Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.
Development of a novel gamma probe for detecting radiation direction
NASA Astrophysics Data System (ADS)
Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.
2016-01-01
Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.
A comprehensive overview of radioguided surgery using gamma detection probe technology
Povoski, Stephen P; Neff, Ryan L; Mojzisik, Cathy M; O'Malley, David M; Hinkle, George H; Hall, Nathan C; Murrey, Douglas A; Knopp, Michael V; Martin, Edward W
2009-01-01
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology. PMID:19173715
2012-07-01
number of high resolution PET experiments including the dual-ring small field- of-view configuration shown at left in Figure 5 . The benchtop system...detectors having 26 x 40 arrays of 1mm x 1mm x 1mm detector elements is shown at right in Figure 5 . Detectors used for probe experiments shown in...Figure 13). In the series of experiments geared towards PET application, but with the results applicable to the present single gamma case, we have
A Hand-Held, Intra-Operative Positron Imaging Probe for Surgical Applications
NASA Astrophysics Data System (ADS)
Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.
2015-10-01
We have developed a prototype intra-operative β+ imaging probe to help tumor removal and malignant tissue resection. The probe can be used during surgery to provide clear delineation of malignant tissues. Our probe consists of a hybrid scintillator coupled to a silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic aluminum housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The field of view of the probe is 10 ×10 mm2 realized by a 0.4 mm thick CsI:Tl scintillator coupled to a 1 mm thick LYSO. While CsI:Tl layer acts as β+ sensitive detector, LYSO detects gamma radiation where the gamma response can be subtracted from the total signal to improve SNR and contrast. The thickness of the LYSO scintillator is optimized such that it acts as light diffuser to spread the scintillation light generated in CsI:Tl over multiple SiPM pixels for accurate estimation of the β+ interaction location. The probe shows FWHM spatial resolution in the presence of large background radiation. The probe was used to study rabbits with tongue tumors. The experimental results show that the probe can successfully locate the tongue tumors in its active imaging area.
3D-printed focused collimator for intra-operative gamma-ray detection
NASA Astrophysics Data System (ADS)
Holdsworth, David W.; Nikolov, Hristo N.; Pollmann, Steven I.
2017-03-01
Recent developments in targeted radiopharmaceutical labels have increased the need for sensitive, real-time gamma detection during cancer surgery and biopsy. Additive manufacturing (3D printing) in metal has now made it possible to design and fabricate complex metal collimators for compact gamma probes. We describe the design and implementation of a 3D-printed focused collimator that allows for real-time detection of gamma radiation from within a small volume of interest, using a single-crystal large-area detector. The collimator was fabricated using laser melting of powdered stainless steel (316L), using a commercial 3D metal printer (AM125, Renishaw plc). The prototype collimator is 20 mm thick, with hexagonal close-packed holes designed to focus to a point 35 mm below the surface of the collimator face. Tests were carried out with a low-activity (<1 μCi) 241 Am source, using a conventional gamma-ray detector probe, incorporating a 2.5 cm diameter, 2.5 cm thick NaI crystal coupled to a photomultiplier. The measured full-width half maximum (FWHM) was less than 5.6 mm, and collimator detection efficiency was 44%. The ability to fabricate fine features in solid metal makes it possible to develop optimized designs for high-efficiency, focused gamma collimators for real-time intraoperative imaging applications.
Whelehan, P; Vinnicombe, S J; Brown, D C; McLean, D; Evans, A
2014-08-01
To assess how accurately the sentinel lymph node (SLN) can be identified percutaneously, using gamma probe and ultrasound technology. Women with breast cancer, scheduled for wide local excision or mastectomy with SLN biopsy (SLNB), were included. Peri-areolar intradermal injection of technetium-99 nanocolloid was performed on the morning of surgery and 1-2 ml of blue dye was injected in the peri-areolar region once the patient was anaesthetized. Prior to surgery, a gamma probe was used over the skin to identify any hot spot that could represent a SLN. Ultrasound, guided by the hot spot, was then used to visualize potential SLNs and guide the insertion of a localizing wire. The accuracy in localizing the SLN by preoperative gamma-probe guided ultrasonography was assessed by comparison to SLNB. A SLN was correctly identified and marked using gamma-probe guided ultrasonography in 44 of 59 cases (75%; 95% CI: 63-86%). This study supports the case for investigating percutaneous gamma probe and ultrasound guided interventions in the axilla in women with breast cancer, as a potential alternative to surgical SLNB. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Feasibility of a wireless gamma probe in radioguided surgery.
Park, Hye Min; Joo, Koan Sik
2016-06-21
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Feasibility of a wireless gamma probe in radioguided surgery
NASA Astrophysics Data System (ADS)
Park, Hye Min; Joo, Koan Sik
2016-06-01
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd
2014-10-01
Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.
Commissioning of a new SeHCAT detector and comparison with an uncollimated gamma camera.
Taylor, Jonathan C; Hillel, Philip G; Himsworth, John M
2014-10-01
Measurements of SeHCAT (tauroselcholic [75selenium] acid) retention have been used to diagnose bile acid malabsorption for a number of years. In current UK practice the vast majority of centres calculate uptake using an uncollimated gamma camera. Because of ever-increasing demands on gamma camera time, a new 'probe' detector was designed, assembled and commissioned. To validate the system, nine patients were scanned at day 0 and day 7 with both the new probe detector and an uncollimated gamma camera. Commissioning results were largely in line with expectations. Spatial resolution (full-width 95% of maximum) at 1 m was 36.6 cm, the background count rate was 24.7 cps and sensitivity at 1 m was 720.8 cps/MBq. The patient comparison study showed a mean absolute difference in retention measurements of 0.8% between the probe and uncollimated gamma camera, and SD of ± 1.8%. The study demonstrated that it is possible to create a simple, reproducible SeHCAT measurement system using a commercially available scintillation detector. Retention results from the probe closely agreed with those from the uncollimated gamma camera.
Kara, P Pelin; Ayhan, Ali; Caner, Biray; Gültekin, Murat; Ugur, Omer; Bozkurt, M Fani; Usubutun, Alp
2008-07-01
The objective of this prospective study was to determine the feasibility of sentinel lymph node (SLN) detection in patients with cervical cancer using lymphoscintigraphy (LS), gamma probe, and blue dye. A total of 32 patients with early stage cervical cancer (FIGO IA2-IIA) who were treated with total abdominal hysterectomy and bilateral pelvic and paraortic lymphadenectomy underwent SLN biopsy. LS was performed on all the patients following the injection of 74 MBq technetium-99m-nanocolloid pericervically. The first appearing persistent focal accumulation on either dynamic or static images of LS was considered to be an SLN. Blue dye was injected just prior to surgical incision in 16 patients (50%) at the same locations as the radioactive isotope injection. During the operation, blue-stained node(s) were excised as SLNs. For gamma probe, a lymph node was accepted as an SLN, if its ex vivo radioactive counts were at least 10-fold above background radioactivity. SLNs, which were negative by routine hematoxylin and eosin (H&E) examination, were histopathologically reevaluated for the presence of micrometastases by step sectioning and immunohistochemical staining with pancytokeratin. At least one SLN was identified for each patient by gamma probe. Intraoperative gamma probe was the most sensitive method with a technical success rate of SLN detection of 100% (32/32), followed by LS 87.5% (28/32) and blue dye 68.8% (11/16), respectively. The average number of SLNs per patient detected by gamma probe was 2.09 (range 1-5). The localizations of the SLNs were external iliac 47.8%, obturatory 32.8%, common iliac 9%, paraaortic 4.4%, and paracervical 6%. Micrometastases, not detected by routine H&E were found by immunohistochemistry in one patient. On the basis of the histopathological analysis, the negative predictive value for predicting metastases was 100%, and there were no false-negative results. Preoperative LS with radiocolloids, intraoperative lymphatic mapping with blue dye and gamma probe are all feasible methods comparable with each other for SLN detection in early stage cervical cancer patients, but gamma probe is the most useful method in terms of technical success.
Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces
NASA Astrophysics Data System (ADS)
Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.
2006-10-01
The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.
2017-02-01
The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.
2013-01-01
Background Intraoperative detection of 18F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Methods Of 58 patients undergoing 18F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. Results The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Conclusions Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in conjunction with the three-sigma statistical threshold criteria method can allow for improved detection of 18F-FDG-avid tissue sites when a low in situ T/B ratio is encountered. PMID:23496877
Cousins, A.; Balalis, G. L.; Thompson, S. K.; Forero Morales, D.; Mohtar, A.; Wedding, A. B.; Thierry, B.
2015-01-01
Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0 mm, and the potential to detect as few as 5 μg of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required. PMID:26038833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...
2017-02-01
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
Borkowski, C J
1954-01-19
This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.
Low-energy gamma ray inspection of brazed aluminum joints
NASA Technical Reports Server (NTRS)
Brown, J. A.
1967-01-01
Americium 241 serves as a suitable radioisotope /gamma ray source/ and exposure probe for radiographic inspection of brazed aluminum joints in areas of limited accessibility. The powdered isotope is contained in a sealed capsule mounted at the end of a spring-loaded pushrod in the probe assembly.
New uses of position-sensitive photomultiplier tubes
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey S.; Redus, Robert H.; Nagarkar, Vivek V.; Squillante, Michael R.
1992-12-01
Recent advances in photomultiplier tube technology have led to the availability of position sensitive photomultiplier tubes (PSPMTs). These tubes make it possible to build a new generation of imaging instruments for gamma rays and other types of ionizing radiation. We have investigated the use of these tubes for the construction of several prototype instruments. The first application investigated measures the quantity and distribution of radioactive compounds on filter papers used in microbiology research. The intent of this instrument is to replace film autoradiography with an electronic imaging system which can analyze samples 75 to 110 times faster than film. The second application involved the development of an intraoperative imaging probe to help surgeons identify cancerous tissue and ensure its complete removal. This instrument will replace a non-imaging probe now in use at many hospitals. A third prototype instrument under evaluation is an imaging nuclear survey system which obtains both a video and gamma ray image for the purpose of locating and quantifying radioactive materials. This system would be used at nuclear power plants and radioactive materials preparation facilities. A modification of this system could be built into robots used for inspecting and repairing power plants.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.
2016-12-01
Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.
Pezzotti, Giuseppe; Kumakura, Tsuyoshi; Yamada, Kiyotaka; Tateiwa, Toshiyuki; Puppulin, Leonardo; Zhu, Wenliang; Yamamoto, Kengo
2007-01-01
Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.
Gamma-ray blind beta particle probe
Weisenberger, Andrew G.
2001-01-01
An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.
Boynton, G.R.
1975-01-01
High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.
Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST
NASA Technical Reports Server (NTRS)
Chen, Andrew; Ritz, Steven
1999-01-01
Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.
Principles and status of neutron-based inspection technologies
NASA Astrophysics Data System (ADS)
Gozani, Tsahi
2011-06-01
Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally and energetically significantly different from the background, thus making them readily distinguishable. The penetrability of neutrons as probes and signatures as well as the gamma ray signatures make neutron interrogation applicable to the inspection of large conveyances such as cars, trucks, marine containers and also smaller objects like explosive mines concealed in the ground. The application of nuclear interrogation techniques greatly depends on operational requirements. For example explosive mines and IED detection clearly require one-sided inspection, which excludes transmission based inspection (e.g., transmission radiography) and greatly limits others. The technologies developed over the last decades are now being implemented with good results. Further advances have been made over the last several years that increase the sensitivity, applicability and robustness of these systems. The principle, applications and status of neutron-based inspection techniques will be reviewed.
Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.
Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku
2018-05-25
Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.
NASA Technical Reports Server (NTRS)
Venters, T. M.; Pavlidou, V.
2012-01-01
The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.
Neutron Capture Gamma-Ray Libraries for Nuclear Applications
NASA Astrophysics Data System (ADS)
Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.
2011-06-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.
NASA Technical Reports Server (NTRS)
Venters, T. M.; Pavlidou, V.
2013-01-01
The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.
Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure
NASA Technical Reports Server (NTRS)
Harding, A. K.
2016-01-01
The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.
Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A
1990-08-01
A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.
A computer program for borehole compensation of dual-detector density well logs
Scott, James Henry
1978-01-01
The computer program described in this report was developed for applying a borehole-rugosity and mudcake compensation algorithm to dual-density logs using the following information: the water level in the drill hole, hole diameter (from a caliper log if available, or the nominal drill diameter if not), and the two gamma-ray count rate logs from the near and far detectors of the density probe. The equations that represent the compensation algorithm and the calibration of the two detectors (for converting countrate or density) were derived specifically for a probe manufactured by Comprobe Inc. (5.4 cm O.D. dual-density-caliper); they are not applicable to other probes. However, equivalent calibration and compensation equations can be empirically determined for any other similar two-detector density probes and substituted in the computer program listed in this report. * Use of brand names in this report does not necessarily constitute endorsement by the U.S. Geological Survey.
Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.
Fan, Xilong; Messenger, Christopher; Heng, Ik Siong
2017-11-03
Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.
2012-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these Columbia River basalt and Concord Gray granite materials, these large samples present two known standards with which to compare PING's experimentally measured elemental composition results, We will present both gamma ray and neutron experimental results from PING measurements of the granite and basalt test formations in various layering configurations and compare the results to the known composition.
Renvert, Stefan; Lindahl, Christel; Roos-Jansåker, Ann-Marie; Lessem, Jan
2009-06-01
Periodontal disease is the most common multifactorial disease, afflicting a very large proportion of the adult population. Periodontal disease secondarily causes increases in the serum levels of C-reactive protein (CRP) and other markers of inflammation. An increased level of CRP reflects an increased risk for cardiovascular disease. The aim of the current randomized clinical trial was to evaluate the short-term effect of a combination of dipyridamole and prednisolone (CRx-102) on the levels of high-sensitivity (hs)-CRP, proinflammatory markers in blood, and clinical signs of periodontal disease. Fifty-seven patients with >/=10 pockets with probing depths >/=5 mm were randomized into two groups in this masked single-center placebo-controlled study: CRx-102 (n = 28) and placebo (n = 29). hs-CRP levels, inflammatory markers (interleukin [IL]-6, -1beta, -8, and -12, tumor necrosis factor-alpha, and interferon-gamma [IFN-gamma]), bleeding on probing (BOP), and changes in probing depths were evaluated. The subjects received mechanical non-surgical therapy after 42 days, and the study was completed after 49 days. At day 42, the differences in the hs-CRP, IFN-gamma, and IL-6 levels between the two groups were statistically significant (P <0.05), whereas no difference was found for the other inflammatory markers. There was no change in probing depth or BOP between the two groups. The administration of CRx-102 resulted in significant decreases in hs-CRP, IFN-gamma, and IL-6, but it did not significantly change BOP or probing depths.
NASA Astrophysics Data System (ADS)
Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.
2018-05-01
Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.
Gamma-ray lines from neutron stars as probes of fundamental physics
NASA Technical Reports Server (NTRS)
Brecher, K.
1978-01-01
The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.
A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.
Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar
2003-12-01
Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating subsequent radioguided surgery.
The use of {sup 99m}Tc-Al{sub 2}O{sub 3} for detection of sentinel lymph nodes in breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinilkin, I., E-mail: sinilkinig@oncology.tomsk.ru; Chernov, V.; Medvedeva, A.
2016-08-02
Purpose: to study the feasibility of using the new radiopharmaceutical based on the technetium-99m-labeled gamma-alumina for identification of sentinel lymph nodes (SLNs) in breast cancer patients. The study included two groups of breast cancer patients who underwent single photon emission computed tomography (SPECT) and intraoperaive gamma probe identification of sentinel lymph nodes (SLNs). To identify SLNs, the day before surgery Group I patients (n = 34) were injected with radioactive {sup 99m}Tc-Al{sub 2}O{sub 3}, and Group II patients (n = 30) received {sup 99m}Tc-labeled phytate colloid. A total of 37 SLNs were detected in Group I patients. The number ofmore » identified SLNs per patient ranged from 1 to 2 (the average number of identified SLNs was 1.08). Axillary lymph nodes were the most common site of SLN localization. 18 hours after {sup 99m}Tc-Al{sub 2}O{sub 3} injection, the percentage of its accumulation in the SLN was 7–11% (of the counts in the injection site) by SPECT and 17–31% by gamma probe detection. In Group II SLNs were detected in 27 patients. 18 hours after injection of the phytate colloid the percentage of its accumulation in the SLN was 1.5–2% out of the counts in the injection site by SPECT and 4–7% by gamma probe. The new radiopharmaceutical based on the {sup 99m}Tc-Al{sub 2}O{sub 3} demonstrates high accumulation in SLNs without redistribution through the entire lymphatic basin. The sensitivity and specificity of {sup 99m}Tc-Al{sub 2}O{sub 3} were 100% for both SPECT and intraoperative gamma probe identification.« less
High-z Universe with Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Kouveliotou, C.
2011-01-01
Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.
Theilmann, J L; Skow, L C; Baker, J F; Womack, J E
1989-01-01
Genomic DNAs from animals representing six breeds of cattle (Angus, Brahman, Hereford, Holstein, Jersey and Texas Longhorn) were screened with cloned gene probes in a search for restriction fragment length polymorphisms (RFLPs). Eleven RFLPs were identified using seven different probes: growth hormone, prolactin, osteonectin, alpha A-crystallin, gamma crystallin, fibronectin and 21-steroid hydroxylase. The frequencies of the alleles identified by each probe were calculated and compared in a limited sampling of the six bovine breeds. These polymorphisms greatly enhance the pool of immunogenetic, biochemical and molecular markers available in cattle for linkage analysis, testing of parentage, and distinction of breeds.
Deus, Javier; Millera, Alfonso; Andrés, Alejandro; Prats, Enrique; Gil, Ismael; Suarez, Manuel; Salcini, José L.; Lahoz, Manuel
2015-01-01
Abstract The laparoscopic adrenalectomy is considered as the procedure of choice for the treatment of adrenal hyperplasia and tumor lesions. However, some special situations may limit the use of this method due to the difficulty to locate the gland and perform the lesion excision. We analyze 2 patients of a left adrenal tumor, explaining how they have overcome the difficulties in both situations. The first case was a patient with a history of intra-abdominal surgery and the other patient suffered from severe obesity. We performed with the use of the gamma probe, and the 2 cases, was of great help to access and glandular localization. The help of gamma probe test was achieved in the surgical bed, that removal was complete. The use of the portable gamma probe facilitated the access to the left adrenal gland as well as conducting the glandular excision without delay, despite the difficulties due to the intra abdominal surgery caused by the previous surgery, and in the case of severe obesity. PMID:26426608
Shi, Fenghui; Dai, Zhishuang; Zhang, Baoyan
2010-07-01
Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (gamma(D)). Based on the Good-van Oss equation, the specific surface tension (gamma(SP)) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the gamma(D) and gamma(SP) of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (chi) between the resin and a series of probes, the solubility parameters (delta) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of delta of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 degrees C, respectively. The dispersive component (delta(D)) and the specific component (delta(SP)) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of delta(D) were higher than those of delta(SP) for the epoxy resin, and both of them decreased with the increase of temperature.
PET Probe-Guided Surgery in Patients with Breast Cancer: Proposal for a Methodological Approach.
Orsaria, Paolo; Chiaravalloti, Agostino; Fiorentini, Alessandro; Pistolese, Chiara; Vanni, Gianluca; Granai, Alessandra Vittoria; Varvaras, Dimitrios; Danieli, Roberta; Schillaci, Orazio; Petrella, Giuseppe; Buonomo, Oreste Claudio
2017-01-02
Although it is valuable for detecting distant metastases, identifying recurrence, and evaluating responses to chemotherapy, the role of 18 F-fluorodeoxyglucose positron-emission tomography/computed tomography ( 18 F-FDG PET/CT) in assessing locoregional nodal status for initial staging of breast cancer has not yet been well-defined in clinical practice. In the current report, we describe a new PET probe-based clinical approach, with evaluation of the technical performance of a handheld high-energy gamma probe for intraoperative localization of breast carcinomas, and evaluation of lymph node metastases during radio-guided oncological surgery. Three patients underwent a PET/CT scan immediately prior to surgery following the standard clinical protocol. Intraoperatively, tumors were localized and resected with the assistance of a hand-held gamma probe. PET-guided assessment of the presence or absence of regional nodal spread of malignancy was compared with the reference standard of histopathological examination. In all three cases, perioperative 18 F-FDG PET/CT imaging and intraoperative gamma probe detection verified complete resection of the hypermetabolic lesions and demonstrated no additional suspicious occult disease. This innovative approach demonstrates great promise for providing real-time access to metabolic and morphological tumor information that may lead to an optimal disease-tailored approach. In carefully selected indications, a PET probe can be a useful adjunct in surgical practice, but further trials with a larger number of patients need to be performed to verify these findings. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Technical Reports Server (NTRS)
Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.
1990-01-01
Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.
2005-01-01
Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.
Compact CdZnTe-based gamma camera for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.
2011-06-01
In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera have been completed. The results show better than 6-mm resolution at a distance of 1 cm. Details of the test results are discussed in this paper.
Atom Probe Tomography Analysis of the Distribution of Rhenium in Nickel Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mottura, A.; Warnken, N; Miller, Michael K
2010-01-01
Atom probe tomography (APT) is used to characterise the distributions of rhenium in a binary Ni-Re alloy and the nickel-based single-crystal CMSX-4 superalloy. A purpose-built algorithm is developed to quantify the size distribution of solute clusters, and applied to the APT datasets to critique the hypothesis that rhenium is prone to the formation of clusters in these systems. No evidence is found to indicate that rhenium forms solute clusters above the level expected from random fluctuations. In CMSX-4, enrichment of Re is detected in the matrix phase close to the matrix/precipitate ({gamma}/{gamma}{prime}) phase boundaries. Phase field modelling indicates that thismore » is due to the migration of the {gamma}/{gamma}{prime} interface during cooling from the temperature of operation. Thus, neither clustering of rhenium nor interface enrichments can be the cause of the enhancement in high temperature mechanical properties conferred by rhenium alloying.« less
NASA Astrophysics Data System (ADS)
Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.
2018-01-01
Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.
2007-12-17
We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less
Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ
Poppendiek, Heinz F.
1982-01-01
A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.
Radioisotope measurements of the liquid-gas flow in the horizontal pipeline using phase method
NASA Astrophysics Data System (ADS)
Hanus, Robert; Zych, Marcin; Jaszczur, Marek; Petryka, Leszek; Świsulski, Dariusz
2018-06-01
The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.
NASA Astrophysics Data System (ADS)
Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Gorjizadeh, N.; Farahani, M. H.; Ghafarian, P.; El Fakhri, G.; Sabet, H.; Ay, M. R.
2016-12-01
Using an intra-operative gamma probe after periareolar or peritumoral injection of a radiotracer during surgery helps the surgeon to identify the sentinel, or first, nodal site of regional metastasis in clinically node-negative patients. The pathological analysis of this node can have an important influence on the treatment staging in various cancers. This paper reports the design and performance evaluation of a gamma probe recently developed in our department. The detector unit of this system consists of an 8 mm diameter and 10 mm thickness monolithic CsI(Tl) scintillator optically, coupled to a Silicon Photomultiplier (SiPM) with an active area of 6×6 mm2, and a single-hole collimator. The unit is shielded using tungsten. The system can operate in three different modes for Tc-99m, I-131, or F-18 isotopes. The following measurements were carried out to evaluate the performance of the probe: sensitivity in air and scatter medium, spatial resolution in scatter medium, angular resolution in scatter medium, and side and back shielding effectiveness. All experiments have been performed based on the NEMA NU3-2004 standard set up. The measured system sensitivities in air and scatter medium (water) are 1700 cps/MBq and 1770 cps/MBq, respectively, both measured at 3 cm from the collimator. The spatial resolution in the scatter medium is about 45 mm at 3 cm distance from the collimator. Also, the angular resolution of the probe is 74o FWHM. Finally, a shielding effectiveness of 99.5% is measured. The results show that the probe can potentially be used for sentinel lymph node localization during the surgery.
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Dai, Yong
2015-10-01
This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.
PRESCILA: a new, lightweight neutron rem meter.
