carcinoembryonic antigen and no attributable source on conventional imaging. PET/CT identified additional extrahepatic sites of disease in 19 of 111 (17%) scans in patients deemed to have potentially operable disease. Overall, PET/CT altered surgical management following six of 42 (14%) scans for patients with liver metastases, four of 20 (20%) scans for patients with lung metastases and six of 26 (23%) scans for patients with local recurrence. PET/CT remains a useful adjunct to conventional imaging in the pre-operative workup of patients with colorectal cancer. © 2016 Royal Australasian College of Surgeons.

  16. 18F-fluorodeoxyglucose positron-emission tomography-computed tomography to diagnose recurrent cancer

    PubMed Central

    You, J J; Cline, K J; Gu, C-S; Pritchard, K I; Dayes, I S; Gulenchyn, K Y; Inculet, R I; Dhesy-Thind, S K; Freeman, M A; Chan, A M; Julian, J A; Levine, M N

    2015-01-01

    Background: Sometimes the diagnosis of recurrent cancer in patients with a previous malignancy can be challenging. This prospective cohort study assessed the clinical utility of 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (18F-FDG PET-CT) in the diagnosis of clinically suspected recurrence of cancer. Methods: Patients were eligible if cancer recurrence (non-small-cell lung (NSCL), breast, head and neck, ovarian, oesophageal, Hodgkin's or non-Hodgkin's lymphoma) was suspected clinically, and if conventional imaging was non-diagnostic. Clinicians were asked to indicate their management plan before and after 18F-FDG PET-CT scanning. The primary outcome was change in planned management after 18F-FDG PET-CT. Results: Between April 2009 and June 2011, 101 patients (age, median 65 years; 55% female) were enroled from four cancer centres in Ontario, Canada. Distribution by primary tumour type was: NSCL (55%), breast (19%), ovarian (10%), oesophageal (6%), lymphoma (6%), and head and neck (4%). Of the 99 subjects who underwent 18F-FDG PET-CT, planned management changed after 18F-FDG PET-CT in 52 subjects (53%, 95% confidence interval (CI), 42–63%); a major change in plan from no treatment to treatment was observed in 38 subjects (38%, 95% CI, 29–49%), and was typically associated with 18F-FDG PET-CT findings that were positive for recurrent cancer (37 subjects). After 3 months, the stated post-18F-FDG PET-CT management plan was actually completed in 88 subjects (89%, 95% CI, 81–94%). Conclusion: In patients with suspected cancer recurrence and conventional imaging that is non-diagnostic, 18F-FDG PET-CT often provides new information that leads to important changes in patient management. PMID:25942398

  17. Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas.

    PubMed

    Tateishi, Ukihide; Hosono, Ako; Makimoto, Atsushi; Sakurada, Aine; Terauchi, Takashi; Arai, Yasuaki; Imai, Yutaka; Kim, Euishin Edmund

    2007-09-01

    The present study was conducted to clarify the diagnostic accuracy of 18F-fluoro-2-deoxy-D-glucose (18FDG) positron emission tomography (PET)/computed tomography (CT) in the staging in pediatric sarcomas. Fifty pediatric patients with histologically proven sarcomas who underwent 18FDG PET/CT before treatment were evaluated retrospectively for the detection of nodal and distant metastases. Diagnostic accuracy of 18FDG PET/CT in detecting nodal and distant metastases was compared with that of 18FDG PET and conventional imaging (CI). The images were reviewed and a diagnostic consensus was reached by 3 observers. REFERENCE standard was histologic examination in 15 patients and confirmation of an obvious progression in size of the lesions on follow-up examinations. Nodal metastasis was correctly assessed in 48 patients (96%) with PET/CT, in contrast to 43 patients (86%) with PET, and 46 patients (92%) with CI. Diagnostic accuracies of nodal metastasis in 3 modalities were similar. Using PET/CT, distant metastasis was correctly assigned in 43 patients (86%), whereas interpretation based on PET alone or CI revealed distant metastasis in 33 patients (66%) and 35 patients (70%), respectively. Diagnostic accuracy of distant metastasis with PET/CT was significantly higher than that of PET (P=0.002) or CI (P=0.008). False negative results regarding distant metastasis by PET/CT in 7 patients (14%) were caused by subcentimetric lesions (n=4), bone marrow lesion (n=2), and soft tissue lesions (n=1). PET/CT is more accurate and probably more cost-effective than PET alone or CI regarding distant metastasis in pediatric sarcomas.

  18. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement.

    PubMed

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-Koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-07-01

    Technetium pertechnetate (TcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of TcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of TcO4 in detecting thyroid function abnormalities. We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent TcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal-Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other TcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Quantitative SPECT/CT is more accurate than conventional TUS for measuring TcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake.

  19. Predicting exercise capacity after lobectomy by single photon emission computed tomography and computed tomography.

    PubMed

    Nagamatsu, Yoshinori; Sueyoshi, Susumu; Sasahara, Hiroko; Oka, Yousuke; Kumazoe, Hiroyuki; Mitsuoka, Masahiro; Akagi, Yoshito

    2016-09-01

    This study compared the prediction of postoperative exercise capacity by employing lung perfusion scintigraphy images obtained with single photon emission computed tomography together with computed tomography (SPECT/CT) versus the common method of counting subsegments (SC method). In 18 patients scheduled for lobectomy, predicted postoperative maximum oxygen uptake per kilogram body weight ([Formula: see text]) was calculated by the SPECT/CT and SC methods. Correlations were examined between the [Formula: see text] predicted by SPECT/CT or the SC method, and the actual [Formula: see text] measured at 2 weeks (mean 15.4 ± 1.5 days) and 1 month (mean 29.1 ± 0.75 days) after surgery to determine whether SPECT/CT was more accurate than SC for predicting postoperative exercise capacity. There was a significant positive correlation between the [Formula: see text] predicted by SPECT/CT and the actual value at 2 weeks (r = 0.802, p < 0.0001) or 1 month (r = 0.770, p < 0.0001). There was also a significant positive correlation between the [Formula: see text] predicted by SC and the actual value at 2 weeks (r = 0.785, p < 0.0001) or 1 month (r = 0.784, p < 0.0001). This study showed that both SPECT/CT and the SC method were useful for predicting postoperative [Formula: see text] in the clinical setting.

  20. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  1. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  2. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  3. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  4. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  5. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    PubMed

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-02

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom.

  6. The predictive value of single-photon emission computed tomography/computed tomography for sentinel lymph node localization in head and neck cutaneous malignancy.

    PubMed

    Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S

    2015-04-01

    Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2010-07-01

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities {approx}10{sup -2} counts cm{sup -2} s{sup -1}, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, R{sub int}, ranges over a factor of 25, R{sub int} {approx} 3 x 10{sup -3} to 8 x 10{sup -2}. In comparison, for the average of the 39 bursts without an EE component, the 2{sigma} upper limit is R{sub int} < 8 x 10{sup -4}. These results suggest that a physical threshold effect operates near R{sub int} {approx} few x 10{sup -3} below which the EE component is not manifest.

  8. Fluorodeoxyglucose positron emission tomography/computed tomography findings in a patient with cerebellar mutism after operation in posterior fossa.

    PubMed

    Gedik, Gonca Kara; Sari, Oktay; Köktekir, Ender; Akdemir, Gökhan

    2017-04-01

    Cerebellar mutism is a transient period of speechlessness that evolves after posterior fossa surgery in children. Although direct cerebellar and brain stem injury and supratentorial dysfunction have been implicated in the mediation of mutism, the pathophysiological mechanisms involved in the evolution of this kind of mutism remain unclear. Magnetic resonance imaging revealed dentatothalamocortical tract injuries and single photon emission computed tomography showed cerebellar and cerebral hypoperfusion in patients with cerebellar mutism. However, findings with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in this group of patients have not been documented previously. In this clinical case, we report a patient who experienced cerebellar mutism after undergoing a posterior fossa surgery. Right cerebellar and left frontal lobe hypometabolism was shown using FDG PET/CT. The FDG metabolism of both the cerebellum and the frontal lobe returned to normal levels after the resolution of the mutism symptoms. Copyright © 2017. Published by Elsevier Taiwan.

  9. The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging.

    PubMed

    Brandon, David; Alazraki, Adina; Halkar, Raghuveer K; Alazraki, Naomi P

    2011-02-01

    Single-photon emission computed tomography (SPECT) and hybrid SPECT/computed tomography (SPECT/CT) cameras have emerged as a dominant technology providing invaluable tools in the diagnosis, staging, therapy planning, and treatment monitoring of multiple cancers over the past decade. In the same way that positron emission tomography (PET) benefited from the addition of CT, functional SPECT and anatomic CT data obtained as a single study have shown improvements in diagnostic imaging sensitivity and specificity by improving lesion conspicuity, reducing false positives, and clarifying indeterminate lesions. Furthermore, the anatomic imaging better localizes the functional data, which can be critical in surgical and therapy planning. As more disease-specific imaging agents become available, the role of SPECT/CT in the new paradigms of molecular imaging for personalized medicine will expand. Established and emerging uses of SPECT/CT in a wide variety of oncologic diseases, as well as radiation exposure issues, are reviewed. Published by Elsevier Inc.

  10. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  11. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  12. Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy

    SciTech Connect

    Chaiken, L.; Juillard, G.; Rege, S.; Hoh, C.; Choi, Y.; Jabour, B.; Hawkins, R.; Parker, R. )

    1993-09-20

    Following radiation therapy, evaluation of viable tumor can often be difficult with anatomic imaging criteria (tumor size alone). In this study, the utility of biochemical imaging with the glucose analog 2-[F-18]fluoro-2-deoxy-D-glucose and positron emission tomography was investigated in patients with radiation therapy. Post-radiation positron emission tomography with 2-[F-18]fluoro-2-deoxy-D-glucose studies were done in all patients, with 9 head and neck patients receiving pre-radiation positron emission tomography with 2-[F-18]fluoro-2-deoxy-D-glucose scans as well. Results were correlated with other imaging techniques and pathology. Positron emission tomography with 2-[F-18]fluoro-2-deoxy-D-glucose detected head and neck primary tumors and lymph node metastases in all nine pre-radiation scans, while magnetic resonance imaging failed to detect two primary tumors. Serial positron emission tomography with 2-[F-18]fluoro-2-deoxy-D-glucose showed a significant decrease in tumor activity after radiation therapy, compared to pre-radiation levels, (p < 0.05), except for two patients with increased uptake at the primary site. Biopsies of these two patients showed persistent/recurrent disease after radiation therapy, which was not detected by magnetic resonance imaging. Six additional head and neck patients, with suspicious examination and inconclusive magnetic resonance imaging, were imaged with positron emission tomography after radiation therapy only. Five patients had increased positron emission tomography activity, with corresponding biopsies positive in four patients, and negative in one patient with clinically worsening symptoms. The remaining sixth patient had minimal and stable positron emission tomography uptake, and is improving clinically. Four patients had mammogram findings suspicious for recurrence after conservation treatment for breast cancer. 40 refs., 6 figs., 1 tab.

