Sample records for gamma probes physical

  1. Gamma-ray lines from neutron stars as probes of fundamental physics

    NASA Technical Reports Server (NTRS)

    Brecher, K.

    1978-01-01

    The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.

  2. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  3. Development of a novel gamma probe for detecting radiation direction

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  4. Feasibility of a wireless gamma probe in radioguided surgery.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-06-21

    Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D)  ×  130 mm (L).

  5. Feasibility of a wireless gamma probe in radioguided surgery

    NASA Astrophysics Data System (ADS)

    Park, Hye Min; Joo, Koan Sik

    2016-06-01

    Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D)  ×  130 mm (L).

  6. Physical processes and diagnostics of gamma-ray burst emission

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1992-01-01

    With improved data from BATSE and other instruments, it is important to develop a range of diagnostic tools to link gamma-ray burst observations with theory. I will review some of the physical processes which may take place to form the spectrum of gamma-ray burst sources, assuming that the bursts originate on strongly magnetized neutron stars. The important diagnostics that these processes provide to probe the emission region and how they might be used to interpret observed spectra will also be discussed.

  7. Constraints on the phase gamma and new physics from B --> kpi decays

    PubMed

    He; Hsueh; Shi

    2000-01-03

    Recent results from CLEO on B-->Kpi indicate that the phase gamma may be substantially different from that obtained from other fit to the KM matrix elements in the standard model. We show that gamma extracted using B-->Kpi,pipi is sensitive to new physics occurring at loop level. It provides a powerful method to probe new physics in electroweak penguin interactions. Using effects due to anomalous gauge couplings as an example, we show that within the allowed ranges for these couplings information about gamma obtained from B-->Kpi,pipi can be very different from the standard model prediction.

  8. Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard

    2015-02-01

    The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-­to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-­5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less

  9. Gamma-ray blind beta particle probe

    DOEpatents

    Weisenberger, Andrew G.

    2001-01-01

    An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

  10. Gamma-Ray Imaging Probes.

    NASA Astrophysics Data System (ADS)

    Wild, Walter James

    1988-12-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.

  11. A comprehensive overview of radioguided surgery using gamma detection probe technology

    PubMed Central

    Povoski, Stephen P; Neff, Ryan L; Mojzisik, Cathy M; O'Malley, David M; Hinkle, George H; Hall, Nathan C; Murrey, Douglas A; Knopp, Michael V; Martin, Edward W

    2009-01-01

    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology. PMID:19173715

  12. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  13. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology

    PubMed Central

    van Oosterom, Matthias N; Simon, Hervé; Mengus, Laurent; Welling, Mick M; van der Poel, Henk G; van den Berg, Nynke S; van Leeuwen, Fijs WB

    2016-01-01

    In complex (robot-assisted) laparoscopic radioguided surgery procedures, or when low activity lesions are located nearby a high activity background, the limited maneuverability of a laparoscopic gamma probe (LGP; 4 degrees of freedom (DOF)) may hinder lesion identification. We investigated a drop-in gamma probe (DIGP) technology to be inserted via a trocar, after which the laparoscopic surgical tool at hand can pick it up and maneuver it. Phantom experiments showed that distinguishing a low objective from a high background source (1:100 ratio) was only possible with the detector faced >90° from the high background source. Signal-low-objective-to-background ratios of 3.77, 2.01 and 1.84 were found for detector angles of 90°, 135° and 180°, respectively, whereas detector angles of 0° and 45° were unable to distinguish the sources. This underlines the critical role probe positioning plays. We then focused on engineering of the gripping part for optimal DIGP pick-up with a conventional laparoscopic forceps (4 DOF) or a robotic forceps (6 DOF). DIGPs with 0°, 45°, 90°, and 135° -grip orientations were designed, and their maneuverability- and scanning direction were evaluated and compared to a conventional LGP. The maneuverability- and scanning direction of the DIGP was found highest when using the robotic forceps, with the largest effective scanning direction range obtained with the 90° -grip design (0-180° versus 0-111°, 0-140°, and 37-180° for 0°, 45° and 135° -grip designs, respectively). For the laparoscopic forceps, the scan direction directly translated from the angle of the grip design with the advantage that the 135° -gripped DIGP could be faced backwards (not possible with the conventional LGP). In the ex vivo clinical setup, the surgeon rated DIGP pick-up most convenient for the 45°-grip design. Concluding, the DIGP technology was successfully introduced. Optimization of the grip design and grasping angle of the DIGP increased its utility

  14. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    PubMed

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  15. Gamma Ray Bursts as Cosmological Probes with EXIST

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  16. Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics

    NASA Astrophysics Data System (ADS)

    Kopac, D.; Mundell, C.

    2015-07-01

    It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.

  17. Physical probing of cells

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Schmidt, Christoph F.

    2017-11-01

    In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.

  18. Sentinel lymph node detection in early stage cervical cancer: a prospective study comparing preoperative lymphoscintigraphy, intraoperative gamma probe, and blue dye.

    PubMed

    Kara, P Pelin; Ayhan, Ali; Caner, Biray; Gültekin, Murat; Ugur, Omer; Bozkurt, M Fani; Usubutun, Alp

    2008-07-01

    The objective of this prospective study was to determine the feasibility of sentinel lymph node (SLN) detection in patients with cervical cancer using lymphoscintigraphy (LS), gamma probe, and blue dye. A total of 32 patients with early stage cervical cancer (FIGO IA2-IIA) who were treated with total abdominal hysterectomy and bilateral pelvic and paraortic lymphadenectomy underwent SLN biopsy. LS was performed on all the patients following the injection of 74 MBq technetium-99m-nanocolloid pericervically. The first appearing persistent focal accumulation on either dynamic or static images of LS was considered to be an SLN. Blue dye was injected just prior to surgical incision in 16 patients (50%) at the same locations as the radioactive isotope injection. During the operation, blue-stained node(s) were excised as SLNs. For gamma probe, a lymph node was accepted as an SLN, if its ex vivo radioactive counts were at least 10-fold above background radioactivity. SLNs, which were negative by routine hematoxylin and eosin (H&E) examination, were histopathologically reevaluated for the presence of micrometastases by step sectioning and immunohistochemical staining with pancytokeratin. At least one SLN was identified for each patient by gamma probe. Intraoperative gamma probe was the most sensitive method with a technical success rate of SLN detection of 100% (32/32), followed by LS 87.5% (28/32) and blue dye 68.8% (11/16), respectively. The average number of SLNs per patient detected by gamma probe was 2.09 (range 1-5). The localizations of the SLNs were external iliac 47.8%, obturatory 32.8%, common iliac 9%, paraaortic 4.4%, and paracervical 6%. Micrometastases, not detected by routine H&E were found by immunohistochemistry in one patient. On the basis of the histopathological analysis, the negative predictive value for predicting metastases was 100%, and there were no false-negative results. Preoperative LS with radiocolloids, intraoperative lymphatic mapping with

  19. Physical principles of neutron-gamma materials monitoring

    NASA Astrophysics Data System (ADS)

    Pekarskii, G. Sh.

    1986-03-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  20. Physical principles of neutron-gamma materials monitoring

    NASA Astrophysics Data System (ADS)

    Pekarskii, G. Sh.

    1985-07-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  1. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  2. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  3. Probing new top physics at the LHCb experiment.

    PubMed

    Kagan, Alexander L; Kamenik, Jernej F; Perez, Gilad; Stone, Sheldon

    2011-08-19

    We suggest that top quark physics can be studied at the LHCb experiment and that top quark production could be observed. Since LHCb covers a large pseudorapidity region in the forward direction, it has unique abilities to probe new physics in the top quark sector. Furthermore, we demonstrate that LHCb may be able to measure a t ̄t production rate asymmetry and, thus, indirectly probe an anomalous forward-backward t ̄t asymmetry in the forward region, a possibility suggested by the enhanced forward-backward asymmetry reported by the CDF experiment. © 2011 American Physical Society

  4. The early universe as a probe of new physics

    NASA Astrophysics Data System (ADS)

    Bird, Christopher Shane

    The Standard Model of Particle Physics has been verified to unprecedented precision in the last few decades. However there are still phenomena in nature which cannot be explained, and as such new theories will be required. Since terrestrial experiments are limited in both the energy and precision that can be probed, new methods are required to search for signs of physics beyond the Standard Model. In this dissertation, I demonstrate how these theories can be probed by searching for remnants of their effects in the early Universe. In particular I focus on three possible extensions of the Standard Model: the addition of massive neutral particles as dark matter, the addition of charged massive particles, and the existence of higher dimensions. For each new model, I review the existing experimental bounds and the potential for discovering new physics in the next generation of experiments. For dark matter, I introduce six simple models which I have developed, and which involve a minimum amount of new physics, as well as reviewing one existing model of dark matter. For each model I calculate the latest constraints from astrophysics experiments, nuclear recoil experiments, and collider experiments. I also provide motivations for studying sub-GeV mass dark matter, and propose the possibility of searching for light WIMPs in the decay of B-mesons and other heavy particles. For charged massive relics, I introduce and review the recently proposed model of catalyzed Big Bang nucleosynthesis. In particular I review the production of 6Li by this mechanism, and calculate the abundance of 7Li after destruction of 7Be by charged relics. The result is that for certain natural relics CBBN is capable of removing tensions between the predicted and observed 6Li and 7Li abundances which are present in the standard model of BBN. For extra dimensions, I review the constraints on the ADD model from both astrophysics and collider experiments. I then calculate the constraints on this model

  5. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  6. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery.

    PubMed

    Gulec, Seza A; Daghighian, Farhad; Essner, Richard

    2016-12-01

    Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions <1 cm, and the intraoperative localization of small PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

  7. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  8. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  9. Development and characterization of a compact hand-held gamma probe system, SURGEOGUIDE, based on NEMA NU3-2004 standards

    NASA Astrophysics Data System (ADS)

    Kaviani, S.; Zeraatkar, N.; Sajedi, S.; Gorjizadeh, N.; Farahani, M. H.; Ghafarian, P.; El Fakhri, G.; Sabet, H.; Ay, M. R.

    2016-12-01

    Using an intra-operative gamma probe after periareolar or peritumoral injection of a radiotracer during surgery helps the surgeon to identify the sentinel, or first, nodal site of regional metastasis in clinically node-negative patients. The pathological analysis of this node can have an important influence on the treatment staging in various cancers. This paper reports the design and performance evaluation of a gamma probe recently developed in our department. The detector unit of this system consists of an 8 mm diameter and 10 mm thickness monolithic CsI(Tl) scintillator optically, coupled to a Silicon Photomultiplier (SiPM) with an active area of 6×6 mm2, and a single-hole collimator. The unit is shielded using tungsten. The system can operate in three different modes for Tc-99m, I-131, or F-18 isotopes. The following measurements were carried out to evaluate the performance of the probe: sensitivity in air and scatter medium, spatial resolution in scatter medium, angular resolution in scatter medium, and side and back shielding effectiveness. All experiments have been performed based on the NEMA NU3-2004 standard set up. The measured system sensitivities in air and scatter medium (water) are 1700 cps/MBq and 1770 cps/MBq, respectively, both measured at 3 cm from the collimator. The spatial resolution in the scatter medium is about 45 mm at 3 cm distance from the collimator. Also, the angular resolution of the probe is 74o FWHM. Finally, a shielding effectiveness of 99.5% is measured. The results show that the probe can potentially be used for sentinel lymph node localization during the surgery.

  10. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  11. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  12. The Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2008-04-01

    We describe a concept for a ˜km^2 ground-based gamma-ray experiment (AGIS) comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present the scientific drivers for AGIS including the prospects for contributions to understanding extragalactic sources such as nearby galaxies, active galaxies, galaxy clusters and GRB; galactic sources such as X-ray binaries, supernova remnants, and pulsar wind nebulae; as well as probes of fundamental physics including indirectly detecting dark matter and probing TeV-scale physics. With the current generation of atmospheric Cherenkov telescope arrays, TeV astronomy has become well established, with the number TeV gamma-ray sources now nearing 100, including many unidentified and serendipitous sources. Improvements in the instantaneous field of view, angular resolution, effective area and energy resolution of AGIS are certain to provide great scientific returns in high energy astrophysics as well as opening up new discovery space. Here we present an overview of the ongoing design studies for AGIS including the optimization of array parameters as well as an overview of the technical drivers for the observatory.

  13. Physics Program at COSY-Juelich with Polarized Hadronic Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacharava, Andro

    2009-08-04

    Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizesmore » the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.« less

  14. Rare b-hadron decays as probe of new physics

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gaia

    2018-05-01

    The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.

  15. Probing CP violation in $$h\\rightarrow\\gamma\\gamma$$ with converted photons

    DOE PAGES

    Bishara, Fady; Grossman, Yuval; Harnik, Roni; ...

    2014-04-11

    We study Higgs diphoton decays, in which both photons undergo nuclear conversion to electron- positron pairs. The kinematic distribution of the two electron-positron pairs may be used to probe the CP violating (CPV) coupling of the Higgs to photons, that may be produced by new physics. Detecting CPV in this manner requires interference between the spin-polarized helicity amplitudes for both conversions. We derive leading order, analytic forms for these amplitudes. In turn, we obtain compact, leading-order expressions for the full process rate. While performing experiments involving photon conversions may be challenging, we use the results of our analysis to constructmore » experimental cuts on certain observables that may enhance sensitivity to CPV. We show that there exist regions of phase space on which sensitivity to CPV is of order unity. As a result, the statistical sensitivity of these cuts are verified numerically, using dedicated Monte-Carlo simulations.« less

  16. Probing University Students' Pre-Knowledge in Quantum Physics with QPCS Survey

    ERIC Educational Resources Information Center

    Asikainen, Mervi A.

    2017-01-01

    The study investigated the use of Quantum Physics Conceptual Survey (QPCS) in probing student understanding of quantum physics. Altogether 103 Finnish university students responded to QPCS. The mean scores of the student responses were calculated and the test was evaluated using common five indices: Item difficulty index, Item discrimination…

  17. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  18. Probing High School Physics Students' Views and Concerns about Learning Activities

    ERIC Educational Resources Information Center

    Langley, Dorothy; Eylon, Bat-Sheva

    2006-01-01

    The current study is framed within an ongoing effort of probing students' attitudes and expectations about knowing and learning physics, which has driven several investigations during the past decade. The questionnaire we developed focuses on physics students' views regarding a variety of specific learning activities, which are presented by title…

  19. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  20. Using polarized positrons to probe physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  1. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  2. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  3. Extreme Light Infrastructure - Nuclear Physics pillar (ELI-NP) : new horizons in physics with high power lasers and brilliant gamma beams.

    PubMed

    Gales, Sydney; Tanaka, Kazuo A; Balabanski, D L; Negoita, Florin; Stutman, D; Ur, Calin Alexander; Tesileanu, Ovidiu; Ursescu, Daniel; Ghita, Dan Gabriel; Andrei, I; Ataman, Stefan; Cernaianu, M O; D'Alessi, L; Dancus, I; Diaconescu, B; Djourelov, N; Filipescu, D; Ghenuche, P; Matei, C; Seto Kei, K; Zeng, M; Zamfir, Victor Nicolae

    2018-06-28

    The European Strategic Forum for Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser elds with intensities reaching up to 10221023 W/cm2 called \\ELI" for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011 2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientic research at the frontier of knowledge involving two domains. The rst one is laser-driven experiments related to nuclear physics, strong-eld quantum electrodynamics and associated vacuum eects. The second is based on a Comptonbackscattering high-brilliance and intense low-energy gamma beam (< 20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with signicant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by \\Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and Multi-MeV brilliant gamma beam scientic and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The

  4. Gamma Ray Imaging of Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team

    2016-10-01

    Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.

  5. Using polarized positrons to probe physics beyond the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furletova, Yulia; Mantry, Sonny

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  6. Using polarized positrons to probe physics beyond the standard model

    DOE PAGES

    Furletova, Yulia; Mantry, Sonny

    2018-05-25

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  7. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  8. Metal enrichment in the Fermi bubbles as a probe of their origin

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Nakashima, Shinya; Tahara, Masaya; Kataoka, Jun; Totani, Tomonori; Fujita, Yutaka; Sofue, Yoshiaki

    2015-06-01

    The Fermi bubbles are gigantic gamma-ray structures in our Galaxy. The physical origin of the bubbles is still under debate. The leading scenarios can be divided into two categories. One is nuclear star-forming activity similar to extragalactic starburst galaxies and the other is past active galactic nucleus (AGN)-like activity of the Galactic center supermassive black hole. In this letter, we propose that metal abundance measurements will provide an important clue to probe their origin. Based on a simple spherically symmetric bubble model, we find that the generated metallicity and abundance patterns of the bubbles' gas strongly depend on assumed star formation or AGN activities. Star formation scenarios predict higher metallicities and abundance ratios of [O/Fe] and [Ne/Fe] than AGN scenarios do because of supernovae ejecta. Furthermore, the resultant abundance depends on the gamma-ray emission process because different mass injection histories are required for the different gamma-ray emission processes due to the acceleration and cooling time scales of non-thermal particles. Future X-ray missions such as ASTRO-H and Athena will give a clue to probe the origin of the bubbles through abundance measurements with their high energy resolution instruments.

  9. Methods for Probing New Physics at High Energies

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.