Olsher, Richard H; Seagraves, David T; Eisele, Shawna L; Bjork, Christopher W; Martinez, William A; Romero, Leonard L; Mallett, Michael W; Duran, Michael A; Hurlbut, Charles R
2004-06-01
Conventional neutron rem meters currently in use are based on 1960's technology that relies on a large neutron moderator assembly surrounding a thermal detector to achieve a rem-like response function over a limited energy range. Such rem meters present an ergonomic challenge, being heavy and bulky, and have caused injuries during radiation protection surveys. Another defect of traditional rem meters is a poor high-energy response above 10 MeV, which makes them unsuitable for applications at high-energy accelerator facilities. Proton Recoil Scintillator-Los Alamos (PRESCILA) was developed as a low-weight (2 kg) alternative capable of extended energy response, high sensitivity, and moderate gamma rejection. An array of ZnS(Ag) based scintillators is located inside and around a Lucite light guide, which couples the scintillation light to a sideview bialkali photomultiplier tube. The use of both fast and thermal scintillators allows the energy response function to be optimized for a wide range of operational spectra. The light guide and the borated polyethylene frame provide moderation for the thermal scintillator element. The scintillators represent greatly improved versions of the Hornyak and Stedman designs from the 1950's, and were developed in collaboration with Eljen Technology. The inherent pulse height advantage of proton recoils over electron tracks in the phosphor grains eliminates the need for pulse shape discrimination and makes it possible to use the PRESCILA probe with standard pulse height discrimination provided by off-the-shelf health physics counters. PRESCILA prototype probes have been extensively tested at both Los Alamos and the German Bureau of Standards, Physikalisch-Technische Bundesanstalt. Test results are presented for energy response, directional dependence, linearity, sensitivity, and gamma rejection. Initial field tests have been conducted at Los Alamos and these results are also given. It is concluded that PRESCILA offers a viable, ergonomically superior, alternative to traditional rem meters that is effective for a wide range of neutron fields. The probe is capable of excellent sensitivity (40 counts per minute per microSv h-1 for 241AmBe) and extended energy response to beyond 20 MeV. Directional response is uniform (+/-15%) over a wide range of energies. Response linearity has been characterized to over 20 mSv h-1. Gamma rejection is effective in gamma fields up to 2 mSv h-1. The PRESCILA technology has been commercialized and is now offered under license by Ludlum Measurements, Inc.
Gamma Ray Bursts as Cosmological Probes with EXIST
NASA Astrophysics Data System (ADS)
Hartmann, Dieter; EXIST Team
2006-12-01
The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.
Use of radioactive sources in measuring characteristics of snowpacks
Henry W. Anderson; Philip M. McDonald; Lloyd W. Gay
1963-01-01
Use of radioactive probes inserted in mountain snowpacks may make possible more accurate appraisal and prediction of snowmelt water. Commercially available gamma and neutron probes were tested for their ability to measure snow density, ice lenses, and the thermal quality of individual layers in the snowpack.
Fermi gamma-ray imaging of a radio galaxy.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D
2010-05-07
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.
NASA Technical Reports Server (NTRS)
Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.
2006-01-01
The temporal evolution of the nanostructure and chemistry of a model Ni-8.5 at.% Cr-10 at. % Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the gamma prime (L1(sub 2) structure)-precipitates and the chemistry of the gamma prime-precipitates and the gamma (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the gamma- and gamma prime-phases and the segregation behavior at gamma/gamma prime interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the gamma/gamma prime interfaces.
Gamma-ray Burst and Gravitational Wave Counterpart Prospects in the MeV Band with AMEGO
NASA Astrophysics Data System (ADS)
Racusin, Judith; AMEGO Team
2018-01-01
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) Probe mission concept is uniquely suited to address open questions in Gamma-ray Burst (GRB) science including the search for counterparts to gravitational-wave events. AMEGO is a wide field of view instrument (~60 deg radius) with a broad energy range (~200 keV to >10 GeV) and excellent continuum sensitivity. The sensitivity improvement will allow for probes of GRB emission mechanisms and jet composition in ways that have not been accessible with previous instruments. Potential for polarization measurement may also have profound impacts on the understanding of GRB mechanisms. AMEGO will also be an excellent facility for the search for gravitational wave counterparts to binary mergers including at least one neutron star, which are thought to produce short duration GRBs. This poster will describe how the AMEGO will advance these fields.
Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Barnacka, Anna
2014-08-01
It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.
Metal enrichment in the Fermi bubbles as a probe of their origin
NASA Astrophysics Data System (ADS)
Inoue, Yoshiyuki; Nakashima, Shinya; Tahara, Masaya; Kataoka, Jun; Totani, Tomonori; Fujita, Yutaka; Sofue, Yoshiaki
2015-06-01
The Fermi bubbles are gigantic gamma-ray structures in our Galaxy. The physical origin of the bubbles is still under debate. The leading scenarios can be divided into two categories. One is nuclear star-forming activity similar to extragalactic starburst galaxies and the other is past active galactic nucleus (AGN)-like activity of the Galactic center supermassive black hole. In this letter, we propose that metal abundance measurements will provide an important clue to probe their origin. Based on a simple spherically symmetric bubble model, we find that the generated metallicity and abundance patterns of the bubbles' gas strongly depend on assumed star formation or AGN activities. Star formation scenarios predict higher metallicities and abundance ratios of [O/Fe] and [Ne/Fe] than AGN scenarios do because of supernovae ejecta. Furthermore, the resultant abundance depends on the gamma-ray emission process because different mass injection histories are required for the different gamma-ray emission processes due to the acceleration and cooling time scales of non-thermal particles. Future X-ray missions such as ASTRO-H and Athena will give a clue to probe the origin of the bubbles through abundance measurements with their high energy resolution instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta
2015-05-20
It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after themore » explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.« less
NASA Astrophysics Data System (ADS)
Abdo, Aws Ahmad
2007-08-01
Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.
Strickler, J G; Movahed, L A; Gajl-Peczalska, K J; Horwitz, C A; Brunning, R D; Weiss, L M
1990-01-01
Gene rearrangement studies were performed on blood lymphocytes from eight patients with acute Epstein-Barr virus-induced infectious mononucleosis. The diagnosis in each case was based on characteristic clinical, hematologic, and serologic findings. The blood lymphocytes in each patient consisted predominantly of CD8+ T cells. EBV DNA was detected in seven patients by Southern blot analysis (EBV Bam HI W probe, Bam HI). A germline configuration was found for the immunoglobulin heavy and light chain genes (JH probe, Bam HI and Eco RI; C kappa probe, Bam HI; and C lambda probe, Eco RI). T cell receptor gene rearrangements were detected with J gamma and J beta 1 + 2 probes. Using a J gamma probe with two different restriction enzymes (Bgl II and Eco RI), the blood from each patient showed several bands corresponding to the polyclonal pattern previously described in the blood of normal individuals. Using J beta 1 + 2 probes with two different restriction enzymes (Bgl II and Bam HI), each case showed from 3 to about 12 extragermline bands of varying intensity and in different locations from case to case. In addition, each case showed relative deletion of the J beta 1 germline band. This oligoclonal pattern of T cell receptor gene rearrangements has not been previously reported in benign or malignant T cell populations. Images PMID:2170451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Lanza, R.C.
1999-12-01
The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low.more » For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.« less
Constraints on the phase gamma and new physics from B --> kpi decays
He; Hsueh; Shi
2000-01-03
Recent results from CLEO on B-->Kpi indicate that the phase gamma may be substantially different from that obtained from other fit to the KM matrix elements in the standard model. We show that gamma extracted using B-->Kpi,pipi is sensitive to new physics occurring at loop level. It provides a powerful method to probe new physics in electroweak penguin interactions. Using effects due to anomalous gauge couplings as an example, we show that within the allowed ranges for these couplings information about gamma obtained from B-->Kpi,pipi can be very different from the standard model prediction.
Subsurface In Situ Elemental Composition Measurements with PING
NASA Technical Reports Server (NTRS)
Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard
2013-01-01
This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.
Exploring the High Energy Universe: GLAST Mission and Science
NASA Technical Reports Server (NTRS)
McEnery, Julie
2007-01-01
GLAST, the Gamma-Ray Large Area Space Telescope, is NASA's next-generation high-energy gamma-ray satellite scheduled for launch in Autumn 2007. GLAST will allow measurements of cosmic gamma-ray sources in the 10 MeV to 100 GeV energy band to be made with unprecedented sensitivity. Amongst its key scientific objectives are to understand particle acceleration in Active Galactic Nuclei, Pulsars and Supernovae Remnants, to provide high resolution measurements of unidentified gamma-ray sources, to study transient high energy emission from objects such as gamma-ray bursts, and to probe Dark Matter and the early Universe. Dr. McEnery will present an overview of the GLAST mission and its scientific goals.
NASA Technical Reports Server (NTRS)
Booth-Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.
2008-01-01
The effects of a 2.0 at.% addition of Ta to a model Ni-Al-Cr superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The addition of Ta results in appreciable strengthening, and the morphology is found to evolve from a bimodal distribution of spheroidal precipitates, to cuboidal precipitates aligned along the elastically soft <001>-type directions. Tantalum is observed to partition preferentially to the gamma -precipitate phase and decreases the mobility of Ni in the gamma- matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma -precipitate/gamma-matrix heterophase interface.
Modelling Hard Gamma-Ray Emission from Supernova Remnants
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1999-01-01
The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.
Probing the Higgs Couplings to Photons in h→4l at the LHC
Chen, Yi; Harnik, Roni; Vega-Morales, Roberto
2014-11-01
We explore the sensitivity of the Higgs decay to four leptons, the so-called golden channel, to higher dimensional loop-induced couplings of the Higgs boson tomore » $ZZ$, $$Z\\gamma$$, and $$\\gamma\\gamma$$, allowing for general CP mixtures. The larger standard model tree level coupling $$hZ^\\mu Z_\\mu$$ is the dominant "background" for the loop induced couplings. However this large background interferes with the smaller loop induced couplings, enhancing the sensitivity. We perform a maximum likelihood analysis based on analytic expressions of the fully differential decay width for $$h\\to 4\\ell$$ ($$4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$$) including all interference effects. We find that the spectral shapes induced by Higgs couplings to photons are particularly different than the $$hZ^\\mu Z_\\mu$$ background leading to enhanced sensitivity to these couplings. We show that even if the $$h\\to\\gamma\\gamma$$ and $$h\\to 4\\ell$$ rates agree with that predicted by the Standard Model, the golden channel has the potential to probe both the CP nature as well as the overall sign of the Higgs coupling to photons well before the end of high-luminosity LHC running ($$\\sim$$3 ab$$^{-1}$$).« less
Physical processes and diagnostics of gamma-ray burst emission
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1992-01-01
With improved data from BATSE and other instruments, it is important to develop a range of diagnostic tools to link gamma-ray burst observations with theory. I will review some of the physical processes which may take place to form the spectrum of gamma-ray burst sources, assuming that the bursts originate on strongly magnetized neutron stars. The important diagnostics that these processes provide to probe the emission region and how they might be used to interpret observed spectra will also be discussed.
Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.
1988-11-20
Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.
Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology
van Oosterom, Matthias N; Simon, Hervé; Mengus, Laurent; Welling, Mick M; van der Poel, Henk G; van den Berg, Nynke S; van Leeuwen, Fijs WB
2016-01-01
In complex (robot-assisted) laparoscopic radioguided surgery procedures, or when low activity lesions are located nearby a high activity background, the limited maneuverability of a laparoscopic gamma probe (LGP; 4 degrees of freedom (DOF)) may hinder lesion identification. We investigated a drop-in gamma probe (DIGP) technology to be inserted via a trocar, after which the laparoscopic surgical tool at hand can pick it up and maneuver it. Phantom experiments showed that distinguishing a low objective from a high background source (1:100 ratio) was only possible with the detector faced >90° from the high background source. Signal-low-objective-to-background ratios of 3.77, 2.01 and 1.84 were found for detector angles of 90°, 135° and 180°, respectively, whereas detector angles of 0° and 45° were unable to distinguish the sources. This underlines the critical role probe positioning plays. We then focused on engineering of the gripping part for optimal DIGP pick-up with a conventional laparoscopic forceps (4 DOF) or a robotic forceps (6 DOF). DIGPs with 0°, 45°, 90°, and 135° -grip orientations were designed, and their maneuverability- and scanning direction were evaluated and compared to a conventional LGP. The maneuverability- and scanning direction of the DIGP was found highest when using the robotic forceps, with the largest effective scanning direction range obtained with the 90° -grip design (0-180° versus 0-111°, 0-140°, and 37-180° for 0°, 45° and 135° -grip designs, respectively). For the laparoscopic forceps, the scan direction directly translated from the angle of the grip design with the advantage that the 135° -gripped DIGP could be faced backwards (not possible with the conventional LGP). In the ex vivo clinical setup, the surgeon rated DIGP pick-up most convenient for the 45°-grip design. Concluding, the DIGP technology was successfully introduced. Optimization of the grip design and grasping angle of the DIGP increased its utility for (robot-assisted) laparoscopic gamma tracing. PMID:27069762
Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs
NASA Astrophysics Data System (ADS)
Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral
2015-09-01
Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.
A novel intra-operative positron imager for rapid localization of tumor margins
NASA Astrophysics Data System (ADS)
Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.
2014-03-01
We have developed an intra-operative and compact imaging tool for surgeons to detect PET- positive lesions. Currently, most such probes on the market are non-imaging, and provide no ancillary information of surveyed areas, such as clear delineations of malignant tissues. Our probe consists of a novel hybrid scintillator coupled to a compact silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The hybrid scintillator consists of a 0.4 mm thick layer of CsI:Tl scintillator coupled to a 1 mm thick LYSO crystal. To achieve high spatial resolution, CsI:Tl is pixelated to 0.5×0.5 mm2 pixels using laser ablation technique. While CsI:Tl act as beta-sensitive scintillator, LYSO senses the gamma radiation and can be used to navigate the probe to the locations of interest. The gamma response is also subtracted from the beta image for improved SNR and contrast. To achieve accurate centroid position estimation and uniform beta sensitivity over the entire imaging area, the LYSO thickness is optimized such that it acts as scintillation light diffuser by spreading CsI:Tl light over multiple SiPM pixels. The results show that the response of the two scintillators exposed to radiation could be easily distinguished based on their pulse shapes. The probe's spatial resolution is <1.5 mm FWHM in its 10×10 mm2 effective imaging area. The probe can rapidly detect and localize nCi levels of F-18 beta radiation even in presence of strong gamma background.
Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni
2011-03-15
Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less
A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite.
Zhang, Yun; Wang, Hua; Yan, Bani; Zhang, Yuwei; Li, Jishan; Shen, Guoli; Yu, Ruqin
2008-03-20
This paper reports a simple, sensitive, and reusable piezoelectric immunosensor using magnetic hydroxyapatite (HAP)/gamma-Fe(2)O(3)/Au nanocomposite. Use of porous HAP nanocrystals embedded with gamma-Fe(2)O(3) and colloidal gold nanoparticles resulted in a multifunctional HAP/gamma-Fe(2)O(3)/Au nanocomposite. Under optimized conditions, the biocompatible nanocomposites were exploited for direct adsorption of large quantities of rabbit anti-human immunoglobulin G antibodies (anti-hIgG) with well-preserved immunoactivity. In a homogeneous bulk solution, the hIgG analytes were captured by the anti-hIgG-derivatized immunocomposites followed by magnetic separation/enrichment onto a bovine serum albumin (BSA)-sealed QCM probe before measuring. This QCM immunosensor can quantitatively determine concentrations of hIgG ranging from approximately 20 to 800 ng/ml, with a detection limit of approximately 15 ng/ml. Moreover, regeneration of the immunosensor can be simply realized by canceling the controllable magnetic field. With the possibility of performing the analysis automatically and considering its ease of use, high sensitivity, and good reusability, this magnetic separation-assisted QCM immunosensor may have great potential to be further tailored as a general and promising alternative for a broad range of practical applications.
Sentinel lymph node detection in patients with endometrial cancer.
Niikura, Hitoshi; Okamura, Chikako; Utsunomiya, Hiroki; Yoshinaga, Kosuke; Akahira, Junichi; Ito, Kiyoshi; Yaegashi, Nobuo
2004-02-01
The purpose of this study was to examine the feasibility of sentinel lymph node (SLN) detection in patients with endometrial cancer using preoperative lymphoscintigraphy and an intraoperative gamma probe. Between June 2001 and January 2003, 28 consecutive patients with endometrial cancer who were scheduled for total abdominal hysterectomy, bilateral salpingo-oophorectomy, total pelvic lymphadenectomy, and paraaortic lymphadenectomy at Tohoku University School of Medicine underwent sentinel lymph node detection. On the day before surgery, preoperative lymphoscintigraphy was performed by injection of 99m-Technetium ((99m)Tc)-labeled phytate into the endometrium during hysteroscopy. At the time of surgery, a gamma-detecting probe was used to locate radioactive lymph nodes. At least one sentinel node was detected in each of 23 of the 28 patients (82%). The mean number of sentinel nodes detected was 3.1 (range, 1-9). Sentinel nodes could be identified in 21 of 22 patients (95%) whose tumor did not invade more than halfway into the myometrium. Eighteen patients had radioactive nodes in the paraaortic area. Most patients had a sentinel node in one of the following three sites: paraaortic, external iliac, and obturator. The sensitivity and specificity for detecting lymph node metastases were both 100%. The combination of preoperative lymphoscintigraphy with intraoperative gamma probe detection may be useful in identifying sentinel nodes in early-stage endometrial cancer.
Measurement of gastric emptying by intragastric gamma scintigraphy.
Malbert, C H; Mathis, C; Bobillier, E; Laplace, J P; Horowitz, M
1997-09-01
Gastric emptying is usually measured in animals and humans by dilution/sampling or external scintigraphy. These methods are either time consuming or require expensive equipment. The capacity of a miniature gamma counter positioned in the stomach to measure emptying of liquid and solid meals was evaluated. In eight conscious pigs fitted with gastric and duodenal cannulae, gastric emptying of saline (500 mL), dextrose (20%, 500 mL), porridge (300 g) and scrambled eggs (300 g), all labelled with 3.5 MBq 99mTC, was evaluated. When positioned in the antrum the probe was unable to quantify gastric emptying. In contrast, measurements of the fractional emptying of saline over 4-min periods by the probe positioned in the corpus and quantification of radioactivity in the duodenal effluent correlated closely (r = 0.88, P < 0.05). Gastric emptying (50% emptying time) of saline and both solid meals measured by the probe was not significantly different from quantification of the duodenal effluent volume. No difference was observed also for the dextrose meal but only while gastric acid secretion was suppressed by omeprazole. We conclude that an intragastric gamma counter permits measurement of gastric emptying of homogeneous meals provided meal stimulation of gastric secretion was not extensive. This was possible probably by monitoring emptying from the proximal stomach.
Radioimmunoguided surgery using iodine 125 B72. 3 in patients with colorectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.M.; Martin, E.W. Jr.; Lavery, I.
1991-03-01
Preliminary data using B72.3 murine monoclonal antibody labeled with iodine 125 suggested that both clinically apparent as well as occult sites of colorectal cancer could be identified intraoperatively using a hand-held gamma detecting probe. We report the preliminary data of a multicenter trial of this approach in patients with primary or recurrent colorectal cancer. One hundred four patients with primary, suspected, or known recurrent colorectal cancer received an intravenous infusion of 1 mg of B72.3 monoclonal antibody radiolabeled with 7.4 x 10 Bq of iodine 125. Twenty-six patients with primary colorectal cancer and 72 patients with recurrent colorectal cancer weremore » examined. Using the gamma detecting probe, 78% of the patients had localization of the antibody in their tumor; this included 75% of primary tumor sites and 63% of all recurrent tumor sites; 9.2% of all tumor sites identified represented occult sites detected only with the gamma detecting probe. The overall sensitivity was 77% and a predictive value of a positive detection was 78%. A total of 30 occult sites in 26 patients were identified. In patients with recurrent cancer, the antibody study provided unique data that precluded resection in 10 patients, and in another eight patients it extended the potentially curative procedure.« less
Surgical guidance system using hand-held probe with accompanying positron coincidence detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, Stanislaw; Weisenberger, Andrew G.
A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.
González, Segundo Jaime; González, Lorena; Wong, Joyce; Brader, Peter; Zakowski, Maureen; Gönen, Mithat; Daghighian, Farhad; Fong, Yuman
2012-01-01
Introduction The intraoperative localization of suspicious lesions detected by positron emission tomography (PET) scan remains a challenge. To solve this, two novel probes have been created to accurately detect the 18F-FDG radiotracer intraoperatively. Methods Nude rats were inoculated with mesothelioma. When PET scans detected 10-mm tumors, animals were dissected and the PET probes analyzed the intraoperative radiotracer uptake of these lesions as tumor to background ratio (TBR). Results The 17 suspicious lesions seen on PET scan were localized intraoperatively (by their high TBR) using the PET probes and found malignant on pathology. Interestingly, smaller tumors not visualized on PET scan were detected intraoperatively by their high TBR and found malignant on pathology. Furthermore, using a TBR threshold as low as 2.0, both gamma (sensitivity, 100%; specificity, 80%; positive predictive value (PPV), 96%; and negative predictive value (NPV), 100%) and beta (sensitivity, 100%; specificity, 60%; PPV, 93%; and NPV, 100%) probes reliably detected suspicious lesions on PET scan imaging. They also showed an excellent area under the curve of 0.9 and 0.97 (95% CI of 0.81–0.99 and 0.93–1.0) for gamma and beta probes, respectively, in the receiver operating characteristic analysis for detecting malignancy. Conclusion This novel tool could be used synergistically with a PET scan imaging to maximize tissue selection intraoperatively. PMID:21108016
Advances in associated-particle neutron probe diagnostics for substance detection
NASA Astrophysics Data System (ADS)
Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred
1995-09-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.
Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad; ...
2018-03-13
We suggest that the exclusivemore » $$\\mathrm{Higgs}+\\text{light}$$ (or b)-jet production at the LHC, $$pp{\\rightarrow}h+j({j}_{b})$$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ interactions. We study the Higgs $${p}_{T}$$-distribution in $$pp{\\rightarrow}h+j({j}_{b}){\\rightarrow}{\\gamma}{\\gamma}+j({j}_{b})$$, i.e., in $$h+j({j}_{b})$$ production followed by the Higgs decay $$h{\\rightarrow}{\\gamma}{\\gamma}$$, employing the ($${p}_{T}$$-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parametrize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive $$h+j({j}_{b})$$ production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to $$\\mathcal{O}(10)\\text{ }\\text{ }\\mathrm{TeV}$$, depending on the flavor, chirality and Lorentz structure of the underlying physics.« less
Modelling Hard Gamma-Ray Emission from Supernova Remnants
NASA Technical Reports Server (NTRS)
Baring, Matthew
2000-01-01
The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad
We suggest that the exclusivemore » $$\\mathrm{Higgs}+\\text{light}$$ (or b)-jet production at the LHC, $$pp{\\rightarrow}h+j({j}_{b})$$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ interactions. We study the Higgs $${p}_{T}$$-distribution in $$pp{\\rightarrow}h+j({j}_{b}){\\rightarrow}{\\gamma}{\\gamma}+j({j}_{b})$$, i.e., in $$h+j({j}_{b})$$ production followed by the Higgs decay $$h{\\rightarrow}{\\gamma}{\\gamma}$$, employing the ($${p}_{T}$$-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parametrize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive $$h+j({j}_{b})$$ production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to $$\\mathcal{O}(10)\\text{ }\\text{ }\\mathrm{TeV}$$, depending on the flavor, chirality and Lorentz structure of the underlying physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBeth, R; Elder, D; Kesner, A
2016-06-15
Purpose: Y-90 Selective Internal Radiation Therapy (SIRT) is used to treat liver tumors, and by nature has variability in the percent of the intended dose that is actually delivered. To determine the quality of the administration, pre and post activity measurements are taken, and used to infer percent delivered. Vendor specifications indicate the use of an ion chamber to take these measurements. In our work, we investigated the accuracy of ion chambers, and compared them to other detector systems. Methods: We have built phantoms, phantom holders, and protocols, which allow us to measure our Y90 doses with varying apparatuses: amore » dose calibrator, a Geiger-counter, an ion chamber, a crystal based thyroid probe, and a gamma camera. We have set up a system that has enabled us to gather data by measuring clinical Y90 doses as they are used in the clinic using all of the instrumental methods. Five initial doses (25 measurements/acquisitions) have been taken at the time of this abstract submission. Results: Our initial results show that measurements acquired using scintillation based detectors (thyroid probe and gamma camera) correlate better with the gold standard (i.e. the dose calibrator). Pearson correlations between the dose calibrator measurements and the GM counter, Ion chamber, thyroid probe, and gamma camera were found to be 0.88, 0.83, 0.98, 0.99, respectively. More acquisitions and analysis are planned to determine the precision of the systems, as well as optimal energy window settings. Conclusion: It is likely that current standard practice can be improved using scintillation crystal based detectors. Such systems are more sensitive, can integrate signal, and can use energy discrimination. Furthermore, phantoms can be built to integrate with probe and gamma camera systems that are robust and provide reproducibility. Future work will include expanded acquisition and analysis.« less
Associated-particle sealed-tube neutron probe for characterization of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, E.; Dickerman, C.E.; Peters, C.W.