  13. Evaluation of errors due to Compton scattering in gamma-ray emission imaging

    SciTech Connect

    Bruno, M.F.

    1983-12-01

    A set of computer simulation programs were developed to aid in the design of new instrumentation and in the design and evaluation of algorithms for scatter correction in positron emission computed tomography. 14 references, 15 figures, 3 tables. (ACR)

  14. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit.

    PubMed

    Constantinidou, Anastasia; Hofman, Michael; O'Doherty, Michael; Acland, Katharine M; Healy, Ciaran; Harries, Mark

    2008-02-01

    Positron emission tomography (PET) is increasingly used for the staging and management of melanoma. The aim of this study was to evaluate the role of PET or PET/ computed tomography (CT) as a routine procedure in patients with positive sentinel node biopsy (SNB). Thirty patients with melanoma of Breslow thickness greater than 1 mm who had PET or PET/CT scans performed within 100 days after a positive SNB were reviewed retrospectively. Two patients (6%) had a positive PET scan, none of which were melanoma related. The first patient had a synchronous neuroendocrine thyroid tumour and the second patient had increased uptake in the chest wall, which proved to be old trauma. Lymph node dissection was positive in five cases (16%). With a median follow-up of 24 months, 21 patients remained disease free. In none of the 30 cases did the early PET scan after a positive SNB alter subsequent melanoma management. The role of PET scanning soon after a positive sentinel node biopsy seems to be of limited benefit. It is questionable whether any imaging is beneficial at this stage. The results of this review suggest that PET scanning might not be indicated for this group of patients.

  15. Positron emission tomography-computed tomography versus positron emission tomography-magnetic resonance imaging for diagnosis of oral squamous cell carcinoma: A pilot study.

    PubMed

    Schlittenbauer, Tilo; Zeilinger, Martin; Nkenke, Emeka; Kreißel, Sebastian; Wurm, Matthias C; Lell, Michael; Kuwert, Torsten; Beck, Michael

    2015-12-01

    Diagnostic imaging of head and neck cancer has made enormous progress during recent years. Next to morphological imaging modalities (computed tomography [CT] and magnetic resonance imaging [MRI]), there are also hybrid imaging systems that combine functional and morphological information (positron emission tomography [PET]/CT and PET/MRI). The aim of this study was to compare the diagnostic accuracy of PET/MRI in the diagnosis of head and neck cancer with other imaging modalities (MRI, CT, PET/CT). Ten patients (nine male and one female) with histologically proven oral squamous cell carcinoma participated in an 18 F-FDG-PET/CT scan and an additional 18 F-FDG PET/MRI scan prior to surgery. The morphological and functional results were compared with the histological results. Inclusion criteria were histologically proven oral squamous cell carcinoma and no prior surgical intervention, medical therapy, or local external radiation. There was no significant correlation between tumor differentiation and maximum standard uptake values. Functional imaging showed a slightly better correlation with the measurement of the maximal tumor diameter, whereas pure morphological imaging showed a better correlation with the measurement of infiltration depth. Only with PET/MRI could correct lymph node staging be reached; the other imaging tools showed false-negative or false-positive results. In conclusion, we showed in our limited patient cohort that PET/MRI is superior to the morphological imaging modalities, especially for lymph node staging.

  16. [Positron emission tomography and computed tomography (PET/CT) in lung cancer].

    PubMed

    Altamirano-Ley, Javier; Estrada-Sánchez, Gisela Rocío; Ochoa-Carrillo, Francisco Javier

    2007-01-01

    Lung cancer is the most frequent cause of death due to neoplasm in Western populations, with >660,000 new diagnoses of lung cancer per year according to the World Health Organization. We undertook this study to emphasize the role of positron emission tomography to all health care professionals involved in lung cancer diagnosis. There are false negatives with PET-(18)FDG in carcinoids and broncheoalveolar carcinoma in almost 40% of the cases. One relatively common cause of false positives is the vocal cord and adjacent muscles contralateral and compensatory to the lung lesion that show an increased uptake of (18)FDG because of lesions in the laryngeal nerve by the tumor or secondary to surgery. It should not be confounded with metastases. There is sufficient scientific evidence pointing to the usefulness of PET studies and its evolution to PET/CT, especially in patients with lung cancer. This can resolve doubts by the oncologist and patient when there is a suspicious malignant lesion by the following: characterizing solitary pulmonary nodules (benign or malignant), localizing the optimal site for the biopsy, diagnosis of the primary tumor for initial staging, evaluation of mediastinal involvement and distant metastasis, evaluate and restage residual tumor, assessment of recurrence, monitoring response, prognostic prediction and radiotherapy planning.

  17. Renewed Gamma-Ray Emission from the blazar PKS 1510-089 Detected by AGILE

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Pittori, C.; Bulgarelli, A.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Fioretti, V.; Zoli, A.; Tavani, M.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    AGILE is currently detecting enhanced gamma-ray emission above 100 MeV from a source which position is consistent with the blazar PKS 1510-089. (the last activity of this source was reported in ATel #9350).

  18. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  19. Super-resolution in respiratory synchronized positron emission tomography.

    PubMed

    Wallach, Daphné; Lamare, Frédéric; Kontaxakis, Giorgos; Visvikis, Dimitris

    2012-02-01

    Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast

  20. Simulation of emission tomography using grid middleware for distributed computing.

    PubMed

    Thomason, M G; Longton, R F; Gregor, J; Smith, G T; Hutson, R K

    2004-09-01

    SimSET is Monte Carlo simulation software for emission tomography. This paper describes a simple but effective scheme for parallel execution of SimSET using NetSolve, a client-server system for distributed computation. NetSolve (version 1.4.1) is "grid middleware" which enables a user (the client) to run specific computations remotely and simultaneously on a grid of networked computers (the servers). Since the servers do not have to be identical machines, computation may take place in a heterogeneous environment. To take advantage of diversity in machines and their workloads, a client-side scheduler was implemented for the Monte Carlo simulation. The scheduler partitions the total decay events by taking into account the inherent compute-speeds and recent average workloads, i.e., the scheduler assigns more decay events to processors expected to give faster service and fewer decay events to those expected to give slower service. When compute-speeds and sustained workloads are taken into account, the speed-up is essentially linear in the number of equivalent "maximum-service" processors. One modification in the SimSET code (version 2.6.2.3) was made to ensure that the total number of decay events specified by the user is maintained in the distributed simulation. No other modifications in the standard SimSET code were made. Each processor runs complete SimSET code for its assignment of decay events, independently of others running simultaneously. Empirical results are reported for simulation of a clinical-quality lung perfusion study.

  1. PDE regularization for Bayesian reconstruction of emission tomography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Zhang, Li; Xing, Yuxiang; Zhao, Ziran

    2008-03-01

    The aim of the present study is to investigate a type of Bayesian reconstruction which utilizes partial differential equations (PDE) image models as regularization. PDE image models are widely used in image restoration and segmentation. In a PDE model, the image can be viewed as the solution of an evolutionary differential equation. The variation of the image can be regard as a descent of an energy function, which entitles us to use PDE models in Bayesian reconstruction. In this paper, two PDE models called anisotropic diffusion are studied. Both of them have the characteristics of edge-preserving and denoising like the popular median root prior (MRP). We use PDE regularization with an Ordered Subsets accelerated Bayesian one step late (OSL) reconstruction algorithm for emission tomography. The OS accelerated OSL algorithm is more practical than a non-accelerated one. The proposed algorithm is called OSEM-PDE. We validated the OSEM-PDE using a Zubal phantom in numerical experiments with attenuation correction and quantum noise considered, and the results are compared with OSEM and an OS version of MRP (OSEM-MRP) reconstruction. OSEM-PDE shows better results both in bias and variance. The reconstruction images are smoother and have sharper edges, thus are more applicable for post processing such as segmentation. We validate this using a k-means segmentation algorithm. The classic OSEM is not convergent especially in noisy condition. However, in our experiment, OSEM-PDE can benefit from OS acceleration and keep stable and convergent while OSEM-MRP failed to converge.

  2. Alcohol ADME in Primates Studied with Positron Emission Tomography

    PubMed Central

    Li, Zizhong; Xu, Youwen; Warner, Don; Volkow, Nora D.

    2012-01-01

    Background and Purpose The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME) properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood. Experimental Approach The ADME of C-11 labeled alcohol, CH311CH2OH, 1 and C-11 and deuterium dual labeled alcohol, CH311CD2OH, 2 in baboons was compared based on the principle that C–D bond is stronger than C–H bond, thus the reaction is slower if C–D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC) of positron emission tomography (PET) scans: peak uptake (Cmax); peak uptake time (Tmax), half-life of peak uptake (T1/2), the area under the curve (AUC60min), and the residue uptake (C60min). Key Results For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol. Conclusion and Implications The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences. PMID:23049712

  3. Averaging and Metropolis iterations for positron emission tomography.

    PubMed

    Szirmay-Kalos, László; Magdics, Milán; Tóth, Balázs; Bükki, Tamás

    2013-03-01

    Iterative positron emission tomography (PET) reconstruction computes projections between the voxel space and the lines of response (LOR) space, which are mathematically equivalent to the evaluation of multi-dimensional integrals. The dimension of the integration domain can be very high if scattering needs to be compensated. Monte Carlo (MC) quadrature is a straightforward method to approximate high-dimensional integrals. As the numbers of voxels and LORs can be in the order of hundred millions and the projection also depends on the measured object, the quadratures cannot be precomputed, but Monte Carlo simulation should take place on-the-fly during the iterative reconstruction process. This paper presents modifications of the maximum likelihood, expectation maximization (ML-EM) iteration scheme to reduce the reconstruction error due to the on-the-fly MC approximations of forward and back projections. If the MC sample locations are the same in every iteration step of the ML-EM scheme, then the approximation error will lead to a modified reconstruction result. However, when random estimates are statistically independent in different iteration steps, then the iteration may either diverge or fluctuate around the solution. Our goal is to increase the accuracy and the stability of the iterative solution while keeping the number of random samples and therefore the reconstruction time low. We first analyze the error behavior of ML-EM iteration with on-the-fly MC projections, then propose two solutions: averaging iteration and Metropolis iteration. Averaging iteration averages forward projection estimates during the iteration sequence. Metropolis iteration rejects those forward projection estimates that would compromise the reconstruction and also guarantees the unbiasedness of the tracer density estimate. We demonstrate that these techniques allow a significant reduction of the required number of samples and thus the reconstruction time. The proposed methods are built into

  4. Silicon as an Unconventional Detector in Positron Emission Tomography

    PubMed Central

    Clinthorne, N.H.; Brzezinski, K.; Chesi, E.; Cochran, E.; Grkovski, M.; Grošičar, B.; Honscheid, K.; Huh, S.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuž, M.; Smith, S.; Stankova, V.; Studen, A.; Weilhammer, P.; žontar, D.