    This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and

  10. Short Gamma-ray Bursts: Observations and Physics

    NASA Astrophysics Data System (ADS)

    Janka, H.-Thomas

    2007-04-01

    The aim of the workshop, which will be held at the scenic Ringberg castle, is supposed to bring together astrophysicists, physicists, and astronomers from different fields in order to discuss recent observational and theoretical discoveries and developments on short gamma-ray bursts. In particular, we plan to address the following topics: * recent short GRB observations * environments and host galaxies of short GRBs * is there a 3rd class of GRBs? * modeling GRB engines and jet outflows * rate and redshift predictions for short GRBs * the fireball model and short GRBs * gravitational-wave signals from short GRBs * neutrino signals from short GRBs * microphysics needed for modeling short GRBs and their engines Scientific and Local organizing committee members: H.-Thomas Janka (Max Planck Institute for Astrophysics, Garching), Miguel Aloy (University of Valencia), Jochen Greiner (Max Planck Institute for Extraterrestrial Physics), Sandra Savaglio (Max Planck Institute for Extraterrestrial Physics), Shri Kulkarni (California Institute of Technology, Pasadena)

  11. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

    PubMed Central

    Solanky, Bhavana S.; Muhlert, Nils; Tur, Carmen; Edden, Richard A. E.; Wheeler-Kingshott, Claudia A. M.; Miller, David H.; Thompson, Alan J.; Ciccarelli, Olga

    2015-01-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = −0.403 mM, 95% confidence intervals −0.792, −0.014, P = 0.043) and sensorimotor cortex (adjusted difference = −0.385 mM, 95% confidence intervals −0.667, −0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid

  12. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis.

    PubMed

    Cawley, Niamh; Solanky, Bhavana S; Muhlert, Nils; Tur, Carmen; Edden, Richard A E; Wheeler-Kingshott, Claudia A M; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2015-09-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the

  13. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after themore » explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.« less

  14. PROBING THE EXPANSION HISTORY OF THE UNIVERSE BY MODEL-INDEPENDENT RECONSTRUCTION FROM SUPERNOVAE AND GAMMA-RAY BURST MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Chao-Jun; Li, Xin-Zhou, E-mail: fengcj@shnu.edu.cn, E-mail: kychz@shnu.edu.cn

    To probe the late evolution history of the universe, we adopt two kinds of optimal basis systems. One of them is constructed by performing the principle component analysis, and the other is built by taking the multidimensional scaling approach. Cosmological observables such as the luminosity distance can be decomposed into these basis systems. These basis systems are optimized for different kinds of cosmological models that are based on different physical assumptions, even for a mixture model of them. Therefore, the so-called feature space that is projected from the basis systems is cosmological model independent, and it provides a parameterization for studying and reconstructing themore » Hubble expansion rate from the supernova luminosity distance and even gamma-ray burst (GRB) data with self-calibration. The circular problem when using GRBs as cosmological candles is naturally eliminated in this procedure. By using the Levenberg–Marquardt technique and the Markov Chain Monte Carlo method, we perform an observational constraint on this kind of parameterization. The data we used include the “joint light-curve analysis” data set that consists of 740 Type Ia supernovae and 109 long GRBs with the well-known Amati relation.« less

  15. Intraoperative detection of 18F-FDG-avid tissue sites using the increased probe counting efficiency of the K-alpha probe design and variance-based statistical analysis with the three-sigma criteria

    PubMed Central

    2013-01-01

    Background Intraoperative detection of 18F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Methods Of 58 patients undergoing 18F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. Results The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Conclusions Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in

  16. The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma

    PubMed Central

    Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof

    2016-01-01

    Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979

  17. Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates.

    PubMed

    Kellner, Wendy A; Sullivan, Robert T; Carlson, Brian H; Thomas, James W

    2005-01-01

    Interspecies comparisons are important for deciphering the functional content and evolution of genomes. The expansive array of >70 public vertebrate genomic bacterial artificial chromosome (BAC) libraries can provide a means of comparative mapping, sequencing, and functional analysis of targeted chromosomal segments that is independent and complementary to whole-genome sequencing. However, at the present time, no complementary resource exists for the efficient targeted physical mapping of the majority of these BAC libraries. Universal overgo-hybridization probes, designed from regions of sequenced genomes that are highly conserved between species, have been demonstrated to be an effective resource for the isolation of orthologous regions from multiple BAC libraries in parallel. Here we report the application of the universal probe design principal across entire genomes, and the subsequent creation of a complementary probe resource, Uprobe, for screening vertebrate BAC libraries. Uprobe currently consists of whole-genome sets of universal overgo-hybridization probes designed for screening mammalian or avian/reptilian libraries. Retrospective analysis, experimental validation of the probe design process on a panel of representative BAC libraries, and estimates of probe coverage across the genome indicate that the majority of all eutherian and avian/reptilian genes or regions of interest can be isolated using Uprobe. Future implementation of the universal probe design strategy will be used to create an expanded number of whole-genome probe sets that will encompass all vertebrate genomes.

  18. Development of the Probing In-Situ with Neutron and Gamma Rays (PING) Instrument for Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.

  19. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Razzano, M.

    2009-04-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  20. Intraoperative gamma probe guidance with 99mTc-pertechnetate in the completion thyroidectomy.

    PubMed

    Aras, Gülseren; Gültekin, Salih Sinan; Küçük, Nuriye Ozlem; Demirer, Seher; Tuğ, Tuğbay

    2009-07-01

    Intraoperative gamma probe (GP) guidance with (99m)Tc-pertechnetate in the completion total thyroidectomy after a first thyroidectomy was investigated in this prospective study. The study group comprises of fourteen consecutive patients (14 females, age mean 50.2 +/- 12.0 years, age range 29-73 years). All patients underwent a second thyroidectomy due to inadequate (5/14 patients) and complementary (9/14 patients) interventions. Serum-free three iodothyronine, free thyroxin and thyroid stimulating hormone measurements, a neck ultrasonography (USG) and thyroid scintigraphy (TS) were performed in the preoperative and postoperative period. After a 185 MBq (5 mCi) injection of (99m)Tc-pertechnetate, background (BG), left thyroid lobe (LTL), right thyroid lobe (RTL) and pyramidal tyroid lobe (PTL) regions were counted in time before and after resection of thyroid remnants by intraoperative GP. All resection materials were evaluated by histopathologic examination. Preoperative TSH was less than 30 mIU/mL (mean 21 +/- 7) in all patients. Functioning thyroid remnants were shown in 13/14 patients on the preoperative TS and USG, which were diagnosed by USG in one but by TS in other one. We calculated that percentage median (minimum-maximum) values were 220.90% (56.00-411.11%) in LTL, 80.43% (11.54-471.05%) in RTL and 66.60% (-3.33 to 158.33%) in PTL for counts before resection, on the other hand, 15.96% (-20.55 to 47.62%) in LTL, 17.59% (-15.07 to 38.46%) in RTL and 17.59% (-1.96 to 57.14%) in PTL regions for counts after resection. There were statistically significant differences between these values belonging to before and after resection for LTL (p = 0.001), RTL (p = 0.001) and PTL (p = 0.008). Bilateral small foci in a patient and unilateral focus in other patient were observed in postoperative TS. Unilateral focus was detected on the RTL by GP, but not bilateral foci. Postoperative TSH levels increased to 30 mIU/mL (mean 69 +/- 26) at least. There was a statistically

  1. Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax

    NASA Astrophysics Data System (ADS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria

    2012-12-01

    Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.

  2. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    NASA Astrophysics Data System (ADS)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  3. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less

  4. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  5. TEMPORAL EVOLUTION OF SUB-NANOMETER COMPOSITIONAL PROFILES ACROSS THE GAMMA/GAMMA' INTERFACE IN A MODEL Ni-Al-Cr SUPERALLOY

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2005-01-01

    Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.

  6. Investigation of redshift- and duration-dependent clustering of gamma-ray bursts

    DOE PAGES

    Ukwatta, T. N.; Woźniak, P. R.

    2015-11-05

    Gamma-ray bursts (GRBs) are detectable out to very large distances and as such are potentially powerful cosmological probes. Historically, the angular distribution of GRBs provided important information about their origin and physical properties. As a general population, GRBs are distributed isotropically across the sky. However, there are published reports that once binned by duration or redshift, GRBs display significant clustering. We have studied the redshift- and duration-dependent clustering of GRBs using proximity measures and kernel density estimation. Utilizing bursts detected by Burst and Transient Source Experiment, Fermi/gamma-ray burst monitor, and Swift/Burst Alert Telescope, we found marginal evidence for clustering inmore » very short duration GRBs lasting less than 100 ms. As a result, our analysis provides little evidence for significant redshift-dependent clustering of GRBs.« less

  7. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  8. Light-quarks Yukawa couplings and new physics in exclusive high- p T Higgs boson + jet and Higgs boson + b -jet events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad

    We suggest that the exclusivemore » $$\\mathrm{Higgs}+\\text{light}$$ (or b)-jet production at the LHC, $$pp{\\rightarrow}h+j({j}_{b})$$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ interactions. We study the Higgs $${p}_{T}$$-distribution in $$pp{\\rightarrow}h+j({j}_{b}){\\rightarrow}{\\gamma}{\\gamma}+j({j}_{b})$$, i.e., in $$h+j({j}_{b})$$ production followed by the Higgs decay $$h{\\rightarrow}{\\gamma}{\\gamma}$$, employing the ($${p}_{T}$$-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parametrize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive $$h+j({j}_{b})$$ production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to $$\\mathcal{O}(10)\\text{ }\\text{ }\\mathrm{TeV}$$, depending on the flavor, chirality and Lorentz structure of the underlying physics.« less

  9. Light-quarks Yukawa couplings and new physics in exclusive high- p T Higgs boson + jet and Higgs boson + b -jet events

    DOE PAGES

    Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad; ...

    2018-03-13

    We suggest that the exclusivemore » $$\\mathrm{Higgs}+\\text{light}$$ (or b)-jet production at the LHC, $$pp{\\rightarrow}h+j({j}_{b})$$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ interactions. We study the Higgs $${p}_{T}$$-distribution in $$pp{\\rightarrow}h+j({j}_{b}){\\rightarrow}{\\gamma}{\\gamma}+j({j}_{b})$$, i.e., in $$h+j({j}_{b})$$ production followed by the Higgs decay $$h{\\rightarrow}{\\gamma}{\\gamma}$$, employing the ($${p}_{T}$$-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parametrize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive $$h+j({j}_{b})$$ production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to $$\\mathcal{O}(10)\\text{ }\\text{ }\\mathrm{TeV}$$, depending on the flavor, chirality and Lorentz structure of the underlying physics.« less

  10. Accuracy of non-operative identification of the sentinel lymph node using combined gamma and ultrasound scanning.

    PubMed

    Whelehan, P; Vinnicombe, S J; Brown, D C; McLean, D; Evans, A

    2014-08-01

    To assess how accurately the sentinel lymph node (SLN) can be identified percutaneously, using gamma probe and ultrasound technology. Women with breast cancer, scheduled for wide local excision or mastectomy with SLN biopsy (SLNB), were included. Peri-areolar intradermal injection of technetium-99 nanocolloid was performed on the morning of surgery and 1-2 ml of blue dye was injected in the peri-areolar region once the patient was anaesthetized. Prior to surgery, a gamma probe was used over the skin to identify any hot spot that could represent a SLN. Ultrasound, guided by the hot spot, was then used to visualize potential SLNs and guide the insertion of a localizing wire. The accuracy in localizing the SLN by preoperative gamma-probe guided ultrasonography was assessed by comparison to SLNB. A SLN was correctly identified and marked using gamma-probe guided ultrasonography in 44 of 59 cases (75%; 95% CI: 63-86%). This study supports the case for investigating percutaneous gamma probe and ultrasound guided interventions in the axilla in women with breast cancer, as a potential alternative to surgical SLNB. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Commissioning of a new SeHCAT detector and comparison with an uncollimated gamma camera.

    PubMed

    Taylor, Jonathan C; Hillel, Philip G; Himsworth, John M

    2014-10-01

    Measurements of SeHCAT (tauroselcholic [75selenium] acid) retention have been used to diagnose bile acid malabsorption for a number of years. In current UK practice the vast majority of centres calculate uptake using an uncollimated gamma camera. Because of ever-increasing demands on gamma camera time, a new 'probe' detector was designed, assembled and commissioned. To validate the system, nine patients were scanned at day 0 and day 7 with both the new probe detector and an uncollimated gamma camera. Commissioning results were largely in line with expectations. Spatial resolution (full-width 95% of maximum) at 1 m was 36.6 cm, the background count rate was 24.7 cps and sensitivity at 1 m was 720.8 cps/MBq. The patient comparison study showed a mean absolute difference in retention measurements of 0.8% between the probe and uncollimated gamma camera, and SD of ± 1.8%. The study demonstrated that it is possible to create a simple, reproducible SeHCAT measurement system using a commercially available scintillation detector. Retention results from the probe closely agreed with those from the uncollimated gamma camera.

  12. Probing new physics with atmospheric neutrinos at KM3NeT-ORCA

    NASA Astrophysics Data System (ADS)

    Coelho, João A. B.; KM3NeT Collaboration

    2017-09-01

    We present the prospects of ORCA searches for new physics phenomena using atmospheric neutrinos. Focus is given to exploiting the impact of strong matter effects on the oscillation of atmospheric neutrinos in light of expanded models, such as sterile neutrinos and non-standard interactions. In the presence of light sterile neutrinos that mix with active neutrinos, additional resonances and suppressions may occur at different energies. One may also use neutrino oscillations to probe the properties of the coherent forward scattering which may be altered by new interactions beyond the Standard Model. Preliminary studies show that ORCA would be able to probe some parameters of these models with sensitivity up to one order of magnitude better than current constraints.

  13. Cosmic Rays and Gamma-Rays in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako

    2004-12-01

    During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

  14. Future Gamma-Ray Imaging of Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2012-01-01

    Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.

  15. Probing Pre-and In-Service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    ERIC Educational Resources Information Center

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-01-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these…

  16. Pulsar H(alpha) Bowshocks probe Neutron Star Physics

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2014-08-01

    We propose a KOALA/AAOmega study of southern pulsar bow shocks. These rare, Balmer-dominated, non-radiative shocks provide an ideal laboratory to study the interaction of the relativistic pulsar wind with the ISM. We will cover H(alpha) at high spectral resolution to measure the kinematics of the upstream ISM and the post-shock flow, while the blue channel measures the Balmer decrement and probes for a faint cooling component. These data, with MHD models, allow us to extract the 3D flow geometry and the orientation and asymmetry of the pulsar wind. These data can also measure the pulsar spindown power, thus estimating the neutron star moment of inertia and effecting a fundamental test of dense matter physics.

  17. Probing Pre-galactic Metal Enrichment with High-redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-11-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature >~ 104 K. We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm-3. In more massive halos, corresponding to the first galaxies, the density may be larger, n >~ 100 cm-3. The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z >~ 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may distinguish whether the first heavy elements were produced in a pair

  18. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  19. Multinomial model and zero-inflated gamma model to study time spent on leisure time physical activity: an example of ELSA-Brasil.

    PubMed

    Nobre, Aline Araújo; Carvalho, Marilia Sá; Griep, Rosane Härter; Fonseca, Maria de Jesus Mendes da; Melo, Enirtes Caetano Prates; Santos, Itamar de Souza; Chor, Dora

    2017-08-17

    To compare two methodological approaches: the multinomial model and the zero-inflated gamma model, evaluating the factors associated with the practice and amount of time spent on leisure time physical activity. Data collected from 14,823 baseline participants in the Longitudinal Study of Adult Health (ELSA-Brasil - Estudo Longitudinal de Saúde do Adulto ) have been analysed. Regular leisure time physical activity has been measured using the leisure time physical activity module of the International Physical Activity Questionnaire. The explanatory variables considered were gender, age, education level, and annual per capita family income. The main advantage of the zero-inflated gamma model over the multinomial model is that it estimates mean time (minutes per week) spent on leisure time physical activity. For example, on average, men spent 28 minutes/week longer on leisure time physical activity than women did. The most sedentary groups were young women with low education level and income. The zero-inflated gamma model, which is rarely used in epidemiological studies, can give more appropriate answers in several situations. In our case, we have obtained important information on the main determinants of the duration of leisure time physical activity. This information can help guide efforts towards the most vulnerable groups since physical inactivity is associated with different diseases and even premature death.

  20. Low-energy gamma ray inspection of brazed aluminum joints

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1967-01-01

    Americium 241 serves as a suitable radioisotope /gamma ray source/ and exposure probe for radiographic inspection of brazed aluminum joints in areas of limited accessibility. The powdered isotope is contained in a sealed capsule mounted at the end of a spring-loaded pushrod in the probe assembly.

  1. [Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.

  2. The NASA Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bock, Jamie

    2015-04-01

    The NASA Physics of the Cosmos program is a portfolio of space-based investigations for studying fundamental processes in the universe. Areas of focus include: probing the physical process of inflation associated with the birth of the universe, studying the nature of the dark energy that dominates the mass-energy of the modern universe, advancing new ways to observe the universe through gravitational-wave astronomy, studying the universe in X-rays and gamma rays to probe energetic astrophysical processes and to study the formation and behavior of black holes in strong gravity, and determining the energetic origins and history of cosmic rays. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis. Space offers unique advantages for these exciting investigations, and the program seeks to guide the development of future space missions through observations from current facilities, and by formulating new technologies and capabilities.

  3. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  4. Radiation Belt Storm Probes: Resolving Fundamental Physics with Practical Consequences

    NASA Technical Reports Server (NTRS)

    Ukhorskiy, Aleksandr Y.; Mauk, Barry H.; Fox, Nicola J.; Sibeck, David G.; Grebowsky, Joseph M.