1993-10-01
A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.
1992-01-01
As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.
Gulec, Seza A; Daghighian, Farhad; Essner, Richard
2016-12-01
Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions <1 cm, and the intraoperative localization of small PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.
MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
Probing the debris disks of nearby stars with Fermi-LAT
NASA Astrophysics Data System (ADS)
Riley, Alexander; Strigari, Louis; Porter, Troy; Blandford, Roger
2018-01-01
Many nearby stars are known to host circumstellar debris disks, similar to our Sun's asteroid and Kuiper belts, that are believed to be the birthplace of extrasolar planets. The bodies in these objects passively emit gamma radiation resulting from interactions with cosmic rays, as previously observed from measurements of the gamma ray albedo of the Moon. We apply a point source analysis to four nearby debris disks using the past nine years of data taken by Fermi-LAT, and report on the updated prospects for detecting gamma-ray emission from these sources.
Probe for contamination detection in recyclable materials
Taleyarkhan, Rusi
2003-08-05
A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.
Batté, M; Mathieu, L; Laurent, P; Prévost, M
2003-12-01
Biofilms were grown in annular reactors supplied with drinking water enriched with 235 microg C/L. Changes in the biofilms with ageing, disinfection, and phosphate treatment were monitored using fluorescence in situ hybridization. EUB338, BET42a, GAM42a, and ALF1b probes were used to target most bacteria and the alpha (alpha), beta (beta), and gamma (gamma) subclasses of Proteobacteria, respectively. The stability of biofilm composition was checked after the onset of colonization between T = 42 days and T = 113 days. From 56.0% to 75.9% of the cells detected through total direct counts with DAPI (4'-6-diamidino-2-phenylindole) were also detected with the EUB338 probe, which targets the 16S rRNA of most bacteria. Among these cells, 16.9%-24.7% were targeted with the BET42a probe, 1.8%-18.3% with the ALF1b probe, and <2.5% with the GAM42a probe. Phosphate treatment induced a significant enhancement to the proportion of gamma-Proteobacteria (detected with the GAM42a probe), a group that contains many health-related bacteria. Disinfection with monochloramine for 1 month or chlorine for 3 days induced a reduction in the percentage of DAPI-stained cells that hybridized with the EUB338 probe (as expressed by percentages of EUB338 counts/DAPI) and with any of the ALF1b, BET42a, and GAM42a probes. The percentage of cells detected by any of the three probes (ALF1b+BET42a+GAM42a) tended to decrease, and reached in total less than 30% of the EUB338-hybridized cells. Disinfection with chlorine for 7 days induced a reverse shift; an increase in the percentage of EUB338 counts targeted by any of these three probes was noted, which reached up to 87%. However, it should be noted that the global bacterial densities (heterotrophic plate counts and total direct counts) tended to decrease over the duration of the experiment. Therefore, those bacteria that could be considered to resist 7 days of chlorination constituted a small part of the initial biofilm community, up to the point at which the other bacterial groups were destroyed by chlorination. The results suggest that there were variations in the kinetics of inactivation by disinfectant, depending on the bacterial populations involved.
Improving gross count gamma-ray logging in uranium mining with the NGRS probe
NASA Astrophysics Data System (ADS)
Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.
Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari
2009-11-01
The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.
NASA Astrophysics Data System (ADS)
Eclancher, Bernard; Arntz, Y.; Chambron, Jacques; Prat, Vincent; Perret, C.; Karman, Miklos; Pszota, Agnes; Nemeth, Laszlo
1999-10-01
A hand-size probe including 64 elementary 5 X 5 X 2 mm CdTe detectors has been optimized to detect the (gamma) tracer 99Tc in the heart left ventricle. The system, has been developed, not for imaging, allowing acquisitions at 33 Hz to describe the labeled blood volume variations. The (gamma) -counts variations were found accurately proportional to the known volume variations of an artificial ventricle paced at variable rate and systolic volume. Softwares for on line data monitoring and for post-processing have been developed for beat to beat assessment of cardiac performance at rest and during physical exercise. The evaluation of this probe has been performed on 5 subjects in the Nucl Dep of Balatonfured Cardiology Hospital. It appears that the probe needs to be better shielded to work properly in the hot environment of the ventricle, but can provide reliable ventriculography, even under heavy exercise load, although the ventricle volume itself is unknown.
Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes
NASA Technical Reports Server (NTRS)
Wu, H.; George, K.; Yang, T. C.
1998-01-01
PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.
Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates
NASA Technical Reports Server (NTRS)
Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.
2008-01-01
The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.
MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
NASA Technical Reports Server (NTRS)
Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.
2009-01-01
The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.
NASA Astrophysics Data System (ADS)
Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.
2013-07-01
The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.
Monserrat-Monfort, J J; Martinez-Sarmiento, M; Vera-Donoso, C D; Vera-Pinto, V; Sopena-Novales, P; Bello-Arqués, P; Boronat-Tormo, F
To validate the technique of selective sentinel node biopsy for diagnosing and staging intermediate to high-risk prostate cancer by comparing the technique with conventional extended lymphadenectomy (eLFD) in a prospective, longitudinal comparative study. We applied the technique to 45 patients. After an intraprostatic injection of 99m Tc-nanocolloid and preoperative single-photon emission computed tomography (SPECT/CT), we extracted the sentinel lymph nodes, guided by a portable Sentinella® gamma camera and a laparoscopic gamma-ray detection probe. The eLFD was completed to establish the negative predictive value of the technique. SPECT/CT showed radiotracer deposits outside the eLFD territory in 73% of the patients and the laparoscopic gamma probe in 60%. The mean number of active foci per patient was 4.3 in the SPECT/CT and 3.2 in the laparoscopic gamma probe. The mean number of extracted sentinel lymph nodes was 4.3 (0-14), with 26% outside the eLFD territory. The lymph nodes were metastatic in 10 patients (22%), 6/40 (15%) when the prostatectomy was the primary treatment. In all cases with metastatic lymph nodes, there was at least one positive sentinel node. Metastatic sentinel lymph nodes were found outside the eLFD territory in 3/10 patients (30%). The sensitivity was 100%, the specificity was 94.73%, the positive predictive value was 81.81%, and the negative predictive value was 100%. Selective sentinel node biopsy is superior to eLFD for diagnosing lymph node involvement and can avoid eLFD when metastatic sentinel lymph nodes are not found (85%), with the consequent functional advantages. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Variation in electrical properties of gamma irradiated cadmium selenate nanowires
NASA Astrophysics Data System (ADS)
Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika
2016-07-01
Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.
Dual-modality imaging with a ultrasound-gamma device for oncology
NASA Astrophysics Data System (ADS)
Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.
2018-06-01
Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.
A new population of very high energy gamma-ray sources in the Milky Way.
Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J
2005-03-25
Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.
How gravitational-wave observations can shape the gamma-ray burst paradigm
NASA Astrophysics Data System (ADS)
Bartos, I.; Brady, P.; Márka, S.
2013-06-01
By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.
Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.
Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo
2011-03-01
The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.
Exploring the High Energy Universe: GLAST Mission and Science
NASA Technical Reports Server (NTRS)
McEnery, Julie
2007-01-01
GLAST, the Gamma-Ray Large Area Space Telescope, is NASA's next-generation high-energy gamma-ray satellite scheduled for launch in Autumn 2007. GLAST will allow measurements of cosmic gamma-ray sources in t he 10 MeV to 100 GeV energy band to be made with unprecedented sensi tivity. Amongst its key scientific objectives are to understand part icle acceleration in Active Galactic Nuclei, Pulsars and Supernovae Remnants, to provide high resolution measurements of unidentified ga mma-ray sources, to study transient high energy emission from objects such as gamma-ray bursts, and to probe Dark Matter and the early Uni verse. Dr. McEnery will present an overview of the GLAST mission and its scientific goals.
Sun, Shuting; Ma, Hongmin; Chen, Xin; Zhang, Nuo; Wu, Dan; Du, Bin; Wei, Qin
2008-01-01
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4-chloro-(2'-hydroxylophenylazo)rhodanine-Ti(IV) [ClHARP-Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2-ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and gamma-globin (gamma-G) were studied. The detection limits were 0.182 microg/mL for BSA, 0.0788 microg/mL for HSA, 0.216 microg/mL for Ova and 0.484 microg/mL for gamma-G. The linear ranges of the calibration were 0-12.0, 0-10.0, 0-18.0 and 0-18.0 microg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results.
Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping
2009-09-22
We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates. However, the crystallographic orientation-relationships of cubic spinel ferrites and trigonal hematite show strong correlation with their morpologies. The hollow-structured MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys
NASA Technical Reports Server (NTRS)
Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.
2008-01-01
The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.
Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-12-01
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (˜10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5ergscm-2 to F<1200ergscm-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈33Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.
Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi
2007-07-12
The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less
Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zickefoose, J.; Kulkarni, T.; Martinson, T.
The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less
Probing the X-ray Emission from the Massive Star Cluster Westerlund 2
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.
The Role of Rhenium on the Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr-Re Superalloy
NASA Technical Reports Server (NTRS)
Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.
2004-01-01
Rhenium (2 at.%) additions to a model Ni-8.5 at.% Cr-10 at.% Al alloy are studied with respect to its effects on the temporal evolution of the nanostructure and the partitioning behavior of the four elements between the gamma (fcc) and gamma' (L1(sub 2)) phases. Chemical evolution of this quaternary alloy aged at 1073 K from 0.25 to 264 h, is investigated by three-dimensional atom-probe (3DAP) microscopy. The morphology of gamma'-precipitates remains spheroidal, even at an aging time of 264 h. The results demonstrate that Re slows the coarsening of gamma'-precipitates, in comparison to the ternary Ni-10 at.% A1-8.5 at.% Cr alloy at 1073 K.
Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.
1972-01-01
A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.
A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.
Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J
2005-05-12
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.
Ghosh, Debashis; Michalopoulos, Nikolaos V; Davidson, Timothy; Wickham, Fred; Williams, Norman R; Keshtgar, Mohammed R
2017-04-01
Access to nuclear medicine department for sentinel node imaging remains an issue in number of hospitals in the UK and many parts of the world. Sentinella ® is a portable imaging camera used intra-operatively to produce real time visual localisation of sentinel lymph nodes. Sentinella ® was tested in a controlled laboratory environment at our centre and we report our experience on the first use of this technology from UK. Moreover, preoperative scintigrams of the axilla were obtained in 144 patients undergoing sentinel node biopsy using conventional gamma camera. Sentinella ® scans were done intra-operatively to correlate with the pre-operative scintigram and to determine presence of any residual hot node after the axilla was deemed to be clear based on the silence of the hand held gamma probe. Sentinella ® detected significantly more nodes compared with CGC (p < 0.0001). Sentinella ® picked up extra nodes in 5/144 cases after the axilla was found silent using hand held gamma probe. In 2/144 cases, extra nodes detected by Sentinella ® confirmed presence of tumour cells that led to a complete axillary clearance. Sentinella ® is a reliable technique for intra-operative localisation of radioactive nodes. It provides increased nodal visualisation rates compared to static scintigram imaging and proves to be an important tool for harvesting all hot sentinel nodes. This portable gamma camera can definitely replace the use of conventional lymphoscintigrams saving time and money both for patients and the health system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.
A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy.more » Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.« less
Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention
2006-04-01
conjugated to cell-impermeable polyacrylate polymers that should allow for selective targeting of membrane-initiated responses of estrogen receptor. It...dilutions of the different compounds were prepared in ES2 screening buffer (100 mM potassium phosphate, pH7.4, 100 µg/ml bovine gamma globulin) and 50 µl...W81XWH-04-1-0447 TITLE: Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention PRINCIPAL
MiX: a position sensitive dual-phase liquid xenon detector
NASA Astrophysics Data System (ADS)
Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.
2015-10-01
The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... to drug products containing gamma-hydroxybutyric acid. 1304.26 Section 1304.26 Food and Drugs DRUG....26 Additional recordkeeping requirements applicable to drug products containing gamma-hydroxybutyric....22, practitioners dispensing gamma-hydroxybutyric acid that is manufactured or distributed in...
Techniques of biological contamination avoidance by atmospheric probes
NASA Technical Reports Server (NTRS)
Defrees, R. E.
1974-01-01
The likelihood of biologically contaminating a planet by an atmospheric probe has a low probability of occurring if the probe is kept biologically clean during terrestrial operations and if the structure remains in tact until the planets life zone is completely penetrated. High standards of cleanliness, monitoring and estimating for remedial actions must be maintained in a probe program. It is not a foregone conclusion, however, that heat sterilization needs to be employed. The use of several techniques having a good potential for lower probe costs are available and appear adequate to render a probe sterile within acceptable bounds. The techniques considered to be satisfactory for minimizing microbial load include: (1) combined heat (at 95-105 C) and gamma radiation; (2) short term heating at 105 + or - 5 C to inactivate all vegetative microbes; (3) irradiation routinely by ultraviolet light; (4) wiping by a bactericidal agent with or without a penetrant; and (5) cleanliness alone.
Indirect detection of Particle Dark Matter with gamma rays - status and perspectives
NASA Astrophysics Data System (ADS)
Conrad, Jan
2014-03-01
In this contribution I review the present status and discuss some prospects for indirect detection of dark matter with gamma rays. Thanks mainly to the Fermi Large Area Telescope (Fermi-LAT), searches in gamma-rays have reached sensitivities that allow to probe the most interesting parameter space of the weakly interacting massive particles (WIMP) paradigm. This gain in sensitivity is naturally accompanied by a number of detection claims or indications. At WIMP masses above roughly a TeV current Imaging Air Cherenkov Telescopes (HESS, VERITAS, MAGIC) become more sensitive than the Fermi-LAT, the most promising recent development being the first light for the second phase HESS II telescope with significantly lower energy threshold. Predictions for the next generation air Cherenkov telescope, Cherenkov Telescope Array (CTA), together with forecasts on future Fermi-LAT constraints arrive at the exciting possibility that the cosmological benchmark cross-section could be probed from masses of a few GeV to a few TeV. Consequently, non-detection would pose a challenge to the WIMP paradigm, but the reached sensitivities also imply that-optimistically-a detection within the next decade is in the cards. Time allowing, I will comment on complementarity between the different approaches to WIMP detection.
CHARACTERIZATION OF CLYC SCINTILLATOR COUPLED WITH PHOTOMULTIPLIERS AND A LARGE SIPM ARRAY.
Dinar, N; Celeste, D; Puzo, P; Silari, M
2017-09-29
CERN Radiation Protection group has recently developed a novel radiation survey meter called B-RAD able to operate in the presence of a strong magnetic field. The B-RAD will be equipped with a series of probes for gamma dose rate, gamma spectrometry and surface contamination measurements. The feasibility of developing a probe for neutron dose rate and possibly spectral measurements is being investigated. The determination of the breakdown voltage of the SiPM as well as its uniformity between the pixels was performed. The energy resolution of the Cs2LiYCl6:Ce (CLYC) scintillator was measured with the SiPM and compared with two different PMT models: Bialkali and Superbialkali. The temperature sensitivity of the system CLYC + SiPM was measured from -10 to + 40°C. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma
Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof
2016-01-01
Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979
Probing CP violation in $$h\\rightarrow\\gamma\\gamma$$ with converted photons
Bishara, Fady; Grossman, Yuval; Harnik, Roni; ...
2014-04-11
We study Higgs diphoton decays, in which both photons undergo nuclear conversion to electron- positron pairs. The kinematic distribution of the two electron-positron pairs may be used to probe the CP violating (CPV) coupling of the Higgs to photons, that may be produced by new physics. Detecting CPV in this manner requires interference between the spin-polarized helicity amplitudes for both conversions. We derive leading order, analytic forms for these amplitudes. In turn, we obtain compact, leading-order expressions for the full process rate. While performing experiments involving photon conversions may be challenging, we use the results of our analysis to constructmore » experimental cuts on certain observables that may enhance sensitivity to CPV. We show that there exist regions of phase space on which sensitivity to CPV is of order unity. As a result, the statistical sensitivity of these cuts are verified numerically, using dedicated Monte-Carlo simulations.« less
Cosmic Rays and Gamma-Rays in Large-Scale Structure
NASA Astrophysics Data System (ADS)
Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako
2004-12-01
During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.
Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard
2015-02-01
The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less
Disentangling the gamma-ray emission towards Cygnus X: Sh2-104
NASA Astrophysics Data System (ADS)
Gotthelf, Eric
2015-09-01
We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.
Dias, João Carlos T; Silva, Cláudio M; Mounteer, Ann H; Passos, Flavia M L; Linardi, Valter R
2003-01-01
An evaluation of the efficiency of treatment of kraft mill foul condensates in a membrane bioreactor was carried out in the laboratory. Efficiency and rate of methanol removal were quantified at operating temperatures of 35, 45 and 55 degrees C. The structure of the bacterial community present in the reactor biomass at the different operating temperatures was evaluated by in situ hybridization of the biomass samples with fluorescently-labelled probes (FISH) targeting the Eubacteria, the alpha, beta and gamma subclasses of the Proteobacteria, the low G + C content Gram-positive bacteria (Bacillus spp.), while community function was evaluated by in situ hybridization with a methanol dehydrogenase gene (mxaF) probe. Methanol removal efficiency decreased from 99.4 to 92%, and removal rate from 2.69 mg MeOH/l x min to 2.49 mg MeOH/l x min when the operating temperature was increased from 35 to 55 degrees C. This decrease in methanol removal was accompanied by a decrease (from 58% to 42%) in the relative proportion of cells that hybridized with the mxaF probe. The relative proportion of Bacillus spp. increased from 5 to 20% while the proportion of members of the alpha subclass of Proteobacteria decreased from 16% to 6% when the bioreactor operating temperature was raised from 35 to 55 degrees C. The relative proportions of bacteria belonging to the beta (22-25%) and gamma (18-20%) subclasses of the Proteobacteria remained relatively constant regardless of operating temperature. Proteobacteria (alpha, beta and gamma subclasses) and Bacillus spp. represented 61, 67 and 71% of the Eubacteria in the biomass sampled at 35, 45 and 55 degrees C, respectively. The FISH technique was shown to be an efficient method for detection of both structural and functional changes in the bacterial communities that could be related to efficiency of methanol removal in a membrane bioreactor operating at different temperatures.
300 East Randolph, December 2010, Lindsay Light Radiological Survey
Field gamma measurements within the excavation and the spoil materials generated during theexcavation process did not exceed the respective threshold values previously stated and generallyranged from 4,050 cpm to 9,690 cpm with the unshielded probe.
Current gamma knife treatment for ophthalmic branch of primary trigeminal neuralgia
Shan, Guo-Yong; Liang, Hao-Fang; Zhang, Jian-Hua
2011-01-01
AIM To probe into problems existing in gamma knife treatment of ophthalmic branch of primary trigeminal neuralgia (TN), and propose a safe and effective solution to the problem. METHODS Through sorting the literature reporting gamma knife treatment of refractory TN in recent years, this article analyzed the advantages and problems of gamma knife treatment of primary TN, and proposed reasonable assessment for existing problems and the possible solution. RESULTS Gamma knife treatment of TN has drawn increasing attention of clinicians due to its unique non-invasion, safety and effectiveness, but there are three related issues to be considered. The first one is the uncertainty of the optimal dose (70-90GY); the second one is the difference in radiotherapy target selection (using a single isocenter or two isocenters); and the third one is the big difference of recurrent pains (specific treatment methods need to be summarized and improved). CONCLUSION For patients with refractory TN, gamma knife treatment can be selected when the medical treatment fails or drug side effects emerge. The analysis of a large number of TN patients receiving gamma knife treatment has shown that this is a safe and effective treatment method. PMID:22553625
Gamma-Ray Bursts in the Swift Era
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.
2010-01-01
With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.
Blazar Gamma-Rays, Shock Acceleration, and the Extragalactic Background Light
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.; Baring, Matthew G.; Summerlin, Errol J.
2007-01-01
The observed spectra of blazars, their intrinsic emission, and the underlying populations of radiating particles are intimately related. The use of these sources as probes of the extragalactic infrared background, a prospect propelled by recent advances in TeV-band telescopes, soon to be augmented by observations by NASA's upcoming Gamma-Ray Large Area Space Telescope (GLAST), has been a topic of great recent interest. Here, it is demonstrated that if particles in blazar jets are accelerated at relativistic shocks, then GAMMA-ray spectra with indices less than 1.5 can be produced. This, in turn, loosens the upper limits on the near infrared extragalactic background radiation previously proposed. We also show evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV GAMMA-ray luminosities and we indicate that there may be a correlation of flatness and luminosity with redshift.
Gamma Ray Imaging of Inertial Confinement Fusion Experiments
NASA Astrophysics Data System (ADS)
Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team
2016-10-01
Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.
The effects of space radiation on thin films of YBa2Cu3O(7-x)
NASA Technical Reports Server (NTRS)
Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.
1991-01-01
This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature T(sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method used in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.
The effects of space radiation on thin films of YBa2Cu3O(sub 7-x)
NASA Technical Reports Server (NTRS)
Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.
1990-01-01
This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature (T sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation of samples exposed to 10-Mrad in air was observed. This degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.
An MS-DOS-based program for analyzing plutonium gamma-ray spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W.D.; Buckley, W.M.
1989-09-07
A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.
Gamma Ray Bursts in the Swift-Fermi Era
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Razzaque, Soebur
2013-01-01
Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.
Grossrubatscher, E; Vignati, F; Dalino, P; Possa, M; Belloni, P A; Vanzulli, A; Bramerio, M; Marocchi, A; Rossetti, O; Zurleni, F; Loli, P
2005-01-01
Intraoperative [111In]-pentetreotide scintigraphy with a hand-held gamma detector probe has recently been proposed to increase the intraoperative detection rate of small neuroendocrine tumors and their metastases. We report a case of a 28-yr-old woman with ectopic Cushing's syndrome due to an ACTH-secreting bronchial carcinoid, in whom the use of radioguided surgery improved disease management. At presentation, radiolabeled pentetreotide scintigraphy was the only procedure able to detect the ectopic source of ACTH. After radiologic confirmation, the patient underwent removal of a bronchial carcinoid, with disease persistence. After surgery, pentetreotide scintigraphy showed pathologic uptake in the mediastinum not previously detected at surgery and only subsequently confirmed by radiologic studies. Despite a second thoracic exploration, hormonal, scintigraphic, and radiological evidence of residual disease persisted. Radioguided surgery was then performed using a hand-held gamma probe 48 h after iv administration of a tracer dose of radiolabeled [111In-DTPA-D-Phe1]-pentetreotide, which permitted detection and removal of multiple residual mediastinal lymph node metastases. Clinical and radiologic cure, with no evidence of tracer uptake at pentetreotide scintigraphy, was subsequently observed. The use of an intraoperative gamma counter appears a promising procedure in the management of metastatic ACTH-secreting bronchial carcinoids.
The Advanced Gamma-ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Buckley, James
2008-04-01
We describe a concept for a ˜km^2 ground-based gamma-ray experiment (AGIS) comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present the scientific drivers for AGIS including the prospects for contributions to understanding extragalactic sources such as nearby galaxies, active galaxies, galaxy clusters and GRB; galactic sources such as X-ray binaries, supernova remnants, and pulsar wind nebulae; as well as probes of fundamental physics including indirectly detecting dark matter and probing TeV-scale physics. With the current generation of atmospheric Cherenkov telescope arrays, TeV astronomy has become well established, with the number TeV gamma-ray sources now nearing 100, including many unidentified and serendipitous sources. Improvements in the instantaneous field of view, angular resolution, effective area and energy resolution of AGIS are certain to provide great scientific returns in high energy astrophysics as well as opening up new discovery space. Here we present an overview of the ongoing design studies for AGIS including the optimization of array parameters as well as an overview of the technical drivers for the observatory.
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Isheim, Dieter; Noebe, Ronald D.; Jacobson, Nathan S.; Seidman, David N.
2004-01-01
The influence of W on the temporal evolution of gamma' precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the gamma + gamma' two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped gamma' precipitates, 5-15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (approx. 10(exp 23/cu m). As gamma' precipitates grow with aging at 1073 K, a transition from spheriodal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the gamma' precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles of the quaternary alloy demonstrate that W concentration gradients exist in gamma' precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in gamma' is estimated to be 6.2 x 10(exp -20) sq m/s at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to gamma' and Cr to gamma.