    2012-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been a successful in achieving ~5mm FWHM spatial resolution in human studies and ~1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches. Foremost is its high spatial resolution in 3D: our past studies show that there is little diffculty in localizing 511 keV photon interactions to ~0.3mm. Since spatial resolution and reconstructed image noise trade off in a highly non-linear manner that depends on the PET instrument response, if high spatial resolution is the goal, silicon may outperform standard PET detectors even though it has lower sensitivity to 511 keV photons. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument has been constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors can be inserted to emulate dual-ring or imaging probe geometries. Recent results have demonstrated 0.7 mm FWHM resolution using pad detectors having 16×32 arrays of 1.4mm square pads and setups have shown promising results in both small animal and PET imaging probe configurations. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. PMID:23230345

  5. Positron emission tomography: a financial and operational analysis.

    PubMed

    Conti, P S; Keppler, J S; Halls, J M

    1994-06-01

    Positron emission tomography (PET) is an emerging clinical imaging technique that is facing the challenges of expansion in a period of imminent health care contraction and reform. Although PET began showing utility in clinical medicine in the mid-1980s [1], its proliferation into mainstream medical practice has not matched that of other new imaging technologies such as MR imaging. Many factors have contributed to this, including the changing health care economy, the high cost of PET, the length of time it takes to develop a PET facility, and its inherent complexity. In part because of the proliferation of the use of other technologies and the general explosion of costs, insurance carriers are now holding diagnostic techniques, including PET, to stricter standards of efficacy. New techniques must show improvement in long-term outcome of patients, a difficult task for diagnostic tools. In addition to these issues, PET is an expensive technology that requires highly trained multidisciplinary personnel. Questions have also been raised about the most appropriate mechanism for regulation of PET isotope preparation, leading to speculation about future regulatory requirements. The current pioneers of PET must meet these challenges in order for it to become a routine imaging technique. Because of its clinical value, PET will probably survive despite the challenges. For many reasons, though, not every hospital should necessarily develop PET services. Conversely, many hospitals without this technology should consider acquiring PET. The purpose of this article is to identify the financial, operational, and clinical challenges facing PET centers today, describe potential organizational configurations that may enable PET to survive in an antitechnology environment, and delineate which institutions should consider this new technology.

  6. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core.

    PubMed

    Jagust, William J; Bandy, Dan; Chen, Kewei; Foster, Norman L; Landau, Susan M; Mathis, Chester A; Price, Julie C; Reiman, Eric M; Skovronsky, Daniel; Koeppe, Robert A

    2010-05-01

    This is a progress report of the Alzheimer's Disease Neuroimaging Initiative (ADNI) positron emission tomography (PET) Core. The Core has supervised the acquisition, quality control, and analysis of longitudinal [(18)F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an "add on" study, approximately 100 subjects also underwent scanning with [(11)C] Pittsburgh compound B PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used many different approaches to characterize differences between subject groups (Alzheimer's disease, mild cognitive impairment, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. Pittsburgh compound B PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [(18)F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia. Copyright 2010 The Alzheimer

  7. Positron emission tomography (PET) and macromolecular delivery in vivo.

    PubMed

    Strauss, Ludwig G; Dimitrakopoulou-Strauss, Antonia

    2009-01-01

    Positron emission tomography (PET) examinations with F-18-fluorodeoxyglucose (FDG) provide detailed information about the glucose-like metabolism in tissue. It is generally accepted that FDG reflects the viability of tumour cells. The kinetics of FDG is modulated by several genes, besides the glucose transporters and hexokinases. Additional specific information can be obtained non-invasively by using other tracers specific for cell membrane receptors. PET studies with radiolabelled peptides have emerged as a new diagnostic tool for imaging of certain tumour entities, like neuroendocrine tumours (NETs) and gastrointestinal stromal tumours (GISTs). This application is based on certain properties of these tumours, like the overexpression of somatostatin receptors, which can be visualised by somatostatin analogues, like 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic-acid-D: -Phe1-Tyr3 octreotide (DOTATOC) in NET. The overexpression of gastrin-releasing peptide (GRP) receptors can be visualised in GIST by using bombesin analogues. These peptides can be labelled by (68)Ga, which is a generator product and therefore more cost-effective than cyclotron products. (68)Ga-DOTATOC is a peptide that binds primarily to somatostatin receptor subtype 2 (SSTR2). PET studies with (68)Ga-DOTATOC are performed in patients with NET and some other tumours. (68)Ga-BZH3 ((68)Ga-Bombesin) is a peptide that binds to at least three bombesin receptor subtypes: the BB1 (also known as neuromedin B), the BB2 (also known as GRP), and the BB3 (bombesin receptor subtype 3). This bombesin analogue, (68)Ga-BZH3, is used in patients with GIST.

  8. Ictal single photon emission computed tomography of myoclonic absence seizures.

    PubMed

    Ikeda, Hiroko; Imai, Katsumi; Ikeda, Hitoshi; Matsuda, Kazumi; Takahashi, Yukitoshi; Inoue, Yushi

    2017-08-16

    Epilepsy with myoclonic absences (EMAs) is a rare epileptic disorder characterized by a predominant type of seizures, myoclonic absences (MAs). The pathophysiology of MAs in patients with EMAs remains unknown. Here, we report the first characterization of the ictal phase of MAs by single photon emission computed tomography (SPECT). We evaluated 1 male (Patient 1) and 1 female (Patient 2) patient with EMAs, aged 8 and 4years at first SPECT investigation, respectively. We performed ictal and interictal (99 m)Tc-ethyl cysteinate dimer (ECD) SPECT. We then generated images of subtraction ictal SPECT co-registered to MRI (SISCOM) from the interictal and ictal data to evaluate topographic changes in cerebral blood flow (CBF) during MAs as compared to the interictal state. In Patient 1, the CBF increased in the perirolandic areas, thalamus, caudate nucleus, and precuneus, and decreased in the middle frontal gyrus and bilateral orbitofrontal regions. In Patient 2, CBF increased in the thalamus, putamen, and globus pallidus. In contrast to the CBF in Patient 1, CBF was decreased in the precuneus. Using SPECT, we showed that, in addition to the thalamus and basal ganglia, the perirolandic cortical motor area is involved in MAs. We hypothesize that in MAs the blood perfusion in the perirolandic cortical motor area might have changed under the influence of the cortico-thalamic network oscillation features. The CBF properties observed by means of our SPECT procedure may represent key features of the pathophysiological mechanisms underlying MAs. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    PubMed

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  10. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  11. Periodic gamma-ray emissions from Geminga at or = 10(12) eV

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Rawat, H. S.; Sanecha, V. K.; Rannot, R. C.; Sapru, M.; Tickoo, A. K.; Qazi, R. A.; Bhat, C. L.; Razdan, H.; Tonwar, S. C.

    1985-01-01

    Analysis of data from an atmospheric Cerenkov telescope indicated the periodic emission of gamma rays of energy 10 to the 12th power eV, at 60.25 second period, from 2CG 195+4. The gamma ray flux at 99% confidence level is estimated to be 9.5 x 10 to 12 photons/sq cm/s.

  12. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    SciTech Connect

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  13. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  14. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  15. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  16. Breast cancer detection using neutron stimulated emission computed tomography: prominent elements and dose requirements.

    PubMed

    Bender, Janelle E; Kapadia, Anuj J; Sharma, Amy C; Tourassi, Georgia D; Harrawood, Brian P; Floyd, Carey E

    2007-10-01

    Neutron stimulated emission computed tomography (NSECT) is being developed to noninvasively determine concentrations of trace elements in biological tissue. Studies have shown prominent differences in the trace element concentration of normal and malignant breast tissue. NSECT has the potential to detect these differences and diagnose malignancy with high accuracy with dose comparable to that of a single mammogram. In this study, NSECT imaging was simulated for normal and malignant human breast tissue samples to determine the significance of individual elements in determining malignancy. The normal and malignant models were designed with different elemental compositions, and each was scanned spectroscopically using a simulated 2.5 MeV neutron beam. The number of incident neutrons was varied from 0.5 million to 10 million neutrons. The resulting gamma spectra were evaluated through receiver operating characteristic (ROC) analysis to determine which trace elements were prominent enough to be considered markers for breast cancer detection. Four elemental isotopes (133Cs, 81Br, 79Br, and 87Rb) at five energy levels were shown to be promising features for breast cancer detection with an area under the ROC curve (A(Z)) above 0.85. One of these elements--87Rb at 1338 keV--achieved perfect classification at 10 million incident neutrons and could be detected with as low as 3 million incident neutrons. Patient dose was calculated for each gamma spectrum obtained and was found to range from between 0.05 and 0.112 mSv depending on the number of neutrons. This simulation demonstrates that NSECT has the potential to noninvasively detect breast cancer through five prominent trace element energy levels, at dose levels comparable to other breast cancer screening techniques.

  17. EndoTOFPET-US - A Miniaturised Calorimeter for Endoscopic Time-of-Flight Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zvolský, Milan; EndoTOFPET-US Collaboration

    2015-02-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for Ultrasound (US) Endoscopy and Positron Emission Tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional markers and developing new biomarkers for pancreas and prostate oncology. Exploiting the Time-of-Flight (TOF) information of the gamma rays allows for a more sensitive, more precise and lower radiation- dose imaging and intervention on small internal structures. The detection of the gamma rays is realised with the help of scintillator crystals with Silicon Photomultiplier (SiPM) read-out, aiming at a coincidence time resolution of 200 ps and a spatial resolution of ≈ 1 mm. For the endoscopic detector, digital SiPMs are utilised for the first time in an instrument planned for clinical applications. The functionality of the instrument as well as the challenges that accompany the high miniaturisation of the endoscopic detector and the asymmetric and variable geometry of the system, are presented. The demands on the system involve the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics, system integration as well as image reconstruction. The single detector components have been fully characterised and are performing up to specifications. Two dedicated ASIC chips have been developed for the project. The first PET images have been acquired with a test setup that consists solely of hardware and software developed within the collaboration and demonstrate that the data acquisition and reconstruction chain is operational. In this talk, the characterisation of the single components and the status of the detector integration and comissioning is presented.

  18. Breast cancer detection using neutron stimulated emission computed tomography: Prominent elements and dose requirements

    SciTech Connect

    Bender, Janelle E.; Kapadia, Anuj J.; Sharma, Amy C.; Tourassi, Georgia D.; Harrawood, Brian P.; Floyd, Carey E. Jr.

    2007-10-15

    Neutron stimulated emission computed tomography (NSECT) is being developed to noninvasively determine concentrations of trace elements in biological tissue. Studies have shown prominent differences in the trace element concentration of normal and malignant breast tissue. NSECT has the potential to detect these differences and diagnose malignancy with high accuracy with dose comparable to that of a single mammogram. In this study, NSECT imaging was simulated for normal and malignant human breast tissue samples to determine the significance of individual elements in determining malignancy. The normal and malignant models were designed with different elemental compositions, and each was scanned spectroscopically using a simulated 2.5 MeV neutron beam. The number of incident neutrons was varied from 0.5 million to 10 million neutrons. The resulting gamma spectra were evaluated through receiver operating characteristic (ROC) analysis to determine which trace elements were prominent enough to be considered markers for breast cancer detection. Four elemental isotopes ({sup 133}Cs, {sup 81}Br, {sup 79}Br, and {sup 87}Rb) at five energy levels were shown to be promising features for breast cancer detection with an area under the ROC curve (A{sub Z}) above 0.85. One of these elements - {sup 87}Rb at 1338 keV - achieved perfect classification at 10 million incident neutrons and could be detected with as low as 3 million incident neutrons. Patient dose was calculated for each gamma spectrum obtained and was found to range from between 0.05 and 0.112 mSv depending on the number of neutrons. This simulation demonstrates that NSECT has the potential to noninvasively detect breast cancer through five prominent trace element energy levels, at dose levels comparable to other breast cancer screening techniques.