    2011-01-01

    The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

  5. A Hand-Held, Intra-Operative Positron Imaging Probe for Surgical Applications

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.

    2015-10-01

    We have developed a prototype intra-operative β+ imaging probe to help tumor removal and malignant tissue resection. The probe can be used during surgery to provide clear delineation of malignant tissues. Our probe consists of a hybrid scintillator coupled to a silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic aluminum housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The field of view of the probe is 10 ×10 mm2 realized by a 0.4 mm thick CsI:Tl scintillator coupled to a 1 mm thick LYSO. While CsI:Tl layer acts as β+ sensitive detector, LYSO detects gamma radiation where the gamma response can be subtracted from the total signal to improve SNR and contrast. The thickness of the LYSO scintillator is optimized such that it acts as light diffuser to spread the scintillation light generated in CsI:Tl over multiple SiPM pixels for accurate estimation of the β+ interaction location. The probe shows FWHM spatial resolution in the presence of large background radiation. The probe was used to study rabbits with tongue tumors. The experimental results show that the probe can successfully locate the tongue tumors in its active imaging area.

  6. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  7. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    PubMed

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  8. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  9. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  10. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  11. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  12. DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaunay, J. J.; Murase, K.; Mészáros, P.

    We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluencemore » ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.« less

  13. Probing high scale physics with top quarks at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Dong, Zhe

    With the Large Hadron Collider (LHC) running at TeV scale, we are expecting to find the deviations from the Standard Model in the experiments, and understanding what is the origin of these deviations. Being the heaviest elementary particle observed so far in the experiments with the mass at the electroweak scale, top quark is a powerful probe for new phenomena of high scale physics at the LHC. Therefore, we concentrate on studying the high scale physics phenomena with top quark pair production or decay at the LHC. In this thesis, we study the discovery potential of string resonances decaying to t/tbar final state, and examine the possibility of observing baryon-number-violating top-quark production or decay, at the LHC. We point out that string resonances for a string scale below 4 TeV can be detected via the t/tbar channel, by reconstructing center-of-mass frame kinematics of the resonances from either the t/tbar semi-leptonic decay or recent techniques of identifying highly boosted tops. For the study of baryon-number-violating processes, by a model independent effective approach and focusing on operators with minimal mass-dimension, we find that corresponding effective coefficients could be directly probed at the LHC already with an integrated luminosity of 1 inverse femtobarns at 7 TeV, and further constrained with 30 (100) inverse femtobarns at 7 (14) TeV.

  14. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-12-01

    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (˜10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5ergscm-2 to F<1200ergscm-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈33Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

  15. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  16. Probing new physics via the B(s)0→μ(+)μ- effective lifetime.

    PubMed

    De Bruyn, Kristof; Fleischer, Robert; Knegjens, Robert; Koppenburg, Patrick; Merk, Marcel; Pellegrino, Antonio; Tuning, Niels

    2012-07-27

    We have recently seen new upper bounds for B(s)(0)→μ(+)μ(-), a key decay to search for physics beyond the standard model. Furthermore a nonvanishing decay width difference ΔΓ(s) of the B(s) system has been measured. We show that ΔΓ(s) affects the extraction of the B(s)(0)→μ(+)μ(-) branching ratio and the resulting constraints on the new physics parameter space and give formulas for including this effect. Moreover, we point out that ΔΓ(s) provides a new observable, the effective B(s)(0)→μ(+)μ(-) lifetime τ(μ(+)μ(-)), which offers a theoretically clean probe for new physics searches that is complementary to the branching ratio. Should the B(s)(0)→μ(+)μ(-) branching ratio agree with the standard model, the measurement of τ(μ(+)μ(-)), which appears feasible at upgrades of the Large Hadron Collider experiments, may still reveal large new physics effects.

  17. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.

    PubMed

    Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku

    2018-05-25

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.

  18. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  19. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  20. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  1. Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities

    NASA Astrophysics Data System (ADS)

    Yuan, Weimin; Amati, Lorenzo; Cannizzo, John K.; Cordier, Bertrand; Gehrels, Neil; Ghirlanda, Giancarlo; Götz, Diego; Produit, Nicolas; Qiu, Yulei; Sun, Jianchao; Tanvir, Nial R.; Wei, Jianyan; Zhang, Chen

    2016-12-01

    High-redshift Gamma-Ray Bursts (GRBs) beyond redshift {˜}6 are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and γ-ray polarization experiment POLAR is also introduced.

  2. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  3. [The knowledge about gamma-hydroxybutyric acid as by students of Physical Education Academy].

    PubMed

    Chwaluk, Paweł; Chwaluk, Agnieszka; Parnicki, Florian

    2009-01-01

    Gamma-hydroxybutyric acid is a substance stealthily used by criminals to facilitate sexual assaults. It is also known as doping agent in sports. Physical Education Academies should prepare their graduates to be educators for young people, their trainers, organizers of sports and recreational events. Second year students of two majors: physical education and tourism and recreation were surveyed by means of questionnaire on "date-rape drug". As much as 320 among 327 students surveyed had heard about "date-rape drug". However their knowledge on it was shallow and unsystematic. None of the surveyed knew that the substance of "date-rape drug" could also be used as a doping agent. Only 31% of respondents were aware of existence of the test to detect "date-rape drug" in drinks. Physical Education Academy students should be thoroughly and relevantly educated on the matter of pharmacologic doping agents and drugs endangerment.

  4. Probing Pre- and In-service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    NASA Astrophysics Data System (ADS)

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-09-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these teachers were interviewed. The results showed that the physics teachers' thought experiments with classical particles, light, and electrons were often partial. Many teachers also suffered a lack of the basic ideas and principles of physics, which probably hindered thought experimenting. In particular, understanding the ontological nature of classical particles, light and electrons seemed to be essential in performing the double-slit experiment in an appropriate way. However, the in-service physics teachers who had teaching experience in modern physics were more prepared for the double-slit thought experiment than the pre-service teachers. The results suggest that both thought experiments and the double-slit experiment should be given more weight in physics teacher education, even if experience in modern physics teaching at upper secondary school seems to some extent to develop teachers' abilities.

  5. Gamma Ray Observatory (GRO) Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Astrophysics Program is an endeavor to understand the origin and fate of the universe, to understand the birth and evolution of the large variety of objects in the universe, from the most benign to the most violent, and to probe the fundamental laws of physics by examining their behavior under extreme physical conditions. These goals are pursued by means of observations across the entire electromagnetic spectrum, and through theoretical interpretation of radiations and fields associated with astrophysical systems. Astrophysics orbital flight programs are structured under one of two operational objectives: (1) the establishment of long duration Great Observatories for viewing the universe in four major wavelength regions of the electromagnetic spectrum (radio/infrared/submillimeter, visible/ultraviolet, X-ray, and gamma ray), and (2) obtaining crucial bridging and supporting measurements via missions with directed objectives of intermediate or small scope conducted within the Explorer and Spacelab programs. Under (1) in this context, the Gamma Ray Observatory (GRO) is one of NASA's four Great Observatories. The other three are the Hubble Space Telescope (HST) for the visible and ultraviolet portion of the spectrum, the Advanced X-ray Astrophysics Facility (AXAF) for the X-ray band, and the Space Infrared Telescope Facility (SIRTF) for infrared wavelengths. GRO's specific mission is to study the sources and astrophysical processes that produce the highest energy electromagnetic radiation from the cosmos. The fundamental physical processes that are known to produce gamma radiation in the universe include nuclear reactions, electron bremsstrahlung, matter-antimatter annihilation, elementary particle production and decay, Compton scattering, synchrotron radiation. GRO will address a variety of questions relevant to understanding the universe, such as: the formation of the elements; the structure and dynamics of the Galaxy; the nature of pulsars; the existence

  6. A portable cadmium telluride multidetector probe for cardiac function monitoring

    NASA Astrophysics Data System (ADS)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B.; Prat, V.

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5×5×2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  7. High-z Universe with Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.

    2011-01-01

    Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.

  8. On previous and present investigations of resonance gamma-ray interaction with nuclei at the Institute of Theoretical and Experimental Physics (ITEP, Moscow)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, A. V.

    A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.

  9. Transient Astrophysics Probe

    NASA Astrophysics Data System (ADS)

    Camp, Jordan; Transient Astrophysics Probe Team

    2018-01-01

    The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.

  10. Quality assurance for gamma knives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys,more » interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.« less

  11. Techniques of biological contamination avoidance by atmospheric probes

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The likelihood of biologically contaminating a planet by an atmospheric probe has a low probability of occurring if the probe is kept biologically clean during terrestrial operations and if the structure remains in tact until the planets life zone is completely penetrated. High standards of cleanliness, monitoring and estimating for remedial actions must be maintained in a probe program. It is not a foregone conclusion, however, that heat sterilization needs to be employed. The use of several techniques having a good potential for lower probe costs are available and appear adequate to render a probe sterile within acceptable bounds. The techniques considered to be satisfactory for minimizing microbial load include: (1) combined heat (at 95-105 C) and gamma radiation; (2) short term heating at 105 + or - 5 C to inactivate all vegetative microbes; (3) irradiation routinely by ultraviolet light; (4) wiping by a bactericidal agent with or without a penetrant; and (5) cleanliness alone.

  12. Ultrahigh-energy cosmic rays: physics and astrophysics at extreme energies.

    PubMed

    Sigl, G

    2001-01-05

    The origin of cosmic rays is one of the major unresolved questions in astrophysics. In particular, the highest energy cosmic rays observed have macroscopic energies up to several 10(20) electron volts and thus provide a probe of physics and astrophysics at energies unattained in laboratory experiments. Theoretical explanations range from astrophysical acceleration of charged particles, to particle physics beyond the established standard model, and processes taking place at the earliest moments of our universe. Distinguishing between these scenarios requires detectors with effective areas in the 1000-square-kilometer range, which are now under construction or in the planning stage. Close connections with gamma-ray and neutrino astrophysics add to the interdisciplinary character of this field.

  13. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals

    PubMed Central

    Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.

    2012-01-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237

  14. AGIS -- the Advanced Gamma-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  15. Physical, proximate, functional and pasting properties of flour produced from gamma irradiated cowpea (Vigna unguiculata, L. Walp)

    NASA Astrophysics Data System (ADS)

    Darfour, B.; Wilson, D. D.; Ofosu, D. O.; Ocloo, F. C. K.

    2012-04-01

    Cowpeas are leguminous seeds widely produced and consumed in most developing countries of sub Saharan Africa. The aim of this study was to determine the physical, proximate, functional and pasting properties of flour obtained from gamma irradiated cowpea. Four cowpea cultivars were irradiated with gamma radiation at dose levels of 0.25, 0.5, 0.75, 1.0 and 1.5 kGy with the unirradiated cultivars serving as controls. The samples were hammer milled, sieved and stored at 4 °C for analysis. Physical, proximate, functional, pasting properties were determined using appropriate methods. In general, the irradiation dose applied to cowpea for insect control did not significantly affect the physical and proximate properties of the flour. However, significant increase (p<0.05) was achieved in paste bulk density, water and oil absorption capacities, foam capacities and least gelation concentrations of flour in general, which may be attributed to the irradiation. The radiation reduced the swelling power and water solubility index significantly. The peak temperature, peak viscosity and setback viscosity of the pastes were significantly (p<0.05) reduced while breakdown viscosity was significantly (p<0.05) increased by the radiation. It was established that the doses used on cowpea affected both the functional and pasting properties of the flour.

  16. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  17. PET Probe-Guided Surgery in Patients with Breast Cancer: Proposal for a Methodological Approach.

    PubMed

    Orsaria, Paolo; Chiaravalloti, Agostino; Fiorentini, Alessandro; Pistolese, Chiara; Vanni, Gianluca; Granai, Alessandra Vittoria; Varvaras, Dimitrios; Danieli, Roberta; Schillaci, Orazio; Petrella, Giuseppe; Buonomo, Oreste Claudio

    2017-01-02

    Although it is valuable for detecting distant metastases, identifying recurrence, and evaluating responses to chemotherapy, the role of 18 F-fluorodeoxyglucose positron-emission tomography/computed tomography ( 18 F-FDG PET/CT) in assessing locoregional nodal status for initial staging of breast cancer has not yet been well-defined in clinical practice. In the current report, we describe a new PET probe-based clinical approach, with evaluation of the technical performance of a handheld high-energy gamma probe for intraoperative localization of breast carcinomas, and evaluation of lymph node metastases during radio-guided oncological surgery. Three patients underwent a PET/CT scan immediately prior to surgery following the standard clinical protocol. Intraoperatively, tumors were localized and resected with the assistance of a hand-held gamma probe. PET-guided assessment of the presence or absence of regional nodal spread of malignancy was compared with the reference standard of histopathological examination. In all three cases, perioperative 18 F-FDG PET/CT imaging and intraoperative gamma probe detection verified complete resection of the hypermetabolic lesions and demonstrated no additional suspicious occult disease. This innovative approach demonstrates great promise for providing real-time access to metabolic and morphological tumor information that may lead to an optimal disease-tailored approach. In carefully selected indications, a PET probe can be a useful adjunct in surgical practice, but further trials with a larger number of patients need to be performed to verify these findings. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  19. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  20. Physics of gamma-ray bursts and multi-messenger signals from double neutron star mergers

    NASA Astrophysics Data System (ADS)

    Gao, He

    My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission observed by telescopes in different wavelengths. I have carried out three investigations to understand GRB prompt emission and afterglow. Chapter 2 develops a new method, namely, "Stepwise Filter Correlation" method, to decompose the variability components in a light curve. After proving its reliability through simulations, we apply this method to 266 bright GRBs and find that the majority of the bursts have clear evidence of superposition of fast and slow variability components. Chapter 3 gives a complete presentation of the analytical approximations for synchrotron self-compton emission for all possible orders of the characteristic synchrotron spectral breaks (nua, nu m, and nuc). We identify a "strong absorption" regime whennua > nuc, and derive the critical condition for this regime. The external shock theory is an elegant theory to model GRB afterglows. It invokes a limit number of model parameters, and has well predicted spectral and temporal properties. Chapter 4 gives a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes. This complete reference will serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data and identify new physics when the models fail. Milti-messenger signals from double neutron star merger: As the multi-messenger era of astronomy ushers in, the second part of the dissertation studies the possible electromagnetic (EM) and neutrino emission counterparts of double neutron star mergers. Chapter 6 suggests that if double neutron star mergers leave behind a massive magnetar rather than a black hole, the magnetar wind could push the ejecta launched during the merger process, and under

  1. A Search for WW$$\\gamma$$ and WZ$$\\gamma$$ Triboson Production and Anomalous Quartic Gauge Couplings at $$\\sqrt{s}$$ = 8 and 13~TeV within the Compact Muon Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James

    2016-01-01

    An analysis probing for the standard model production of three electroweak vector bosons, WVmore » $$\\gamma$$ with V = W or Z gauge boson, is presented. The W boson decays leptonically to an electron or muon, or their respective antiparticle, paired with the appropriate neutrino. The second boson V decays hadronically into two jets, and additionally a photon is required in the event. The data analyzed correspond to an integrated luminosity of 19.6~fb$$^{-1}$$ and 2.3~fb$$^{-1}$$ from proton-proton collisions at $$\\sqrt{s}$$ = 8~TeV and 13~TeV, respectively, collected in 2012 and 2015 by the CMS detector at the Large Hadron Collider. The event selection criteria used in these analyses yields 322 and 46 observed events in data in 2012 and 2015, respectively, while the estimated background yield from theoretical predictions is 342.1~$$\\pm$$~22.2 and 54.3~$$\\pm$$~17.7. These observations are consistent with the standard model next-to-leading order QCD predictions. Given the limitation in statistics to measure the cross section for this production process, an upper limit of 3.4 times the standard model predictions is made at a 95\\% confidence level for WV$$\\gamma$$ with photon $$p_{T}$$ greater than 30~GeV and absolute pseudorapidity less than 1.44. Physics beyond the standard model, such as anomalous couplings between the gauge bosons at the quartic vertex, may lead to enhancement in the number of WV$$\\gamma$$ events produced within high energy collisions. Such enhancements can be observed in kinematic distributions, particularly in the higher energy regions. No evidence of anomalous WW$$\\gamma\\gamma$$ and WWZ$$\\gamma$$ quartic gauge boson couplings is found, while 95\\% confidence level upper limits are obtained for various couplings.« less

  2. 3D-printed focused collimator for intra-operative gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Nikolov, Hristo N.; Pollmann, Steven I.

    2017-03-01

    Recent developments in targeted radiopharmaceutical labels have increased the need for sensitive, real-time gamma detection during cancer surgery and biopsy. Additive manufacturing (3D printing) in metal has now made it possible to design and fabricate complex metal collimators for compact gamma probes. We describe the design and implementation of a 3D-printed focused collimator that allows for real-time detection of gamma radiation from within a small volume of interest, using a single-crystal large-area detector. The collimator was fabricated using laser melting of powdered stainless steel (316L), using a commercial 3D metal printer (AM125, Renishaw plc). The prototype collimator is 20 mm thick, with hexagonal close-packed holes designed to focus to a point 35 mm below the surface of the collimator face. Tests were carried out with a low-activity (<1 μCi) 241 Am source, using a conventional gamma-ray detector probe, incorporating a 2.5 cm diameter, 2.5 cm thick NaI crystal coupled to a photomultiplier. The measured full-width half maximum (FWHM) was less than 5.6 mm, and collimator detection efficiency was 44%. The ability to fabricate fine features in solid metal makes it possible to develop optimized designs for high-efficiency, focused gamma collimators for real-time intraoperative imaging applications.