Standardization of the neutron probe for the assessment of masonry deterioration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R.A.
1992-01-01
The repair of the infrastructure will require nondestructive methods to assess the condition of existing buildings and other structures, many of which are constructed of masonry. One possible technology is the neutron probe, a prompt-gamma neutron activation (PGNA) technique that can perform non- destructive elemental analyses in the field. It is based on a very low intensity [sup 252]Cf neutron source and a high-purity germanium detector for the gamma rays emitted by neutron capture within the material. The thermal neutron capture cross sections for hydrogen and chlorine are very large, and in masonry, these elements are found primarily in moisturemore » and chlorides. These are major causes of deterioration in porous materials such as brick masonry. The moisture damages the material through expansive stresses during freeze-thaw cycles. Chlorides also generate expansive stresses through periodic cycles of dissolution and recrystallization in response to relative humidity cycles in the atmosphere. Similar problems also occur in reinforced concrete, where chlorides cause additional damage through corrosion of the reinforcing steel. The sensitivity of the neutron probe to hydrogen and chlorine thus means it can be used to map the distribution of these agents of deterioration. Preliminary field work at Colonial Williamsburg and Venice, Italy, showed that the technique could yield useful qualitative information. However, to be a quantitative method, the neutron probe had to be standardized in the laboratory on materials of known composition and specified moisture and chloride content.« less
NASA Astrophysics Data System (ADS)
Wild, Walter James
1988-12-01
External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.
Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari
2009-03-01
A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.
Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S
2015-04-01
Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Probe measurements and numerical model predictions of evolving size distributions in premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippo, A.; Sgro, L.A.; Lanzuolo, G.
2009-09-15
Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less
Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H
1998-03-01
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.
Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz
1998-01-01
This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433
Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M
1990-07-01
The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell-type specific.
Investigation of remote sensing techniques of measuring soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.
1981-01-01
Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.
Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi
2009-01-01
Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.
NASA Astrophysics Data System (ADS)
Camp, Jordan; Transient Astrophysics Probe Team
2018-01-01
The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.
Vadose Zone Transport Field Study: Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gee, Glendon W.; Ward, Anderson L.
2001-11-30
Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less
Sentinel lymph node mapping in melanoma with technetium-99m dextran.
Neubauer, S; Mena, I; Iglesis, R; Schwartz, R; Acevedo, J C; Leon, A; Gomez, L
2001-06-01
The aim of this work is to evaluate the capability of Tc99m B Dextran as a lymphoscintigraphic agent in the detection of the sentinel node in skin lesions. Forty-one patients with melanomas (39) and Merkel cell tumors (2) had perilesional intradermal injection of Tc99m-Dextran 2 hours before surgery. Serial gamma camera images and a handheld gamma probe were used to direct sentinel node biopsy. In 39/41 patients, lymph channels and 52 sentinel nodes (one to three sentinel nodes/patient) could be visualized. In one patient, with a dorsal melanoma, no lymph channels or lymph nodes could be demonstrated on the images and only minimal radioactivity was found in the regional nodes with the probe. Another patient with a facial lesion failed to demonstrate lymph channels or nodes. No adverse reactions were observed. Tc99m-Dextran provided good definition of lymph channels and sentinel node localization, without the risks related to the use of potentially hazardous labeled materials of biological origin.
Integral-moment analysis of the BATSE gamma-ray burst intensity distribution
NASA Technical Reports Server (NTRS)
Horack, John M.; Emslie, A. Gordon
1994-01-01
We have applied the technique of integral-moment analysis to the intensity distribution of the first 260 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. This technique provides direct measurement of properties such as the mean, variance, and skewness of the convolved luminosity-number density distribution, as well as associated uncertainties. Using this method, one obtains insight into the nature of the source distributions unavailable through computation of traditional single parameters such as V/V(sub max)). If the luminosity function of the gamma-ray bursts is strongly peaked, giving bursts only a narrow range of luminosities, these results are then direct probes of the radial distribution of sources, regardless of whether the bursts are a local phenomenon, are distributed in a galactic halo, or are at cosmological distances. Accordingly, an integral-moment analysis of the intensity distribution of the gamma-ray bursts provides for the most complete analytic description of the source distribution available from the data, and offers the most comprehensive test of the compatibility of a given hypothesized distribution with observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habs, D.; Guenther, M. M.; Jentschel, M.
With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here wemore » describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.« less
Probing the standard model and beyond with CP violation and particle cosmology
NASA Astrophysics Data System (ADS)
Savastio, Michael Paul
We discuss topics related to CP violation and particle cosmology. First, we present some developments in improving the extraction of the CP violating parameter gamma from the decay B+/- → DK+/- followed by the subsequent decay D → KS pi +pi--. The mixing of the final state kaon is an additional CP violating effect which should be taken into account in the extraction of gamma, and we discuss how this should be done. We also discuss the optimization of phase space binning needed to extract gamma from these decays in a model independent way. Next, we discuss some cosmological constraints on R-parity violating, Minimally Flavor Violating (MFV) Supersymmetry (SUSY). Finally, we show that oribtally excited dark matter cannot persist over cosmic timescales for various model independent reasons.
Oliveira, Sabrina; Cohen, Ruth; Walsum, Marijke Stigter-van; van Dongen, Guus Ams; Elias, Sjoerd G; van Diest, Paul J; Mali, Willem; van Bergen En Henegouwen, Paul Mp
2012-09-25
We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation.
NASA Astrophysics Data System (ADS)
Shropshire, Steven Leslie
Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V
2015-06-01
Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing
2015-01-01
Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956
Direct Observations of Nucleation in a Nondilute Multicomponent Alloy
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.
2006-01-01
The chemical pathways leading to gamma'(L1(sub 2)) nucleation from nondilute Ni-5.2 Al-14.2 Cr at. %, gama(fcc), at 873 K are followed with radial distribution functions and isoconcentration surface analyses of direct-space atom-probe tomographic images. Although Cr atoms initially are randomly distributed, a distribution of congruent Ni3Al short-range-order domains (SRO), [R] approx. equals 0.6 nm, results from Al diffusion during quenching. Domain site occupancy develops as their number density increases leading to Al-rich phase separation by gamma'-nucleation, [R]=0.75 nm, after SRO occurs.
Intraoperative Imaging Guidance for Sentinel Node Biopsy in Melanoma Using a Mobile Gamma Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dengel, Lynn T; Judy, Patricia G; Petroni, Gina R
2011-04-01
The objective is to evaluate the sensitivity and clinical utility of intraoperative mobile gamma camera (MGC) imaging in sentinel lymph node biopsy (SLNB) in melanoma. The false-negative rate for SLNB for melanoma is approximately 17%, for which failure to identify the sentinel lymph node (SLN) is a major cause. Intraoperative imaging may aid in detection of SLN near the primary site, in ambiguous locations, and after excision of each SLN. The present pilot study reports outcomes with a prototype MGC designed for rapid intraoperative image acquisition. We hypothesized that intraoperative use of the MGC would be feasible and that sensitivitymore » would be at least 90%. From April to September 2008, 20 patients underwent Tc99 sulfur colloid lymphoscintigraphy, and SLNB was performed with use of a conventional fixed gamma camera (FGC), and gamma probe followed by intraoperative MGC imaging. Sensitivity was calculated for each detection method. Intraoperative logistical challenges were scored. Cases in which MGC provided clinical benefit were recorded. Sensitivity for detecting SLN basins was 97% for the FGC and 90% for the MGC. A total of 46 SLN were identified: 32 (70%) were identified as distinct hot spots by preoperative FGC imaging, 31 (67%) by preoperative MGC imaging, and 43 (93%) by MGC imaging pre- or intraoperatively. The gamma probe identified 44 (96%) independent of MGC imaging. The MGC provided defined clinical benefit as an addition to standard practice in 5 (25%) of 20 patients. Mean score for MGC logistic feasibility was 2 on a scale of 1-9 (1 = best). Intraoperative MGC imaging provides additional information when standard techniques fail or are ambiguous. Sensitivity is 90% and can be increased. This pilot study has identified ways to improve the usefulness of an MGC for intraoperative imaging, which holds promise for reducing false negatives of SLNB for melanoma.« less
Fission Signatures for Nuclear Material Detection
NASA Astrophysics Data System (ADS)
Gozani, Tsahi
2009-06-01
Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The trade off of signatures, their means of stimulation, and methods of detection, will be reviewed.
Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)
NASA Astrophysics Data System (ADS)
Satyal, Suman; Shastry, Kartik; Kalaskar, Sushant; Lim, Larry; Joglekar, Vibek; Weiss, Alexander
2009-10-01
Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Many surface probing techniques used till now have required UHV conditions to avoid data loss due to scattering of outgoing particles. Here we describe the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) for use in combined annihilation induced Auger and annihilation gamma measurements made under low pressure conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterle, W.; Krause, S.; Moelders, T.
2008-11-15
Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less
Neural network communication facilitates verbal working memory.
Kustermann, Thomas; Rockstroh, Brigitte; Miller, Gregory A; Popov, Tzvetan
2018-05-28
Oscillatory brain activity in the theta, alpha, and gamma frequency ranges has been associated with working memory (WM). In addition to alpha and theta activity associated with WM retention, and gamma band activity with item encoding, activity in the alpha band is related to the deployment of attention resources and information. The present study sought to specify distinct roles of neuromagnetic 4-7 Hz theta, 9-13 Hz alpha, and 50-70 Hz gamma power modulation and communication in fronto-parietal networks during cued, hemifield-specific item presentation in a modified Sternberg verbal WM task in 14 student volunteers. Lateralized posterior alpha and gamma power during encoding suggest a preparatory role of alpha oscillations. Bilateral alpha power increases during maintenance reflect information retention for the non-lateralized probe response. Lateralized alpha power increase during encoding was apparently driven by a monotonic increase in fronto-parietal 6 Hz phase, suggesting a mechanism facilitating WM encoding and successful performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer
Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.; ...
2015-03-21
The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less
Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.
The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less
NASA Technical Reports Server (NTRS)
McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)
1995-01-01
We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Crannell, H.; Ramaty, R.
1977-01-01
The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.
Investigation of redshift- and duration-dependent clustering of gamma-ray bursts
Ukwatta, T. N.; Woźniak, P. R.
2015-11-05
Gamma-ray bursts (GRBs) are detectable out to very large distances and as such are potentially powerful cosmological probes. Historically, the angular distribution of GRBs provided important information about their origin and physical properties. As a general population, GRBs are distributed isotropically across the sky. However, there are published reports that once binned by duration or redshift, GRBs display significant clustering. We have studied the redshift- and duration-dependent clustering of GRBs using proximity measures and kernel density estimation. Utilizing bursts detected by Burst and Transient Source Experiment, Fermi/gamma-ray burst monitor, and Swift/Burst Alert Telescope, we found marginal evidence for clustering inmore » very short duration GRBs lasting less than 100 ms. As a result, our analysis provides little evidence for significant redshift-dependent clustering of GRBs.« less
Flavored Dark Matter and the Galactic Center Gamma-Ray Excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Batell, Brian; Hooper, Dan
Thermal relic dark matter particles with a mass of 31-40 GeV and that dominantly annihilate to bottom quarks have been shown to provide an excellent description of the excess gamma rays observed from the center of the Milky Way. Flavored dark matter provides a well-motivated framework in which the dark matter can dominantly couple to bottom quarks in a flavor-safe manner. We propose a phenomenologically viable model of bottom flavored dark matter that can account for the spectral shape and normalization of the gamma-ray excess while naturally suppressing the elastic scattering cross sections probed by direct detection experiments. This modelmore » will be definitively tested with increased exposure at LUX and with data from the upcoming high-energy run of the Large Hadron Collider (LHC).« less
Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance
NASA Technical Reports Server (NTRS)
Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.
1980-01-01
The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.
Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M
Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...
2015-08-07
We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.
2016-11-15
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.
2016-11-01
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.
Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D
2016-11-01
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.
Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...
2016-08-30
A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less
Overview of lunar-based astronomy
NASA Technical Reports Server (NTRS)
Smith, Harlan J.
1988-01-01
The opportunities along with the advantages and disadvantages of the Moon for astronomical observatories are carefully and methodically considered. Taking a relatively unbiased approach, it was concluded that lunar observatories will clearly be a major factor in the future of astronomy in the next century. He concludes that ground based work will continue because of its accessibility and that Earth orbital work will remain useful, primarily for convenience of access in constructing and operating very large space systems. Deep space studies will feature not only probes but extensive systems for extremely long baseline studies at wavelengths from gamma rays through visible and IR out to radio is also a conclusion drawn, along with the consideration that lunar astronomy will have found important permanent applications along lines such as are discussed at the present symposium and others quite unsuspected today.
Associated-particle sealed-tube neutron probe for nonintrusive inspection
NASA Astrophysics Data System (ADS)
Rhodes, E.; Dickerman, C. E.
1997-02-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential for the associated-particle method to move out of the laboratory into field applications. This paper is a review of ANL investigations of this technology. Alpha particles associated with 14-MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha-detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-rays and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth electronics. When a compact sealed-tube neutron generator is used, a relatively small and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of-concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Efficient collection of maximum information from each detected neutron with low background rates can allow a much lower source intensity than pulsed accelerator methods and yield a preference for an APSTNG system, when it can provide adequate usable source intensity. Based on lessons learned with the present system, an advanced APSTNG system is being designed and built that will be transportable and yield substantial increases in neutron output and target lifetime.
Jaeger, Christian; Hemmann, Felix
2014-01-01
Elimination of Artifacts in NMR SpectroscopY (EASY) is a simple but very effective tool to remove simultaneously any real NMR probe background signal, any spectral distortions due to deadtime ringdown effects and -specifically- severe acoustic ringing artifacts in NMR spectra of low-gamma nuclei. EASY enables and maintains quantitative NMR (qNMR) as only a single pulse (preferably 90°) is used for data acquisition. After the acquisition of the first scan (it contains the wanted NMR signal and the background/deadtime/ringing artifacts) the same experiment is repeated immediately afterwards before the T1 waiting delay. This second scan contains only the background/deadtime/ringing parts. Hence, the simple difference of both yields clean NMR line shapes free of artefacts. In this Part I various examples for complete (1)H, (11)B, (13)C, (19)F probe background removal due to construction parts of the NMR probes are presented. Furthermore, (25)Mg EASY of Mg(OH)2 is presented and this example shows how extremely strong acoustic ringing can be suppressed (more than a factor of 200) such that phase and baseline correction for spectra acquired with a single pulse is no longer a problem. EASY is also a step towards deadtime-free data acquisition as these effects are also canceled completely. EASY can be combined with any other NMR experiment, including 2D NMR, if baseline distortions are a big problem. © 2013 Published by Elsevier Inc.
Local application of antirabies gamma-globulin in dried form for the prevention of rabies
Soloviev, V. D.; Kobrinski, G. D.
1962-01-01
The authors report on guinea-pig experiments conducted to determine the effect of dried antirabies gamma-globulin in the local treatment of wounds infected with street rabies. The results showed that local application of dried gamma-globulin within 30 minutes of the time of infection of the wound protected the majority of animals and resulted in a considerably longer incubation period in the remainder than in the controls. When the preparation was applied later than 30 minutes after infection, the therapeutic effect was slight or absent. Optimum protection in these experiments was obtained through rapid application of gamma-globulin, followed by vaccination every other day for six days. Dried antirabies gamma-globulin exerts a specific, local action on the rabies virus and is entirely painless and non-destructive to body tissues. PMID:13915039
Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen
2011-11-01
To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.
Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology.
Tanaka, Tsuyoshi; Hatakeyama, Keiichi; Sawaguchi, Masahiro; Iwadate, Akihito; Mizutani, Yasushi; Sasaki, Kazuhiro; Tateishi, Naofumi; Takeyama, Haruko; Matsunaga, Tadashi
2006-09-05
A thin film transistor (TFT) photosensor fabricated by semiconductor integrated circuit (IC) technology was applied to DNA chip technology. The surface of the TFT photosensor was coated with TiO2 using a vapor deposition technique for the fabrication of optical filters. The immobilization of thiolated oligonucleotide probes onto a TiO2-coated TFT photosensor using gamma-aminopropyltriethoxysilane (APTES) and N-(gamma-maleimidobutyloxy) sulfosuccinimide ester (GMBS) was optimized. The coverage value of immobilized oligonucleotides reached a plateau at 33.7 pmol/cm2, which was similar to a previous analysis using radioisotope-labeled oligonucleotides. The lowest detection limits were 0.05 pmol/cm2 for quantum dot and 2.1 pmol/cm2 for Alexa Fluor 350. Furthermore, single nucleotide polymorphism (SNP) detection was examined using the oligonucleotide-arrayed TFT photosensor. A SNP present in the aldehyde dehydrogenase 2 (ALDH2) gene was used as a target. The SNPs in ALDH2*1 and ALDH2*2 target DNA were detected successfully using the TFT photosensor. DNA hybridization in the presence of both ALDH2*1 and ALDH2*2 target DNA was observed using both ALDH2*1 and ALDH2*2 detection oligonucleotides-arrayed TFT photosensor. Use of the TFT photosensor will allow the development of a disposable photodetecting device for DNA chip systems. (c) 2006 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1989-01-01
The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.
High-redshift galaxy populations.
Hu, Esther M; Cowie, Lennox L
2006-04-27
We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.
2008-05-04
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is moved toward the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-04
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is moved into the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
Features in the spectra of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy
1993-01-01
Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.
2008-05-15
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., photographers take photos of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. Photographers take closeup shots of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing at Astrotech in Titusville, Fla. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
Toward structural elucidation of the gamma-secretase complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Wolfe, M. S.; Selkoe, D. J.
2009-03-11
{gamma}-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid {beta}-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating itsmore » detailed structure.« less
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians give NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft a final cleaning. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians give NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft a final cleaning. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- A closeup of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing at Astrotech in Titusville, Fla. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- TvTechnicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M
2017-01-01
The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Production and Applications of Long-Lived Positron-Emitting Radionuclides
NASA Astrophysics Data System (ADS)
Graves, Stephen A.
Positron emission tomography (PET) is a medical imaging modality capable of determining the in vivo spatial distribution of a biologically relevant molecule which has been labeled with a positron-emitting isotope. The use of molecules such as monoclonal antibodies and nanoparticles for therapeutic and diagnostic applications has expanded preclinically in recent years. As these larger molecules tend to have longer circulation times and slow clearance kinetics, positron-emitting isotopes with half-lives longer than conventional medical radioisotopes are required for PET applications. This dissertation details methods for the production of 51Mn (t1/2: 45.4 min), 52gMn (t1/2: 5.59 d), 64Cu (t1/2: 12.7 h), 76Br (t1/2: 16.2 h), 89Zr (t1/2: 3.27 d), and 194Au (t1/2: 38.0 h) on low-energy medical cyclotrons, including targetry considerations, radiochemical separation methods, and analysis of resulting purity. Pursuant to the production of these isotopes, several instrumentation developments have been made including implementation of an automatic nuclide identification library for gamma spectroscopy; development of methods for dead time correction and background estimation in auto-gamma counting; and the creation of a new linearly-filled Derenzo-type PET phantom. Measurement of the radioactive half-lives of 51Mn and 52gMn are presented in addition to their use in a variety of preclinical molecular imaging applications, including immunoPET, stem cell tracking, functional beta-cell mass determination, and probing the impact of isoflurane on acute pancreatic function. An analytic model of effective specific activity is formed and tested against preliminary trace metal analysis results. Measurements of excitation functions for the large-scale production of medically relevant isotopes, including 52gMn, at the Los Alamos National Laboratory Isotope Production Facility (100 MeV p+) are presented. The results described herein have enabled and informed a variety of novel investigations in the fields of nuclear medicine and molecular imaging.
NASA Astrophysics Data System (ADS)
Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan
2017-10-01
Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Results and prospects in multi-messenger particle astrophysics
NASA Astrophysics Data System (ADS)
Mostafa, Miguel
2017-01-01
In high-energy particle astrophysics the old days were certainly not better than these. Our field has thrived in the past decade with experiments covering thousands of square kilometers to measure the suppression in the flux of the highest energy cosmic rays ever observed, instrumenting a cubic kilometer of Antarctic ice to discover astrophysical neutrinos, and measuring a change in arm length as small as 10-19 m for the ground-breaking direct observation of gravitational waves. Additionally, the current generation of space-borne and ground-based gamma-ray experiments have revealed a plethora of gamma-ray sources, including pulsars, compact binaries, the galactic center, and extragalactic sources such as starburst galaxies and radio galaxies. Before the next generation of instruments bring us yet another order of magnitude in sensitivity, we can combine current observations to probe physics beyond the standard model, and to extend the high-energy frontier well above the energies accessible to laboratory accelerators. One example of this potential is the search for dark-matter annihilation and decay products. To use the multi-messenger approach effectively for probing dark-matter signatures and physics beyond the LHC energy requires understanding the origin (or acceleration mechanism) and the propagation processes. High energy protons and nuclei, neutrinos, gamma-rays, X-rays, and gravitational waves bring new and complementary views of the astrophysical sources. By comparing observations through different windows, we can use the sites of violent phenomena as a laboratory to probe the physical processes under extreme conditions throughout the Universe, and to test the fundamental laws of particle physics and gravitation. As a community we need to engage in a bold synergistic approach to understanding the violent processes that give rise to the high-energy cosmic phenomena in the Universe. In this invited talk, I will present on-going multi-messenger studies to obtain new information about cosmic sources, and I will discuss the prospects of combining data from the electromagnetic, particle, and gravitational windows to advance high energy astrophysics into a new era.
Broadband observations of the naked-eye gamma-ray burst GRB 080319B.
Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N
2008-09-11
Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.
TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields
NASA Technical Reports Server (NTRS)
Stecker, F. W.; De Jager, O. C.; Salamon, M. H.
1992-01-01
The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.
2017-11-01
Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.
Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)
NASA Astrophysics Data System (ADS)
Satyal, S.; Joglekar, P.; Kalaskar, S.; Shastry, K.; Weiss, A. H.
2010-03-01
Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. We present the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. This new system will enable us to probe the surface and gather defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is maintained under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures. These new technique help to understand the charge transfer mechanisms at the surface.
Carrasco-Casado, Alberto; Vilera, Mariafernanda; Vergaz, Ricardo; Cabrero, Juan Francisco
2013-04-10
The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.
NASA Technical Reports Server (NTRS)
Helgason, Kari; Kashlinsky, Alexander
2012-01-01
Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.
Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program
NASA Technical Reports Server (NTRS)
Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.;
2011-01-01
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
Hou, X.; Smith, D. A.; Guillemot, L.; ...
2014-10-14
Context. Here, GeV gamma-ray pulsations from over 140 pulsars have been characterized using the Fermi Large Area Telescope, enabling improved understanding of the emission regions within the neutron star magnetospheres, and the contributions of pulsars to high energy electrons and diffuse gamma rays in the Milky Way. The first gamma-ray pulsars to be detected were the most intense and/or those with narrow pulses. Aims. As the Fermi mission progresses, progressively fainter objects can be studied. In addition to more distant pulsars (thus probing a larger volume of the Galaxy), or ones in high background regions (thus improving the sampling uniformitymore » across the Galactic plane), we detect pulsars with broader pulses or lower luminosity. Adding pulsars to our catalog with inclination angles that are rare in the observed sample, and/or with lower spindown power, will reduce the bias in the currently known gamma-ray pulsar population. Methods. We use rotation ephemerides derived from radio observations to phase-fold gamma rays recorded by the Fermi Large Area Telescope, to then determine the pulse profile properties. Spectral analysis provides the luminosities and, when the signal-to-noise ratio allows, the cutoff energies. We constrain the pulsar distances by different means in order to minimize the luminosity uncertainties. Results. We present six new gamma-ray pulsars with an eclectic mix of properties. Three are young, and three are recycled. They include the farthest, the lowest power, two of the highest duty-cycle pulsars seen, and only the fourth young gamma-ray pulsar with a radio interpulse. Finally, we discuss the biases existing in the current gamma-ray pulsar catalog, and steps to be taken to mitigate the bias.« less
First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
Razzano, M.
2009-04-01
The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.
A new gamma ray imaging diagnostic for runaway electron studies at DIII-D
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.
2015-11-01
A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry
2009-12-01
Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.
Shaw, Patrick J; Ditewig, Amy C; Waring, Jeffrey F; Liguori, Michael J; Blomme, Eric A; Ganey, Patricia E; Roth, Robert A
2009-01-01
The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.
Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy
NASA Astrophysics Data System (ADS)
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco
2016-08-01
Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.