  19. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.

  20. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  1. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  2. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  3. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  4. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  5. Positron Emission Tomography Computed Tomography: A Guide for the General Radiologist.

    PubMed

    Beadsmoore, Clare; Newman, David; MacIver, Duncan; Pawaroo, Davina

    2015-11-01

    Cancer remains a leading cause of death in Canada and worldwide. Whilst advances in anatomical imaging to detect and monitor malignant disease have continued over the last few decades, limitations remain. Functional imaging, such as positron emission tomography (PET), has improved the sensitivity and specificity in detecting malignant disease. In combination with computed tomography (CT), PET is now commonly used in the oncology setting and is an integral part of many cancer patients' pathways. Although initially the CT component of the study was purely for attenuation of the PET imaging and to provide anatomical coregistration, many centers now combine the PET study with a diagnostic quality contrast enhanced CT to provide one stop staging, thus refining the patient's pathway. The commonest tracer used in everyday practice is FDG (F18-fluorodeoxyglucose). There are many more tracers in routine clinical practice and those with emerging roles, such as 11C-choline, useful in the imaging of prostate cancer; 11C-methionine, useful in imaging brain tumours; C11-acetate, used in imaging hepatocellular carcinomas; 18F-FLT, which can be used as a marker of cellular proliferation in various malignancies; and F18-DOPA and various 68Ga-somatostatin analogues, used in patients with neuroendocrine tumours. In this article we concentrate on FDG PETCT as this is the most commonly available and widely utilised tracer now used to routinely stage a number of cancers. PETCT alters the stage in approximately one-third of patients compared to anatomical imaging alone. Increasingly, PETCT is being used to assess early metabolic response to treatment. Metabolic response can be seen much earlier than a change in the size/volume of the disease which is measured by standard CT imaging. This can aid treatment decisions in both in terms of modifying therapy and in addition to providing important prognostic information. Furthermore, it is helpful in patients with distorted anatomy from surgery

  6. Does positron emission tomography/computed tomography aid the diagnosis of prosthetic valve infective endocarditis?

    PubMed

    Balmforth, Damian; Chacko, Jacob; Uppal, Rakesh

    2016-10-01

    A best evidence topic was constructed according to a structured protocol. The question addressed was whether (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) aids the diagnosis of prosthetic valve endocarditis (PVE)? A total of 107 publications were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The reported outcome of all studies was a final diagnosis of confirmed endocarditis on follow-up. All the six studies were non-randomized, single-centre, observational studies and thus represented level 3 evidence. The diagnostic capability of PET/CT for PVE was compared with that of the modified Duke Criteria and echocardiography, and reported in terms of sensitivity, specificity and positive and negative predictive values. All studies demonstrated an increased sensitivity for the diagnosis of PVE when PET/CT was combined with the modified Duke Criteria on admission. A higher SUVmax on PET was found to be significantly associated with a confirmed diagnosis of endocarditis and an additional diagnostic benefit of PET/CT angiography over conventional PET/non-enhanced CT is reported due to improved anatomical resolution. However, PET/CT was found to be unreliable in the early postoperative period due to its inability to distinguish between infection and residual postoperative inflammatory changes. PET/CT was also found to be poor at diagnosing cases of native valve endocarditis. We conclude that PET/CT aids in the diagnosis of PVE when combined with the modified Duke Criteria on admission by increasing the diagnostic sensitivity. The diagnostic ability of PET/CT can be potentiated by the use of PET/CTA; however, its use may be unreliable in the early postoperative period or in native valve endocarditis. © The Author 2016. Published by

  7. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  8. GRB 090727 and Gamma-Ray Bursts with Early-time Optical Emission

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Kobayashi, S.; Gomboc, A.; Japelj, J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.

    2013-07-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  9. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Other Thyroid Cancers: Medullary, Anaplastic, Lymphoma and So Forth

    PubMed Central

    Araz, Mine; Çayır, Derya

    2017-01-01

    Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) is used in staging, restaging, and evaluation of therapy response in many cancers as well as differentiated thyroid carcinomas especially in non-iodine avid variants. Its potential in less frequent thyroid tumors like medullary, anaplastic thyroid cancers, thyroid lymphoma and metastatic tumors of the thyroid however, is not well established yet. The aim of this review is to provide an overview on the recent applications and indications of 18F-FDG PET/CT in these tumors and to focus on the controversies in the clinical setting. PMID:28291004

  10. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a rare case of carcinoma stomach with concomitant silicosis

    PubMed Central

    Sasikumar, Arun; Joy, Ajith; Unni, Madhavan; Madhavan, Jayaprakash

    2016-01-01

    The role of fluorine-18 fluorodeoxyglucose. (18F-FDG) positron emission tomography. (PET)/computed tomography. (CT) in the initial staging of various malignancies is now well established. However, nonspecificity of FDG occasionally results in tracer uptake in benign lung lesions. The authors describe a complicated case of carcinoma stomach with multiple nodules and a cavitary lesion in lungs where 18F-FDG PET CT done for initial staging revealed FDG avid mass in stomach, FDG avid multiple mediastinal lymph nodes and multiple intensely FDG avid bilateral lung lesions. The FDG avid lung lesions turned out to be due to silicosis as confirmed by histopathology. PMID:27833322

  11. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  12. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    PubMed

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  13. Incremental value of single photon emission tomography/computed tomography in 3-phase bone scintigraphy of an accessory navicular bone.

    PubMed

    Jain, Sachin; Karunanithi, Sellam; Agarwal, Krishan Kant; Kumar, Ganesh; Roy, Shambo Guha; Tripathi, Madhavi

    2014-07-01

    Accessory navicular bone is one of the supernumerary ossicles in the foot. Radiography is non diagnostic in symptomatic cases. Accessory navicular has been reported as a cause of foot pain and is usually associated with flat foot. Increased radio tracer uptake on bone scan is found to be more sensitive. We report a case highlighting the significance of single photon emission tomography/computed tomography in methylene diphosphonate bone scan in the evaluation of symptomatic accessory navicular bone where three phase bone scan is equivocal.

  14. Incremental value of single photon emission tomography/computed tomography in 3-phase bone scintigraphy of an accessory navicular bone

    PubMed Central

    Jain, Sachin; Karunanithi, Sellam; Agarwal, Krishan Kant; Kumar, Ganesh; Roy, Shambo Guha; Tripathi, Madhavi

    2014-01-01

    Accessory navicular bone is one of the supernumerary ossicles in the foot. Radiography is non diagnostic in symptomatic cases. Accessory navicular has been reported as a cause of foot pain and is usually associated with flat foot. Increased radio tracer uptake on bone scan is found to be more sensitive. We report a case highlighting the significance of single photon emission tomography/computed tomography in methylene diphosphonate bone scan in the evaluation of symptomatic accessory navicular bone where three phase bone scan is equivocal. PMID:25210293

  15. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan.

    PubMed

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen ((68)Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. (68)Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for (68)Ga-PSMA PET/CT to evaluate the feasibility of (177)Lu-PSMA therapy.

  16. Iodine-131 meta-iodobezylguanidine single photon emission computed tomography/computerized tomography in diagnosis of neuro-endocrine tumors

    PubMed Central

    Harisankar, Chidambaram Natrajan Balasubramanian; Mittal, Bhagwant Rai; Bhattacharya, Anish; Kashyap, Raghava; Bhansali, Anil

    2012-01-01

    Metaiodobenzyl guanidine (MIBG) is a derivative of guanethidine and acts as an analogue of nor-epinephrine and is widely used in the imaging of tumors of neuro-endocrine origin. Iodine-123 MIBG has ideal imaging characteristics but is expensive with limited availability. Iodine-131 MIBG is widely used in India and is cheap. Hybrid single photon emission computed tomography (SPECT)/computerized tomography (CT) allows for anatomico-functional imaging and is being tried in MIBG studies. However, the experience with I-131 MIBG is limited. We present a pictorial assay of I-131 MIBG SPECT/CT findings in various MIBG avid tumors. PMID:23599604

  17. Role of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the management of Askin's tumor.

    PubMed

    Santhosh, Sampath; Kashyap, Raghava; Bhattacharya, Anish; Kumar Jindal, Surinder; Rai Mittal, Bhagwant

    2013-07-01

    A primitive neuroectodermal tumor (PNET) of the thoraco-abdominal region is one of a group of small round cell tumors usually found in children and young adults, originally described by Askin et al. Most cases arise in the soft-tissues of the thorax, but may rarely occur within the lung with the symptoms of chest wall pain, pleural effusion and dyspnea. The authors present two cases demonstrating the utility of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the staging and prognosis of PNET of the chest wall.

  18. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder.

    PubMed

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-05-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  19. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder

    PubMed Central

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-01-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  20. The diagnostic possibilities of positron emission tomography (PET): applications in oral and maxillofacial buccal oncology.

    PubMed

    Carranza-Pelegrina, Daniela; Lomeña-Caballero, Francisco; Soler-Peter, Marina; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2005-01-01

    The principles of positron emission tomography (PET), recently introduced as a diagnostic procedure into the health sciences, are described. The principle clinical applications apply to a particular group of specialties: cardiology, neurology, psychiatry, and above all oncology. Positron emission tomography is a non-invasive diagnostic imaging technique with clinical applications. It is an excellent tool for the study of the stage and possible malignancy of tumors of head and neck, the detection of otherwise clinically indeterminate metastases and lymphadenopathies, and likewise for the diagnosis of relapses. The only tracer with any practical clinical application is fluor-desoxyglucosa-F18 (FDG). PET detects the intense accumulation of FDG produced in malignant tumors due to the increased glycolytic rate of the neoplastic cells. With the introduction of hybrid systems that combine computerized tomography or magnetic resonance with positron emission tomography, important advances are being made in the diagnosis and follow-up of oncologic pathology of head and neck.

  1. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  2. Soft gamma-ray galactic ridge emission as unveiled by SPI aboard INTEGRAL

    SciTech Connect

    Knoedlseder, J.; Weidenspointner, G.; Jean, P.; Strong, A.; Diehl, R.; Cordier, B.; Schanne, S.