  3. First-Year University Physics Students' Knowledge about Direct Current Circuits: Probing Improvement in Understanding as a Function of Teaching and Learning Interventions

    ERIC Educational Resources Information Center

    Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle

    2017-01-01

    Probing university students' understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in…

  4. The Differential Interactions of Peroxisome Proliferator-Activated Receptor [gamma] Ligands with Tyr473 Is a Physical Basis for Their Unique Biological Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Monica; Akiyama, Taro E.; Castriota, Gino A.

    2008-08-01

    Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR){gamma} agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPAR{gamma} modulators (SPPAR{gamma}Ms) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPAR{gamma}Ms interact with PPAR{gamma} differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPAR{gamma} ligand, SPPAR{gamma}M2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signaturemore » in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPAR{gamma}M2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPAR{gamma}M2 was found to bind to and activate human PPAR{gamma} in which the Tyr473 residue had been mutated to alanine (hPPAR{gamma}Y473A), with potencies similar to those observed with the wild-type receptor (hPPAR{gamma}WT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPAR{gamma}Ms were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPAR{gamma} full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPAR{gamma}Ms with the PPAR{gamma} LBD, thereby providing a precise molecular determinant for their differing pharmacologies.« less

  5. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  6. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  7. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  8. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  9. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  10. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  11. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  12. TU-H-CAMPUS-TeP3-04: Probing the Dose Enhancement Due to a Clinically-Relevant Concentration of Gold Nanoparticles and Yb-169 Gamma Rays Using PRESAGE Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, J; Oklahoma State University, Stillwater, OK; Alqathami, M

    Purpose: To probe physical evidences of the dose enhancement due to a low/clinically-relevant concentration of gold nanoparticles (GNPs) and Yb-169 gamma rays using PRESAGE dosimeters. Methods: A PRESAGE cuvette was placed at approximately 2 mm above the plane containing three novel Yb-169 brachytherapy seeds (3.2, 3.2, and 5.3 mCi each). Two types of PRESAGE dosimeters were used – plain PRESAGEs (controls) and PRESAGEs loaded with 0.02 wt. % of GNPs (GNP-PRESAGEs). Each PRESAGE dosimeter was irradiated with different time durations (0 to 24 hours) to deliver 0, 4, 8, 16 and 24 Gy of dose. For a reference/comparison, both typesmore » of PRESAGEs were also irradiated using 250 kVp x-rays with/without Er-filter to deliver 0, 3, 10, and 30 Gy of dose. Er-filter was used to emulate Yb-169 spectrum using 250 kVp x-rays. The absorption spectra of PRESAGEs were measured using a UV spectrophotometer and used to determine the corresponding optical densities (ODs). Results: GNP-PRESAGEs exposed to Yb-169 sources showed ∼65% increase in ODs compared with controls. When exposed to Er-filtered and unfiltered 250 kVp x-rays, they produced smaller increases in ODs, ∼41% and ∼37%, respectively. There was a linear relationship between ODs and delivered doses with a goodness-of-fit (R2) greater than 0.99. Conclusion: A notable increase in the ODs (∼65%) was observed for GNP-PRESAGEs irradiated by Yb-169 gamma rays. Considering the observed OD increases, it was highly likely that Yb-169 gamma rays were more effective than both Er-filtered and unfiltered 250 kVp x-rays, in terms of producing the dose enhancement. Due to several unknown factors (e.g., possible difference in the dose response of GNP-PRESAGEs vs. PRESAGEs), however, a further investigations is necessary to establish the feasibility of quantifying the exact amount of macroscopic or microscopic/local GNP-mediated dose enhancement using PRESAGE or similar volumetric dosimeters. Supported by DOD/PCRP grant W81XWH

  13. MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT

    NASA Technical Reports Server (NTRS)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  14. GRB Diversity vs. Utility as Cosmological Probes

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Scargle, J. D.; Bonnell, J. T.; Nemiroff, R. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent detections of apparent gamma-ray burst (GRB) counterparts in optical and radio wavebands strongly favor the cosmological distance scale, at least for some GRBs, opening the possibility of GRBs serving as cosmological probes. But GRBs exhibit great diversity: in total duration; in number, width and pulse configuration; and in pulse and overall spectral evolution. However, it is possible that a portion of this behavior reflects a luminosity distribution, and possible that evolution of with cosmic time introduces dispersion into the average GRB characteristics -- issues analogous to those encountered with quasars. The temporal domain offers a rich avenue to investigate this problem. When corrected for assumed spectral redshift, time dilation of event durations, pulse widths, and intervals between pulses must yield the same time-dilation factor as a function of peak flux, or else a luminosity distribution may be the cause of observed time dilation effects. We describe results of burst analysis using an automated, Bayesian-based algorithm to determine burst temporal characteristics for different peak flux groups, and derived constraints on any physical process that would introduce a luminosity distribution.

  15. SPHEREx: Probing the Physics of Inflation with an All-Sky Spectroscopic Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dore, Olivier; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA’s astrophysics division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. These themes are addressed by a single survey, with a single instrument.In this poster, we describe how SPHEREx can probe the physics of inflationary non-Gaussianity by measuring large-scale structure with galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra. In particular, it will measure the redshifts of over 500 million galaxies of all types, an unprecedented dataset. Using this catalog, SPHEREx will reduce the uncertainty in fNL -- a parameter describing the inflationary initial conditions -- by a factor of more than 10 compared with CMB measurements. At the same time, this catalog will enable strong scientific synergies with Euclid, WFIRST and LSST

  16. Gamma Anna’: a classroom demonstration for teaching the concepts of gamma imaging

    NASA Astrophysics Data System (ADS)

    Wolff, Nicola; Griffiths, Jennifer; Yerworth, Rebecca

    2017-01-01

    Gamma imaging is at the interface of medicine and physics and thus its teaching is important in both fields. Pedagogic literature highlights the benefits of interactive demonstrations in teaching: an increase in enjoyment and interest, as well as improvement in academic achievement. However gamma imaging uses radioactive sources, which are potentially dangerous and thus their use is tightly controlled. We have developed a demonstration which uses a localised exothermic reaction within a rag doll as an analogue of radioactivity. This can be safely used in classrooms to demonstrate the principles of gamma imaging. The tool is easy to make, cheap, robust and portable. The supplementary material in this paper gives teacher notes and a description of how to make the rag doll demonstrator. We have tested the tool using six participants, acting as ‘teachers’, who carried out the demonstration and described the doll as easy to use, and the ‘tumour’ clearly identifiable. The teaching tool was separately demonstrated to a group of 12 GCSE physics students and a group of 12 medical students. Feedback showed increased student engagement, enjoyment and understanding of gamma imaging. Previous research has shown that these benefits have an impact on learning and academic outcomes.

  17. Chemical sensing flow probe

    DOEpatents

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  18. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  19. Measurement of gastric emptying by intragastric gamma scintigraphy.

    PubMed

    Malbert, C H; Mathis, C; Bobillier, E; Laplace, J P; Horowitz, M

    1997-09-01

    Gastric emptying is usually measured in animals and humans by dilution/sampling or external scintigraphy. These methods are either time consuming or require expensive equipment. The capacity of a miniature gamma counter positioned in the stomach to measure emptying of liquid and solid meals was evaluated. In eight conscious pigs fitted with gastric and duodenal cannulae, gastric emptying of saline (500 mL), dextrose (20%, 500 mL), porridge (300 g) and scrambled eggs (300 g), all labelled with 3.5 MBq 99mTC, was evaluated. When positioned in the antrum the probe was unable to quantify gastric emptying. In contrast, measurements of the fractional emptying of saline over 4-min periods by the probe positioned in the corpus and quantification of radioactivity in the duodenal effluent correlated closely (r = 0.88, P < 0.05). Gastric emptying (50% emptying time) of saline and both solid meals measured by the probe was not significantly different from quantification of the duodenal effluent volume. No difference was observed also for the dextrose meal but only while gastric acid secretion was suppressed by omeprazole. We conclude that an intragastric gamma counter permits measurement of gastric emptying of homogeneous meals provided meal stimulation of gastric secretion was not extensive. This was possible probably by monitoring emptying from the proximal stomach.

  20. Cosmic-ray physics with the milagro gamma-ray observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    The Milagro gamma-ray observatory is a water Cherenkov detector with an energy response between 100 GeV and 100 TeV. While the major scientific goals of Milagro were to detect and study cosmic sources of TeV gamma rays, Milagro has made measurements important to furthering our understanding of the cosmic radiation that pervades our Galaxy. Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux {approx}2.7 times that predicted by GALPROP. Milagro has also made measurements of the anisotropy of the arrival directions of the local cosmicmore » radiation. On large scales the measurements made by Milagro agree with those previously reported by the Tibet AS{gamma} array. However, we have also discovered a time dependence to this anisotropy, perhaps due to solar modulation. On smaller scales, {approx}10 degrees, we have detected two regions of excess. These excesses have a spectrum that is inconsistent with the local cosmic-ray spectrum.« less

  1. Cosmic Extremes: Probing Energetic Transients with Radio Observations

    NASA Astrophysics Data System (ADS)

    Denham Alexander, Kate

    2018-01-01

    With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.

  2. Probing dark matter physics with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    2016-10-01

    We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.

  3. FIRST DETECTION OF >100 MeV GAMMA-RAYS ASSOCIATED WITH A BEHIND-THE-LIMB SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesce-Rollins, M.; Omodei, N.; Petrosian, V.

    2015-06-01

    We report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ∼9.°9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ∼30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent with themore » RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ∼3.8. We show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  4. First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare

    DOE PAGES

    Pesce-Rollins, Melissa; Omodei, Nicola; Petrosian, V.; ...

    2015-05-28

    Here, we report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~9°.9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent withmore » the RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ~3.8. Furthermore, we show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less

  5. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  6. Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)

    NASA Astrophysics Data System (ADS)

    Tkachev, L.; Astapov, I.; Bezyazeekov, P.; Borodin, A.; Brueckner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Ivanova, A.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Kuzmichev, L.; Lemeshev, Yu.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoya, R.; Monkhoev, R.; Nachtigall, R.; Osipova, E.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Rjabov, E.; Rubtsov, G.; Pushnin, A.; Sabirov, B.; Sagan, Y.; Samoliga, V.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenkov, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.; Zhurov, D.

    The new TAIGA project is proposed to solve a number of fundamental problems of high- energy gamma astronomy, cosmic-ray and particle physics. The array will be located in the Tunka valley at the site of the Tunka-133 array. TAIGA will consist of wide-angle (FOV 0.6 sr) non-imaging Cherenkov optical detectors (TAIGA-HiSCORE) covering an area of up to 5 km2, and up to 16 IACTs (Imaging Atmospheric Cherenkov Telescopes) (FOV 10 × 10°) based on 9 m2 mirrors and muon detectors with a total sensitive area of 2000 m2. The current TAIGA status is presented.

  7. Probing AGN Accretion Physics through AGN Variability: Insights from Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal Pramod

    that the DRW is insufficient to characterize AGN variability. We provide a new approach to probing accretion physics with variability by decomposing observed light curves into a set of impulses that drive diffusive processes using C-ARMA models. Applying our approach to Kepler data, we demonstrate how the time-scales reported in the literature can be interpreted in the context of the growth and decay time-scales for flux perturbations and tentatively identify the flux perturbation driving process with accretion disk turbulence on length-scales much longer than the characteristic eddy size. Our analysis technique is applicable to (1) studying the connection between AGN sub-type and variability properties; (2) probing the origins of variability by studying the multi-wavelength behavior of AGN; (3) testing numerical simulations of accretion flows with the goal of creating a library of the variability properties of different accretion mechanisms; (4) hunting for changes in the behavior of the accretion flow by block-analyzing observed light curves; and (5) constraining the sampling requirements of future surveys of AGN variability.

  8. How gravitational-wave observations can shape the gamma-ray burst paradigm

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Brady, P.; Márka, S.

    2013-06-01

    By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.

  9. Associated-particle sealed-tube neutron probe for characterization of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, E.; Dickerman, C.E.; Peters, C.W.

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less

  10. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  11. Angular Distribution of Gamma-Ray Bursts: An Observational Probe of Cosmological Principle

    NASA Astrophysics Data System (ADS)

    Mészáros, A.; Balázs, L. G.; Vavrek, R.; Horváth, I.; Bagoly, Z.

    The test of the isotropy in the angular distribution of the gamma-ray bursts collected in BATSE Catalog (Meegan C. A. et al., http://www.batse.msfc.nasa.gov/data, 2000) is a test of cosmological principle itself, because the gamma-ray bursts are at cosmological distances. Several articles of the authors study this question (Balázs L. G., Mészáros A., & Horváth I., Astron. Astrophys., 339, 1, 1998; Balázs L. G., Mészáros A., Horváth I., & Vavrek R., Astron. Astrophys. Suppl., 138, 417, 1999; Mészáros A., Bagoly Z., & Vavrek R. Astron. Astrophys., in press, 2000). The final conclusion concerning the validity of isotropy is complicated both by instrumental effects and by the fact that there are three subgroups of gamma-ray bursts ("short", "intermediate", "long"; separation is done with respect to the duration of bursts). The long bursts are surely up to z ≃ 4 (z is the redshift); for the remaining two subclasses the redshifts are unknown. The done tests of isotropy suggest (after the elimination of instrumental effects) the existence of anisotropy for the intermediate subclass on the confidence level > 95%. On the other hand, for the remaining two subclasses the situation is unclear; there is no unambiguous rejection of isotropy for them yet on the higher than 95% confidence level. If the bursts of intermediate subclass are at high z-s (say, at, z > 0.1), then the validity of cosmological principle would be at a serious doubt.

  12. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  13. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    PubMed

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  14. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    White, Travis L.; Miller, William H.

    1999-02-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.

  15. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  16. An Analysis of the Utility of Handheld PET Probes for the Intraoperative Localization of Malignant Tissue

    PubMed Central

    González, Segundo Jaime; González, Lorena; Wong, Joyce; Brader, Peter; Zakowski, Maureen; Gönen, Mithat; Daghighian, Farhad; Fong, Yuman

    2012-01-01

    Introduction The intraoperative localization of suspicious lesions detected by positron emission tomography (PET) scan remains a challenge. To solve this, two novel probes have been created to accurately detect the 18F-FDG radiotracer intraoperatively. Methods Nude rats were inoculated with mesothelioma. When PET scans detected 10-mm tumors, animals were dissected and the PET probes analyzed the intraoperative radiotracer uptake of these lesions as tumor to background ratio (TBR). Results The 17 suspicious lesions seen on PET scan were localized intraoperatively (by their high TBR) using the PET probes and found malignant on pathology. Interestingly, smaller tumors not visualized on PET scan were detected intraoperatively by their high TBR and found malignant on pathology. Furthermore, using a TBR threshold as low as 2.0, both gamma (sensitivity, 100%; specificity, 80%; positive predictive value (PPV), 96%; and negative predictive value (NPV), 100%) and beta (sensitivity, 100%; specificity, 60%; PPV, 93%; and NPV, 100%) probes reliably detected suspicious lesions on PET scan imaging. They also showed an excellent area under the curve of 0.9 and 0.97 (95% CI of 0.81–0.99 and 0.93–1.0) for gamma and beta probes, respectively, in the receiver operating characteristic analysis for detecting malignancy. Conclusion This novel tool could be used synergistically with a PET scan imaging to maximize tissue selection intraoperatively. PMID:21108016

  17. The Advanced Gamma-ray Imaging System (AGIS)-Science Highlights

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of ~50 atmospheric Cherenkov telescopes distributed over an area of ~1 km2, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of γ-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view (~4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of ~10-13 erg cm-2 sec-1 will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent background rejection and very large effective area

  18. Current gamma knife treatment for ophthalmic branch of primary trigeminal neuralgia

    PubMed Central

    Shan, Guo-Yong; Liang, Hao-Fang; Zhang, Jian-Hua

    2011-01-01

    AIM To probe into problems existing in gamma knife treatment of ophthalmic branch of primary trigeminal neuralgia (TN), and propose a safe and effective solution to the problem. METHODS Through sorting the literature reporting gamma knife treatment of refractory TN in recent years, this article analyzed the advantages and problems of gamma knife treatment of primary TN, and proposed reasonable assessment for existing problems and the possible solution. RESULTS Gamma knife treatment of TN has drawn increasing attention of clinicians due to its unique non-invasion, safety and effectiveness, but there are three related issues to be considered. The first one is the uncertainty of the optimal dose (70-90GY); the second one is the difference in radiotherapy target selection (using a single isocenter or two isocenters); and the third one is the big difference of recurrent pains (specific treatment methods need to be summarized and improved). CONCLUSION For patients with refractory TN, gamma knife treatment can be selected when the medical treatment fails or drug side effects emerge. The analysis of a large number of TN patients receiving gamma knife treatment has shown that this is a safe and effective treatment method. PMID:22553625

  19. Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Yang, T. C.

    1998-01-01

    PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.

  20. The black hole symphony: probing new physics using gravitational waves.

    PubMed

    Gair, Jonathan R

    2008-12-13

    The next decade will very likely see the birth of a new field of astronomy as we become able to directly detect gravitational waves (GWs) for the first time. The existence of GWs is one of the key predictions of Einstein's theory of general relativity, but they have eluded direct detection for the last century. This will change thanks to a new generation of laser interferometers that are already in operation or which are planned for the near future. GW observations will allow us to probe some of the most exotic and energetic events in the Universe, the mergers of black holes. We will obtain information about the systems to a precision unprecedented in astronomy, and this will revolutionize our understanding of compact astrophysical systems. Moreover, if any of the assumptions of relativity theory are incorrect, this will lead to subtle, but potentially detectable, differences in the emitted GWs. Our observations will thus provide very precise verifications of the theory in an as yet untested regime. In this paper, I will discuss what GW observations could tell us about known and (potentially) unknown physics.