Sizing up the population of gamma-ray binaries
NASA Astrophysics Data System (ADS)
Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick
2017-12-01
Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
A measurement of perpendicular current density in an aurora
NASA Technical Reports Server (NTRS)
Bering, E. A.; Mozer, F. S.
1975-01-01
A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.
Application of whole-body personal TL dosemeters in mixed field beta-gamma radiation.
Ciupek, K; Aksamit, D; Wołoszczuk, K
2014-11-01
Application of whole-body personal TL dosemeters based on a high-sensitivity LiF:Mg,Cu,P (MCP-N) in mixed field beta-gamma radiation has been characterised. The measurements were carried out with (90)Sr/(90)Y, (85)Kr and (137)Cs point sources to calculate the energy response and linearity of the TLD response in a dose range of 0.1-30 mSv. From the result, calibration curves were obtained, enabling the readout of individual dose equivalent Hp(10) from gamma radiation and Hp(0.07) from beta radiation in mixed field beta-gamma. Limitation of the methodology and its application are presented and discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Application of neutron-gamma analysis for determination of C/N ratio in compost
USDA-ARS?s Scientific Manuscript database
Neutron-gamma analysis is based on the acquisition of gamma rays from neutron irradiated study objects. The intensity and energy of the registered gamma rays gives information on the types and amounts of elements in the studied object. The use of this method for measurements of soil carbon demonstra...
Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera
NASA Astrophysics Data System (ADS)
Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.
2018-03-01
In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.
Delayed Gamma-ray Spectroscopy for Safeguards Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozin, Vladimir
The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.« less
Computed radiography as a gamma ray detector—dose response and applications
NASA Astrophysics Data System (ADS)
O'Keeffe, D. S.; McLeod, R. W.
2004-08-01
Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.
The Dynamics of a Periodically Forced Cortical Microcircuit, With an Application to Schizophrenia
NASA Astrophysics Data System (ADS)
Vierling-Claassen, Dorea; Kopell, Nancy
2009-01-01
Synchronous neural activity in the brain in the gamma and beta frequency bands (50-70 Hz)is thought to be important for sensory processing and is altered in schizophrenia. In a previous study, gamma/beta click-train auditory stimuli were used to probe cortical oscillatory activity in control and schizophrenic subjects. We found that control subjects exhibited preferential 40 Hz responses to both 20 and 40 Hz stimulations, while schizophrenic subjects had enhanced 20 Hz responses to the same stimuli [D. Vierling-Claassen, P. Siekmeier, S. Stufflebeam, and N. Kopell, J. Neurophysiol., 99 (2008), p. 2656]. High-dimensional computational network models constructed previously, which were based on evidence of altered inhibition in schizophrenia, numerically generated the entrainment behaviors observed experimentally. However, questions regarding the dynamic origin of model behaviors remained. It was not clear that the 20 Hz response to 40 Hz drive in the schizophrenic network was robust to parameter changes, which would be necessary for the predicted mechanism to explain data from a heterogeneous subject population. In the schizophrenic network we observed 30 Hz drive responses with a frequency component below 30 Hz, for which no analogue appeared in experimental data, and wondered if these were dynamically distinct from the modeled 20 Hz response to 40 Hz drive. We also wished to explore the role of background noise in model behavior. To address these questions, we consider a system of two mutually coupled oscillators representative of neural cells, driven periodically in the gamma/beta frequency band. We show that there is a one-parameter family of discontinuous discrete maps, whose dynamics clarifies issues of robustness, classifies entrainment patterns, and provides insight into the role of excitatory noise.
Intrinsically radiolabelled [(59)Fe]-SPIONs for dual MRI/radionuclide detection.
Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal
2014-01-01
Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [(59)Fe]-superparamagnetic iron oxide nanoparticles ([(59)Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. (59)Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [(59)Fe]-SPIONs. The transverse relaxivity of [(59)Fe]-SPIONs (97±3 s(-1)mM(-1)) was characterized and found to be similar to non-radioactive SPIONs (72±10 s(-1)mM(-1)), indicating that (59)Fe incorporation does not alter the SPIONs' MRI contrast properties. [(59)Fe]-SPIONs were used to evaluate the nanoparticle biodistribution by ex vivo gamma counting and MRI. Nude mice (n=15) were injected with [(59)Fe]-SPIONs and imaged at various time points with 7T small animal MRI scanner. Ex vivo biodistribution was evaluated by tissue-based gamma counting. MRI signal contrast qualitatively correlates with the %ID/g of [(59)Fe]-SPIONs, with high contrast in liver (45±6%), medium contrast in kidneys (21±5%), and low contrast in brain (4±6%) at 24 hours. This work demonstrates the synthesis and in vivo application of intrinsically radiolabeled [(59)Fe]-SPIONs for bimodal detection and provides a proof of concept for incorporation of both gamma- and positron-emitting inorganic radionuclides into the core of metal based MRI contrast agent nanoparticles.
Revealing the supernova-gamma-ray burst connection with TeV neutrinos.
Ando, Shin'ichiro; Beacom, John F
2005-08-05
Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.
A summary of the results from the UCLA OGO-5 fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.; Russell, C. T.
1973-01-01
The OGO-5 fluxgate magnetometer experiment (E-14) was designed to measure the vector magnetic field over the full range of the OGO-5 orbit. Thus, it had a dynamic range of + or - 64,000 gamma yet it maintained a precision of + or - 1/16 gamma at all times. This enabled a broad spectrum of problems to be attached. Studies of the magnetospheric waves, currents, waves-particle interactions, pitch angle distributions and wave normal directions were made. The structure of the magnetopause, the magnetotail, and bow shock were probed, waves and discontinuities in the solar wind were examined and the various phases of substorms were examined in depth.
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for star tracker sun shade installation. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Cory Huston
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker adjusts the star tracker sun shade installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install another of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install one of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker adjusts the star tracker sun shades installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., a worker cleans around the area where star tracker sun shades will be installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., the star tracker sun shades are waiting to be installed on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for star tracker sun shade installation. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Cory Huston
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians install insulation blankets around the star tracker sunshades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-23
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., workers install one of the star tracker sun shades on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Kim Shiflett
2008-05-04
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is moved out of the Astrotech payload processing facility in Titusville, Fla. It is being transported to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
Dependence of Interfacial Excess on the Threshold Value of the Isoconcentration Surface
NASA Technical Reports Server (NTRS)
Yoon, Kevin E.; Noebe, Ronald D.; Hellman, Olof C.; Seidman, David N.
2004-01-01
The proximity histogram (or proxigram for short) is used for analyzing data collected by a three-dimensional atom probe microscope. The interfacial excess of Re (2.41 +/- 0.68 atoms/sq nm) is calculated by employing a proxigram in a completely geometrically independent way for gamma/gamma' interfaces in Rene N6, a third-generation single-crystal Ni-based superalloy. A possible dependence of interfacial excess on the variation of the threshold value of an isoconcentration surface is investigated using the data collected for Rene N6 alloy. It is demonstrated that the dependence of the interfacial excess value on the threshold value of the isoconcentration surface is weak.
Three Decades of High Energy Transients
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2012-01-01
Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 24) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from several magnetar sources. In total, six new sources were discovered between 2008 and 2011, with a synergy between Swift, RXTE, Fermi and the Interplanetary Network (IPN). I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts.
In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
Le, M K; Zhu, X M
2001-04-01
Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.
Future Gamma-Ray Imaging of Solar Eruptive Events
NASA Technical Reports Server (NTRS)
Shih, Albert
2012-01-01
Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.
A future wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Mostafa, Miguel; HAWC Collaboration
2017-01-01
High-energy gamma-ray observations are an essential probe of cosmic-ray acceleration. Detection of the highest energies and the shortest timescales of variability are key motivations when designing the next generation of gamma-ray experiments. The Milagro experiment was the first-generation of gamma-ray detectors based on the water-Cherenkov technique, and demonstrated that it is possible to continuously monitor a large fraction of the TeV sky. The second-generation water-Cherenkov experiment, the High Altitude Water Cherenkov observatory, consists of an array of 300 water-Cherenkov detectors covering an area of 22,000 m2 at 4,100 m a.s.l. The larger effective area, the higher altitude, and the optical isolation of the detectors led to a 15-fold increase in sensitivity relative to Milagro. Instruments with a wide field of view and large duty cycle are capable of surveying the TeV sky, mapping the diffuse emission, detecting emission from extended regions, and observing transient events such as gamma ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the preliminary design of a third-generation water-Cherenkov observatory located at very high altitude in South America.
A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, Alejandro; Grunfeld, Christian
2016-02-01
The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.
Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources
NASA Astrophysics Data System (ADS)
Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi
2018-02-01
Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.
Reproducibility of the cutoff probe for the measurement of electron density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D. W.; Oh, W. Y.; You, S. J., E-mail: sjyou@cnu.ac.kr
2016-06-15
Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e.,more » there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahe, Charly; Chabal, Caroline
2013-07-01
The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, themore » radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used to quantify the activity of hot spots and can also then be entered in 3D models of nuclear plants to simulate intervention scenarios. Recent developments and results will be presented regarding this. Finally, thanks to a large amount of feedback, the interest of using complementary measurements will be discussed. In fact, the recent use of 3D simulation codes requires very accurate knowledge of nuclear plant radiological data. The use of coupled devices such as imaging devices, (gamma and alpha cameras), gamma spectrometry, dose rate mapping, collimated / un-collimated measurements and many other physical values gives an approach to the radiological knowledge of a process or plant with the lowest possible uncertainty. In line with this, the paper will conclude with the future developments and trials that could be assessed in that field of application. (authors)« less
{gamma}-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lister, M. L.; Hovatta, T.; Aller, M.
We investigate the Fermi Large Area Telescope {gamma}-ray and 15 GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 Degree-Sign during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED)more » parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing {gamma}-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the {gamma}-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-{gamma}-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.« less
The calculation of neutron capture gamma-ray yields for space shielding applications
NASA Technical Reports Server (NTRS)
Yost, K. J.
1972-01-01
The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
New applications and developments in the neutron shielding
NASA Astrophysics Data System (ADS)
Uğur, Fatma Aysun
2017-09-01
Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.
Outer planet entry probe system study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1972-01-01
General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M.
1995-06-01
We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealedmore » that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.« less
Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics
NASA Astrophysics Data System (ADS)
Kopac, D.; Mundell, C.
2015-07-01
It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.
Measuring Surface Bulk Elemental Composition on Venus
NASA Astrophysics Data System (ADS)
Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McClanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard
Bulk elemental composition measurements of the subsurface of Venus are challenging because of the extreme surface environment (462 ˚C, 93 bars pressure). Instruments provided by landed probes on the surface of Venus must therefore be enclosed in a pressure vessel. The high surface temperatures require a thermal control system that keeps the instrumentation and electronics within their operating temperature range for as long as possible. Currently, Venus surface probes can operate for only a few hours. It is therefore crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner1 oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x .9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays.
Statistical measurement of the gamma-ray source-count distribution as a function of energy
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...
2016-07-29
Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less
Yoo, Wook Jae; Shin, Sang Hun; Lee, Dong Eun; Jang, Kyoung Won; Cho, Seunghyun; Lee, Bongsoo
2015-01-01
We fabricated a small-sized, flexible, and insertable fiber-optic radiation sensor (FORS) that is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA) to obtain the energy spectra of radioactive isotopes. As an inorganic scintillator for gamma-ray spectroscopy, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal was used and two solid-disc type radioactive isotopes with the same dimensions, cesium-137 (Cs-137) and cobalt-60 (Co-60), were used as gamma-ray emitters. We first determined the length of the LYSO:Ce crystal considering the absorption of charged particle energy and measured the gamma-ray energy spectra using the FORS. The experimental results demonstrated that the proposed FORS can be used to discriminate species of radioactive isotopes by measuring their inherent energy spectra, even when gamma-ray emitters are mixed. The relationship between the measured photon counts of the FORS and the radioactivity of Cs-137 was subsequently obtained. The amount of scintillating light generated from the FORS increased by increasing the radioactivity of Cs-137. Finally, the performance of the fabricated FORS according to the length and diameter of the POF was also evaluated. Based on the results of this study, it is anticipated that a novel FORS can be developed to accurately measure the gamma-ray energy spectrum in inaccessible locations such as narrow areas and holes. PMID:26343667
Statistical measurement of the gamma-ray source-count distribution as a function of energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza
Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less
Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Weeks, Carrell E.
2005-01-01
Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.
Nuclear medicine imaging of locally advanced laryngeal and hypopharyngeal cancer
NASA Astrophysics Data System (ADS)
Medvedeva, A.; Chernov, V.; Zeltchan, R.; Sinilkin, I.; Bragina, O.; Chijevskaya, S.; Choynzonov, E.; Goldberg, A.
2017-09-01
The diagnostic capabilities of nuclear medicine imaging in the detection and assessment of the spread of laryngeal/hypopharyngeal cancer were studied. A total of 40 patients with histologically verified laryngeal and hypopharyngeal cancer and 20 patients with benign laryngeal lesions were included into the study. Submucosal injections of 99mTc-MIBI and 99mTc-Alotech were made around the tumor. Single photon emission computed tomography (SPECT) was performed 20 minutes after the injection of 99mTc-MIBI. Sentinel lymph nodes (SLNs) were detected in 26 patients. In 18 hours after the injection of 99mTc-Alotech, SPECT was performed. In 24 hours after the injection of 99mTc-Alotech, intraoperative SLN detection was performed using Gamma Finder II. SPECT with 99mTc-MIBI revealed laryngeal and hypopharyngeal tumors in 38 of the 40 patients. The 99mTc-MIBI uptake in metastatic lymph nodes was visualized in 2 (17%) of the 12 patients. Twenty eight SLNs were detected by SPECT and 31 SLNs were identified using the intraoperative gamma probe. The percentage of 99mTc-Alotech in the SLN was 5-10% of the radioactivity in the injection site by SPECT and 18-33% by intraoperative gamma probe detection. Thus, SPECT with 99mTc-MIBI is an effective tool for the diagnosis of laryngeal/hypopharyngeal cancer. The sensitivity, specificity and accuracy of this technique were 95%, 80% and 92%, respectively. The use of 99mTc-Alotech for the detection of SLNs in patients with laryngeal/hypopharyngeal cancer is characterized by 92.8% sensitivity.
Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae
2018-06-28
The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these new probes will be discussed with a special focus on day-one experiments and associated novel instrumentation. © 2018 IOP Publishing Ltd.
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... nanostructures. This instrument combines an optical microscope with a scanning probe imaging system. Specifically... soft materials than other instruments, as it detects the probe coming close to the sample surface by... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probe...
NASA Astrophysics Data System (ADS)
Gerstl, Stephan S. A.
Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.
MCNPX evaluation of gamma spectrometry results in high radon concentration areas.
Thinová, L; Solc, J
2014-07-01
The radon concentration in underground workplaces may reach tens of thousands of Bq m(-3). A simple MCNPXTM Monte Carlo (MC) model of a cave was developed to estimate the influence of radon on the in situ gamma spectrometry results in various geometries and radon concentrations. The detector total count rate was obtained as the sum of the individual count rates due to 214Bi in the air, radon in the walls and deposition of radon daughters on surfaces. The MC model was then modified and used in the natural conditions of the Mladeč Caves, Czech Republic. The content of 226Ra was calculated from laboratory gamma spectrometry measurements, and the concentrations of unattached and attached 214Bi were measured using the FRITRA4 device (SMM-Prague). We present a comparison of the experimental results with results calculated by the MCNPXTM model of the Gamma Surveyor spectrometry probe (GF Instruments) with a 3″×3″ NaI(Tl) detector and a 2″×2″ BGO detector. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bastos, André M.; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K.
2018-01-01
All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50–250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4–22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. PMID:29339471
Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K
2018-01-30
All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.
Mayoral, M; Paredes, P; Sieira, R; Vidal-Sicart, S; Marti, C; Pons, F
2014-01-01
The use of sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity is still subject to debate although some studies have reported its feasibility. The main reason for this debate is probably due to the high false-negative rate for floor-of-mouth tumors per se. We report the case of a 54-year-old man with a T1N0 floor-of-mouth squamous cell carcinoma who underwent the sentinel lymph node procedure. Lymphoscintigraphy and SPECT/CT imaging were performed for lymphatic mapping with a conventional gamma camera. Sentinel lymph nodes were identified at right Ib, left IIa and Ia levels. However, these sentinel lymph nodes were difficult to detect intraoperatively with a gamma probe owing to the activity originating from the injection site. The use of a portable gamma camera made it possible to localize and excise all the sentinel lymph nodes. This case demonstrates the usefulness of this tool to improve sentinel lymph node detecting in floor-of-mouth tumors, especially those close to the injection area. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.
2013-04-01
A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.
NASA Astrophysics Data System (ADS)
Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.
2016-12-01
Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.
NASA Astrophysics Data System (ADS)
Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.
2016-10-01
An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.
An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.
Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A
2006-03-09
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.
The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics
NASA Astrophysics Data System (ADS)
Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration
2010-03-01
The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veres, P.; Dermer, C. D.; Dhuga, K. S.
The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less
Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology
NASA Astrophysics Data System (ADS)
Duplessis, Francis; Vachaspati, Tanmay
2017-05-01
Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.
COSMOLOGY WITH THE Ep,i - Eiso CORRELATION OF GAMMA-RAY BURSTS
NASA Astrophysics Data System (ADS)
Amati, Lorenzo
2012-03-01
Gamma-Ray Bursts (GRBs) are the brightest sources in the universe, emit mostly in the hard X-ray energy band and have been detected at redshifts up to about 8.2. Thus, they are in principle very powerful probes for cosmology. I shortly review the researches aimed to use GRBs for the measurement of cosmological parameters, which are mainly based on the correlation between spectral peak photon energy and total radiated energy or luminosity. In particular, based on an enriched sample of 120 GRBs, I will provide an update of the analysis by Amati et al. (2008) aimed at extracting information on ΩM and, to a less extent, on ΩΛ, from the Ep,i - Eiso correlation.
2008-06-11
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft atop the Delta II rocket is spotlighted after rollback of the mobile service tower on Cape Canaveral Air Force Station's Launch Pad 17-B. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Dimitri Gerondidakis
2008-02-06
KENNEDY SPACE CENTER, FLA. -- The truck carrying the United Launch Alliance Delta II first stage arrives at Hangar M on Cape Canaveral Air Force Station in Florida. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, in May from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/George Shelton
2008-02-19
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II second stage for GLAST has arrived at Hangar M and is prepared for weighing. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, May 16 from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-02-06
KENNEDY SPACE CENTER, FLA. -- The truck carrying the United Launch Alliance Delta II first stage backs into Hangar M on Cape Canaveral Air Force Station in Florida. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, in May from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/George Shelton
2008-06-11
CAPE CANAVERAL, Fla. -- Smoke is generated at liftoff of NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard a Delta II rocket from Cape Canaveral Air Force Station's Launch Pad 17-B. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Tony Gray, Regina Mitchell-Ryall
2008-06-11
CAPE CANAVERAL, Fla. -- Smoke envelops the Delta II rocket with NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard as it launches from Cape Canaveral Air Force Station's Launch Pad 17-B. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Jerry Cannon, Robert Murray
2008-06-11
CAPE CANAVERAL, Fla. -- Smoke is generated at liftoff of NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard a Delta II rocket from Cape Canaveral Air Force Station's Launch Pad 17-B. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Tony Gray, Regina Mitchell-Ryall
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians lower the overhead crane onto NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians stretch protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians prepare NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft for attachment of an overhead crane. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians stretch protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians begin placing a protective cover over NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. GLAST is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians lower NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft toward the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians lower NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft toward the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians check the placement of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft on the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft is being prepared for a move to an payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft will be installed on this payload attach fitting that will eventually be mated to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians prepare the payload attach fitting that will receive NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians check the attachment of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft on the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians prepare NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft for its move to the payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
Statistical modeling of space shuttle environmental data
NASA Technical Reports Server (NTRS)
Tubbs, J. D.; Brewer, D. W.
1983-01-01
Statistical models which use a class of bivariate gamma distribution are examined. Topics discussed include: (1) the ratio of positively correlated gamma varieties; (2) a method to determine if unequal shape parameters are necessary in bivariate gamma distribution; (3) differential equations for modal location of a family of bivariate gamma distribution; and (4) analysis of some wind gust data using the analytical results developed for modeling application.
Application of mobile gamma-ray spectrometry for soil mapping
NASA Astrophysics Data System (ADS)
Werban, Ulrike; Lein, Claudia; Pohle, Marco; Dietrich, Peter
2017-04-01
Gamma-ray measurements have a long tradition for geological surveys and deposit exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Thus, Gamma-ray spectrometry seems a useful tool for carrying out spatial mapping of physical parameters related to soil properties. The isotope concentration in soils depends on different soil parameters (e.g. geochemical composition, grain size fractions), which are a result of source rock properties and processes during soil geneses. There is a rising interest in the method for application in Digital Soil Mapping or as input data for environmental, ecological or hydrological modelling, e.g. as indicator for clay content. However, the gamma-ray measurement is influenced by endogenous factors and processes like soil moisture variation, erosion and deposition of material or cultivation. We will present results from a time series of car borne gamma-ray measurements to observe heterogeneity of soil on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4 l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different dates shows similar structures with small variation between the data ranges and shape of structures. We will present our experiences concerning the application of gamma-ray measurements under variable field conditions and their impacts on data quality.
Gamma ray constraints on the Galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.
1991-01-01
We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.
Gamma ray constraints on the galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.
1992-01-01
Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.
Brilliant gamma beams for industrial applications: new opportunities, new challenges
NASA Astrophysics Data System (ADS)
Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.
2016-10-01
The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.
beta- and gamma-Comparative dose estimates on Enewetak Atoll.
Crase, K W; Gudiksen, P H; Robison, W L
1982-05-01
Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.
2011-01-01
Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.
Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry
NASA Technical Reports Server (NTRS)
Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.
2013-01-01
The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.
CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A
Aliu, E.; Aune, T.; Barnacka, A.; ...
2014-10-10
In this study, prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is alsomore » evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. In conclusion, the non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.« less
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-04-01
The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less
Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination
2016-06-01
spectroscopy system: 1, Earth ground; 2, Shielding and vacuum chamber; 3, Probe station; 4, Ohmic contact; 5, Schottky Contact; 6, BNC cable; 7...NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR
Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.
Endlich, B; Salavati, R; Sullivan, T; Ling, C C
1992-12-01
Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Technical Reports Server (NTRS)
Ramaty, R.; Lingenfelter, R. E.
1986-01-01
Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Nucleic acid probes in diagnostic medicine
NASA Technical Reports Server (NTRS)
Oberry, Phillip A.
1991-01-01
The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.
Optical Sensors for Monitoring Gamma and Neutron Radiation
NASA Technical Reports Server (NTRS)
Boyd, Clark D.
2011-01-01
For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.
[Results of the EGRET Detector Program
NASA Technical Reports Server (NTRS)
Carter-Lewis, D. A.
1998-01-01
This NASA grant has funded studies of cosmic objects observed by both the EGRET detector aboard the Compton Gamma-ray Observatory and Whipple Gamma-ray imaging telescope. The former has sensitivity up to a few GeV and latter has sensitivity starting at about 200 GeV extending up to beyond 10 TeV. Thus these instruments probe some of the most energetic phenomena in the universe. This program has been in place for several years and led to important results referred to below. The Whipple Observatory Imaging Cherenkov Telescope consists of a 10-meter reflector with a nanosecond photomultiplier-tube camera at the focal plane. During the time period covered by this grant, it had either 109 pixels or 151 pixels on a 1/4 degree hexagonal pattern. As a TeV gamma ray enters the atmosphere, it produces an electron/positron pair initiating an extensive air shower. Cherenkov light from the electrons and positrons in the shower form an image of the shower at the phototube camera. The shape and intensity of this image is used to distinguish gamma-ray initiated showers from cosmic-ray (largely proton and alpha-particle) background showers and to derive an energy estimate for the primary gamma-ray. The Whipple Observatory gamma-ray collaboration pioneered this imaging technique which normally rejects over 99 percent of the cosmic-ray background while keeping over 70 percent of the gamma-ray signal. One of its key features is 2 large collection area which can exceed 50,000 meters. This grant covered primarily correlated observations of Markarian 421 and observations of the Cygnus region. The former resulted in a multiwavelength campaign showing correlations in several wavebands. The TeV data showed dramatic variability with the emission characterized by day-scale flickering and with now well defined steady component.
Application of gamma irradiation for inhibition of food allergy
NASA Astrophysics Data System (ADS)
Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun
2002-03-01
This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.