    2007-07-12

    The origin of the soft gamma-ray (200 keV - 1 MeV) galactic ridge emission is one of the long-standing mysteries in the field of high-energy astrophysics. Population studies at lower energies have shown that emission from accreting compact objects gradually recedes in this domain, leaving place to another source of gamma-ray emission that is characterised by a hard power-law spectrum extending from 100 keV up to 100 MeV The nature of this hard component has remained so far elusive, partly due to the lack of sufficiently sensitive imaging telescopes that would be able to unveil the spatial distribution of the emission. The SPI telescope aboard INTEGRAL allows now for the first time the simultaneous imaging of diffuse and point-like emission in the soft gamma-ray regime. We present here all-sky images of the soft gamma-ray continuum emission that clearly reveal the morphology of the different emission components. We discuss the implications of our results on the nature of underlying emission processes and we put our results in perspective of GLAST studies of diffuse galactic continuum emission.

  3. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    SciTech Connect

    Kirby, J.; Lindquist, R.P.

    1994-06-01

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  4. Photon-splitting limits to the hardness of emission in strongly magnetized soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1995-01-01

    Soft gamma repeaters are characterized by recurrent activity consisting of short-duration outbursts of high-energy emission that is typically of temperature less than 40 keV. One recent model of repeaters is that they originate in the environs of neutron stars with superstrong magnetic fields, perhaps greater than 10(exp 14) G. In such fields, the exotic process of magnetic photon splitting gamma yields gamma gamma acts very effectively to reprocess gamma-ray radiation down to hard X-ray energies. In this Letter, the action of photon splitting is considered in some detail, via the solution of photon kinetic equations, determining how it limits the hardness of emission in strongly magnetized repeaters, and thereby obtaining observational constraints to the field in SGR 1806-20.

  5. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  6. Photon-splitting limits to the hardness of emission in strongly magnetized soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1995-01-01

    Soft gamma repeaters are characterized by recurrent activity consisting of short-duration outbursts of high-energy emission that is typically of temperature less than 40 keV. One recent model of repeaters is that they originate in the environs of neutron stars with superstrong magnetic fields, perhaps greater than 10(exp 14) G. In such fields, the exotic process of magnetic photon splitting gamma yields gamma gamma acts very effectively to reprocess gamma-ray radiation down to hard X-ray energies. In this Letter, the action of photon splitting is considered in some detail, via the solution of photon kinetic equations, determining how it limits the hardness of emission in strongly magnetized repeaters, and thereby obtaining observational constraints to the field in SGR 1806-20.

  7. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  8. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    SciTech Connect

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  9. Detection of gamma-ray emission from the quasar PKS 0208-512

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1993-01-01

    High-energy gamma-ray emission has been detected from the quasar PKS 0208-512 in the energy range above 30 MeV by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory. This region of sky was observed in five different viewing periods, and evidence of time variability in the gamma-ray emission by more than a factor of 3 was found. At the maximum intensity between 1991 September 19 and October 3, the flux density above 100 MeV was (9.1 +/- 0.4) x 10 exp -7 gamma/sq cm per sec. The photon spectrum during this period may be expressed as a power law with an exponent of - 1.69 +/- 0.05 between 30 MeV and 4 GeV. This is the hardest quasar spectrum observed by EGRET up to the present time.

  10. Detection of gamma-ray emission from the quasar PKS 0208-512

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1993-01-01

    High-energy gamma-ray emission has been detected from the quasar PKS 0208-512 in the energy range above 30 MeV by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory. This region of sky was observed in five different viewing periods, and evidence of time variability in the gamma-ray emission by more than a factor of 3 was found. At the maximum intensity between 1991 September 19 and October 3, the flux density above 100 MeV was (9.1 +/- 0.4) x 10 exp -7 gamma/sq cm per sec. The photon spectrum during this period may be expressed as a power law with an exponent of - 1.69 +/- 0.05 between 30 MeV and 4 GeV. This is the hardest quasar spectrum observed by EGRET up to the present time.

  11. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  12. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  13. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  14. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  15. Practical implementation of tetrahedral mesh reconstruction in emission tomography.

    PubMed

    Boutchko, R; Sitek, A; Gullberg, G T

    2013-05-07

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  16. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  17. Positron emission tomography imaging using radiolabeled inorganic nanomaterials.

    PubMed

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-02-17

    CONSPECTUS: Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  18. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    PubMed Central

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  19. The connection between the 15 GHz radio and gamma-ray emission in blazars

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.; King, O. G.; Reeves, R.

    2015-03-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40m). One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.

  20. Al-26: A galactic source of gamma ray line emission

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1976-01-01

    It is shown that Al26 is a very good candidate for producing a detectable gamma-ray line, and that this line is not only intense but also very narrow. By examining the chart of nuclides for other radioactive isotopes which could produce hiterto unnoticed gamma-ray lines following nucleosynthesis, it is found that for mass numbers less than 60, the isotopes Na22, Al26, K40, Ar42, Ti44, Sc46, Mn54, Co56, Co57, Co58, Co60 and Fe60 are the only ones with sufficiently long half lives (70) days to produce gamma rays in optically thin regions.

  1. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using 18 F-fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    2013-01-01

    Background Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. Case presentation We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. Conclusion We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess. PMID:24225333

  2. Gamma densitometry tomography of gas holdup spatial distribution in industrial scale bubble columns

    SciTech Connect

    Shollenberger, K.A.; Torczynski, J.R.; Adkins, D.R.; O`Hern, T.J.; Jackson, N.B.

    1995-12-31

    Gamma-densitometry tomography (GDT) experiments have been performed to measure gas holdup spatial variations in two bubble columns: a 0.19 m inside diameter Lucite column and a 0.48 m inside diameter stainless steel vessel. Air and water were used for the measurements. Horizontal scans at one vertical position in each column were made for several air flow rates. An axi-symmetric tomographic reconstruction algorithm based on the Abel transform has been used to calculate the time averaged gas holdup radial variation. Integration of these profiles over the column cross section has yielded area-averaged gas holdup results, which have been compared with volume-averaged gas holdups determined from differential pressure measurements and from the rise in the air/water interface during gas flow. The results agree reasonably well.

  3. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; hide

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  4. Using gamma-ray emission to measure areal density of ICF capsules

    SciTech Connect

    Hoffman, Nelson M; Wilson, Douglas C; Hermann, Hans W; Young, Carlton S

    2010-01-01

    Fusion neutrons streaming from a burning ICF capsule generate gamma rays via nuclear inelastic scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density ('{rho}R') and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, {sup 12}C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1-MeV neutrons from D+T fusion. These gamma rays can be measured by the Gamma Reaction History (GRH) experiment being built at the National Ignition Facility (NIF). A linear error analysis indicates the chief sources of uncertainty in inferred areal density.

  5. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma.

    PubMed

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation.

  6. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma

    PubMed Central

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation. PMID:25709544

  7. The Use of Combined Single Photon Emission Computed Tomography and X-ray Computed Tomography to Assess the Fate of Inhaled Aerosol

    PubMed Central

    Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-01-01

    Abstract Background Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Methods Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. Results The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Conclusions Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition. PMID:21166585

  8. Gamma-ray Emission in the Universe - A Possible Explanation by the Wave Modulation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2016-10-01

    The gamma-ray emission and other short wave emissions in the universe can be produced by a wave modulation of high orbiting frequencies (planets, satellites) by low orbiting frequencies (galaxies and so on) as cosmic bodies move in several orbits.

  9. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative.

    PubMed

    McEwan, Louise M; Wong, David; Yaxley, John

    2017-03-28

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-flourodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  10. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  11. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  12. COS-B observations of gamma-ray emission from local galactic features

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  13. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    SciTech Connect

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-07-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab.

  14. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  15. Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study.

    PubMed

    Polf, J C; Peterson, S; Ciangaru, G; Gillin, M; Beddar, S

    2009-02-07

    In this paper, we present the results of a preliminary study of secondary 'prompt' gamma-ray emission produced by proton-nuclear interactions within tissue during proton radiotherapy. Monte Carlo simulations were performed for mono-energetic proton beams, ranging from 2.5 MeV to 250 MeV, irradiating elemental and tissue targets. Calculations of the emission spectra from different biological tissues and their elemental components were made. Also, prompt gamma rays emitted during delivery of a clinical proton spread-out Bragg peak (SOBP) in a homogeneous water phantom and a water phantom containing heterogeneous tissue inserts were calculated to study the correlation between prompt gamma-ray production and proton dose delivery. The results show that the prompt gamma-ray spectra differ significantly for each type of tissue studied. The relative intensity of the characteristic gamma rays emitted from a given tissue was shown to be proportional to the concentration of each element in that tissue. A strong correlation was found between the delivered SOBP dose distribution and the characteristic prompt gamma-ray production. Based on these results, we discuss the potential use of prompt gamma-ray emission as a method to verify the accuracy and efficacy of doses delivered with proton radiotherapy.

  16. Breath-hold single-photon emission tomography and computed tomography for predicting residual pulmonary function in patients with lung cancer.

    PubMed

    Sudoh, Manabu; Ueda, Kazuhiro; Kaneda, Yoshikazu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Kawakami, Yasuhiko; Hamano, Kimikazu

    2006-05-01

    We sought to evaluate the utility of integrated breath-hold single-photon emission tomography and computed tomography imaging compared with that of simple calculation with the lung segment-counting technique for predicting residual pulmonary function in patients undergoing surgical intervention for lung cancer. A prospective series of 22 patients undergoing anatomic lung resection for cancer were enrolled in this study. Postoperative residual forced expiratory volume in 1 second was predicted by measuring the radioactivity counts of the affected lobes or segments to be resected within the entire lungs by placement of regions of interest on single-photon emission tomography and computed tomography images. Residual forced expiratory volume in 1 second was also estimated by using the segment-counting technique. Both predicted values agreed well with postoperative forced expiratory volume in 1 second. Although the residual forced expiratory volume in 1 second predicted by means of single-photon emission tomography and computed tomography correlated well with that predicted by using segment counting, the values were significantly underestimated by the segment-counting technique in 4 outliers with severe emphysema. There were 2 patients with borderline pulmonary functional reserve whose residual forced expiratory volume in 1 second values were predicted more accurately by means of single-photon emission tomography and computed tomography than by using segment counting. Integrated breath-hold single-photon emission tomography and computed tomography images allow the accurate prediction of postoperative pulmonary function but without statistical superiority over the simple segment-counting technique. Further study of the usefulness of single-photon emission tomography and computed tomography in patients with severe emphysema and borderline lung function should prove valuable because the segment-counting technique underestimates pulmonary functional reserve in these

  17. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.; Han, K.S.

    1994-12-31

    The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

  18. Positron emission tomography image on evaluating intraperitoneal dissemination of malignant gastrointestinal stromal tumor.

    PubMed

    Kobayashi, Yoshinao; Nakao, Makoto; Konishi, Masayshi; Urawa, Naohito; Iwasa, Motoh; Kaito, Masahiko; Adachi, Yukihiko

    2008-01-01

    Herein is a report of a patient with gastrointestinal stromal tumor (GIST) possibly arising from greater omentum accompanying diffuse peritoneal disseminatation. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) revealed that 18F-FDG uptake was widely spreading in the abdomen. In this case, the PET image was more useful than computed tomography (CT) for understanding tumor distribution rather. PET provides important information on tumor distribution and has an impact on evaluating clinical stage in GIST patients.

  19. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    PubMed

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  20. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  1. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  2. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography.