  1. Atom Probe Tomography Analysis of the Distribution of Rhenium in Nickel Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottura, A.; Warnken, N; Miller, Michael K

    2010-01-01

    Atom probe tomography (APT) is used to characterise the distributions of rhenium in a binary Ni-Re alloy and the nickel-based single-crystal CMSX-4 superalloy. A purpose-built algorithm is developed to quantify the size distribution of solute clusters, and applied to the APT datasets to critique the hypothesis that rhenium is prone to the formation of clusters in these systems. No evidence is found to indicate that rhenium forms solute clusters above the level expected from random fluctuations. In CMSX-4, enrichment of Re is detected in the matrix phase close to the matrix/precipitate ({gamma}/{gamma}{prime}) phase boundaries. Phase field modelling indicates that thismore » is due to the migration of the {gamma}/{gamma}{prime} interface during cooling from the temperature of operation. Thus, neither clustering of rhenium nor interface enrichments can be the cause of the enhancement in high temperature mechanical properties conferred by rhenium alloying.« less

  2. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  3. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  4. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  5. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  6. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  7. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  8. Physics of reflective optics for the soft gamma-ray photon energy range

    DOE PAGES

    Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; ...

    2013-07-12

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takesmore » place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.« less

  9. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  10. A Magnetic Plethysmograph Probe for Local Pulse Wave Velocity Measurement.

    PubMed

    P M, Nabeel; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2017-10-01

    We present the design and experimental validation of an arterial compliance probe with dual magnetic plethysmograph (MPG) transducers for local pulse wave velocity (PWV) measurement. The MPG transducers (positioned at 23 mm distance apart) utilizes Hall-effect sensors and permanent magnets for arterial blood pulse detection. The MPG probe was initially validated on an arterial flow phantom using a reference method. Further, 20 normotensive subjects (14 males, age = 24 ± 3.5 years) were studied under two different physical conditions: 1) Physically relaxed condition, 2) Postexercise condition. Local PWV was measured from the left carotid artery using the MPG probe. Brachial blood pressure (BP) was measured to investigate the correlation of BP with local PWV. The proposed MPG arterial compliance probe was capable of detecting high-fidelity blood pulse waveforms. Reliable local pulse transit time estimates were assessed by the developed measurement system. Beat-by-beat local PWV was measured from multiple subjects under different physical conditions. A profound increment was observed in the carotid local PWV for all subjects after exercise (average increment = 0.42 ± 0.22 m/s). Local PWV values and brachial BP parameters were significantly correlated (r ≥ 0.72), except for pulse pressure (r = 0.42). MPG arterial compliance probe for local PWV measurement was validated. Carotid local PWV measurement, its variations due to physical exercise and correlation with BP levels were examined during the in vivo study. A novel dual MPG probe for local PWV measurement and potential use in cuffless BP measurement.

  11. Probing massive stars around gamma-ray burst progenitors

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Smoot, George F.

    2015-10-01

    Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.

  12. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  13. The Sheath-less Planar Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  14. Effects of Muslims praying (Salat) on EEG gamma activity.

    PubMed

    Doufesh, Hazem; Ibrahim, Fatimah; Safari, Mohammad

    2016-08-01

    This study investigates the difference of mean gamma EEG power between actual and mimic Salat practices in twenty healthy Muslim subjects. In the actual Salat practice, the participants were asked to recite and performing the physical steps in all four stages of Salat; whereas in the mimic Salat practice, they were instructed to perform only the physical steps without recitation. The gamma power during actual Salat was statistically higher than during mimic Salat in the frontal and parietal regions in all stages. In the actual Salat practice, the left hemisphere exhibited significantly higher mean gamma power in all cerebral regions and all stages, except the central-parietal region in the sitting position, and the frontal area in the bowing position. Increased gamma power during Salat, possibly related to an increase in cognitive and attentional processing, supports the concept of Salat as a focus attention meditation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics. 1; Absorption by Host Galaxy Gas and Dust

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. A. M. J.; Wiersema, K.; Rol, E.; Curran, P. A.; Kouveliotou, C.; vanderHorst, A. J.; Heemskerk, M. H. M.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards an initial sample of 10 long Gamma-Ray Bursts observed with BeppoSAX and selected on the basis of their good optical and nIR coverage, from simultaneous fits to nIR, optical and X-ray afterglow data, in count space and including the effects of metallicity. In no cases is a MIV-like ext,inction preferred, when testing MW, LMC and SMC extinction laws. The 2175A bump would in principle be detectable in all these afterglows, but is not present in the data. An SMC-like gas-to-dust ratio or lower value can be ruled out for 4 of the hosts analysed here (assuming Sh4C metallicity and extinction law) whilst the remainder of the sample have too large an error to discriminate. We provide a more accurate estimate of the line-of-sight extinction and improve upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample. We discuss this method to determine extinction values in comparison with the most commonly employed existing methods.

  16. Standardization of the neutron probe for the assessment of masonry deterioration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, R.A.

    1992-01-01

    The repair of the infrastructure will require nondestructive methods to assess the condition of existing buildings and other structures, many of which are constructed of masonry. One possible technology is the neutron probe, a prompt-gamma neutron activation (PGNA) technique that can perform non- destructive elemental analyses in the field. It is based on a very low intensity [sup 252]Cf neutron source and a high-purity germanium detector for the gamma rays emitted by neutron capture within the material. The thermal neutron capture cross sections for hydrogen and chlorine are very large, and in masonry, these elements are found primarily in moisturemore » and chlorides. These are major causes of deterioration in porous materials such as brick masonry. The moisture damages the material through expansive stresses during freeze-thaw cycles. Chlorides also generate expansive stresses through periodic cycles of dissolution and recrystallization in response to relative humidity cycles in the atmosphere. Similar problems also occur in reinforced concrete, where chlorides cause additional damage through corrosion of the reinforcing steel. The sensitivity of the neutron probe to hydrogen and chlorine thus means it can be used to map the distribution of these agents of deterioration. Preliminary field work at Colonial Williamsburg and Venice, Italy, showed that the technique could yield useful qualitative information. However, to be a quantitative method, the neutron probe had to be standardized in the laboratory on materials of known composition and specified moisture and chloride content.« less

  17. Probing the nature of Dark Matter with the SKA

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Regis, M.; Marchegiani, P.; Beck, G.; Beck, R.; Zechlin, H.; Lobanov, A.; Horns, D.

    2015-04-01

    Dark Matter (DM) is a fundamental ingredient of our Universe and of structure formation, and yet its nature is elusive to astrophysical probes. Information on the nature and physical properties of the WIMP (neutralino) DM (the leading candidate for a cosmologically relevant DM) can be obtained by studying the astrophysical signals of their annihilation/decay. Among the various e.m. signals, secondary electrons produced by neutralino annihilation generate synchrotron emission in the magnetized atmosphere of galaxy clusters and galaxies which could be observed as a diffuse radio emission (halo or haze) centered on the DM halo. A deep search for DM radio emission with SKA in local dwarf galaxies, galaxy regions with low star formation and galaxy clusters (with offset DM-baryonic distribution, like e.g. the Bullet cluster) can be very effective in constraining the neutralino mass, composition and annihilation cross-section. For the case of a dwarf galaxy, like e.g. Draco, the constraints on the DM annihilation cross-section obtainable with SKA1-MID will be at least a factor $\\sim 10^3$ more stringent than the limits obtained by Fermi-LAT in the $\\gamma$-rays. These limits scale with the value of the B field, and the SKA will have the capability to determine simultaneously both the magnetic field in the DM-dominated structures and the DM particle properties. The optimal frequency band for detecting the DM-induced radio emission is around $\\sim 1$ GHz, with the SKA1-MID Band 1 and 4 important to probe the synchrotron spectral curvature at low-$\

  18. Blazar Gamma-Rays, Shock Acceleration, and the Extragalactic Background Light

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Baring, Matthew G.; Summerlin, Errol J.

    2007-01-01

    The observed spectra of blazars, their intrinsic emission, and the underlying populations of radiating particles are intimately related. The use of these sources as probes of the extragalactic infrared background, a prospect propelled by recent advances in TeV-band telescopes, soon to be augmented by observations by NASA's upcoming Gamma-Ray Large Area Space Telescope (GLAST), has been a topic of great recent interest. Here, it is demonstrated that if particles in blazar jets are accelerated at relativistic shocks, then GAMMA-ray spectra with indices less than 1.5 can be produced. This, in turn, loosens the upper limits on the near infrared extragalactic background radiation previously proposed. We also show evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV GAMMA-ray luminosities and we indicate that there may be a correlation of flatness and luminosity with redshift.

  19. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  20. Gamma-ray Burst and Gravitational Wave Counterpart Prospects in the MeV Band with AMEGO

    NASA Astrophysics Data System (ADS)

    Racusin, Judith; AMEGO Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) Probe mission concept is uniquely suited to address open questions in Gamma-ray Burst (GRB) science including the search for counterparts to gravitational-wave events. AMEGO is a wide field of view instrument (~60 deg radius) with a broad energy range (~200 keV to >10 GeV) and excellent continuum sensitivity. The sensitivity improvement will allow for probes of GRB emission mechanisms and jet composition in ways that have not been accessible with previous instruments. Potential for polarization measurement may also have profound impacts on the understanding of GRB mechanisms. AMEGO will also be an excellent facility for the search for gravitational wave counterparts to binary mergers including at least one neutron star, which are thought to produce short duration GRBs. This poster will describe how the AMEGO will advance these fields.

  1. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  2. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at

  3. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  4. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  5. Disentangling the gamma-ray emission towards Cygnus X: Sh2-104

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric

    2015-09-01

    We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.

  6. Novel Handheld Magnetometer Probe Based on Magnetic Tunnelling Junction Sensors for Intraoperative Sentinel Lymph Node Identification

    PubMed Central

    Cousins, A.; Balalis, G. L.; Thompson, S. K.; Forero Morales, D.; Mohtar, A.; Wedding, A. B.; Thierry, B.

    2015-01-01

    Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0 mm, and the potential to detect as few as 5 μg of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required. PMID:26038833

  7. A nonimaging scintillation probe to measure penile hemodynamics.

    PubMed

    Zuckier, L S; Korupolu, G R; Gladshteyn, M; Sattenberg, R; Goldstein, R; Ricciardi, R; Goodwin, P; Melman, A; Blaufox, M D

    1995-12-01

    We have developed a penile nonimaging scintillation (PNIS) probe consisting of a plastic well-type scintillation crystal interfaced to a portable computer and acquisition board. This report describes the design of the PNIS probe, performance characteristics, mode of usage and illustrative results which demonstrate its capabilities. With the PNIS probe, penile blood-pool studies were performed in nine patients utilizing 3.7 MBq (100 microCi) autologous 99mTc-labeled red blood cells (RBCs). Venous blood standards were assayed to enable conversion of the count rate to volummetric measurements. Washin of peripherally administered 99mTc-RBCs was mathematically analyzed to estimate penile blood volume and cavernosal flow rate in the flaccid state. The rate of change of penile blood volume after intracavernosal vasodilators was used to generate measures of stimulated flow. A major advantage of this device over the gamma-camera is a 3300-fold increase in count rate sensitivity, which allows for markedly improved temporal resolution while significantly reducing the radiopharmaceutical dosage. Additionally, the PNIS probe is portable, economical and is not dependent on operator-defined regions of interest. Count rate sensitivity is relatively constant within the bore, with the exception of the proximal region adjacent to the opening, where geometric efficiency is reduced. The PNIS probe is an effective device for measuring penile activity in radionuclide studies, allowing for acquisition of time-activity curves of the penis during flaccid washin of peripherally labeled red blood cells and after pharmacologic stimulation to induce erection.

  8. Physical location of the carotenoid biosynthesis genes Psy and β-Lcy in Capsicum annuum (Solanaceae) using heterologous probes from Citrus sinensis (Rutaceae).

    PubMed

    Andrade-Souza, V; Costa, M G C; Chen, C X; Gmitter, F G; Costa, M A

    2011-03-09

    Carotenoids are responsible for a range of fruit colors in different hot pepper (Capsicum) varieties, from white to deep red. Color traits are genetically determined by three loci, Y, C1, and C2, which are associated with carotenogenic genes. Although such genes have been localized on genetic maps of Capsicum and anchored in Lycopersicon and Solanum, physical mapping in Capsicum has been restricted to only a few clusters of some multiple copy genes. Heterologous probes from single copy genes have been rarely used. Fluorescent in situ hybridization was performed in Capsicum annuum varieties with different fruit colors, using heterologous probes of Psy and β-Lcy genes obtained from a BAC library of the sweet orange (Citrus sinensis). The probes hybridized in the terminal portion of a chromosome pair, confirming the location of these genes in genetic maps. The hybridized segments showed variation in size in both chromosomes.

  9. Gamma-ray bursts and their use as cosmic probes

    PubMed Central

    2017-01-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data. PMID:28791158

  10. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  11. Review of Gravity Probe B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In response to a request by the NASA Administrator, the National Research Council (NRC) has conducted an accelerated scientific review of NASA's Gravity Probe B (GP-B) mission. The review was carried out by the Task Group on Gravity Probe B, under the auspices of the NRC's Space Studies Board and Board on Physics and Astronomy. The specific charge to the task group was to review the GP-B mission with respect to the following terms of reference: (1) scientific importance - including a current assessment of the value of the project in the context of recent progress in gravitational physics and relevant technology; (2) technical feasibility - the technical approach will be evaluated for likelihood of success, both in terms of achievement of flight mission objectives but also in terms of scientific conclusiveness of the various possible outcomes for the measurements to be made; and (3) competitive value - if possible, GP-B science will be assessed qualitatively against the objectives and accomplishments of one or more fundamental physics projects of similar cost (e.g., the Cosmic Background Explorer, COBE).

  12. Micromachined probes for laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Chiang, Franklin Changta

    As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.

  13. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  14. Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.

    1988-11-20

    Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.

  15. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  16. Probing the cosmic gamma-ray burst rate with trigger simulations of the swift burst alert telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lien, Amy; Cannizzo, John K.; Sakamoto, Takanori

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae, and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and an additional imagemore » threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest that bursts need to be dimmer than previously expected to avoid overproducing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568{sub −1429}{sup +825} GRBs per year that are beamed toward us in the whole universe.« less

  17. Probing Cosmic Star Formation Using Long Gamma-Ray Bursts: New Constraints from the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, William J.; Mirabel, I. Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on IRAC 4.5 μm, IRAC 8.0 μm, and MIPS 24 μm deep observations of 16 gamma-ray burst (GRB) host galaxies performed with the Spitzer Space Telescope, and we investigate in the thermal infrared the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with these objects. Our sample is derived from GRBs that were identified with subarcsecond localization between 1997 and 2001, and only a very small fraction (~20%) of the targeted sources are detected down to f4.5μm~3.5 μJy and f24μm~85 μJy (3 σ). This likely argues against a population dominated by massive and strongly starbursting (i.e., SFR>~100 Msolar yr-1) galaxies as has been recently suggested from submillimeter/radio and optical studies of similarly selected GRB hosts. Furthermore, we find evidence that some GRBs do not occur in the most infrared luminous regions-hence the most actively star-forming environments-of their host galaxies. Should the GRB hosts be representative of all star-forming galaxies at high redshift, models of infrared galaxy evolution indicate that >~50% of GRB hosts should have f24μm>~100 μJy. Unless the identification of GRBs prior to 2001 was prone to strong selection effects biasing our sample against dusty galaxies, we infer in this context that the GRBs identified with the current techniques cannot be directly used as unbiased probes of the global and integrated star formation history of the universe. Based on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory under NASA contract 1407.

  18. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  19. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  20. Fermi-LAT Gamma-Ray Bursts and Insights from Swift

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.

    2010-01-01

    A new revolution in Gamma-ray Burst (GRB) observations and theory has begun over the last two years since the launch of the Fermi Gamma-ray Space Telescope. The new window into high energy gamma-rays opened by the Fermi-Large Area Telescope (LAT) is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts compared to the large sample detected by Swift over the last 6 years. In this talk, I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by the Swift X-ray Telescope (XRT) and UV/Optical Telescope (UVOT). Through comparisons between the GRBs detected by Swift-BAT, G8M, and LAT, we can learn about the unique characteristics, physical differences, and the relationships between each population. These population characteristics provide insight into the different physical parameters that contribute to the diversity of observational GRB properties.

  1. Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.

  2. Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi

    2007-07-12

    The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less

  3. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Shastry, Kartik; Kalaskar, Sushant; Lim, Larry; Joglekar, Vibek; Weiss, Alexander

    2009-10-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Many surface probing techniques used till now have required UHV conditions to avoid data loss due to scattering of outgoing particles. Here we describe the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) for use in combined annihilation induced Auger and annihilation gamma measurements made under low pressure conditions.