Use of particle beams for lunar prospecting
NASA Technical Reports Server (NTRS)
Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.
1993-01-01
A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.
2013-01-01
Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Kimberly A.
2009-08-01
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.
Use of CLYC spectrometer in counter-terrorism applications
NASA Astrophysics Data System (ADS)
Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.
2015-05-01
A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (< 4% for 662 keV gamma rays) and its capability for detection of thermal neutrons. The pulse shapes of the signals from the two radiations are different, which allow them to be separated electronically, permitting simultaneous detection of gamma rays and neutrons. The crystal is now commercially available. Early investigations of the neutron response by the current authors (2) revealed that CLYC also responds to fast neutrons. In fact, the good energy resolution of the response under monoenergetic neutron irradiations showed that CLYC was an excellent high-energy neutron spectrometer. This discovery has great impact on the field of neutron spectroscopy, which has numerous, although often specialized, applications. This presentation focuses on applications in counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.
NASA Astrophysics Data System (ADS)
Darwish, A. A. A.; Issa, Shams A. M.
2018-07-01
Naphthalocyanines have an important optical and electrical property, made it eligible to be a key utilitarian materials for a couple of special applications. Therefore, this study focused on the influence of gamma rays irradiation on the structure and optical properties of Vanadyl 2,3-naphthalocyanine (VONc) films. The VONc films have been prepared using the thermal evaporating technique. The investigated films were irradiated with gamma-rays 20, 40 and 60 kGy doses. X-ray diffraction exhibited that the as-deposited VONc films have nanostructure nature, which changed to the amorphous structure with gamma-rays radiation dosage. The optical results indicate that the optical absorption mechanism complied with the indirect allowed transition. It was observed also, there were no prominent changes found in the energy gap values when VONc films were exposed to gamma radiation. However, the optical conductivity rises with additional amounts of gamma-ray dose. This behavior may be attributed to the addition of electrons which freed by the incident photon energy because of a few changes in the film structure caused by the gamma-ray radiation. These outcomes illustrated that VONc films own the characteristics to be utilized in the field of optoelectronic applications.
Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.
2018-04-01
Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.
First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare
Pesce-Rollins, Melissa; Omodei, Nicola; Petrosian, V.; ...
2015-05-28
Here, we report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~9°.9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent withmore » the RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ~3.8. Furthermore, we show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less
FIRST DETECTION OF >100 MeV GAMMA-RAYS ASSOCIATED WITH A BEHIND-THE-LIMB SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesce-Rollins, M.; Omodei, N.; Petrosian, V.
2015-06-01
We report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ∼9.°9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ∼30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent with themore » RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ∼3.8. We show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less
Low energy prompt gamma-ray tests of a large volume BGO detector.
Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A
2012-01-01
Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.
Measurements of soil carbon by neutron-gamma analysis in static and scanning modes
USDA-ARS?s Scientific Manuscript database
The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detecto...
AMEGO as a supernova alarm: alert, probe and diagnosis of Type Ia explosions
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Wang, Xilu
2017-08-01
A Type Ia supernova (SNIa) could go entirely unnoticed in the Milky Way and nearby starburst galaxies, due to the large optical and near-IR extinction in the dusty environment, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit γ-ray lines from 56Ni → 56Co → 56Fe radioactive decay, spanning 158 keV to 2.6 MeV. The Galaxy and nearby starbursts are optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. The All-Sky Medium Energy Gamma-ray Observatory (AMEGO) will monitor the entire sky every 3 hours from ~200 keV to >10 GeV. Most of the SNIa gamma-ray lines are squarely within the AMEGO energy range. Thus AMEGO will be an ideal SNIa monitor and early warning system. We will show that the supernova signal is expected to emerge as distinct from the AMEGO background within days after the explosion in the SN2014J shell model. The early stage observations of SNIa will allow us to explore the progenitor types and the nucleosynthesis of SNIa. Moreover, with the excellent line sensitivity, AMEGO will be able to detect the SNIa at a rate of a few events per year and will obtain enough gamma-ray observations over the mission lifetimes (~10 SNIa) to sample the SNIa. The high SNIa detection rate will also enable the precise measurement of the 56Ni mass generated during the Type Ia explosion, which will help us test the cosmic distance calibration and probe the cosmic acceleration.
Breisblatt, W M; Schulman, D S; Follansbee, W P
1991-06-01
A new miniaturized nonimaging radionuclide detector (Cardioscint, Oxford, England) was evaluated for the continuous on-line assessment of left ventricular function. This cesium iodide probe can be placed on the patient's chest and can be interfaced to an IBM compatible personal computer conveniently placed at the patient's bedside. This system can provide a beat-to-beat or gated determination of left ventricular ejection fraction and ST segment analysis. In 28 patients this miniaturized probe was correlated against a high resolution gamma camera study. Over a wide range of ejection fraction (31% to 76%) in patients with and without regional wall motion abnormalities, the correlation between the Cardioscint detector and the gamma camera was excellent (r = 0.94, SEE +/- 2.1). This detector system has high temporal (10 msec) resolution, and comparison of peak filling rate (PFR) and time to peak filling (TPFR) also showed close agreement with the gamma camera (PFR, r = 0.94, SEE +/- 0.17; TPFR, r = 0.92, SEE +/- 6.8). In 18 patients on bed rest the long-term stability of this system for measuring ejection fraction and ST segments was verified. During the monitoring period (108 +/- 28 minutes) only minor changes in ejection fraction occurred (coefficient of variation 0.035 +/- 0.016) and ST segment analysis showed no significant change from baseline. To determine whether continuous on-line measurement of ejection fraction would be useful after coronary angioplasty, 12 patients who had undergone a successful procedure were evaluated for 280 +/- 35 minutes with the Cardioscint system.(ABSTRACT TRUNCATED AT 250 WORDS)
Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing.
McCracken, M K; Christofferson, R C; Chisenhall, D M; Mores, C N
2014-02-01
Dengue virus (DENV), the etiologic agent of dengue fever, is transmitted during probing of human skin by infected-mosquito bite. The expectorated viral inoculum also contains an assortment of mosquito salivary proteins that have been shown to modulate host hemostasis and innate immune responses. To examine the potential role of mosquito probing in DENV establishment within the vertebrate host, we inoculated mice intradermally with DENV serotype 2 strain 1232 at sites where Aedes aegypti had or had not probed immediately prior. We assayed these sites 3 h postinoculation with transcript arrays for the Toll-like receptor (TLR), RIG-I-like receptor, and NOD-like receptor signaling pathways of the innate immune system. We then chose TLR7, transcription factor p65 (RelA), gamma interferon (IFN-γ), and IFN-γ-inducible protein 10 (IP-10) from the arrays for further investigation and assayed these transcripts at 10 min, 3 h, and 6 h postinoculation. The transcripts for TLR7, RelA, IFN-γ, and IP-10 were significantly downregulated between 2- and 3-fold in the group subjected to mosquito probing relative to the virus-only inoculation group at 3 h postinoculation. A reduction in these transcripts could indicate reduced DENV recognition and antigen presentation and diminished inhibition of viral replication and spread. Further, mosquito probing resulted in viremia titers significantly higher than those in mice that did not receive probing. A. aegypti probing has a significant effect on the innate immune response to DENV infection and generates an early immune environment more permissive to the establishment of infection.
Fluorescent hybridization probes for nucleic acid detection.
Guo, Jia; Ju, Jingyue; Turro, Nicholas J
2012-04-01
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.
EXTASE - An Experimental Thermal Probe for Applications in Snow Research and Earth Sciences
NASA Astrophysics Data System (ADS)
Schroeer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.
2002-12-01
EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, funded by DLR. The application of this probe is to be tested in different fields, e.g. in snow research, agriculture, permafrost etc. The system consists of the probe itself with a portable field electronic and a computer for control of the system and storage of the data. The probe penetrates the surface ca. 32 cm deep and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: - no need to excavate material - minimized influence of the probe on the temperature field - minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Further applications could be e.g.: monitoring waste deposits and the heat released by decomposition, volcanology and ground truth for remote sensing. We present the general concept of the probe and also data obtained during different field measurement campaigns with prototypes of the probe.
The [Gamma] Algorithm and Some Applications
ERIC Educational Resources Information Center
Castillo, Enrique; Jubete, Francisco
2004-01-01
In this paper the power of the [gamma] algorithm for obtaining the dual of a given cone and some of its multiple applications is discussed. The meaning of each sequential tableau appearing during the process is interpreted. It is shown that each tableau contains the generators of the dual cone of a given cone and that the algorithm updates the…
NASA Astrophysics Data System (ADS)
Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.
2017-09-01
iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.
Diffusion coefficient of hydrogen in a cast gamma titanium aluminide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, P.A.; Wessel, E.; Ennis, P.J.
1999-06-04
Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of thismore » short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.« less
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Chao-Jun; Li, Xin-Zhou, E-mail: fengcj@shnu.edu.cn, E-mail: kychz@shnu.edu.cn
To probe the late evolution history of the universe, we adopt two kinds of optimal basis systems. One of them is constructed by performing the principle component analysis, and the other is built by taking the multidimensional scaling approach. Cosmological observables such as the luminosity distance can be decomposed into these basis systems. These basis systems are optimized for different kinds of cosmological models that are based on different physical assumptions, even for a mixture model of them. Therefore, the so-called feature space that is projected from the basis systems is cosmological model independent, and it provides a parameterization for studying and reconstructing themore » Hubble expansion rate from the supernova luminosity distance and even gamma-ray burst (GRB) data with self-calibration. The circular problem when using GRBs as cosmological candles is naturally eliminated in this procedure. By using the Levenberg–Marquardt technique and the Markov Chain Monte Carlo method, we perform an observational constraint on this kind of parameterization. The data we used include the “joint light-curve analysis” data set that consists of 740 Type Ia supernovae and 109 long GRBs with the well-known Amati relation.« less
Indirect detection of neutrino portal dark matter
NASA Astrophysics Data System (ADS)
Batell, Brian; Han, Tao; Shams Es Haghi, Barmak
2018-05-01
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxy and Galactic center gamma-ray observations, and AMS-02 antiproton observations, and we also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic center gamma-ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
Evaluation of directionally solidified eutectic superalloys for turbine blade applications
NASA Technical Reports Server (NTRS)
Henry, M. E.; Jackson, M. R.; Walter, J. L.
1978-01-01
Alloys from the following systems were selected for property evaluation: (1) gamma/gamma-Mo (Ni-base, rods of Mo); (2) gamma-beta (Ni-base, lamellae or rods of (Ni, Fe/Co Al); and (3) gamma-gamma (Ni-base rods of Ni3Al gamma). The three alloys were subjected to longitudinal and transverse tensile and rupture tests from 750 C to 1100 C, longitudinal shear strength was measured at several temperatures, resistance to thermal cycling to 1150 C was determined, cyclic oxidation resistance was evaluated at 750 C and 1100 C, and each system was directionally solidified in an alumina shell mold turbine shape to evaluate mold/metal reactivity. The gamma/gamma Mo system has good rupture resistance, transverse properties and processability, and is a high potential system for turbine blades. The gamma-beta system has good physical properties and oxidation resistance, and is a potential system for turbine vanes. The gamma-gamma system has good high temperature rupture resistance and requires further exploratory research.
Resolved Host Studies of Stellar Explosions
NASA Astrophysics Data System (ADS)
Levesque, Emily M.
The host galaxies of nearby (z<0.3) core-collapse supernovae and long-duration gamma-ray bursts offer an excellent means of probing the environments and populations that produce these events' varied massive progenitors. These same young stellar progenitors make LGRBs and SNe valuable and potentially powerful tracers of star formation, metallicity, the IMF, and the end phases of stellar evolution. However, properly utilizing these progenitors as tools requires a thorough understanding of their formation and, consequently, the physical properties of their parent host environments. In this talk I will review some of the recent work on LGRB and SN hosts with resolved environments that allows us to probe the precise explosion sites and surrounding environments of these events in incredible detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, James
2016-01-01
An analysis probing for the standard model production of three electroweak vector bosons, WVmore » $$\\gamma$$ with V = W or Z gauge boson, is presented. The W boson decays leptonically to an electron or muon, or their respective antiparticle, paired with the appropriate neutrino. The second boson V decays hadronically into two jets, and additionally a photon is required in the event. The data analyzed correspond to an integrated luminosity of 19.6~fb$$^{-1}$$ and 2.3~fb$$^{-1}$$ from proton-proton collisions at $$\\sqrt{s}$$ = 8~TeV and 13~TeV, respectively, collected in 2012 and 2015 by the CMS detector at the Large Hadron Collider. The event selection criteria used in these analyses yields 322 and 46 observed events in data in 2012 and 2015, respectively, while the estimated background yield from theoretical predictions is 342.1~$$\\pm$$~22.2 and 54.3~$$\\pm$$~17.7. These observations are consistent with the standard model next-to-leading order QCD predictions. Given the limitation in statistics to measure the cross section for this production process, an upper limit of 3.4 times the standard model predictions is made at a 95\\% confidence level for WV$$\\gamma$$ with photon $$p_{T}$$ greater than 30~GeV and absolute pseudorapidity less than 1.44. Physics beyond the standard model, such as anomalous couplings between the gauge bosons at the quartic vertex, may lead to enhancement in the number of WV$$\\gamma$$ events produced within high energy collisions. Such enhancements can be observed in kinematic distributions, particularly in the higher energy regions. No evidence of anomalous WW$$\\gamma\\gamma$$ and WWZ$$\\gamma$$ quartic gauge boson couplings is found, while 95\\% confidence level upper limits are obtained for various couplings.« less
DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaunay, J. J.; Murase, K.; Mészáros, P.
We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluencemore » ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.« less
Search for Indirect Signals of Dark Matter with The High Altitude Water Cherenkov (HAWC) Observatory
NASA Astrophysics Data System (ADS)
Baughman, Brian; Harding, Patrick; HAWC Collaboration
2015-04-01
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view observatory sensitive to 100 GeV-100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra volcano in Mexico, HAWC observes extensive air showers from gamma rays via their production of Cherenkov light within an array of water tanks. With a wide field-of-view observing 2/3 of the sky each day and a sensitivity of greater than 1 Crab per day, HAWC has the ability to probe a large fraction of the sky for the signals of TeV-mass dark matter. HAWC's sensitivity to dark matter for several astrophysical sources and some early limits from the built detector will be presented.
Imagine the Universe!. Version 2
NASA Technical Reports Server (NTRS)
Whitlock, Laura A.; Bene, Meredith; Cliffe, J. Allie; Lochner, James C.
1998-01-01
Imagine the Universe! gives students, teachers, and the general public a window on how high-energy astrophysics is used to probe the structure and evolution of the Universe. This is the universe as revealed by X-rays, gamma-rays and cosmic rays. Information about this exciting branch of astronomy is available in Imagine the Universe! at a variety of reading levels, and is illustrated with on-line graphics, animations, and movies. Information is presented on topics ranging from the Sun to black holes to X-ray and gamma-ray satellites. Imagine! also features a Teacher's Corner with study guides, lesson plans, and information on other education resources. Further descriptions of features of the Imagine! site and the other sites included on the CD-ROM may be found in sections V and VI of the booklet file.
2008-04-15
CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility near NASA's Kennedy Space Center, General Dynamics technicians, sitting beneath the Gamma-ray Large Area Space Telescope, or GLAST, position a high-gain antenna under the spacecraft before it is installed. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned in a window between 11:45 a.m. and 1:40 p.m. EDT May 16. Photo credit: NASA/Kim Shiflett
2008-06-11
CAPE CANAVERAL, Fla. -- Under cloud-dotted blue sky, NASA's Gamma-Ray Large Area Space Telescope , or GLAST, blasts off from Cape Canaveral Air Force Station's Launch Pad 17-B aboard a Delta II rocket. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Sandra Joseph, Kevin O'Connel
2008-06-11
CAPE CANAVERAL, Fla. -- The Delta II rocket with NASA's Gamma-Ray Large Area Space Telescope , or GLAST, on top is bathed in smoke just after liftoff from Cape Canaveral Air Force Station's Launch Pad 17-B. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Sandra Joseph, Kevin O'Connel
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, flame and smoke mark the launch of the Delta II rocket with NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Jerry Cannon, Robert Murray
2008-06-11
CAPE CANAVERAL, Fla. -- Smoke rises to obscure the Delta II rocket with NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard as it launches from Cape Canaveral Air Force Station's Launch Pad 17-B. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Tony Gray, Regina Mitchell-Ryall
2008-04-15
CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility near NASA's Kennedy Space Center, General Dynamics technicians prepare the Gamma-ray Large Area Space Telescope, or GLAST, for the installation of its high-gain antenna. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned in a window between 11:45 a.m. and 1:40 p.m. EDT May 16. Photo credit: NASA/Kim Shiflett
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-02-19
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II second stage for GLAST has arrived at Hangar M and is moved into place for weighing. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, May 16 from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-05-17
CAPE CANAVERAL, Fla. -- The GLAST spacecraft arrives at pad 17-B at Cape Canaveral Air Force Station aboard its transporter. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and attached to the Delta II second stage. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-04-15
CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility near NASA's Kennedy Space Center, General Dynamics technicians put the finishing touches on a high-gain antenna that will be installed on the Gamma-ray Large Area Space Telescope, or GLAST. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned in a window between 11:45 a.m. and 1:40 p.m. EDT May 16. Photo credit: NASA/Kim Shiflett
2008-06-11
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance
2008-06-11
CAPE CANAVERAL, Fla. -- Smoke appears to grab at the Delta II rocket as it launches from Cape Canaveral Air Force Station's Launch Pad 17-B with NASA's Gamma-Ray Large Area Space Telescope , or GLAST, aboard. Liftoff was at 12:05 p.m. EDT. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: NASA/Jerry Cannon, Robert Murray
2008-02-06
KENNEDY SPACE CENTER, FLA. -- Workers in Hangar M on Cape Canaveral Air Force Station in Florida open the truck trailer to offload the United Launch Alliance Delta II first stage. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, in May from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/George Shelton
2008-04-15
CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility near NASA's Kennedy Space Center, General Dynamics technicians prepare a high-gain antenna for installation on the Gamma-ray Large Area Space Telescope, or GLAST. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned in a window between 11:45 a.m. and 1:40 p.m. EDT May 16. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John; Carena, Marcela; Harnik, Roni
We consider interference between the Higgs signal and QCD background inmore » $$gg\\rightarrow h \\rightarrow \\gamma\\gamma$$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss potential width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly probe widths of order tens of MeV.« less
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians check the NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft after being lowered toward the transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians monitor NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft as it is lowered onto a transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians lift and move via an overhead crane NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft onto a transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians attach the cables to the overhead crane that will be used to lift NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., the overhead crane continues to lower NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft onto the transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians check various parts of NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft after its transfer to a transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-03
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility in Titusville, Fla., technicians check various parts of NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft after its transfer to a transporter. The spacecraft is being prepared for its move to the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Mike Kerley
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians begin lifting and moving NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft for its move to a payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft is being prepared for a move to an payload attach fitting, in the foreground, that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu
Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source.
Coulter, D A; Foley, R J; Kilpatrick, C D; Drout, M R; Piro, A L; Shappee, B J; Siebert, M R; Simon, J D; Ulloa, N; Kasen, D; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Rojas-Bravo, C
2017-12-22
On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations. Copyright © 2017, American Association for the Advancement of Science.
Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Singh, K. J.; Anand, Vikas
2014-04-01
The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Kim, Dong-Ho; Yook, Hong-Sun; Kim, Kyung-Soo; Kwon, Joong-Ho; Byun, Myung-Woo
2004-09-01
This study was carried out to evaluate the application of food irradiation as a method for extending shelf life of Kimchi. Gamma irradiation up to 10 kGy in the early stage of Kimchi fermentation had a dose-dependent effect on the inactivation of fermentative microbes, lowering the lactate dehydrogenase (LDH) activity and delaying acidification. Although gamma irradiation on the mid-fermentation stage of Kimchi inactivated the fermentative microbes effectively, LDH activity remained high and acidification continued. Kimchi irradiated at 10 kGy had lower scores in acceptability than those of control, 2.5 and 5 kGy irradiated. Therefore, gamma irradiation upto 5 kGy in the early fermentation stage is recommended for aging control and the improvement of shelf life of Kimchi.
NASA Astrophysics Data System (ADS)
Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.
2002-03-01
The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.
Hasanain, Fatima; Guenther, Katharina; Mullett, Wayne M; Craven, Emily
2014-01-01
Sterilization by gamma irradiation has shown a strong applicability for a wide range of pharmaceutical products. Due to the requirement for terminal sterilization where possible in the pharmaceutical industry, gamma sterilization has proven itself to be an effective method as indicated by its acceptance in the European Pharmacopeia and the United States Pharmacopeia ( ). Some of the advantages of gamma over competitive procedures include high penetration power, isothermal character (small temperature rise), and no residues. It also provides a better assurance of product sterility than aseptic processing, as well as lower validation demands. Gamma irradiation is capable of killing microorganisms by breaking their chemical bonds, producing free radicals that attack the nucleic acid of the microorganism. Sterility by gamma irradiation is achieved mainly by the alteration of nucleic acid and preventing the cellular division. This review focuses on the extensive application of gamma sterilization to a wide range of pharmaceutical components including active pharmaceutical ingredients, excipients, final drug products, and combination drug-medical devices. A summary of the published literature for each class of pharmaceutical compound or product is presented. The irradiation conditions and various quality control characterization methodologies that were used to determine final product quality are included, in addition to a summary of the investigational outcomes. Based on this extensive literature review and in combination with regulatory guidelines and other published best practices, a decision tree for implementation of gamma irradiation for pharmaceutical products is established. This flow chart further facilitates the implementation of gamma irradiation in the pharmaceutical development process. The summary therefore provides a useful reference to the application and versatility of gamma irradiation for pharmaceutical sterilization. Many pharmaceutical products require sterilization to ensure their safe and effective use. Sterility is therefore a critical quality attribute and is essential for direct injection products. Due to the requirement for terminal sterilization, where possible in the pharmaceutical industry sterilization by gamma irradiation has been commonly used as an effective method to sterilize pharmaceutical products as indicated by its acceptance in the European Pharmacopeia. Gamma sterilization is a very attractive terminal sterilization method in view of its ability to attain 10(-6) probability of microbial survival without excessive heating of the product or exposure to toxic chemicals. However, radiation compatibility of a product is one of the first aspects to evaluate when considering gamma sterilization. Gamma radiation consists of high-energy photons that result in the generation of free radicals and the subsequent ionization of chemical bonds, leading to cleavage of DNA in microorganisms and their subsequent inactivation. This can result in a loss of active pharmaceutical ingredient potency, the creation of radiolysis by-products, a reduction of the molecular weight of polymer excipients, and influence drug release from the final product. There are several strategies for mitigating degradation effects, including optimization of the irradiation dose and conditions. This review will serve to highlight the extensive application of gamma sterilization to a broad spectrum of pharmaceutical components including active pharmaceutical ingredients, excipients, final drug products, and combination drug-medical devices.
Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors
Staudinger, Christoph; Borisov, Sergey M
2016-01-01
Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed. PMID:27134748
Blasi, Francesco; Oliveira, Bruno L; Rietz, Tyson A; Rotile, Nicholas J; Day, Helen; Naha, Pratap C; Cormode, David P; Izquierdo-Garcia, David; Catana, Ciprian; Caravan, Peter
2016-01-01
The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific positron emission tomography probe 64Cu-FBP8. Here, we tested the feasibility of 64Cu-FBP8-PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of 64Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. Methods Sprague-Dawley rats (n=7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 days after deep vein thrombosis by intrajugular injection of a preformed blood clot labeled with 125I-Fibrinogen. PET imaging was performed to detect the clots, and single-photon emission tomography (SPECT) was used to confirm in vivo the location of the pulmonary emboli. Ex vivo gamma-counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n=30) at different time-points after 64Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n=2) was performed after 64Cu-FBP8 administration to further assess radioactivity clearance. Results 64Cu-FBP8-PET imaging detected the location of lung emboli and venous thrombi after DVT-PE, revealing significant differences in uptake between target and background tissues (P<0.001). In vivo SPECT imaging and ex vivo gamma-counting confirmed the location of the lung emboli. PET quantification of the venous thrombi revealed that probe uptake was greater in younger clots than in older ones, a result confirmed by ex vivo analyses (P<0.001). Histopathology revealed an age-dependent reduction of thrombus fibrin content (P=0.006), further supporting the imaging findings. Biodistribution and whole-body PET/MR imaging showed rapid, primarily renal, body clearance of 64Cu-FBP8. The effective dose was estimated to be 0.021 mSv/MBq for male and 0.027 mSv/MBq for female, supporting the feasibility of using 64Cu-FBP8 in human trials. Conclusions We showed that 64Cu-FBP8-PET is a feasible approach to image DVT-PE, and that radiogenic adverse health effects should not limit the clinical translation of 64Cu-FBP8. PMID:25977464
PELAN: a pulsed neutron portable probe for UXO and land mine identification
NASA Astrophysics Data System (ADS)
Vourvopoulos, George; Womble, Phillip C.; Paschal, Jonathon
2000-12-01
There has been much work increasing the sensitivity of detecting metallic objects in soils and other environments. This has lead to a problem in discriminating unexploded ordnance (UXO) and landmines form other metallic clutter. PELAN is a small portable system for the detection of explosives. PELAN weights less than 45 kg and is man portable. It is based on the principle that explosives and other contraband contain various chemical elements such as H, C, N, O, etc. in quantities and ratios that differentiate them from other innocuous substances. The pulsed neutrons are produced with a 14 MeV neutron generator. Separate gamma-ray spectra form fast neutron, thermal neutron and activation reactions are accumulated and analyzed to determine elemental content. The data analysis is performed in an automatic manner and a result of whether a threat is present is returned to the operator. PELAN has successfully undergone field demonstrations for explosive detection. In this paper, we will discuss the application of PELAN to the problem of differentiating threats from metallic clutter.