    PubMed

    Marchal, G; Young, A R; Baron, J C

    1999-05-01

    Early postischemic hyperperfusion (EPIH) has long been documented in animal stroke models and is the hallmark of efficient recanalization of the occluded artery with subsequent reperfusion of the tissue (although occasionally it may be seen in areas bordering the hypoperfused area during arterial occlusion). In experimental stroke, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called "reperfusion injury"). In humans, focal hyperperfusion in the subacute stage (i.e., more than 48 hours after onset) has been associated with tissue necrosis in most instances, but regarding the acute stage, its occurrence, its relations with tissue metabolism and viability, and its clinical prognostic value were poorly understood before the advent of positron emission tomography (PET), in part because of methodologic issues. By measuring both CBF and metabolism, PET is an ideal imaging modality to study the pathophysiologic mechanism of EPIH. Although only a few PET studies have been performed in the acute stage that have systematically assessed tissue and clinical outcome in relation to EPIH, they have provided important insights. In one study, about one third of the patients with first-ever middle cerebral artery (MCA) territory stroke studied within 5 to 18 hours after symptom onset exhibited EPIH. In most cases, EPIH affected large parts of the cortical MCA territory in a patchy fashion, together with abnormal vasodilation (increased cerebral blood volume), "luxury perfusion" (decreased oxygen extraction fraction), and mildly increased CMRO2, which was interpreted as postischemic rebound of cellular metabolism in structurally preserved tissue. In that study, the spontaneous outcome of the tissue exhibiting EPIH was good, with late

  3. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  4. An atlas of Doppler emission-line tomography of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Kaitchuck, Ronald H.; Schlegel, Eric M.; Honeycutt, R. Kent; Horne, Keith; Marsh, T. R.; White, J. C., II; Mansperger, Cathy S.

    1994-01-01

    Doppler emission-line tomography is a technique similar to medical tomography. In this atlas the emission-line profiles of cataclysmic variable stars, seen at different orbital phases, are transformed into velocity space images. This transformation makes many of the complex line profile changes easier to interpret. The emission contributions of the disk and the s-wave are clearly separated in these images, and any emission from the stream and the secondary star can often be identified. In this atlas, Doppler tomograms of Hbeta, He I lambda 4471, and He II lambda 4686 emission lines of 18 cataclysmic variable stars are presented. The Doppler images provide insights into the individual systems and a better technique for measuring and radial velocity amplitude of the white dwarf.

  5. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K.-S.; Dogiel, V. A.; Ko, C. M.

    2017-02-01

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6‑2858 (or 3FGL J1745.6‑2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.

  6. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography

    PubMed Central

    Mattsson, Niklas

    2016-01-01

    See Rabinovici (doi:10.1093/brain/aww025) for a scientific commentary on this article. Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer’s disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer’s disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. All underwent 18F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1–4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer’s disease dementia. The results were replicated after

  7. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar.

  8. Gamma-ray Emission from the Surface of Martian Satellites as a Function of Elemental Composition

    NASA Astrophysics Data System (ADS)

    Yoshida, Kouhei; Naito, Masayuki; Hasebe, Nobuyuki; Kusano, Hiroki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke

    Mars has two satellites, Phobos and Deimos. The Martian satellites have never been explored from the aspect of elemental composition. Their origins are still mysterious. Gamma-ray spectroscopy from the orbit of spacecraft is a powerful method to investigate elemental distribution and abundance of planets with no or thin atmosphere. In this work, gamma-ray emission from the Martian satellites was calculated as a function of elemental composition. Both chondritic and Martian compositions, which represent captured origin and giant impact origin, respectively, were assumed as elemental composition of Martian satellites. The gamma-ray fluxes induced by galactic cosmic rays at their surface were calculated for both of them. It was found that the elemental compositions of Martian satellites are clearly distinguished between chondritic or Martian by the gamma-ray emission rate ratios of Si/Fe and Ca/Fe and enable us to give strong constraint to the idea for the origin of the Martian satellites.

  9. Enhanced Gamma-Ray Emission from the Microquasar Cygnus X-3 Detected by AGILE

    NASA Astrophysics Data System (ADS)

    Piano, G.; Tavani, M.; Verrecchia, F.; Vercellone, S.; Munar-Adrover, P.; Bulgarelli, A.; Donnarumma, I.; Minervini, G.; Fioretti, V.; Pittori, C.; Lucarelli, F.; Striani, E.; Ursi, A.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-03-01

    The AGILE-GRID detector is revealing gamma ray emission above 100 MeV from the microquasar Cygnus X-3. Integrating from 2017-03-15 UT 00:00:00 to 2017-03-16 UT 00:00:00, a preliminary multi-source likelihood analysis finds a gamma-ray flux F( > 100 MeV) = (4.2 +/- 1.7) x 10^-6 photons/cm^2/s with a detection significance near 4 sigma.

  10. A Spectro-Astrometric Measurement of Brackett Gamma Emission in Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Brittain, S.

    2012-01-01

    In T Tauri stars, the Brackett-gamma line strength is a reliable indicator of accretion luminosity. Among intermediate mass young stars, Herbig Ae stars also show this correlation, but in Herbig Be stars the Br-gamma line flux significantly overpredicts accretion luminosity. This Br-gamma excess in Herbig Be stars is thought to arise from a spatially extended outflow. Using commissioning data from the LUCIFER spectrograph on the 8.4-meter Large Binocular Telescope (LBT), we present a spectro-astrometric study of two Herbig Ae/Be stars, the HAe star MWC480 and the HBe star HD 259431. In both stars, an extended Br-gamma source can be ruled out down to 0.001'' at the 1σ level. We discuss the implication of our limits on the extension of the Br-gamma emission and possible ways forward.

  11. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  12. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  13. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Campbell, Janice M. Wong, C. Oliver; Muzik, Otto; Marples, Brian; Joiner, Michael; Burmeister, Jay

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardized uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.

  14. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  15. Optic nerve sheath meningioma detected by single- photon emission computed tomography/computed tomography somatostatin receptor scintigraphy: a case report.

    PubMed

    Nussbaum-Hermassi, Lucie; Ahle, Guido; Zaenker, Chistophe; Duca, Camelia; Namer, Izzie Jacques

    2016-04-22

    Optic nerve sheath meningiomas account for only 2% of orbital lesions and 42% of optic nerve tumors. Diagnosis remains difficult because histologic confirmation carries a high risk of visual loss. Therefore, a less invasive and specific diagnostic method for differentiating optic nerve sheath meningiomas from other optic nerve lesions is needed to overcome the limitations of computed tomography and magnetic resonance imaging, and make the best individualized treatment decision. This case is a good illustration of the clinical and imaging difficulties inherent in this rare tumor, which may be hard to differentiate from other causes. A 51-year-old Caucasian woman developed a central scotoma, visual loss, and abnormal visual evoked potentials. The first magnetic resonance imaging scan classified the optic nerve damage as retrobulbar optic neuritis. After magnetic resonance imaging follow-up at 3 months, a negative lumbar puncture and biological workup, and clinical worsening, an optic nerve sheath meningioma was suspected. We confirmed this diagnosis with 111In-pentetreotide single-photon emission computed tomography, which is able to bind with very high affinity to somatostatin receptor subtype 2 expressed on meningiomas. In the diagnosis of optic nerve sheath meningiomas, [111In]-pentetreotide single-photon emission computed tomography-fused magnetic resonance imaging is a valuable additional tool, optimizing the diagnosis and obviating the need for a more invasive procedure.

  16. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy

    SciTech Connect

    Pentlow, K.S.; Graham, M.C.; Lambrecht, R.M.; Cheung, N.K.; Larson, S.M. )

    1991-05-01

    Positron emission tomography (PET) is potentially useful for the quantitative imaging of radiolabeled antibodies, leading in turn to improved dosimetry in radioimmunotherapy. Iodine-124 is a positron-emitting nuclide with appropriate chemical properties and half-life (4.2 days) for such studies since the radiolabeling of antibodies with iodine is well understood and the half-life permits measurements over several days. Unfortunately, I-124 has a complex decay scheme with many high-energy gamma rays and a positron abundance of only 25%. It has therefore been largely ignored as a PET-imaging nuclide. However, measurements made with phantoms and animals under realistic conditions using a BGO-based PET scanner have shown that satisfactory imaging and quantitation can be achieved. Investigations of spatial resolution, the linearity of regional observed count rate versus activity in the presence of other activity, and the visualization and quantitation of activity in spheres with different surrounding background activities were carried out with phantoms up to 22 cm in diameter. Compared with F-18, spatial resolution was only slightly degraded (13.5 mm FWHM vs 12 mm FWHM) while linearity was the same over a 10:1 activity range (0.015 to 0.15 MBq/ml for I-124). The visualization and quantitation of spheres was also slightly degraded when using similar imaging times. Increasing the imaging time for I-124 reduced the difference. To verify that the technique would work in vivo, measurements were made of human neuroblastoma tumors in rats which had been injected with I-124 labeled 3F8 antibody. Although the number of samples was small, good agreement was achieved between image-based measurements and direct measurements of excised 4-g tumors. Thus quantitative imaging of I-124 labeled antibodies appears to be possible under realistic conditions.

  17. Gamma ray emission from middle aged supernova remnants interacting with molecular clouds

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, Roger A.

    2016-06-01

    Gamma ray emission from several middle aged supernova remnants (SNRs) has been detected in space-based GeV observations and ground-based TeV observations. The characteristic pion-decay signature identified in spectra of the remnants IC443 and W44 provides strong evidence for cosmic ray (CR) proton acceleration in SNRs. Multi-wavelength observations further reveal a spatial correlation between the molecular cloud (MC) interaction region and the gamma ray emitting region. Radio emission, however, was found not to be well-correlated with the high energy emission. Based on observed MC associations, two scenarios have been proposed to explain the observed gamma ray emission from these middle aged SNRs. In one, accelerated CR particles escape from the SNR and then illuminate nearby MCs, producing gamma ray emission, while the other involves direct interaction between the SNR and molecular clumps. Here I present a new model of the direct interaction type that involves the collision between MC clumps and a radiative SNR. The model can explain the discrepancy between radio and gamma ray emission morphology. The gamma ray spectra from these middle aged SNRs show steeping from GeV to TeV energies that is believed to be due to the limited acceleration time of CR particles. However, the spectral shape cannot be fitted by a simple exponential profile. We derive a time dependent solution for diffusive shock acceleration in the test particle limit and show that it is capable of explaining the observed spectral steepening at high energy.