  4. Probing r-Process Production of Nuclei Beyond 209Bi with Gamma Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J.

    We estimate gamma-ray fluxes due to the decay of nuclei beyond 209Bi from a supernova or a supernova remnant assuming that the r-process occurs in supernovae. We find that a detector with a sensitivity of {approx}10-7 {gamma} cm-2 s-1 at energies from {approx}40 keV to {approx}3 MeV may detect fluxes due to the decay of 226Ra, 229Th, 241Am, 243Am, 249Cf, and 251Cf in the newly discovered supernova remnant near Vela. In addition, such a detector may detect fluxes due to the decay of 227Ac and 228Ra produced in a future supernova at a distance of {approx}1 kpc. Because nuclei withmore » mass numbers A>209 are produced solely by the r-process, such detections are the best proof for a supernova r-process site. Further, they provide the most direct information on yields of progenitor nuclei with A>209 at r-process freeze-out. Finally, detection of fluxes due to the decay of r-process nuclei over a range of masses from a supernova or a supernova remnant provides the opportunity to compare yields in a single supernova event with the solar r-process abundance pattern. (c) (c) 1999. The American Astronomical Society.« less

  5. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  6. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.

    2005-01-01

    The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.

  7. Exploring the nature of the unidentified very-high-energy gamma-ray source HESS J1507-622

    NASA Astrophysics Data System (ADS)

    Domainko, W.; Ohm, S.

    2012-09-01

    Context. Several extended sources of very-high-energy (VHE; E > 100 GeV) gamma rays have been found that lack counterparts belonging to an established class of VHE gamma-ray emitters. Aims: The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5°, HESS J1507-622, is explored. Methods.Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. Additionally, implications of the off-plane location of the source for a leptonic and hadronic gamma-ray emission model are investigated. Results: HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Γ = 1.7 ± 0.1stat ± 0.2sys and integral flux between (0.3-300) GeV of F = (2.0 ± 0.5stat ± 1.0sys) × 10-9 cm-2 s-1. The SED constructed from the Fermi and H.E.S.S. data for this source does not support a smooth power-law continuation from the VHE to the HE gamma-ray range. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. Conclusions: The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a

  8. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of

  9. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  10. Sentinel node detection in early breast cancer with intraoperative portable gamma camera: UK experience.

    PubMed

    Ghosh, Debashis; Michalopoulos, Nikolaos V; Davidson, Timothy; Wickham, Fred; Williams, Norman R; Keshtgar, Mohammed R

    2017-04-01

    Access to nuclear medicine department for sentinel node imaging remains an issue in number of hospitals in the UK and many parts of the world. Sentinella ® is a portable imaging camera used intra-operatively to produce real time visual localisation of sentinel lymph nodes. Sentinella ® was tested in a controlled laboratory environment at our centre and we report our experience on the first use of this technology from UK. Moreover, preoperative scintigrams of the axilla were obtained in 144 patients undergoing sentinel node biopsy using conventional gamma camera. Sentinella ® scans were done intra-operatively to correlate with the pre-operative scintigram and to determine presence of any residual hot node after the axilla was deemed to be clear based on the silence of the hand held gamma probe. Sentinella ® detected significantly more nodes compared with CGC (p < 0.0001). Sentinella ® picked up extra nodes in 5/144 cases after the axilla was found silent using hand held gamma probe. In 2/144 cases, extra nodes detected by Sentinella ® confirmed presence of tumour cells that led to a complete axillary clearance. Sentinella ® is a reliable technique for intra-operative localisation of radioactive nodes. It provides increased nodal visualisation rates compared to static scintigram imaging and proves to be an important tool for harvesting all hot sentinel nodes. This portable gamma camera can definitely replace the use of conventional lymphoscintigrams saving time and money both for patients and the health system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  12. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  13. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  14. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Astrophysics Data System (ADS)

    Koch, D. G.; Hughes, B. E.

    1990-03-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  15. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  16. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  17. Physics. Creating and probing electron whispering-gallery modes in graphene.

    PubMed

    Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D; Rodriguez-Nieva, Joaquin F; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-05-08

    The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators. Copyright © 2015, American Association for the Advancement of Science.

  18. First-year university Physics students’ knowledge about direct current circuits: probing improvement in understanding as a function of teaching and learning interventions

    NASA Astrophysics Data System (ADS)

    Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle

    2017-07-01

    Probing university students’ understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in the life sciences stream. The study involved 366 students enrolled in the physics (bio) 154 module at Stellenbosch University in 2015. Students’ understanding of DC resistive circuits was probed by means of a standardized test instrument. The instrument comprises 29 multiple choice questions that students have to answer in ~40 min. Students were required to first complete the standardized test at the start of semester (July 2015). For ease of reference we call this test the pre-test. Students answered the pre-test having no university-level formal exposure to DC circuits in theory or practice. The pre-test therefore served to probe students’ school level knowledge of DC circuits. As the semester progressed students were exposed to a practical (E1), lectures, a prescribed textbook, a tutorial and online videos focusing on DC circuits. The E1 practical required students to solve DC circuit problems by means of physically constructing circuits, algebraically using Kirchhoff's Rules and Ohm’s Law, and by means of simulating circuits using the app iCircuit running on iPads (iOS platform). Each E1 practical involved ~50 students in a three hour session. The practical was repeated three afternoons per week over an eight week period. Twenty three iPads were distributed among students on a practical afternoon in order for them to do the circuit simulations in groups (of 4-5 students). At the end of the practical students were again required to do the standardized test on circuits and complete a survey on their experience of the use of the iPad and iCircuit app. For ease of reference we refer to this second test as the

  19. Can quantum probes satisfy the weak equivalence principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it; Paris, Matteo G.A.; INFN, Sezione di Milano, I-20133 Milano

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’smore » mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.« less

  20. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  1. Integral-moment analysis of the BATSE gamma-ray burst intensity distribution

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Emslie, A. Gordon

    1994-01-01

    We have applied the technique of integral-moment analysis to the intensity distribution of the first 260 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. This technique provides direct measurement of properties such as the mean, variance, and skewness of the convolved luminosity-number density distribution, as well as associated uncertainties. Using this method, one obtains insight into the nature of the source distributions unavailable through computation of traditional single parameters such as V/V(sub max)). If the luminosity function of the gamma-ray bursts is strongly peaked, giving bursts only a narrow range of luminosities, these results are then direct probes of the radial distribution of sources, regardless of whether the bursts are a local phenomenon, are distributed in a galactic halo, or are at cosmological distances. Accordingly, an integral-moment analysis of the intensity distribution of the gamma-ray bursts provides for the most complete analytic description of the source distribution available from the data, and offers the most comprehensive test of the compatibility of a given hypothesized distribution with observation.

  2. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  3. Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention

    DTIC Science & Technology

    2006-04-01

    conjugated to cell-impermeable polyacrylate polymers that should allow for selective targeting of membrane-initiated responses of estrogen receptor. It...dilutions of the different compounds were prepared in ES2 screening buffer (100 mM potassium phosphate, pH7.4, 100 µg/ml bovine gamma globulin) and 50 µl...W81XWH-04-1-0447 TITLE: Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention PRINCIPAL

  4. Probing the Higgs Couplings to Photons in h→4l at the LHC

    DOE PAGES

    Chen, Yi; Harnik, Roni; Vega-Morales, Roberto

    2014-11-01

    We explore the sensitivity of the Higgs decay to four leptons, the so-called golden channel, to higher dimensional loop-induced couplings of the Higgs boson tomore » $ZZ$, $$Z\\gamma$$, and $$\\gamma\\gamma$$, allowing for general CP mixtures. The larger standard model tree level coupling $$hZ^\\mu Z_\\mu$$ is the dominant "background" for the loop induced couplings. However this large background interferes with the smaller loop induced couplings, enhancing the sensitivity. We perform a maximum likelihood analysis based on analytic expressions of the fully differential decay width for $$h\\to 4\\ell$$ ($$4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$$) including all interference effects. We find that the spectral shapes induced by Higgs couplings to photons are particularly different than the $$hZ^\\mu Z_\\mu$$ background leading to enhanced sensitivity to these couplings. We show that even if the $$h\\to\\gamma\\gamma$$ and $$h\\to 4\\ell$$ rates agree with that predicted by the Standard Model, the golden channel has the potential to probe both the CP nature as well as the overall sign of the Higgs coupling to photons well before the end of high-luminosity LHC running ($$\\sim$$3 ab$$^{-1}$$).« less

  5. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  6. Flavored Dark Matter and the Galactic Center Gamma-Ray Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Batell, Brian; Hooper, Dan

    Thermal relic dark matter particles with a mass of 31-40 GeV and that dominantly annihilate to bottom quarks have been shown to provide an excellent description of the excess gamma rays observed from the center of the Milky Way. Flavored dark matter provides a well-motivated framework in which the dark matter can dominantly couple to bottom quarks in a flavor-safe manner. We propose a phenomenologically viable model of bottom flavored dark matter that can account for the spectral shape and normalization of the gamma-ray excess while naturally suppressing the elastic scattering cross sections probed by direct detection experiments. This modelmore » will be definitively tested with increased exposure at LUX and with data from the upcoming high-energy run of the Large Hadron Collider (LHC).« less

  7. Cosmic shear as a probe of galaxy formation physics

    DOE PAGES

    Foreman, Simon; Becker, Matthew R.; Wechsler, Risa H.

    2016-09-01

    Here, we evaluate the potential for current and future cosmic shear measurements from large galaxy surveys to constrain the impact of baryonic physics on the matter power spectrum. We do so using a model-independent parametrization that describes deviations of the matter power spectrum from the dark-matter-only case as a set of principal components that are localized in wavenumber and redshift. We perform forecasts for a variety of current and future data sets, and find that at least ~90 per cent of the constraining power of these data sets is contained in no more than nine principal components. The constraining powermore » of different surveys can be quantified using a figure of merit defined relative to currently available surveys. With this metric, we find that the final Dark Energy Survey data set (DES Y5) and the Hyper Suprime-Cam Survey will be roughly an order of magnitude more powerful than existing data in constraining baryonic effects. Upcoming Stage IV surveys (Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope) will improve upon this by a further factor of a few. We show that this conclusion is robust to marginalization over several key systematics. The ultimate power of cosmic shear to constrain galaxy formation is dependent on understanding systematics in the shear measurements at small (sub-arcminute) scales. Lastly, if these systematics can be sufficiently controlled, cosmic shear measurements from DES Y5 and other future surveys have the potential to provide a very clean probe of galaxy formation and to strongly constrain a wide range of predictions from modern hydrodynamical simulations.« less

  8. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  9. Exploring the Properties of Choked Gamma-ray Bursts with IceCube’s High-energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Tamborra, Irene

    2018-03-01

    Long duration gamma-ray bursts (GRBs) have often been considered the natural evolution of some core-collapse supernova (CCSN) progenitors. However, the fraction of CCSNe linked to astrophysical jets and their properties are still poorly constrained. While any successful astrophysical jet harbored in a CCSN should produce high-energy neutrinos, photons may be able to successfully escape the stellar envelope only for a fraction of progenitors, possibly leading to the existence of high-luminosity, low-luminosity, and not-electromagnetically bright (“choked”) GRBs. By postulating a CCSN–GRB connection, we accurately model the jet physics within the internal-shock GRB model and assume scaling relations for the GRB parameters that depend on the Lorentz boost factor Γ. The IceCube high-energy neutrino flux is then employed as an upper limit of the neutrino background from electromagnetically bright and choked GRBs to constrain the jet and the progenitor properties. The current IceCube data set is compatible with up to 1% of all CCSNe harboring astrophysical jets. Interestingly, those jets are predominantly choked. Our findings suggest that neutrinos can be powerful probes of the burst physics and can provide major insights on the CCSN–GRB connection.

  10. Gamma-ray detector guidance of breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth

    2009-12-01

    Breast cancer is the most common form of cancer in women. Over 75% of breast cancer patients are eligible for breast conserving therapy. Breast conserving therapy involves a lumpectomy to excise the gross tumour, followed by adjuvant radiation therapy to eradicate residual microscopic disease. Recent advances in the understanding of breast cancer biology and recurrence have presented the opportunity to improve breast conserving therapy techniques. This thesis has explored the potential of gamma-ray detecting technology to improve guidance of both surgical and adjuvant radiation therapy aspects of breast conserving therapy. The task of accurately excising the gross tumour during breast conserving surgery (BCS) is challenging, due to the limited guidance currently available to surgeons. Radioimmuno guided surgery (RIGS) has been investigated to determine its potential to delineate the gross tumour intraoperatively. The effects of varying a set of user controllable parameters on the ability of RIGS to detect and delineate model breast tumours was determined. The parameters studied were: Radioisotope, blood activity concentration, collimator height and energy threshold. The most sensitive combination of parameters was determined to be an 111Indium labelled radiopharmaceutical with a gamma-ray detecting probe collimated to a height of 5 mm and an energy threshold at the Compton backscatter peak. Using these parameters it was found that, for the breast tumour model used, the minimum tumour-to-background ratio required to delineate the tumour edge accurately was 5.2+/-0.4 at a blood activity concentration of 5 kBq/ml. Permanent breast seed implantation (PBSI) is a form of accelerated partial breast irradiation that dramatically reduces the treatment burden of adjuvant radiation therapy on patients. Unfortunately, it is currently difficult to localize the implanted brachytherapy seeds, making it difficult to perform a correction in the event that seeds have been misplaced

  11. Gamma Ray Bursts in the Swift-Fermi Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Razzaque, Soebur

    2013-01-01

    Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  12. The goals of gamma-ray spectroscopy in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  13. beta- and gamma-Comparative dose estimates on Enewetak Atoll.

    PubMed

    Crase, K W; Gudiksen, P H; Robison, W L

    1982-05-01

    Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  14. An Analysis Methodology for the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Cohen-Tanugi, Johann

    2004-01-01

    The Large Area Telescope (LAT) instrument on the Gamma Ray Large Area Space Telescope (GLAST) has been designed to detect high-energy gamma rays and determine their direction of incidence and energy. We propose a reconstruction algorithm based on recent advances in statistical methodology. This method, alternative to the standard event analysis inherited from high energy collider physics experiments, incorporates more accurately the physical processes occurring in the detector, and makes full use of the statistical information available. It could thus provide a better estimate of the direction and energy of the primary photon.

  15. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  16. Physical and sensory quality of hommos preserved with combined gamma radiation and refrigeration

    NASA Astrophysics Data System (ADS)

    Amr, A.; Al-Qadiri, H.; Saleh, M.; Shahein, M.

    2018-03-01

    Hommos was treated with gamma radiation and stored at 4 °C for a period of five weeks with the aim of extending its shelf life under refrigeration. Viscosity and colour of the product were evaluated instrumentally at 5-day intervals, and its sensory quality was evaluated by a taste panel at the beginning and end of the storage period. The results indicate that irradiation combined with storage caused reduction of the ΔE*ab, a*, b* and L* colour values, but have no such an effect on the apparent viscosity, flow behavior index (n) or consistency coefficient (k) of the product which exhibited a non-Newtonian, pseudoplastic behavior. Neither irradiation dose nor storage time affected the overall acceptability, flavor, smoothness, mouth- feel and colour of the product when evaluated by a taste panel. The product irradiated with 1.5 or 2.5 kGy can be stored at 4 °C for 35 days and still maintain its sensory and physical qualities indicating that the shelf life of this product, like other irradiated foods, can be extended by this combined treatment.

  17. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Moshe

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less

  18. Prediction of the Aerothermodynamic Environment of the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Striepe, Scott A.; Wright, Michael J.; Bose, Deepak; Sutton, Kenneth; Takashima, Naruhisa

    2005-01-01

    An investigation of the aerothermodynamic environment of the Huygens entry probe has been conducted. A Monte Carlo simulation of the trajectory of the probe during entry into Titan's atmosphere was performed to identify a worst-case heating rate trajectory. Flowfield and radiation transport computations were performed at points along this trajectory to obtain convective and radiative heat-transfer distributions on the probe's heat shield. This investigation identified important physical and numerical factors, including atmospheric CH4 concentration, transition to turbulence, numerical diffusion modeling, and radiation modeling, which strongly influenced the aerothermodynamic environment.

  19. Does gamma irradiation affect physicochemical properties of honey?

    PubMed

    Hussein, S Z; Yusoff, K M; Makpol, S; Mohd Yusof, Y A

    2014-01-01

    Honey is a supersaturated solution of sugars, enriched with proteins, minerals, vitamins, organic acids and polyphenols. Gamma irradiation is a physical technique of food preservation which protects the honey from insects' and microbial contamination during storage. We investigated the effect of gamma irradiation on physicochemical properties in two types of Malaysian honey, Gelam and Nenas. Both honeys were irradiated at the dose 25 kGy in a cobalt-60 irradiator. The physicochemical properties pH, moisture, acidity, color, and sugar content as well as vitamins C and E, hydroxymethylfurfural (HMF) and mineral contents, for the irradiated and non-irradiated honeys were assessed. The results revealed that pH, acidity, minerals and sugar contents in both types of honey were not affected significantly by gamma irradiation, while moisture, vitamin E contents and HMF level decreased significantly with gamma irradiation. However, significant increased in color intensity and vitamin C were observed after gamma irradiation for both types of honey. In summary, gamma irradiation treatment of honey (in the dose mentioned above) did not cause significant changes in the physicochemical and mineral contents, except for significant alterations in color intensity, moisture, vitamins (C and E), and HMF contents.

  20. Data for polarization in charmless B{yields}{phi}K*: A signal for new physics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Prasanta Kumar; Yang, K.-C.