Applications of Laser Scattering Probes to Turbulent Diffusion Flames
1983-11-01
APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, H.; Barat, E.; Carrel, F.
In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)
Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.
Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E
2006-07-13
The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.
Gamma Ray Burst Discoveries by the Swift Mission
NASA Astrophysics Data System (ADS)
Gehrels, N.; Swift Team
2005-12-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.
Gamma Ray Burst Discoveries by the Swift Mission
NASA Astrophysics Data System (ADS)
Gehrels, Neil
2006-04-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.
Gamma Ray Burst Discoveries by the Swift Mission
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2006-01-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.
Gamma Ray Burst Discoveries by the Swift Mission
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2006-01-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery
2006-05-01
Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.
Bioresponsive probes for molecular imaging: concepts and in vivo applications.
van Duijnhoven, Sander M J; Robillard, Marc S; Langereis, Sander; Grüll, Holger
2015-01-01
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III
1985-05-01
Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.
Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors
NASA Astrophysics Data System (ADS)
Han, Ling
Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.
A tandem-based compact dual-energy gamma generator.
Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T
2010-02-01
A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.
PELAN applications and recent field tests
NASA Astrophysics Data System (ADS)
Martinez, Juan J.; Holslin, Daniel T.
2004-10-01
When neutrons interact with particular nuclei, the resulting energy of the interaction can be released in the form of gamma rays, which are characteristic of the nucleus involved in the reaction. The PELAN (Pulsed Elemental Analysis with Neutrons) system uses a pulsed neutron generator and an integral thermalizing shield that induce reactions that cover most of the entire gamma ray energy spectra1. The neutron generator uses a D-T reaction, which releases fast 14MeV neutrons responsible for providing information on those nuclei that mostly respond to inelastic scattering. During the time period between pulses, the fast neutrons undergo multiple inelastic interactions that lower their energy making them easier to be captured by certain nuclei; this energy spectrum of gamma rays induced by these interactions are designated as the gamma ray thermal spectra. The PELAN system has been used for a number of applications where non-intrusive, non-destructive interrogation is needed. Although Pulsed Fast Thermal Neutron Analysis (PFTNA) has been around for approximately 30 years, the technology has never been successfully commercialized for practical applications. The following report illustrates examples of the performance of on a number of applications of interrogation of Unexploded Ordnance (UXO), mine confirmation, large vehicle bombs inspection and illicit drug smuggling detection.
Patra, Digambara
2010-01-15
A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.
Wang, Jingyu; Dong, Xiquan; Xi, Baike
2015-03-25
In this study, six deep convective systems (DCSs) with a total of 5589 five-second samples and a range of temperatures from -41°C to 0°C during the Midlatitude Continental Convective Clouds Experiment (MC3E) were selected to investigate the ice cloud microphysical properties of DCSs over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. The ice cloud measurements of the DCS cases were made by the University of North Dakota Citation II research aircraft, and the ice cloud properties were derived through the following processes. First, the instances of supercooled liquid water in the ice-dominated cloud layersmore » of DCSs have been eliminated using multisensor detection, including the Rosemount Icing Detector, King and Cloud Droplet Probes, as well as 2DC and Cloud Imaging Probe images. Then the Nevzorov-measured ice water contents (IWCs) at maximum diameter D max < 4000 µm are used as the best estimation to determine a new mass-dimensional relationship. Finally, the newly derived mass-dimensional relationship (a = 0.00365, b = 2.1) has been applied to a full spectrum of particle size distributions (PSDs, 120–30,000 µm) constructed from both 2DC and High-Volume Precipitation Spectrometer measurements to calculate the best-estimated IWCs of DCSs during MC3E. The averages of the total number concentrations (N t), median mass diameter (D m), maximum diameter (D max), and IWC from six selected cases are 0.035 cm -3, 1666 µm, 8841 µm, and 0.45 g m -3, respectively. The gamma-type-size distributions are then generated matching the observed PSDs (120–30,000 µm), and the fitted gamma parameters are compared with the observed PSDs through multimoment assessments including first moment (D m), third moment (IWC), and sixth moment (equivalent radar reflectivity, Z e). Lastly, for application of observed PSDs to the remote sensing community, a series of empirical relationships between fitted parameters and Z e values has been derived, and the bullet rosette ice crystal backscattering relationship has been suggested for ground-based remote sensing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jingyu; Dong, Xiquan; Xi, Baike
In this study, six deep convective systems (DCSs) with a total of 5589 five-second samples and a range of temperatures from -41°C to 0°C during the Midlatitude Continental Convective Clouds Experiment (MC3E) were selected to investigate the ice cloud microphysical properties of DCSs over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. The ice cloud measurements of the DCS cases were made by the University of North Dakota Citation II research aircraft, and the ice cloud properties were derived through the following processes. First, the instances of supercooled liquid water in the ice-dominated cloud layersmore » of DCSs have been eliminated using multisensor detection, including the Rosemount Icing Detector, King and Cloud Droplet Probes, as well as 2DC and Cloud Imaging Probe images. Then the Nevzorov-measured ice water contents (IWCs) at maximum diameter D max < 4000 µm are used as the best estimation to determine a new mass-dimensional relationship. Finally, the newly derived mass-dimensional relationship (a = 0.00365, b = 2.1) has been applied to a full spectrum of particle size distributions (PSDs, 120–30,000 µm) constructed from both 2DC and High-Volume Precipitation Spectrometer measurements to calculate the best-estimated IWCs of DCSs during MC3E. The averages of the total number concentrations (N t), median mass diameter (D m), maximum diameter (D max), and IWC from six selected cases are 0.035 cm -3, 1666 µm, 8841 µm, and 0.45 g m -3, respectively. The gamma-type-size distributions are then generated matching the observed PSDs (120–30,000 µm), and the fitted gamma parameters are compared with the observed PSDs through multimoment assessments including first moment (D m), third moment (IWC), and sixth moment (equivalent radar reflectivity, Z e). Lastly, for application of observed PSDs to the remote sensing community, a series of empirical relationships between fitted parameters and Z e values has been derived, and the bullet rosette ice crystal backscattering relationship has been suggested for ground-based remote sensing.« less
Li, Xiaoqing; Lu, Yong; Zhao, Haiyan
2014-11-01
The present study used EEG to investigate how and when top-down prediction interacts with bottom-up acoustic signals in temporally selective attention during speech comprehension. Mandarin Chinese spoken sentences were used as stimuli. We systematically manipulated the predictability and de/accentuation of the critical words in the sentence context. Meanwhile, a linguistic attention probe 'ba' was presented concurrently with the critical words or not. The results showed that, first, words with a linguistic attention probe elicited a larger N1 than those without a probe. The latency of this N1 effect was shortened for accented or lowly predictable words, indicating more attentional resources allocated to these words. Importantly, prediction and accentuation showed a complementary interplay on the latency of this N1 effect, demonstrating that when the words had already attracted attention due to low predictability or due to the presence of pitch accent, the other factor did not modulate attention allocation anymore. Second, relative to the lowly predictable words, the highly predictable words elicited a reduced N400 and enhanced gamma-band power increases, especially under the accented conditions; moreover, under the accented conditions, shorter N1 peak-latency was found to correlate with larger gamma-band power enhancement, which indicates that a close relationship might exist between early selective attention and later semantic integration. Finally, the interaction between top-down selective attention (driven by prediction) and bottom-up selective attention (driven by accentuation) occurred before lexical-semantic processing, namely before the N400 effect evoked by predictability, which was discussed with regard to the language comprehension models. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.;
2007-01-01
We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.
A Triaxial Applicator for the Measurement of the Electromagnetic Properties of Materials
2018-01-01
The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions. PMID:29382122
Operando Positron Annihilation Gamma Spectrometer (OPAGS)
NASA Astrophysics Data System (ADS)
Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.
2009-03-01
Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.
Beta/gamma and alpha backgrounds in CRESST-II Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, R.; Angloher, G.; Ferreiro Iachellini, N.
2015-06-01
The experiment CRESST-II aims at the detection of dark matter with scintillating CaWO{sub 4} crystals operated as cryogenic detectors. Recent results on spin-independent WIMP-nucleon scattering from the CRESST-II Phase 2 allowed to probe a new region of parameter space for WIMP masses below 3 GeV/c{sup 2}. This sensitivity was achieved after background levels were reduced significantly. We present extensive background studies of a CaWO{sub 4} crystal, called TUM40, grown at the Technische Universität München. The average beta/gamma rate of 3.51/[kg keV day] (1-40 keV) and the total intrinsic alpha activity from natural decay chains of 3.08±0.04 mBq/kg are the lowestmore » reported for CaWO{sub 4} detectors. Contributions from cosmogenic activation, surface-alpha decays, external radiation and intrinsic alpha/beta emitters are investigated in detail. A Monte-Carlo based background decomposition allows to identify the origin of the majority of beta/gamma events in the energy region relevant for dark matter search.« less
Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.
Kaur, Matinder; Choi, Dong Hoon
2015-01-07
The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.
Advanced scanning probe lithography.
Garcia, Ricardo; Knoll, Armin W; Riedo, Elisa
2014-08-01
The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hill, Carrie S.
2013-01-01
Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in probe construction, calibration, and usage, and in the post-processing of data that is produced by the probe. There are typically several ways in which each of these steps can be approached, and different applications may require more or less vigorous attention to various issues.
Performance Evaluation of Spectroscopic Detectors for LEU Hold-up Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataraman, Ramkumar; Nutter, Greg; McElroy, Robert Dennis
The hold-up measurement of low-enriched uranium materials may require use of alternate detector types relative to the measurement of highly enriched uranium. This is in part due to the difference in process scale (i.e., the components are generally larger for low-enriched uranium systems), but also because the characteristic gamma-ray lines from 235U used for assay of highly enriched uranium will be present at a much reduced intensity (on a per gram of uranium basis) at lower enrichments. Researchers at Oak Ridge National Laboratory examined the performance of several standard detector types, e.g., NaI(Tl), LaBr3(Ce), and HPGe, to select a suitablemore » candidate for measuring and quantifying low-enriched uranium hold-up in process pipes and equipment at the Portsmouth gaseous diffusion plant. Detector characteristics, such as energy resolution (full width at half maximum) and net peak count rates at gamma ray energies spanning a range of 60–1332 keV, were measured for the above-mentioned detector types using the same sources and in the same geometry. Uranium enrichment standards (Certified Reference Material no. 969 and Certified Reference Material no. 146) were measured using each of the detector candidates in the same geometry. The net count rates recorded by each detector at 186 keV and 1,001 keV were plotted as a function of enrichment (atom percentage). Background measurements were made in unshielded and shielded configurations under both ambient and elevated conditions of 238U activity. The highly enriched uranium hold-up measurement campaign at the Portsmouth plant was performed on process equipment that had been cleaned out. Therefore, in most cases, the thickness of the uranium deposits was less than the “infinite thickness” for the 186 keV gamma rays to be completely self-attenuated. Because of this, in addition to measuring the 186 keV gamma, the 1,001 keV gamma ray from 234mPa—a daughter of 238U in secular equilibrium with its parent—will also need to be measured. Based on the performance criteria of detection efficiency, energy resolution, peak-to-continuum ratios, minimum detectable limits, and the weight of the shielded probe, a shielded (0.5 in. thick lead shield) 2 × 2 in. NaI(Tl) detector is recommended for use. The recommended approach is to carry out analysis using data from both 186 keV and 1,001 keV gamma rays, and select a best result based on propagated uncertainty estimates. It is also highly recommended that a two-point gain stabilization scheme based on an 241Am seed embedded in the probe be implemented. Shielding configurations to reduce the impact of background interference on the measurement of 1,001 keV gamma-ray are discussed.« less
2009-10-01
be made. Currently, iodine based compounds are used to enhance contrast of CT which have the limitations of short imaging window due to rapid...number compared to conventionally used iodine compounds . Nanoparticle based CT contrast agents have been demonstrated for vascular imaging, which...constructs with gamma or positron emitting isotopes through a covalent attachment of a bifunctional chelator to the nanoparticles surface. However, in
Cosmic-ray antiprotons as a probe of a photino-dominated universe
NASA Technical Reports Server (NTRS)
Silk, J.; Srednicki, M.
1984-01-01
Observational tests of the hypothesis that the universe is flat and dominated by dark matter in the form of massive photinos include the production of significant fluxes of cosmic rays and gamma rays in our galactic halo. Specification of the cosmological photino density and the masses of scalar quarks and leptons determines the present annihilation rate. The predicted number of low-energy cosmic-ray antiprotons is comparable to the observed flux.
Probing the Donor and Acceptor Substrate Specificity of the Gamma-Glutamyl Transpeptidase
2012-01-17
glutathione can function as a source of cysteine. Mutant strains of F. tularensis that lack functional GGT have been shown to have impaired intracellular...conservation of structure and function between human and bacterial GGT homologues, significant differences in acceptor substrate and inhibitor preferences are...with the lowest value of MODELER objective function . The three-dimensional (3D) fold of the generated models was verified with PROSA II,40 and
Chemical probes targeting epigenetic proteins: Applications beyond oncology
Ackloo, Suzanne; Brown, Peter J.; Müller, Susanne
2017-01-01
ABSTRACT Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used. PMID:28080202
Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.
Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin
2018-02-16
The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.
Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M
1992-01-01
The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.
NASA Astrophysics Data System (ADS)
Nouh, S. A.
Non isothermal studies were carried out using thermogravimetry (TG) and differential thermogravimetry (DTG) to obtain the activation energy of decomposition for chlorinated polyvinyl chloride (CPVC) before and after exposure to gamma doses at levels between 5.0 and 50.0 KGy. Thermal gravitational analysis (TGA) indicated that the CPVC polymer decomposes in one main breakdown stage and a decrease in activation energies was observed followed by an increase on increasing the gamma dose. The variation of melting temperatures with the gamma dose has been determined using differential thermal analysis (DTA). Also, mechanical and structural property studies were performed on all irradiated and non-irradiated CPVC samples using stress-strain relations and X-ray diffraction. The results indicated that the exposure to gamma doses at levels between 27.5 and 50 KGy leads to further enhancement of the thermal stability, tensile strength and isotropic character of the polymer samples due to the crosslinking phenomenon. This suggests that gamma radiation could be a suitable technique for producing a plastic material with enhanced properties that can be suitable for high temperature applications and might be a suitable candidate for dosimetric applications.
Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.;
2011-01-01
We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.
An evolution of technologies and applications of gamma imagers in the nuclear cycle industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, R. A.; Carrel, F.; Menaa, N.
The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to themore » USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)« less
Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.
2004-07-01
Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Gratingmore » (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10{sup 19} cm{sup -2} fast neutron (E > 1 MeV) fluence and 8.7 x 10{sup 8} Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research Center. (authors)« less
NASA Astrophysics Data System (ADS)
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
Application of the V-Gamma map to vehicle breakup analysis
NASA Technical Reports Server (NTRS)
Salama, Ahmed; McRonald, Angus; Ahmadi, Reza; LIng, Lisa; Accad, Elie; Kim, Alex
2003-01-01
The V-Gamma map consists of all possible pairs of speed and flight path angle at atmospheric entry interface for accidental Earth reentries resulting from steady misaligned burns, incomplete burns, or no burn.
Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.
Davenport, L; Targowski, P
1996-01-01
The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several temperatures below the phospholipid T(C). The thermodynamic quantities are associated with the particular lipid of interest (in this case DPPC) and have been determined previously from ultrasound studies, thus representing fixed constants. Hence resolved variables are r(O), temperature-dependent gate parameters (gamma), and limiting diffusion rates (d(infinity)). This alternative distribution model is attractive because it provides a general probe-independent expression for distributed lipid fluctuation-induced probe rotational rates occurring within bilayer membranes below the phospholipid phase transition on the submicrosecond time scale. PMID:8889160
Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L
2002-05-01
To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.
A nonimaging scintillation probe to measure penile hemodynamics.
Zuckier, L S; Korupolu, G R; Gladshteyn, M; Sattenberg, R; Goldstein, R; Ricciardi, R; Goodwin, P; Melman, A; Blaufox, M D
1995-12-01
We have developed a penile nonimaging scintillation (PNIS) probe consisting of a plastic well-type scintillation crystal interfaced to a portable computer and acquisition board. This report describes the design of the PNIS probe, performance characteristics, mode of usage and illustrative results which demonstrate its capabilities. With the PNIS probe, penile blood-pool studies were performed in nine patients utilizing 3.7 MBq (100 microCi) autologous 99mTc-labeled red blood cells (RBCs). Venous blood standards were assayed to enable conversion of the count rate to volummetric measurements. Washin of peripherally administered 99mTc-RBCs was mathematically analyzed to estimate penile blood volume and cavernosal flow rate in the flaccid state. The rate of change of penile blood volume after intracavernosal vasodilators was used to generate measures of stimulated flow. A major advantage of this device over the gamma-camera is a 3300-fold increase in count rate sensitivity, which allows for markedly improved temporal resolution while significantly reducing the radiopharmaceutical dosage. Additionally, the PNIS probe is portable, economical and is not dependent on operator-defined regions of interest. Count rate sensitivity is relatively constant within the bore, with the exception of the proximal region adjacent to the opening, where geometric efficiency is reduced. The PNIS probe is an effective device for measuring penile activity in radionuclide studies, allowing for acquisition of time-activity curves of the penis during flaccid washin of peripherally labeled red blood cells and after pharmacologic stimulation to induce erection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth Krebs, John Svoboda
2009-11-01
SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing formore » automatic unattended cask scanning that may take several hours.« less
NASA Astrophysics Data System (ADS)
Pandey, Madhurima; Majumdar, Debasish; Dutta Banik, Amit
2018-05-01
We consider a four-flavor scenario for the neutrinos where an extra sterile neutrino is introduced to the three families of active neutrinos and study the deviation from the three-flavor scenario in the ultrahigh-energy (UHE) regime. We calculate the possible muon and shower yields at a 1 km2 detector such as IceCube for these neutrinos from distant UHE sources, e.g., gamma-ray bursts, etc. Similar estimations for muon and shower yields are also obtained for the three-flavor case. Comparing the two results, we find considerable differences between the yields for these two cases. This can be useful for probing the existence of a fourth sterile component using UHE neutrino flux.
Fermi Gamma-Ray Imaging of a Radio Galaxy
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-04-01
The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less
Two types of electron events in solar flares
NASA Technical Reports Server (NTRS)
Daibog, E. I.; Kurt, V. G.; Logachev, Y. I.; Stolpovsky, V. G.
1985-01-01
The fluxes and spectra of the flare electrons measured on board Venera-I3 and I4 space probes are compared with the parameters of the hard (E sub x approximately 55 keV) and thermal X-ray bursts. The electron flux amplitude has been found to correlate with flare importance in the thermal X-ray range (r approximately 0.8). The following two types of flare events have been found in the electron component of SCR. The electron flux increase is accompanied by a hard X-ray burst and the electron spectrum index in the approximately 25 to 200 keV energy range is gamma approximately 2 to 3. The electron flux increase is not accompanied by a hard X-ray burst and the electron spectrum is softer (Delta gamma approximately 0.7 to 1.0).
2008-03-27
CAPE CANAVERAL, Fla. --- Under a waning moon (upper right) at Cape Canaveral Air Force Station, the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the first of the solid rocket boosters. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- The first solid rocket motor arrives at Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket (background) to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage.The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Cape Canaveral Air Force Station, the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the first of the solid rocket boosters. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- At Cape Canaveral Air Force Station, the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the first of the solid rocket boosters. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2008-03-27
CAPE CANAVERAL, Fla. --- The first solid rocket motor arrives at Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
Wu, H.; George, K.; Willingham, V.; Cucinotta, F. A.
2001-01-01
If radiosensitivity is altered in a microgravity environment, it will affect the accuracy of assessing astronauts' risk from exposure to space radiation. To investigate the effects of space flight on radiosensitivity, we exposed a crewmember's blood to gamma rays at doses ranging from 0 to 3 Gy and analyzed chromosome aberrations in mitotic lymphocytes. The blood samples were collected 10 days prior to an 8-day Shuttle mission, the day the flight returned, and 14 days after the flight. After exposure, lymphocytes were stimulated to grow in media containing phytohaemagglutinin (PHA) and mitotic cells were harvested for chromosome analysis using a fluorescence in situ hybridization (FISH) with whole chromosome specific probes. The dose response of total exchanges showed no changes in the radiosensitivity after the mission.
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., the payload transportation canister is lowered over the GLAST spacecraft for installation. The spacecraft will be moved to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-04-15
CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility near NASA's Kennedy Space Center, General Dynamics technicians, sitting beneath the Gamma-ray Large Area Space Telescope, or GLAST, carefully position a high-gain antenna under the spacecraft as they prepare to install it on the spacecraft. The GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned in a window between 11:45 a.m. and 1:40 p.m. EDT May 16. Photo credit: NASA/Kim Shiflett
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians secure the GLAST spacecraft, inside its payload transportation canister, to the transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-02-06
KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station in Florida, the United Launch Alliance Delta II first stage is revealed after the cover was removed from the truck trailer that delivered it. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, in May from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/George Shelton
2008-05-16
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., technicians secure the GLAST spacecraft, inside its payload transportation canister, to the transporter for transfer to pad 17-B at Cape Canaveral Air Force Station. At the pad, NASA's Gamma-Ray Large Area Space Telescope will be lifted into the mobile service tower and encapsulated in the fairing for launch. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-02-06
KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station in Florida, the United Launch Alliance Delta II first stage is revealed after the cover was removed from the truck that delivered it. The Delta rocket will be used to launch the Gamma-Ray Large Area Space Telescope, or GLAST, in May from Launch Pad 17-B on CCAFS. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/George Shelton
NASA Astrophysics Data System (ADS)
Gros, P.; Bernard, D.
2017-05-01
Gamma ray astronomy suffers from a sensitivity gap between 0.1 and 100Mev. With high angular resolution for the electrons, it will also be possible to probe the linear polarisation of the photons. An accurate simulation is necessary to correctly design and compare these detectors. We establish baseline distributions of key kinematic variables as simulated by a 5D, exact down to threshold, and polarised event generator. We compare them to simulations with the low energy electromagnetic models available in Geant4 and in EGS5. We show that different generators give a different picture of the optimal angular resolution of pair telescopes. We also show that, of all the simulations we used, only the full 5D generator describes accurately the angular asymmetry in the case of polarised photons.
Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT.
Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Espinoza, C; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Katsuta, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Lyne, A G; Madejski, G M; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Noutsos, A; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yamazaki, R; Ylinen, T; Ziegler, M
2010-02-26
Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.
The self-absorption effect of gamma rays in /sup 239/Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Hsiao-Hua
1989-01-01
Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less
Husak, Gregory J.; Michaelsen, Joel C.; Funk, Christopher C.