  18. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS

    SciTech Connect

    Yuan Qiang; Bi Xiaojun; Liu Siming

    2012-12-20

    Shocks of supernova remnants (SNRs) are important (and perhaps the dominant) agents for the production of the Galactic cosmic rays. Recent {gamma}-ray observations of several SNRs have made this case more compelling. However, these broadband high-energy measurements also reveal a variety of spectral shapes demanding more comprehensive modeling of emissions from SNRs. According to the locally observed fluxes of cosmic-ray protons and electrons, the electron-to-proton number ratio is known to be about 1%. Assuming such a ratio is universal for all SNRs and identical spectral shape for all kinds of accelerated particles, we propose a unified model that ascribes the distinct {gamma}-ray spectra of different SNRs to variations of the medium density and the spectral difference between cosmic-ray electrons and protons observed from Earth to transport effects. For low-density environments, the {gamma}-ray emission is inverse-Compton dominated. For high-density environments like systems of high-energy particles interacting with molecular clouds, the {gamma}-ray emission is {pi}{sup 0}-decay dominated. The model predicts a hadronic origin of {gamma}-ray emission from very old remnants interacting mostly with molecular clouds and a leptonic origin for intermediate-age remnants whose shocks propagate in a low-density environment created by their progenitors via, e.g., strong stellar winds. These results can be regarded as evidence in support of the SNR origin of Galactic cosmic rays.

  19. QUASI-PERIODIC PULSATIONS IN THE GAMMA-RAY EMISSION OF A SOLAR FLARE

    SciTech Connect

    Nakariakov, V. M.; Foullon, C.; Inglis, A. R.; Myagkova, I. N.

    2010-01-01

    Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop.

  20. Distant metastasis of prostate cancer: early detection of recurrent tumor with dual-phase carbon-11 choline positron emission tomography/computed tomography in two cases.

    PubMed

    Maeda, Tetsuo; Tateishi, Ukihide; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Watanabe, Shun-Ichi; Terauchi, Takashi; Moriyama, Noriyuki; Arai, Yasuaki; Sugimura, Kazuro; Kakizoe, Tadao

    2006-09-01

    Several types of recurrence may be detected by radiologic assessment after treatment in patients with prostate cancer. However, early detection of distant metastasis using positron emission tomography has so far never been published. We report two patients who underwent hormone therapy or surgical resection for prostate cancer. They developed distant metastases which were detected on whole body [C-11] choline positron emission tomography/computed tomography with significant elevation of serum PSA level. In one patient, recurrent tumor of the supraclavicular node (6 mm) diminished in size after subsequent hormone therapy. Surgical resection of recurrent tumor of the lung (12 mm) was performed in the other patient, the pathology of which confirmed the metastatic adenocarcinoma derived from the prostate. The recurrent tumor can be correctly detected by dual-phase whole body [C-11] choline positron emission tomography/computed tomography.

  1. Gamma-ray emission from young supernova remnants: Hadronic or leptonic?

    NASA Astrophysics Data System (ADS)

    Gabici, Stefano; Aharonian, Felix

    2016-07-01

    The debate on the nature of the gamma-ray emission from young supernova remnants is still open. Ascribing such emission to hadronic rather than leptonic processes would provide an evidence for the acceleration of protons and nuclei, and this fact would fit with the very popular (but not proven) paradigm that supernova remnants are the sources of Galactic cosmic rays. Here, we discuss this issue with a particular focus on the best studied gamma-ray-bright supernova remnant: RX J1713.7-3946.

  2. Determination of the absolute photon emission intensities of some gamma rays of (166m)Ho.

    PubMed

    Peyres, Virginia; García-Toraño, Eduardo

    2017-06-24

    This paper presents the results of the absolute measurement of some photon emission intensities in the decay of (166m)Ho. Point sources from a reference solution standardized in the frame of the EURAMET.RI (II)-K2. Ho-166m activity comparison were measured by gamma spectrometry. The detection efficiency was obtained by Monte Carlo calculations including the complete decay scheme. Results obtained for 27 gamma and X-ray emissions are compared to reference values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bilateral diffuse fluorodeoxyglucose uptake in thyroid gland diagnosed by fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Win, Aung Zaw; Aparici, Carina Mari

    2014-05-01

    Our patient is a female who was first diagnosed with breast cancer at the age of 23. A follow-up fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at age 44 revealed diffuse high FDG uptake in an enlarged thyroid gland. Fine-needle aspiration (FNA) of the thyroid mass revealed estrogen receptor/progesterone receptor negative, human epidermal growth factor receptor 2+ breast cancer. To the best of our knowledge, this is the first case to report breast cancer metastasis to the thyroid in a diffuse pattern on FDG-PET/CT. Bilateral diffuse uptake of FDG in thyroid is the most commonly associated with benign conditions. However, FNA biopsies need to be done to rule out metastatic disease in thyroid lesions with diffuse high FDG uptake, especially for patients with history of cancer.

  4. Positron emission tomography/computerized tomography in the evaluation of primary non-Hodgkin's lymphoma of prostate.

    PubMed

    Pan, Bo; Han, Jian-Kui; Wang, Shi-Cun; Xu, Ao

    2013-10-21

    Primary malignant lymphoma of the prostate is exceedingly rare. Here we report a case of a 65-year-old man who presented with increased urinary frequency, urinary urgency, and urinary incontinence for two years. Benign prostatic hypertrophy was suspected at primary impression. Ultrasound revealed a hypoechoic lesion of the prostate. The total serum prostate-specific antigen was within normal range. Positron emission tomography/computerized tomography (PET/CT) showed a hypermetabolic prostatic lesion. Prostate biopsy was consistent with a non-germinal center diffuse large B cell lymphoma. There was complete remission of the prostatic lesion following six cycles of chemotherapy as shown on the second PET/CT imaging. ¹⁸F-fluoro-deoxy glucose PET/CT is not only a complement to conventional imaging, but also plays a significant role in the diagnosis and evaluation of treatment response of prostatic lymphoma.

  5. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in idiopathic pulmonary fibrosis: A new ray of hope!

    PubMed Central

    Desai, Unnati; Karkhanis, Vinaya S.; Basu, Sandip; Joshi, Jyotsna M.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with median survival of 2–3 years. It is described as fibroproliferative rather than pro-inflammatory disorder with limited treatment options. IPF diagnostics and therapeutics are a hot topic of current research. We describe a case elaborating the utility of the whole body positron emission tomography with 2-deoxy-2-(fluorine-18) fluoro-D-glucose (F-18 FDG) integrated with computed tomography technique in IPF. The area of most intense pulmonary F--18 FDG uptake corresponded to regions of honeycombing suggesting metabolically active disease amenable to pharmacologic intervention. Additional F--18 FDG uptake was seen in mediastinal nodes implying an extrapulmonary component of disease. PMID:27833314

  6. Early-Dynamic Positron Emission Tomography (PET)/Computed Tomography and PET Angiography for Endoleak Detection After Endovascular Aneurysm Repair.

    PubMed

    Drescher, Robert; Gühne, Falk; Freesmeyer, Martin

    2017-06-01

    To propose a positron emission tomography (PET)/computed tomography (CT) protocol including early-dynamic and late-phase acquisitions to evaluate graft patency and aneurysm diameter, detect endoleaks, and rule out graft or vessel wall inflammation after endovascular aneurysm repair (EVAR) in one examination without intravenous contrast medium. Early-dynamic PET/CT of the endovascular prosthesis is performed for 180 seconds immediately after intravenous injection of F-18-fluorodeoxyglucose. Data are reconstructed in variable time frames (time periods after tracer injection) to visualize the arterial anatomy and are displayed as PET angiography or fused with CT images. Images are evaluated in view of vascular abnormalities, graft configuration, and tracer accumulation in the aneurysm sac. Whole-body PET/CT is performed 90 to 120 minutes after tracer injection. This protocol for early-dynamic PET/CT and PET angiography has the potential to evaluate vascular diseases, including the diagnosis of complications after endovascular procedures.

  7. Utility of (18)F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma.

    PubMed

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of (18)F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that (18)F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels.

  8. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    PubMed Central

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  9. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography.

    PubMed

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where (18)F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on (18)F-FDG PET/CT.

  10. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography

    PubMed Central

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where 18F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on 18F-FDG PET/CT. PMID:28242978

  11. ACR-SPR-STR Practice Parameter for the Performance of Cardiac Positron Emission Tomography - Computed Tomography (PET/CT) Imaging.

    PubMed

    Subramaniam, Rathan M; Janowitz, Warren R; Johnson, Geoffrey B; Lodge, Martin A; Parisi, Marguerite T; Ferguson, Mark R; Hellinger, Jeffrey C; Gladish, Gregory W; Gupta, Narainder K

    2017-09-15

    This clinical practice parameter has been developed collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Thoracic Radiology (STR). This document is intended to act as a guide for physicians performing and interpreting positron emission tomography-computed tomography (PET/CT) of cardiac diseases in adults and children. The primary value of cardiac PET/CT imaging include evaluation of perfusion, function, viability, inflammation, anatomy, and risk stratification for cardiac-related events such as myocardial infarction and death. Optimum utility of cardiac PET/CT is achieved when images are interpreted in conjunction with clinical information and laboratory data. Measurement of myocardial blood flow, coronary flow reserve and detection of balanced ischemia are significant advantages of cardiac PET perfusion studies. Increasingly cardiac PET/CT is used in diagnosis and treatment response assessment for cardiac sarcoidosis.

  12. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    PubMed

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas.

    PubMed

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-(18) fluorodeoxyglucose ((18)F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up.

  14. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas

    PubMed Central

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-18 fluorodeoxyglucose (18F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up. PMID:27095862

  15. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  16. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    PubMed Central

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome. PMID:26917907

  17. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; Exploring GRBs as Standard Candles

    NASA Technical Reports Server (NTRS)

    Guiriec, S.; Kouveliotou, C.; Hartmann, D. H.; Granot, J.; Asano, K.; Meszaros, P.; Gill, R.; Gehrels, N.; McEnery, J.

    2016-01-01

    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB -ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  18. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    NASA Astrophysics Data System (ADS)

    Nikkinen, Paivi Helena

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional

  19. Gamma-ray Emission from the Sun: A Study with EGRET Data and Perspectives for GLAST

    NASA Astrophysics Data System (ADS)

    Orlando, Elena; Strong, A. W.

    2008-03-01

    The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo (Orlando and Strong 2008,arXiv:0801.2178). The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun. This emission is expected to be readily detectable in the future by GLAST, and we describe the perspectives for what can be learned from this upcoming mission.

  20. Perineural Spread of Mucoepidermoid Carcinoma of Parotid Gland Involving V, VI, and VII Cranial Nerves Demonstrated on Positron Emission Tomography/Computed Tomography.

    PubMed

    Chandra, Piyush; Nath, Satish

    2017-01-01

    Perineural spread (PNS) in head and neck malignancies has been associated with extremely poor prognosis. Through this interesting case, we demonstrate the PNS of a mucoepidermoid carcinoma of parotid gland with simultaneous involvement of V, VI, and VII cranial nerves identified on positron emission tomography/computed tomography.

  1. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; hide

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  2. Constraints On The Emission Geometries And Spin Evolution Of Gamma-Ray Millisecond Pulsars

    DOE PAGES

    Johnson, T. J.; Venter, C.; Harding, A. K.; ...