    2005-05-01

    The recent observations of sizable transverse fractions of B{yields}{phi}K* may hint for the existence of new physics. We analyze all possible new-physics four-quark operators and find that two classes of new-physics operators could offer resolutions to the B{yields}{phi}K* polarization anomaly. The operators in the first class have structures (1-{gamma}{sub 5})x(1-{gamma}{sub 5}), {sigma}(1-{gamma}{sub 5})x{sigma}(1-{gamma}{sub 5}), and in the second class (1+{gamma}{sub 5})x(1+{gamma}{sub 5}), {sigma}(1+{gamma}{sub 5})x{sigma}(1+{gamma}{sub 5}). For each class, the new-physics effects can be lumped into a single parameter. Two possible experimental results of polarization phases, arg(A{sub perpendicular})-arg(A{sub parallel}){approx_equal}{pi} or 0, originating from the phase ambiguity in data, could be separatelymore » accounted for by our two new-physics scenarios: the first (second) scenario with the first (second) class new-physics operators. The consistency between the data and our new-physics analysis suggests a small new-physics weak phase, together with a large(r) strong phase. We obtain sizable transverse fractions {lambda}{sub parallel{sub parallel}}+{lambda}{sub perpendicular{sub perpendicular}}{approx_equal}{lambda}{sub 00}, in accordance with the observations. We find {lambda}{sub parallel{sub parallel}}{approx_equal}0.8{lambda}{sub perpendicular{sub perpendicular}} in the first scenario but {lambda}{sub parallel{sub parallel}} > or approx. {lambda}{sub perpendicular{sub perpendicular}} in the second scenario. We discuss the impact of the new-physics weak phase on observations.« less

  1. Prompt-gamma monitoring in hadrontherapy: A review

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.

    2018-01-01

    Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.

  2. Feasibility study of a low-energy gamma ray system for measuring quantity and flow rate of slush hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1992-01-01

    As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.

  3. Application of mobile gamma-ray spectrometry for soil mapping

    NASA Astrophysics Data System (ADS)

    Werban, Ulrike; Lein, Claudia; Pohle, Marco; Dietrich, Peter

    2017-04-01

    Gamma-ray measurements have a long tradition for geological surveys and deposit exploration using airborne and borehole logging systems. For these applications, the relationships between the measured physical parameter - the concentration of natural gamma emitters 40K, 238U and 232Th - and geological origin or sedimentary developments are well described. Thus, Gamma-ray spectrometry seems a useful tool for carrying out spatial mapping of physical parameters related to soil properties. The isotope concentration in soils depends on different soil parameters (e.g. geochemical composition, grain size fractions), which are a result of source rock properties and processes during soil geneses. There is a rising interest in the method for application in Digital Soil Mapping or as input data for environmental, ecological or hydrological modelling, e.g. as indicator for clay content. However, the gamma-ray measurement is influenced by endogenous factors and processes like soil moisture variation, erosion and deposition of material or cultivation. We will present results from a time series of car borne gamma-ray measurements to observe heterogeneity of soil on a floodplain area in Central Germany. The study area is characterised by high variations in grain size distribution and occurrence of flooding events. For the survey, we used a 4 l NaI(Tl) detector with GPS connection mounted on a sledge, which is towed across the field sites by a four-wheel-vehicle. The comparison of data from different dates shows similar structures with small variation between the data ranges and shape of structures. We will present our experiences concerning the application of gamma-ray measurements under variable field conditions and their impacts on data quality.

  4. Probing Neutron Star Evolution with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph A. M. J.

    1996-02-01

    The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars

  5. Restriction fragment length polymorphisms for growth hormone, prolactin, osteonectin, alpha crystallin, gamma crystallin, fibronectin and 21-steroid hydroxylase in cattle.

    PubMed

    Theilmann, J L; Skow, L C; Baker, J F; Womack, J E

    1989-01-01

    Genomic DNAs from animals representing six breeds of cattle (Angus, Brahman, Hereford, Holstein, Jersey and Texas Longhorn) were screened with cloned gene probes in a search for restriction fragment length polymorphisms (RFLPs). Eleven RFLPs were identified using seven different probes: growth hormone, prolactin, osteonectin, alpha A-crystallin, gamma crystallin, fibronectin and 21-steroid hydroxylase. The frequencies of the alleles identified by each probe were calculated and compared in a limited sampling of the six bovine breeds. These polymorphisms greatly enhance the pool of immunogenetic, biochemical and molecular markers available in cattle for linkage analysis, testing of parentage, and distinction of breeds.

  6. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  7. The Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  8. Parker Solar Probe "Name Chip" Installation

    NASA Image and Video Library

    2018-05-21

    At the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, scientists and engineers from the Applied Physics Laboratory at Johns Hopkins University install a computer chip on NASA's Parker Solar Probe. Throughout its seven-year mission, NASA’s Parker Solar Probe will swoop through the Sun’s atmosphere, carrying more than scientific instruments on this historic journey — it will also hold more than 1.1 million names submitted by the public to go to the Sun. The submitted names were loaded into a memory card and mounted on a plaque bearing a dedication to the mission’s namesake, heliophysicist Dr. Eugene Parker. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  10. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  11. Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.

    2009-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.

  12. Development progress of the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  13. Development progress of the Materials Analysis and Particle Probe.

    PubMed

    Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  14. A novel method to quantify IRDye800CW fluorescent antibody probes ex vivo in tissue distribution studies.

    PubMed

    Oliveira, Sabrina; Cohen, Ruth; Walsum, Marijke Stigter-van; van Dongen, Guus Ams; Elias, Sjoerd G; van Diest, Paul J; Mali, Willem; van Bergen En Henegouwen, Paul Mp

    2012-09-25

    We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation.

  15. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    USGS Publications Warehouse

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  16. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NASA Technical Reports Server (NTRS)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  17. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  18. Gamma-ray bursts at high and very high energies

    NASA Astrophysics Data System (ADS)

    Piron, Frédéric

    2016-06-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.

  19. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  20. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  1. Indirect detection of Particle Dark Matter with gamma rays - status and perspectives

    NASA Astrophysics Data System (ADS)

    Conrad, Jan

    2014-03-01

    In this contribution I review the present status and discuss some prospects for indirect detection of dark matter with gamma rays. Thanks mainly to the Fermi Large Area Telescope (Fermi-LAT), searches in gamma-rays have reached sensitivities that allow to probe the most interesting parameter space of the weakly interacting massive particles (WIMP) paradigm. This gain in sensitivity is naturally accompanied by a number of detection claims or indications. At WIMP masses above roughly a TeV current Imaging Air Cherenkov Telescopes (HESS, VERITAS, MAGIC) become more sensitive than the Fermi-LAT, the most promising recent development being the first light for the second phase HESS II telescope with significantly lower energy threshold. Predictions for the next generation air Cherenkov telescope, Cherenkov Telescope Array (CTA), together with forecasts on future Fermi-LAT constraints arrive at the exciting possibility that the cosmological benchmark cross-section could be probed from masses of a few GeV to a few TeV. Consequently, non-detection would pose a challenge to the WIMP paradigm, but the reached sensitivities also imply that-optimistically-a detection within the next decade is in the cards. Time allowing, I will comment on complementarity between the different approaches to WIMP detection.

  2. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  3. Intraoperative Imaging Guidance for Sentinel Node Biopsy in Melanoma Using a Mobile Gamma Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dengel, Lynn T; Judy, Patricia G; Petroni, Gina R

    2011-04-01

    The objective is to evaluate the sensitivity and clinical utility of intraoperative mobile gamma camera (MGC) imaging in sentinel lymph node biopsy (SLNB) in melanoma. The false-negative rate for SLNB for melanoma is approximately 17%, for which failure to identify the sentinel lymph node (SLN) is a major cause. Intraoperative imaging may aid in detection of SLN near the primary site, in ambiguous locations, and after excision of each SLN. The present pilot study reports outcomes with a prototype MGC designed for rapid intraoperative image acquisition. We hypothesized that intraoperative use of the MGC would be feasible and that sensitivitymore » would be at least 90%. From April to September 2008, 20 patients underwent Tc99 sulfur colloid lymphoscintigraphy, and SLNB was performed with use of a conventional fixed gamma camera (FGC), and gamma probe followed by intraoperative MGC imaging. Sensitivity was calculated for each detection method. Intraoperative logistical challenges were scored. Cases in which MGC provided clinical benefit were recorded. Sensitivity for detecting SLN basins was 97% for the FGC and 90% for the MGC. A total of 46 SLN were identified: 32 (70%) were identified as distinct hot spots by preoperative FGC imaging, 31 (67%) by preoperative MGC imaging, and 43 (93%) by MGC imaging pre- or intraoperatively. The gamma probe identified 44 (96%) independent of MGC imaging. The MGC provided defined clinical benefit as an addition to standard practice in 5 (25%) of 20 patients. Mean score for MGC logistic feasibility was 2 on a scale of 1-9 (1 = best). Intraoperative MGC imaging provides additional information when standard techniques fail or are ambiguous. Sensitivity is 90% and can be increased. This pilot study has identified ways to improve the usefulness of an MGC for intraoperative imaging, which holds promise for reducing false negatives of SLNB for melanoma.« less

  4. Probing dimensionality using a simplified 4-probe method.

    PubMed

    Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W

    2017-10-04

    4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.

  5. Probes for dark matter physics

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  6. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  7. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  8. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Joglekar, P.; Kalaskar, S.; Shastry, K.; Weiss, A. H.

    2010-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. We present the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. This new system will enable us to probe the surface and gather defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is maintained under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures. These new technique help to understand the charge transfer mechanisms at the surface.

  9. Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA): Status, results and perspectives

    NASA Astrophysics Data System (ADS)

    Kuzmichev, L.; Astapov, I.; Bezyazeekov, P.; Boreyko, V.; Borodin, A.; Brückner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Epimakhov, S.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Haungs, A.; Horns, D.; Huege, T.; Ivanova, A.; Jurov, D.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, V.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigal, R.; Osipova, E.; Pakharukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Pushnin, A.; Rubtsov, G.; Ryabov, E.; Sagan, Y.; Samoliga, V.; Schröder, F. G.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenko, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Sulakov, V.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2017-06-01

    We present the current status of high-energy cosmic-ray physics and gamma-ray astronomy at the Tunka Astrophysical Center (AC). This complex is located in the Tunka Valley, about 50 km from Lake Baikal. Present efforts are focused on the construction of the first stage of the gamma-ray observatory TAIGA - the TAIGA prototype. TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is designed for the study of gamma rays and charged cosmic rays in the energy range 1013 eV-1018 eV. The array includes a network of wide angle timing Cherenkov stations (TAIGA-HiSCORE), each with a FOV = 0.6 sr, plus up to 16 IACTs (FOV - 10∘× 10∘). This part covers an area of 5 km2. Additional muon detectors (TAIGA-Muon), with a total coverage of 2000 m2, are distributed over an area of 1 km2.

  10. Computational model of gamma irradiation room at ININ

    NASA Astrophysics Data System (ADS)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  11. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

  12. Physics at high energy photon photon colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanowitz, M.S.

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  13. Gamma-jet physics with the electro-magnetic calorimeter in the ALICE experiment at LHC

    NASA Astrophysics Data System (ADS)

    Bourdaud, G.

    2008-05-01

    The Electro-Magnetic Calorimeter (EMCal) will be fully installed for the first LHC heavy ion beam in order to improve the ALICE experiment performances in detection of high transverse momentum particles and in particular in reconstruction of γ-jet events. These events appear to be very interesting to probe the strongly interacting matter created in ultra-relativistic heavy ion collisions and the eventual Quark Gluon Plasma (QGP) state. Indeed, they may give information on the degree of medium opacity which induces the jet-quenching phenomenon: measuring the energy of the γ and comparing it to that of the associated jet may provide a unique way to quantify the jet energy loss in the dense matter. The interest of γ-jet studies in the framework of the quark gluon plasma physics will be discussed. A particular highlight will be stressed on the EMCal calorimeter. The detection of the γ-jet events will be then presented using this new ALICE detector.

  14. Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer

    DOE PAGES

    Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.; ...

    2015-03-21

    The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less

  15. Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.

    The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less

  16. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  17. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  18. Pressure probe and isopiestic psychrometer measure similar turgor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonami, H.; Boyer, J.S.; Steudle, E.

    1987-03-01

    Turgor measured with a miniature pressure probe was compared to that measured with an isopiestic thermocouple psychrometer in mature regions of soybean (Glycine max (L.) Merr.) stems. The probe measured turgor directly in cells of intact stems whereas the psychrometer measured the water potential and osmotic potential of excised stem segments and turgor was calculated by difference. When care was taken to prevent dehydration when working with the pressure probe, and diffusive resistance and dilution errors with the psychrometer, both methods gave similar values of turgor whether the plants were dehydrating or rehydrating. This finding, together with the previously demonstratedmore » similarity in turgor measured with the isopiestic psychrometer and a pressure chamber, indicates that the pressure probe provides accurate measurements of turgor despite the need to penetrate the cell. On the other hand, it suggest that as long as precautions are taken to obtain accurate values for the water potential and osmotic potential, turgor can be determined by isopiestic psychrometry in tissues not accessible to the pressure probe for physical reasons.« less

  19. Pressure probe and isopiestic psychrometer measure similar turgor.

    PubMed

    Nonami, H; Boyer, J S; Steudle, E

    1987-03-01

    Turgor measured with a miniature pressure probe was compared to that measured with an isopiestic thermocouple psychrometer in mature regions of soybean (Glycine max [L.] Merr.) stems. The probe measured turgor directly in cells of intact stems whereas the psychrometer measured the water potential and osmotic potential of excised stem segments and turgor was calculated by difference. When care was taken to prevent dehydration when working with the pressure probe, and diffusive resistance and dilution errors with the psychrometer, both methods gave similar values of turgor whether the plants were dehydrating or rehydrating. This finding, together with the previously demonstrated similarity in turgor measured with the isopiestic psychrometer and a pressure chamber, indicates that the pressure probe provides accurate measurements of turgor despite the need to penetrate the cell. On the other hand, it suggests that as long as precautions are taken to obtain accurate values for the water potential and osmotic potential, turgor can be determined by isopiestic psychrometry in tissues not accessible to the pressure probe for physical reasons.

  20. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  1. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners and calibrated in Germany, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. Early results from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. Observations of magnetars, galactic transients, supernovae, AGN and many other types of sources are also being performed

  2. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Swift Team

    2005-12-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  3. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  4. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  5. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  6. On the observability of the gamma-ray line flux from dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  7. The path to exploring physics in advanced devices with a heavy ion beam probe

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Fimognari, P. J.

    2012-10-01

    The scientific progression of alternative or advanced devices must be met with comparable diagnostic technologies. Heavy ion beam probe innovations from ongoing diagnostic development are meeting this challenge. The diagnostic is uniquely capable of measuring the radial electric field, critically important in stellarators, simultaneously with fluctuations of electron density and electric potential. HIBP measurements can also improve the understanding of edge physics in tokamaks and spherical tori. It can target issues associated with the pedestal region, including the mechanisms underlying the L-H transition, the onset and evolution of ELMs, and the evolution of the electron current density. Beam attenuation (and resulting low signal to noise levels), a challenge to operation on devices with large plasma cross-sections and high ne and Te, can be mitigated with greater beam energies and currents. Other application challenges, such as measurements of plasma fluctuations and profile variations with elevated temporal and spatial resolutions, can be achieved with innovative detectors. The scientific studies motivating the implementation of an HIBP on HSX, ASDEX-U, and W7-X will be presented along with preliminary scoping studies.

  8. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  9. Planar Multipol-Resonance-Probe: A Spectral Kinetic Approach

    NASA Astrophysics Data System (ADS)

    Friedrichs, Michael; Gong, Junbo; Brinkmann, Ralf Peter; Oberrath, Jens; Wilczek, Sebastian

    2016-09-01

    Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP (pMRP). Introducing the spectral kinetic formalism leads to a reduced simulation-circle compared to particle-in-cell simulations. The model of the pMRP is implemented and first simulation results are presented.

  10. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  11. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  12. Probing Higgs self-coupling of a classically scale invariant model in e+e- → Zhh: Evaluation at physical point

    NASA Astrophysics Data System (ADS)

    Fujitani, Y.; Sumino, Y.

    2018-04-01

    A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.

  13. Comparative evaluation of probing depth and clinical attachment level using a manual probe and Florida probe.

    PubMed

    Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti

    2016-01-01

    To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe.

  14. Experiments with probe masses

    PubMed Central

    Braginsky, V. B.

    2007-01-01

    It is reasonable to regard the experiments performed by C. Coulomb and H. Cavendish in the end of the 18th century as the beginning of laboratory experimental physics. These outstanding scientists have measured forces (accelerations) produced by electric charges and by gravitational “charges” on probe masses that were attached to torque balance. Among the variety of different research programs and projects existing today, experiments with probe masses are still playing an important role. In this short review, the achieved and planned sensitivities of very challenging LIGO (Laser Interferometer Gravitational wave Observatory) and LISA (Laser Interferometer Space Antennae) projects are described, and a list of nonsolved problems is discussed as well. The role of quantum fluctuations in high precision measurements is also outlined. Apart from these main topics, the limitations of sensitivity caused by cosmic rays and the prospects of clock frequency stability are presented. PMID:17296944

  15. Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.

    PubMed

    Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D

    2017-04-19

    A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.

  16. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.

  17. THE RESISTANCE TO $gamma$ RADIATION OF THE WORKER BEE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, G.; Lecomte, J.