2007-01-01
Evaluating a range of scenarios that accurately reflect precipitation variability is critical for water resource applications. Inputs to these applications can be provided using location- and interval-specific probability distributions. These distributions make it possible to estimate the likelihood of rainfall being within a specified range. In this paper, we demonstrate the feasibility of fitting cell-by-cell probability distributions to grids of monthly interpolated, continent-wide data. Future work will then detail applications of these grids to improved satellite-remote sensing of drought and interpretations of probabilistic climate outlook forum forecasts. The gamma distribution is well suited to these applications because it is fairly familiar to African scientists, and capable of representing a variety of distribution shapes. This study tests the goodness-of-fit using the Kolmogorov–Smirnov (KS) test, and compares these results against another distribution commonly used in rainfall events, the Weibull. The gamma distribution is suitable for roughly 98% of the locations over all months. The techniques and results presented in this study provide a foundation for use of the gamma distribution to generate drivers for various rain-related models. These models are used as decision support tools for the management of water and agricultural resources as well as food reserves by providing decision makers with ways to evaluate the likelihood of various rainfall accumulations and assess different scenarios in Africa.
NASA Astrophysics Data System (ADS)
Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.
2008-10-01
The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is crucial for quantification in most microprobe studies, the influence of stereotaxic positioning error was studied for several realistic experiments in favorable and unfavorable experimental situations (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; binding of 18F-MPPF to 5HT1A receptors in the dorsal raphe nucleus).
Sentinel node detection in cervical cancer with (99m)Tc-phytate.
Silva, Lucas B; Silva-Filho, Agnaldo L; Traiman, Paulo; Triginelli, Sérgio A; de Lima, Carla Flávia; Siqueira, Cristiano Ferrari; Barroso, Adelanir; Rossi, Telma Maria F F; Pedrosa, Moises Salgado; Miranda, Dairton; Melo, José Renan Cunha
2005-05-01
The aim of this study was to investigate the feasibility of sentinel lymph node (SLN) identification using radioisotopic lymphatic mapping with technetium-99 m-labeled phytate in patients undergoing radical hysterectomy with pelvic lymphadenectomy for treatment of early cervical cancer. Between July 2001 and February 2003, 56 patients with cervical cancer FIGO stage I (n = 53) or stage II (n = 3) underwent sentinel lymph node detection with preoperative lymphoscintigraphy ((99m)Tc-labeled phytate injected into the uterine cervix, at 3, 6, 9, and 12 o'clock, at a dose of 55-74 MBq in a volume of 0.8 ml) and intraoperative lymphatic mapping with a handheld gamma probe. Radical hysterectomy was aborted in three cases because parametrial invasion was found intraoperatively and we performed only sentinel node resection. The remaining 53 patients underwent radical hysterectomy with complete pelvic lymphadenectomy. Sentinel nodes were detected using a handheld gamma-probe and removed for pathological assessment during the abdominal radical hysterectomy and pelvic lymphadenectomy. One or more sentinel nodes were detected in 52 out of 56 eligible patients (92.8%). A total of 120 SLNs were detected by lymphoscintigraphy (mean 2.27 nodes per patient) and intraoperatively by gamma probe. Forty-four percent of SLNs were found in the external iliac area, 39% in the obturator region, 8.3% in interiliac region, and 6.7% in the common iliac area. Unilateral sentinel nodes were found in thirty-one patients (59%). The remaining 21 patients (41%) had bilateral sentinel nodes. Microscopic nodal metastases were confirmed in 17 (32%) cases. In 10 of these patients, only SLNs had metastases. The 98 sentinel nodes that were negative on hematoxylin and eosin were submitted to cytokeratin immunohistochemical analysis. Five (5.1%) micrometastases were identified with this technique. The sensitivity of the sentinel node was 82.3% (CI 95% = 56.6-96.2) and the negative predictive value was 92.1% (CI 95% = 78.6-98.3). The accuracy of sentinel node in predicting the lymph node status was 94.2%. Preoperative lymphoscintigraphy and intraoperative lymphatic mapping with (99m)Tc-labeled phytate are effective in identifying sentinel nodes in patients undergoing radical hysterectomy and to select women in whom lymph node dissection can be avoided.
Intraoperative gamma probe guidance with 99mTc-pertechnetate in the completion thyroidectomy.
Aras, Gülseren; Gültekin, Salih Sinan; Küçük, Nuriye Ozlem; Demirer, Seher; Tuğ, Tuğbay
2009-07-01
Intraoperative gamma probe (GP) guidance with (99m)Tc-pertechnetate in the completion total thyroidectomy after a first thyroidectomy was investigated in this prospective study. The study group comprises of fourteen consecutive patients (14 females, age mean 50.2 +/- 12.0 years, age range 29-73 years). All patients underwent a second thyroidectomy due to inadequate (5/14 patients) and complementary (9/14 patients) interventions. Serum-free three iodothyronine, free thyroxin and thyroid stimulating hormone measurements, a neck ultrasonography (USG) and thyroid scintigraphy (TS) were performed in the preoperative and postoperative period. After a 185 MBq (5 mCi) injection of (99m)Tc-pertechnetate, background (BG), left thyroid lobe (LTL), right thyroid lobe (RTL) and pyramidal tyroid lobe (PTL) regions were counted in time before and after resection of thyroid remnants by intraoperative GP. All resection materials were evaluated by histopathologic examination. Preoperative TSH was less than 30 mIU/mL (mean 21 +/- 7) in all patients. Functioning thyroid remnants were shown in 13/14 patients on the preoperative TS and USG, which were diagnosed by USG in one but by TS in other one. We calculated that percentage median (minimum-maximum) values were 220.90% (56.00-411.11%) in LTL, 80.43% (11.54-471.05%) in RTL and 66.60% (-3.33 to 158.33%) in PTL for counts before resection, on the other hand, 15.96% (-20.55 to 47.62%) in LTL, 17.59% (-15.07 to 38.46%) in RTL and 17.59% (-1.96 to 57.14%) in PTL regions for counts after resection. There were statistically significant differences between these values belonging to before and after resection for LTL (p = 0.001), RTL (p = 0.001) and PTL (p = 0.008). Bilateral small foci in a patient and unilateral focus in other patient were observed in postoperative TS. Unilateral focus was detected on the RTL by GP, but not bilateral foci. Postoperative TSH levels increased to 30 mIU/mL (mean 69 +/- 26) at least. There was a statistically significant difference between preoperative and postoperative TSH values (p < 0.001). Histopathologic confirmation revealed that all removed materials were the thyroid tissues. Gamma probe guidance with (99m)Tc-pertechnetate seemed to be a good option and easy available method in patients undergoing the completion total thyroidectomy.
Exploring the nature of the unidentified very-high-energy gamma-ray source HESS J1507-622
NASA Astrophysics Data System (ADS)
Domainko, W.; Ohm, S.
2012-09-01
Context. Several extended sources of very-high-energy (VHE; E > 100 GeV) gamma rays have been found that lack counterparts belonging to an established class of VHE gamma-ray emitters. Aims: The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5°, HESS J1507-622, is explored. Methods.Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. Additionally, implications of the off-plane location of the source for a leptonic and hadronic gamma-ray emission model are investigated. Results: HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Γ = 1.7 ± 0.1stat ± 0.2sys and integral flux between (0.3-300) GeV of F = (2.0 ± 0.5stat ± 1.0sys) × 10-9 cm-2 s-1. The SED constructed from the Fermi and H.E.S.S. data for this source does not support a smooth power-law continuation from the VHE to the HE gamma-ray range. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. Conclusions: The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.
Exploring the blazar zone in high-energy flares of FSRQs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacciani, L.; Donnarumma, I.; Tavecchio, F.
2014-07-20
The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SEDmore » of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.« less
Observing the Non-Thermal Universe with the Highest Energy Photons
NASA Astrophysics Data System (ADS)
Dingus, Brenda L.; HAWC, VERITAS, CTA
2016-01-01
Astrophysical sources of relativistic particles radiate gamma rays to such high energies that they can be detected from the ground. The existence of high energy gamma rays implies that even higher energy particles are being accelerated placing strong constraints on these non-thermal accelerators. Within our galaxy, TeV gamma rays have been detected from supernova remnants, pulsar wind nebula, x-ray binaries and some yet to be identified sources in the Galactic plane. In addition, these gamma rays have sufficient energy to be attenuated by the interaction with infrared photons producing an electron-positron pair. Thus the spectrum of gamma rays can also constrain the infrared photon density, which for distant extragalactic sources is a direct probe of cosmology. The known extragalactic TeV sources are primarily the blazer class of active galactic nuclei. And TeV gamma rays might even be produced by annihilating dark matter.The US currently supports two ground-based gamma-ray observatories—HAWC and VERITAS—and NSF is developing a prototype for the international Cherenkov Telescope Array (CTA) observatory. The HAWC (High Altitude Water Cherenkov) observatory just began operation of the full detector in March 2015 and with its wide field of view scans ~2/3 of the sky each day for TeV sources. VERITAS (Very EneRgetic Imaging Telescope Array System) is an array of four imaging atmospheric Cherenkov telescopes that follows individual sources to produce lightcurves and spectra from 85 GeV to > 30 TeV. The combination of both a survey and pointed observatory is very complementary with a broad scientific reach that includes the study of extragalactic and Galactic objects as well as the search for astrophysical signatures of dark matter and the measurement of cosmic rays. I will present the current view of the TeV sky and the latest results from HAWC and VERITAS as well as plans for CTA.
NASA Astrophysics Data System (ADS)
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-09-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-01-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596
Development and application of a hybrid transport methodology for active interrogation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, K.; Walters, W.; Haghighat, A.
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less
A new temperature profiling probe for investigating groundwater-surface water interaction
Naranjo, Ramon C.; Robert Turcotte,
2015-01-01
Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.
NASA Astrophysics Data System (ADS)
Demidov, V. I.; Koepke, M. E.; Kurlyandskaya, I. P.; Malkov, M. A.
2018-02-01
This paper reviews existing theories for interpreting probe measurements of electron distribution functions (EDF) at high gas pressure when collisions of electrons with atoms and/or molecules near the probe are pervasive. An explanation of whether or not the measurements are realizable and reliable, an enumeration of the most common sources of measurement error, and an outline of proper probe-experiment design elements that inherently limit or avoid error is presented. Additionally, we describe recent expanded plasma-condition compatibility for EDF measurement, including in applications of large wall probe plasma diagnostics. This summary of the authors’ experiences gained over decades of practicing and developing probe diagnostics is intended to inform, guide, suggest, and detail the advantages and disadvantages of probe application in plasma research.
Yu, Feifan; Alesand, Veronica; Nygren, Per-Åke
2018-02-27
Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g., via the use of small immunoglobulin binding proteins (IgBp) as fusion partners to split-reporter protein fragments for conversion of pairs of antibodies into split-protein half-probes. However, the non-covalent binding between IgBp and antibodies is not ideal for development of robust assays. Here, the authors describe how split-enzyme reporter halves can be both site-specifically and covalently photoconjugated at antibody Fc-parts for use in homogeneous dual-antibody in vitro immunoassays based on analyte-dependent split-enzyme fragment complementation. The half-probes consist of parts of a beta-lactamase split-protein reporter fused to an immunoglobulin Fc binding domain equipped with a unique cysteine residue at which a photoactivable maleimide benzophenone group (MBP) is attached. Using such antibody conjugates the authors obtain an analyte-driven complementation of the reporter enzyme fragments monitored via conversion of a chromogenic substrate. Results from detection of human interferon-gamma and the extracellular domain of HER2 is shown. The described principles for site-specific conjugation of proteins to antibodies should be broadly applicable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan
2015-05-01
Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.
Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors
Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng
2012-01-01
This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.
EXTASE - An Experimental Thermal Probe For Applications In Snow Research And Earth Sciences
NASA Astrophysics Data System (ADS)
Schröer, K.; Seiferlin, K.; Marczewski, W.; Spohn, T.
EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, both funded by DLR. The application of this probe is to be tested in different fields e.g. in snow research, agriculture, permafrost etc. The probe penetrates the surface ca. 32 cm and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: -no need to excavate material -minimized influence of the probe on the temperature field -minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Fur- ther applications could be: monitoring waste deposits and the heat set free by decom- position, volcanology and ground truth for remote sensing. We present the general concept of the probe, some temperature profiles measured during a field measurement campaign to demonstrate the capability of this new technique and first experiments made in the laboratory. First attempts to calculate thermal diffusivity and conductivity from the data are also given.
Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes
NASA Astrophysics Data System (ADS)
Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.
2010-12-01
Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental requirements. The critical limitations of UV-vis fluorescence imaging are the need for reliable fluorescent probes suited to the experimental objective, and the reliance on thin-bed (2D) transparent porous media. Autoradiographic techniques address some of these limitations permit imaging of key biogeochemical processes in opaque media using radioactive probes, without the need for specialised radiation sources. We present initial calibration data for the use of autoradiography to monitor transport parameters for radionuclides (99-technetium), and a novel application of a radioactive salt tracer as a probe for pore water content, in model porous media systems.
Kobayashi, Shingo; Shinomiya, Takayuki; Kitamura, Hisashi; Ishikawa, Takahiro; Imaseki, Hitoshi; Oikawa, Masakazu; Kodaira, Satoshi; Miyaushiro, Norihiro; Takashima, Yoshio; Uchihori, Yukio
2015-01-01
We constructed a new car-borne survey system called Radi-Probe with a portable germanium gamma-ray spectrometer onboard a cargo truck, to identify radionuclides and quantify surface contamination from the accident at Fukushima Dai-ichi Nuclear Power Station. The system can quickly survey a large area and obtain ambient dose equivalent rates and gamma-ray energy spectra with good energy resolution. We also developed a new calibration method for the system to deal with an actual nuclear disaster, and quantitative surface deposition densities of radionuclides, such as (134)Cs and (137)Cs, and kerma rates of each radionuclide can be calculated. We carried out car-borne survey over northeastern and eastern Japan (Tohoku and Kanto regions of Honshu) from 25 September through 7 October 2012. We discuss results of the distribution of ambient dose equivalent rate H(∗)(10), (134)Cs and (137)Cs surface deposition densities, spatial variation of (134)Cs/(137)Cs ratio, and the relationship between surface deposition densities of (134)Cs/(137)Cs and H(∗)(10). The ratio of (134)Cs/(137)Cs was nearly constant within our measurement precision, with average 1.06 ± 0.04 in northeastern and eastern Japan (decay-corrected to 11 March, 2011), although small variations from the average were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rhodes, Edgar A.; Peters, Charles W.
1993-02-01
A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.
Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M
2005-05-07
This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.
Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi
2009-05-01
To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.
Development and application of marine gamma-ray measurements: a review.
Jones, D G
2001-01-01
The development of instruments to measure gamma radiation in the marine environment, particularly on the sea floor, and the range of uses to which they have been put is reviewed. Since the first steps in the late 1950s, systems have been developed in at least 10 countries with the main thrust occurring in the 1970s. Development has continued up to the present, primarily in Europe and the USA. Marine gamma-ray spectrometers have been used for a range of applications including the mapping of rocks and unconsolidated sediments, mineral exploration (mainly for heavy minerals and phosphorites), sediment transport studies and investigations in relation to discharged and dumped nuclear wastes and at nuclear weapon test sites.
NASA Technical Reports Server (NTRS)
Kim, Y. G.; Merrick, H. F.
1980-01-01
MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.
Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.
Montgomery, Sean M; Sirota, Anton; Buzsáki, György
2008-06-25
Rapid eye movement (REM) sleep has been considered a paradoxical state because, despite the high behavioral threshold to arousing perturbations, gross physiological patterns in the forebrain resemble those of waking states. To understand how intrahippocampal networks interact during REM sleep, we used 96 site silicon probes to record from different hippocampal subregions and compared the patterns of activity during waking exploration and REM sleep. Dentate/CA3 theta and gamma synchrony was significantly higher during REM sleep compared with active waking. In contrast, gamma power in CA1 and CA3-CA1 gamma coherence showed significant decreases in REM sleep. Changes in unit firing rhythmicity and unit-field coherence specified the local generation of these patterns. Although these patterns of hippocampal network coordination characterized the more common tonic periods of REM sleep (approximately 95% of total REM), we also detected large phasic bursts of local field potential power in the dentate molecular layer that were accompanied by transient increases in the firing of dentate and CA1 neurons. In contrast to tonic REM periods, phasic REM epochs were characterized by higher theta and gamma synchrony among the dentate, CA3, and CA1 regions. These data suggest enhanced dentate processing, but limited CA3-CA1 coordination during tonic REM sleep. In contrast, phasic bursts of activity during REM sleep may provide windows of opportunity to synchronize the hippocampal trisynaptic loop and increase output to cortical targets. We hypothesize that tonic REM sleep may support off-line mnemonic processing, whereas phasic bursts of activity during REM may promote memory consolidation.
Time-Resolved Data Acquisition for In Situ Subsurface Planetary Geochemistry
NASA Technical Reports Server (NTRS)
Bodnarik, Julia Gates; Burger, Dan M.; Burger, Arnold; Evans, Larry G.; Parsons, Ann M.; Starr, Richard D.; Stassun, Keivan G.
2012-01-01
The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface geochemistry of planetary bodies in situ. All previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on a constant neutron source produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.
Gamma Ray Burst Discoveries by the Swift Mission
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2006-01-01
Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners and calibrated in Germany, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. Early results from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. Observations of magnetars, galactic transients, supernovae, AGN and many other types of sources are also being performed
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
Ackermann, M.
2015-09-02
We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~ 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former onmore » the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. As a result, we quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.« less
Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo
2014-04-21
In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.
POWERFUL HIGH-ENERGY EMISSION OF THE REMARKABLE BL Lac OBJECT S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittorini, V.; Chen, A. W.; Ferrari, A.
BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1-10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms and of the underlying powerhouse. The gamma-ray satellite, AGILE, detected the remarkable IBL S5 0716+714 (z approx = 0.3) during a high state in the period from 2007 September-October, marked by two very intense flares reaching peak fluxes of 200 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, with simultaneous optical and X-ray observations. We present here amore » theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lac's ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares 0716+714 approached or just exceeded the upper limit set by BZ for a black hole of mass 10{sup 9} M{sub sun}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collaboration: Fermi LAT Collaboration
2015-09-01
We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ∼ 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on themore » IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.« less
Gamma-Ray Pulse Tube Cooler Development and Testing
NASA Technical Reports Server (NTRS)
Ross, R.; Johnson, D.; Kotsubo, V.; Evtimov, B.; Olson, J.; Nast, T.; Rawlings, R.
2000-01-01
For a variety of space-science applications, such as gamma-ray spectroscopy, the introduction of cryogenic cooling via a cryocooler can greatly increase the potential science return by allowing the use of more sensitive and lower noise detectors.
Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM
NASA Technical Reports Server (NTRS)
Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.
2007-01-01
Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.
NASA Astrophysics Data System (ADS)
Bocchini, Peter J.
High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x-ray spectroscopy (EDS) in alloys with coarse microstructures. High-temperature mechanical properties are determined with compression creep at 850 °C and flow stress tests conducted between room temperature and 900 °C. gamma'(L12)-solvus temperature, as well as solidus and liquidus temperatures, are measured with differential thermal analysis (DTA). B and Zr strongly segregate to GBs in Co-Al-W-B-Zr alloys. B additions of 0.05 at. % result in micron-sized GB-precipitates that improve creep strength by two orders of magnitude. Segregation of B or Zr in amounts where GB-precipitates do not form, have no effect on creep strength over a ternary Co-Al-W alloy. The concurrent addition of B and Zr improves creep strength, though to a lesser degree than in alloys containing GB-borides. Ti is an effective substitute for W and Al in Co-Ni-Al-W alloys where density is decreased by 9 % and solvus is increased to 1137 °C in a Co-10Ni-5Al-5W-8Ti at. % alloy compared to 982 °C in a Co-10Ni-9Al-9W at. % alloy. Further investigation of reducing W in a Co-10Ni-6Al-xW-6Ti at. % (x=6, 4, 2, 0) alloys ascertain that, with the addition of Ti, gamma'(L12)-precipitates can form in a wider composition range than in ternary Co-Al-W alloys. 2-D dislocation dynamics simulations are in good agreement with experimental measurements for binary Ni-Al and ternary Co-Al-W alloys. General trends in strengthening are captured for higher order Ni-Al-Cr and Ni-Al-Cr-W alloys.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
NASA Astrophysics Data System (ADS)
Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.
2017-09-01
Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.
Gamma knife radiosurgery in movement disorders: Indications and limitations.
Higuchi, Yoshinori; Matsuda, Shinji; Serizawa, Toru
2017-01-01
Functional radiosurgery has advanced steadily during the past half century since the development of the gamma knife technique for treating intractable cancer pain. Applications of radiosurgery for intracranial diseases have increased with a focus on understanding radiobiology. Currently, the use of gamma knife radiosurgery to ablate deep brain structures is not widespread because visualization of the functional targets remains difficult despite the increased availability of advanced neuroimaging technology. Moreover, most existing reports have a small sample size or are retrospective. However, increased experience with intraoperative neurophysiological evaluations in radiofrequency thalamotomy and deep brain stimulation supports anatomical and neurophysiological approaches to the ventralis intermedius nucleus. Two recent prospective studies have promoted the clinical application of functional radiosurgery for movement disorders. For example, unilateral gamma knife thalamotomy is a potential alternative to radiofrequency thalamotomy and deep brain stimulation techniques for intractable tremor patients with contraindications for surgery. Despite the promising efficacy of gamma knife thalamotomy, however, these studies did not include sufficient follow-up to confirm long-term effects. Herein, we review the radiobiology literature, various techniques, and the treatment efficacy of gamma knife radiosurgery for patients with movement disorders. Future research should focus on randomized controlled studies and long-term effects. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey
NASA Technical Reports Server (NTRS)
Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.
1995-01-01
We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.
NASA Astrophysics Data System (ADS)
Gbedemah, C. M.; Obodai, M.; Sawyerr, L. C.
1998-06-01
The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported. In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp. Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.
Very high energy gamma ray extension of GRO observations
NASA Technical Reports Server (NTRS)
Weekes, Trevor C.
1992-01-01
This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.
Pharmacological evidences for DFK167-sensitive presenilin-independent gamma-secretase-like activity.
Sevalle, Jean; Ayral, Erwan; Hernandez, Jean-François; Martinez, Jean; Checler, Frédéric
2009-07-01
Amyloid-beta (Abeta) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer's disease (AD) pathology. A bulk of studies concur to propose that the C-terminal moiety of Abeta is released from its precursor beta-amyloid precursor protein by a high molecular weight enzymatic complex referred to as gamma-secretase, that is composed of at least, nicastrin (NCT), Aph-1, Pen-2, and presenilins (PS) 1 or 2. They are thought to harbor the gamma-secretase catalytic activity. However, several lines of evidence suggest that additional gamma-secretase-like activities could potentially contribute to Abeta production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the beta-amyloid precursor protein sequence targeted by gamma-secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Abeta production in an in vitrogamma-secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660-hydrolysing activity could be recovered in PS- and NCT-deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying gamma-secretase-like properties but independent of PS and still blocked by DFK167, suggesting that the PS-dependent complex could not be the unique gamma-secretase activity responsible for Abeta production and delineates PS-independent gamma-secretase activity as a potential additional therapeutic target to fight AD pathology.
Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging
NASA Astrophysics Data System (ADS)
Barty, C. P. J.
2015-10-01
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
The gamma knife in ophthalmology. Part One--Uveal melanoma.
Wygledowska-Promieńska, Dorota; Jurys, Małgorzata; Wilczyński, Tomasz; Drzyzga, Łukasz
2014-01-01
The Gamma Knife was designed by Lars Leksell in the early 1950's. It gave rise to a new discipline of medicine--stereotactic radiosurgery. Primarily dedicated to neurosurgery, the Gamma Knife has become an alternative, widely used surgery technique. According to Elekta's statistics, approximately 60,000 people are treated with Leksell Gamma Knife every year and it is the most extensively studied stereotactic radiosurgery system in the world. The Leksell Gamma Knife can also be used in ophthalmology. The gamma ray beam concentration enables effective treatment of uveal melanoma, choroidal hemangioma, orbital tumors or even choroidal neovascularization. The virtue of Leksell Gamma Knife is its extreme precision, non-invasiveness and the possibility of outpatient treatment, which significantly reduces costs and diminishes post-operative complications. Innovative solutions shorten a single session to a minimum, which is very comfortable and safe for both staff and patients. Advantages and possible side effects of gamma knife radiosurgery are well-documented in the professional literature. The objective of this review is to present the recognized applications of Leksell Gamma Knife in ophthalmology.
Comparing Cognitive Interviewing and Online Probing: Do They Find Similar Results?
ERIC Educational Resources Information Center
Meitinger, Katharina; Behr, Dorothée
2016-01-01
This study compares the application of probing techniques in cognitive interviewing (CI) and online probing (OP). Even though the probing is similar, the methods differ regarding typical mode setting, sample size, level of interactivity, and goals. We analyzed probing answers to the International Social Survey Programme item battery on specific…