    2014-06-18

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic eld. We modeled the radio pro les using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-raymore » and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best- t parameters and con dence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best t roughly equal numbers of Class I and II, while Class III are exclusively t with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is diffcult. We explore the evolution of magnetic inclination angle with period and spin-down power, nding possible correlations. While the presence of signi cant off- peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.« less

  3. Constraints On The Emission Geometries And Spin Evolution Of Gamma-Ray Millisecond Pulsars

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Kramer, M.; Çelik, Ö.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-06-18

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic eld. We modeled the radio pro les using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best- t parameters and con dence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best t roughly equal numbers of Class I and II, while Class III are exclusively t with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is diffcult. We explore the evolution of magnetic inclination angle with period and spin-down power, nding possible correlations. While the presence of signi cant off- peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  4. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  5. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  6. Neutron-$\\gamma$ competition for β-delayed neutron emission

    SciTech Connect

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalism is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.

  7. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  8. RIT — A new robust iterative technique for image reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Tsupko-Sitnikov, Mikhail V.

    1991-02-01

    Emission tomography is a reliable tool for testing nuclear fuel elements. The conventional algebraic reconstruction methods of computer tomography are non-robust and can be fatally affected by outliers in the input data, i.e. by data having unexpectedly high errors due to some unpredictable effects. In the present paper, a robust iterative technique (RIT) for emission tomography is described. RIT is based on robust M-estimation methods and on a new algorithm for computing the M-estimates. RIT needs no filtering of the input data. It's computational expenses do not exceed those of SIRT method. RIT is included in the TOMODAT program and is being used for testing the fuel elements after irradiation in the reactors. The fuel distributions reconstructed by RIT are practically not affected by outliers in the input data, while the ART, SIRT and MENT give quite unstable results for the same spoiled data.

  9. 77 FR 71803 - Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  10. 77 FR 11553 - Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... good manufacturing practices (CGMP) for PET drugs. The procedures were finalized and an implementation... HUMAN SERVICES Food and Drug Administration Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and...

  11. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  12. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft...

  13. Monitoring liver tumor therapy with ( sup 18 F)FDG positron emission tomography

    SciTech Connect

    Nagata, Y.; Yamamoto, K.; Hiraoka, M.; Abe, M.; Takahashi, M.; Akuta, K.; Nishimura, Y.; Jo, S.; Masunaga, S.; Kubo, S. )

    1990-05-01

    Positron emission tomography (PET) with (18F)-2-flurodeoxy-glucose (FDG) can be utilized as a functional imaging modality for monitoring liver tumor therapy. We report three cases in which PET-FDG was more useful for this purpose than other imaging methods and tumor markers.

  14. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  15. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  16. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  17. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  18. Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.

    ERIC Educational Resources Information Center

    Miyamoto, Richard T.; Wong, Donald

    2001-01-01

    Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…

  19. A case of eosinophilic esophagitis discovered with positron emission tomography imaging: a case report

    PubMed Central

    2013-01-01

    Introduction Eosinophilic esophagitis was first reported in 1978, and since then it has been increasingly recognized as one of the major etiologies for dysphagia, food impaction, and food regurgitation. To the best of our knowledge, no case of eosinophilic esophagitis (excluding esophageal eosinophilia not responsive to proton pump inhibitor treatment) has previously been demonstrated on the basis of positron emission tomography imaging. Case presentation A 68-year-old Caucasian man presented with dysphagia to solids with recurrent regurgitation and weight loss of 7lb within the preceding 2 months. The patient attributed these symptoms to radiation therapy he had received 1 year earlier for squamous cell cancer of the lung. The patient underwent routine follow-up positron emission tomography imaging, which showed a hypermetabolic lesion in the posterior mediastinum and was increased at the level of the midesophagus. Conclusion To the best of our knowledge, this is the first reported case of eosinophilic esophagitis demonstrated by positron emission tomography imaging and confirmed with endoscopic evaluation and biopsies both after positron emission tomography imaging and a trial of proton pump inhibitor therapy. This could have an impact on the diagnostic evaluation of esophageal eosinophilic inflammation as well as eosinophilic infiltration of other gastrointestinal organs. PMID:23855975

  20. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  1. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    NASA Astrophysics Data System (ADS)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  2. Brain tumor imaging with synthesized /sup 18/F-fluorophenylalanine and positron emission tomography

    SciTech Connect

    Mineura, K.; Kowada, M.; Shishido, F.

    1989-06-01

    Two patients with cerebral gliomas were studied with 18F-fluorophenylalanine, newly synthesized by the electrophilic substitution reaction, using positron emission tomography. The tracer accumulated markedly in the tumor lesion and delineated the extent of the lesion. This new tracer will be promising in the diagnosis of gliomas.

  3. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    PubMed

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  4. Geostatistics and the representative elementary volume of gamma ray tomography attenuation in rocks cores

    USGS Publications Warehouse

    Vogel, J.R.; Brown, G.O.

    2003-01-01

    Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.

  5. Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    SciTech Connect

    Schulz, A.; Ackermann, M.; Buehler, R.; Mayer, M.; Klepser, S.

    2014-05-01

    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43°3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LAT data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for ζ Ophiuchi by a factor ≈ 5.

  6. Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    DOE PAGES

    Schulz, A.; Ackermann, M.; Buehler, R.; ...

    2014-05-01

    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43°3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LATmore » data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for ζ Ophiuchi by a factor ≈ 5.« less

  7. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  8. Search for gamma-ray emission from AE Aquarii with seven year of Fermi LAT observations

    SciTech Connect

    Li, Jian; Torres, Diego F.; Rea, Nanda; Wilhelmi, Emma de Ona; Papitto, Alessandro; Hou, Xian; Mauche, Christopher W.

    2016-11-14

    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (${P}_{\\mathrm{spin}}$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $1.3\\times {10}^{-12}$ erg cm-2 s-1 in the 100 MeV–300 GeV energy range, providing constraints on models.

  9. Transient Gamma-Ray Emissions Related to Thunderstorms: Coordinated RHESSI and CORONAS-F Observations

    NASA Astrophysics Data System (ADS)

    Kudela, K.; Bučík, R.; Kuznetsov, S. N.; Lopez, L. I.; Smith, D. M.

    2005-12-01

    Transient gamma-ray emissions from the Earth's atmosphere with duration of a few milliseconds and associated with lightning discharges were discovered by the BATSE/CGRO instrument in 1994, and new features have been recently reported from the RHESSI measurements. These so-called terrestrial gamma-ray flashes (TGFs) are thought to be bremsstrahlung photons from energetic electron beams above the thunderstorms. The SOlar Neutron and Gamma rays (SONG) experiment aboard low altitude (~ 500 km) polar orbiting (~ 83°) CORONAS-F satellite, designed to detection of neutral particles from the Sun, provides 1-s measurements of hard X-rays/gamma rays in range of 30 keV to 200 MeV. The SONG consists of large effective area (≤ 314 cm2) omnidirectional scintillator well suited for detection fluxes coming from the various directions from the Earth's atmosphere. We have identified cases when the RHESSI spacecraft, observing gamma-ray flashes at an altitude of about 600 km, and CORONAS-F passed through the same regions in period April 2002 - January 2005. The simultaneous gamma-ray measurements will be reviewed and discussed. Recent analysis of the SONG data have revealed observations of the enhanced hard X-ray emissions (above 50 times the background value) above geomagnetically conjugate regions to the lightning. The issue of freshly accelerated TGF electrons from the lightning itself, contributing to the precipitated radiation-belt electrons will be discussed too.

  10. Search for gamma-ray emission from AE Aquarii with seven year of Fermi LAT observations

    DOE PAGES

    Li, Jian; Torres, Diego F.; Rea, Nanda; ...

    2016-11-14

    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (more » $${P}_{\\mathrm{spin}}$$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $$1.3\\times {10}^{-12}$$ erg cm-2 s-1 in the 100 MeV–300 GeV energy range, providing constraints on models.« less

  11. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  12. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Errando, M.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Ciupik, L.; Cui, W.; Finley, J. P.; Duke, C.; Finnegan, G. E-mail: wakely@uchicago.edu

    2011-04-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00{sup h}25{sup m}27.{sup s}0, + 64{sup 0}10'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV){sup -}{Gamma} with {Gamma} = 1.95 {+-} 0.51{sub stat} {+-} 0.30{sub sys} and C = (1.55 {+-} 0.43{sub stat} {+-} 0.47{sub sys}) x 10{sup -14} cm{sup -2} s{sup -1} TeV{sup -1}. The integral flux above 1 TeV corresponds to {approx}0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is {approx}80 {mu}G, which may be interpreted as evidence for magnetic field amplification.

  13. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  14. Gamma-line emission from radioactivities produced in supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Timmes, F. X.

    1997-01-01

    The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.

  15. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer.

    PubMed

    Tomiguchi, Mai; Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fujisue, Mamiko; Shiraishi, Shinya; Inao, Touko; Murakami, Kei-ichi; Honda, Yumi; Yamashita, Yasuyuki; Iyama, Ken-ichi; Iwase, Hirotaka

    2016-02-01

    Single-photon emission computed tomography (SPECT)/computed tomography (CT) improves the anatomical identification of sentinel lymph nodes (SNs). We aimed to evaluate the possibility of predicting the SN status using SPECT/CT. SN mapping using a SPECT/CT system was performed in 381 cases of clinically node-negative, operable invasive breast cancer. We evaluated and compared the values of SN mapping on SPECT/CT, the findings of other modalities and clinicopathological factors in predicting the SN status. Patients with SNs located in the Level I area were evaluated. Of the 355 lesions (94.8 %) assessed, six cases (1.6 %) were not detected using any imaging method. According to the final histological diagnosis, 298 lesions (78.2 %) were node negative and 83 lesions (21.7 %) were node positive. The univariate analysis showed that SN status was significantly correlated with the number of SNs detected on SPECT/CT in the Level I area (P = 0.0048), total number of SNs detected on SPECT/CT (P = 0.011), findings of planar lymphoscintigraphy (P = 0.011) and findings of a handheld gamma probe during surgery (P = 0.012). According to the multivariate analysis, the detection of multiple SNs on SPECT/CT imaging helped to predict SN metastasis. The number of SNs located in the Level I area detected using the SPECT/CT system may be a predictive factor for SN metastasis.

  16. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    SciTech Connect

    Katagiri, H.; Yoshida, K.; Ballet, J.; Hewitt, J. W.; Kubo, H. E-mail: 13nm169s@gmail.com

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  17. FERMI LAT discovery of extended gamma-ray emissions in the vicinity of the HB 3 supernova remnant

    DOE PAGES

    Katagiri, H.; Yoshida, K.; Ballet, J.; ...

    2016-02-11

    We report the discovery of extended gamma-ray emission measured by the Large Area Tele- scope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova rem- nant (SNR) HB 3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in inter- actions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions betweenmore » accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission fromW3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less

  18. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    NASA Astrophysics Data System (ADS)

    Lidvansky, A. S.

    2017-06-01

    Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes) and 100 TeV (EAS arrays) are different, their time structures seem to be similar. Moreover, maybe the difference between "flares" and "waves" recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  19. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    NASA Technical Reports Server (NTRS)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  20. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Celik, O.; Harding, A. K.; Hays, E.; Johnson, T. J.; Pottschmidt, K.; Thompson, D. J.

    2009-01-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.