    The worker bee which has been subjected to gamma radiation from a Co/ sup 60/ source can withstand without apparent physical damage a dose of 18,000 r. At 90,000 r there is, however, appreciable damage. At a dose of 200,000 r, death is immediate in 100% of the cases. The physiological state of the bee plays an important role in determining its resistance to gamma radiation. (auth)

  18. MCNPX evaluation of gamma spectrometry results in high radon concentration areas.

    PubMed

    Thinová, L; Solc, J

    2014-07-01

    The radon concentration in underground workplaces may reach tens of thousands of Bq m(-3). A simple MCNPXTM Monte Carlo (MC) model of a cave was developed to estimate the influence of radon on the in situ gamma spectrometry results in various geometries and radon concentrations. The detector total count rate was obtained as the sum of the individual count rates due to 214Bi in the air, radon in the walls and deposition of radon daughters on surfaces. The MC model was then modified and used in the natural conditions of the Mladeč Caves, Czech Republic. The content of 226Ra was calculated from laboratory gamma spectrometry measurements, and the concentrations of unattached and attached 214Bi were measured using the FRITRA4 device (SMM-Prague). We present a comparison of the experimental results with results calculated by the MCNPXTM model of the Gamma Surveyor spectrometry probe (GF Instruments) with a 3″×3″ NaI(Tl) detector and a 2″×2″ BGO detector. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Electrostatic and Electromagnetic Resonances of the Curling probe

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Valadbeigi, Leila; Brinkmann, Ralf Peter

    2015-09-01

    The term Active Plasma Resonance Spectroscopy denotes a class of plasma diagnostic techniques utilizing the natural ability of plasma to resonate on or near the electron plasma frequency: An electric signal in the GHz range is coupled into the plasma via a probe. The spectral response of the plasma is recorded and a mathematical model is used to find plasma parameters such as the electron density. The curling probe, recently invented by Liang et al., is a novel realization of this concept which has many practical advantages. In particular, it can be miniaturized, and flatly embedded into the chamber wall, enabling monitoring of plasma processes without perturbing them. Physically, the curling probe can be seen as a ``curled'' form of the hairpin probe. Assuming that the effect of the spiralization is negligible, this work investigates the features of a ``straightened'' curling probe by modeling it as a slot-type resonator which is in contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving Maxwell's equations and the cold plasma model simultaneously. Electrostatic and Electromagnetic resonances are derived. Good agreement of the analytically computed resonance frequencies with the numerical results of the probe inventors is shown.

  20. Current Topics in Gamma-Ray Astrophysics

    PubMed Central

    Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592

  1. Current Topics in Gamma-Ray Astrophysics.

    PubMed

    Mathews, G J; Maronetti, P; Salmonson, J; Wilson, J R

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼10(53) ergs lasting several seconds. The associated thermal neutrino emission produces an e (+)-e (-) pair plasma by [Formula: see text] annihilation. We show first results of a simulated burst which produces ∼10(51) erg in γ rays of the correct spectral and temporal properties.

  2. Features in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy

    1993-01-01

    Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.

  3. Toward structural elucidation of the gamma-secretase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Wolfe, M. S.; Selkoe, D. J.

    2009-03-11

    {gamma}-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid {beta}-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating itsmore » detailed structure.« less

  4. Tomography of a Probe Potential Using Atomic Sensors on Graphene.

    PubMed

    Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A

    2016-12-27

    Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.

  5. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halama, J.

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT

  6. Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing.

    PubMed

    McCracken, M K; Christofferson, R C; Chisenhall, D M; Mores, C N

    2014-02-01

    Dengue virus (DENV), the etiologic agent of dengue fever, is transmitted during probing of human skin by infected-mosquito bite. The expectorated viral inoculum also contains an assortment of mosquito salivary proteins that have been shown to modulate host hemostasis and innate immune responses. To examine the potential role of mosquito probing in DENV establishment within the vertebrate host, we inoculated mice intradermally with DENV serotype 2 strain 1232 at sites where Aedes aegypti had or had not probed immediately prior. We assayed these sites 3 h postinoculation with transcript arrays for the Toll-like receptor (TLR), RIG-I-like receptor, and NOD-like receptor signaling pathways of the innate immune system. We then chose TLR7, transcription factor p65 (RelA), gamma interferon (IFN-γ), and IFN-γ-inducible protein 10 (IP-10) from the arrays for further investigation and assayed these transcripts at 10 min, 3 h, and 6 h postinoculation. The transcripts for TLR7, RelA, IFN-γ, and IP-10 were significantly downregulated between 2- and 3-fold in the group subjected to mosquito probing relative to the virus-only inoculation group at 3 h postinoculation. A reduction in these transcripts could indicate reduced DENV recognition and antigen presentation and diminished inhibition of viral replication and spread. Further, mosquito probing resulted in viremia titers significantly higher than those in mice that did not receive probing. A. aegypti probing has a significant effect on the innate immune response to DENV infection and generates an early immune environment more permissive to the establishment of infection.

  7. Probe measurements and numerical model predictions of evolving size distributions in premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Filippo, A.; Sgro, L.A.; Lanzuolo, G.

    2009-09-15

    Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less

  8. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    PubMed

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  9. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the

  10. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials

    DOE PAGES

    Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.

    2016-08-30

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the

  11. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  12. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  13. Molecular analysis of human gamma/delta+ clones from thymus and peripheral blood

    PubMed Central

    1989-01-01

    We analyzed the V gamma and V delta gene usage in TCR-gamma/delta- bearing T cell clones isolated from human peripheral blood and postnatal thymus using V-specific mAbs and Southern and Northern analyses. In peripheral blood most of the gamma/delta cells express the V gamma 9-JP-C gamma 1 chain paired with a delta chain bearing the V delta 2 gene product. This heterodimer is very rare in the postnatal thymus, where a different and less restricted pairing of V gamma 9 and V delta 2 chains is found. These findings indicate that physical constraints cannot explain the overrepresentation of a particular V gamma 9-JP/V delta 2 heterodimer in the peripheral blood, and we discuss alternative mechanisms that may account for this differential distribution. In addition, this analysis allowed us to map the specificity of the delta TCS1 mAb to V delta 1-J delta 1 and to identify at least five different expressed V delta genes. PMID:2572670

  14. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  15. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  16. Trigger design for a gamma ray detector of HIRFL-ETF

    NASA Astrophysics Data System (ADS)

    Du, Zhong-Wei; Su, Hong; Qian, Yi; Kong, Jie

    2013-10-01

    The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Research Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and reject the data from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for data acquisition (DAQ) system of GRAD. In addition, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI bus to be saved for off-line analysis. The trigger processing is implemented in the front-end electronics of GRAD and one FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements.

  17. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    PubMed

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. Probing the physics of newly born magnetars through observation of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Cheng, Quan; Zhang, Shuang-Nan; Yu, Yun-Wei; Zheng, Xiao-Ping

    2018-05-01

    The central engines of some superluminous supernovae (SLSNe) are generally suggested to be newly born fast rotating magnetars, which spin down mainly through magnetic dipole radiation and gravitational wave emission. We calculate the magnetar-powered SLSNe light curves (LCs) with the tilt angle evolution of newly born magnetars involved. We show that, depending on the internal toroidal magnetic fields B¯t, the initial spin periods Pi, and the radii RDU of direct Urca (DU) cores of newly born magnetars, as well as the critical temperature Tc for 3P2 neutron superfluidity, bumps could appear in the SLSNe LCs after the maximum lights when the tilt angles grow to π /2 . The value of Tc determines the arising time and the relative amplitude of a bump. The quantity RDU can affect the arising time and the luminosity of a bump, as well as the peak luminosity of a LC. For newly born magnetars with dipole magnetic fields Bd=5 ×1014 G , B¯t=4.6 ×1016 G , and Pi=1 ms , there are no bumps in the LCs if Tc=2 ×109 K , or RDU=1.5 ×105 cm . Moreover, it is interesting that a stronger B¯t will lead to both a brighter peak and a brighter bump in a LC. While keeping other quantities unchanged, the bump in the LC disappears for the magnetar with smaller Pi. We suggest that, once the SLSNe LCs with such kinds of bumps are observed, by fitting these LCs with our model, not only Bd and Pi of newly born magnetars but also the crucial physical quantities B¯t, RDU, and Tc could be determined. Nonobservation of SLSNe LCs with such kinds of bumps hitherto may already put some (though very rough) constraints on B¯t, Pi, RDU, and Tc. Therefore, observation of SLSNe LCs may provide a new approach to probe the physics of newly born magnetars.

  19. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  20. Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to

  1. Long duration gamma-ray emission from thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.

    Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is

  2. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  3. Pressure Probe and Isopiestic Psychrometer Measure Similar Turgor 1

    PubMed Central

    Nonami, Hiroshi; Boyer, John S.; Steudle, Ernst

    1987-01-01

    Turgor measured with a miniature pressure probe was compared to that measured with an isopiestic thermocouple psychrometer in mature regions of soybean (Glycine max [L.] Merr.) stems. The probe measured turgor directly in cells of intact stems whereas the psychrometer measured the water potential and osmotic potential of excised stem segments and turgor was calculated by difference. When care was taken to prevent dehydration when working with the pressure probe, and diffusive resistance and dilution errors with the psychrometer, both methods gave similar values of turgor whether the plants were dehydrating or rehydrating. This finding, together with the previously demonstrated similarity in turgor measured with the isopiestic psychrometer and a pressure chamber, indicates that the pressure probe provides accurate measurements of turgor despite the need to penetrate the cell. On the other hand, it suggests that as long as precautions are taken to obtain accurate values for the water potential and osmotic potential, turgor can be determined by isopiestic psychrometry in tissues not accessible to the pressure probe for physical reasons. PMID:16665293

  4. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  5. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics II: The Distribution of p and Structure of the Circumburst Medium

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltevrede, P.

    2007-01-01

    We constrain blastwave parameters and the circumburst media of a subsample of BeppoSAX Gamma-Ray Bursts. For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical and nIR afterglow data. The spectral fits have been done in count space and include the effects of metallicity, and are compared with the previously reported optical and X-ray temporal behaviour. Assuming the fireball model, we can find a mean value of p for the sample as a whole of 2.035. A statistical analysis Of the distribution demonstrates that the p values in this sample are inconsistent with a single universal value for p at the 3sigma level or greater. This approach provides us with a measured distribution of circumburst density structures rather than considering only the cases of k = 0 (homogeneous) and k = 2 (wind-like). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly wind-like. The fifth source has a value of 0 less than or equal to k less than or equal to 1, consistent with a homogeneous circumburst medium.

  6. Monte Carlo modeling of ultrasound probes for image guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine

    2015-10-15

    Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical

  7. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  8. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  9. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  10. THE PREPARATION, PROPERTIES, AND USES OF AMERICIUM-241, ALPHA-, GAMMA-, AND NEUTRON SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strain, J.E.; Leddicotte, G.W.

    1962-09-01

    A study was made of the preparation of alpha, gamma, and neutron sources using the long-lived radioisotope of americium, Am/sup 241/. Americium-241 is an artificiallyproduced radioelement which has a half-life of 462 plus or minus 10 years and decays to Np/sup 237/ by alpha emission followed by low-energy gamma emission. The high specific activity of americium-241 (7.0 x 10/sup 9/ d/m/mg) combined with its reasonably long half-life makes it ideally sulted for the preparation of radioactive sources. The chemical and physical properties of Am/ sup 241/ and the physical manipulations involved in fabricating alpha, gamma, and neutron sources are generallymore » described in this report. Uses for each type of source are discussed and data are presented to indicate the respective properties and usefulness of each source type. (auth)« less

  11. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  12. Micro-thermocouple probe for measurement of cellular thermal responses.

    PubMed

    Watanabe, M; Kakuta, N; Mabuchi, K; Yamada, Y

    2005-01-01

    We have produced micro-thermocouple probes for the measurement of cellular thermal responses. Cells generate heat with their metabolisms and more heat with reactions to a certain physical or chemical stimulation. Therefore, the analysis of the cellular thermal responses would provide new physiological information. However, a real-time thermal measurement technique on a target of a single cell has not been established. In this study, glass micropipettes, which are widely used in bioengineering and medicine, are used for the base of the thermocouple probes. Using microfabrication techniques, the junction of two different metal films is formed at the micropipette tip with a diameter of 1 μm. This probe can inject a chemical substance into a cell and to detect its subsequent temperature changes simultaneously.

  13. Neutrons and gamma-rays spectroscopy of Mercury surface: global mapping from ESA MPO-BepiColombo spacecraft by MGNS instrument.

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. S.; Gurvits, L. I.; Litvak, M. L.; Malakhov, A. A.; Mokrousov, M. I.; Mitrofanov, I. G.; Rogozhin, A. A.; Sanin, A. B.; Owens, A.; Schvetsov, V. N.

    2009-04-01

    For analyse chemistry composition of Mercury subsurface we will apply method of as-called remote sensing of neutrons. This method can be use for study celestial body of Solar system without thick atmospheres, like Moon, Mars, Phobos, Mercury etc. by the analysis of induced nuclear gamma-rays and neutron emission. These gamma-rays and neutrons are produced by energetic galactic cosmic rays colliding with nuclei of regolith within a 1-2 meter layer of subsurface. Mercury Planetary Orbiter of BepiColombo mission includes the nuclear instrument MGNS (Mercury Gamma-rays and Neutrons Spectrometers), which consists of gamma-rays spectrometer for detection of gamma-ray lines and neutron spectrometer for measurement of the neutron leakage flux. To test know theoretical models of Mercury composition, MGNS will provide the data for the set of gamma-ray lines, which are necessary and sufficient to discriminate between the models. Neutron data are known to be very sensitive for the presence of hydrogen within heavy soil-constituting elements. Mapping measurements of epithermal neutrons and 2.2 MeV line will allow us to study the content of hydrogen over the surface of Mercury and to test the presence of water ice deposits in the cold traps of permanently shadowed polar craters of this planet. There are also three natural radioactive elements, K, Th and U, which contents in the soil of a celestial body characterizes the physical condition of its formation in the proto-planetary cloud. The data from gamma-spectrometer will allow to compare the origin of Mercury with evolution of Earth, Moon and Mars. Three sensors for thermal and epithermal neutrons are made with similar 3He proportional counters, but have different polyethylene enclosures and cadmium shielding for different sensitivity of thermal and epithermal neutrons at different energy ranges. The fourth neutron sensor for high energy neutrons 1-10 MeV contains the scintillation crystal of stylbene with cylindrical shape of

  14. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  15. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  16. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  17. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  18. Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, Mahfouz

    2015-01-01

    The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.

  19. Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics

    NASA Astrophysics Data System (ADS)

    2003-05-01

    The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs

  20. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.

    PubMed Central

    Davenport, L; Targowski, P

    1996-01-01

    The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several

  1. Magnetic pair creation transparency in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Magnetic pair creation, gamma → e+e- , is a key component in polar cap models of gamma-ray pulsars, and has informed assumptions about the still poorly understood radio emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 gamma-ray pulsars, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Fermi observations have established that the high-energy spectra of most of these pulsars have exponential turnovers in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide a physically motivated lower bound to the typical altitude of GeV band emission. This work computes pair creation opacities for photon propagation in neutron star magnetospheres. It explores the constraints that can be placed on the emission location of Fermi gamma-rays due to single-photon pair creation transparency below the turnover energy, as well as the limitations of this technique. These altitude bounds are typically in the range of 2--6 neutron star radii for the Fermi pulsar sample, and provide one of the few possible constraints on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles.

  2. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  3. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics

  4. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  5. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes

    PubMed Central

    Jurchenko, Carol

    2015-01-01

    The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes. PMID:26031334

  6. General Mode Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen

    A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these

  7. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  8. Probing new physics through Bs*→μ+μ- decay

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Saini, Jyoti; Gangal, Shireen; Das, Sanjeeda Bharati

    2018-02-01

    We perform a model independent analysis of new physics in Bs*→μ+μ- decay. We intend to identify new physics operator(s) which can provide large enhancement in the branching ratio of Bs*→μ+μ- above its standard model prediction. For this, we consider new physics in the form of vector, axial-vector, scalar and pseudoscalar operators. We find that scalar and pseudoscalar operators do not contribute to the branching ratio of Bs*→μ+μ- . We perform a global fit to all relevant b →s μ+μ- data for different new physics scenarios. For each of these scenarios, we predict Br (Bs*→μ+μ-) . We find that a significant enhancement in Br (Bs*→μ+μ-) is not allowed by any of these new physics operators. In fact, for all new physics scenarios providing a good fit to the data, the branching ratio of Bs*→μ+μ- is suppressed as compared to the standard model (SM) value. Hence the present b →s μ+μ- data indicates that the future measurement of Br (Bs*→μ+μ-) is expected to be suppressed in comparison to the standard model prediction.

  9. The spatial resolution of a rotating gamma camera tomographic facility.

    PubMed

    Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R

    1983-12-01

    An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.

  10. Simulating Gamma-Ray Emission in Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate amore » bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.« less

  11. Simulating Gamma-Ray Emission in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  12. Large gamma-ray detector arrays and electromagnetic separators

    NASA Astrophysics Data System (ADS)

    Lee, I.-Yang

    2013-12-01

    The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.

  13. Development of an alpha/beta/gamma detector for radiation monitoring.

    PubMed

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-01

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics

  14. Very-high energy gamma-ray astronomy. A 23-year success story in high-energy astroparticle physics

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Wagner, R.

    2012-08-01

    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.

  15. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less

  16. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less

  17. Students' Epistemologies about Experimental Physics: Validating the Colorado Learning Attitudes about Science Survey for Experimental Physics

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…

  18. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-29

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  19. Statistical measurement of the gamma-ray source-count distribution as a function of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. Here, we employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. Furthermore, the index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index ofmore » $${2.2}_{-0.3}^{+0.7}$$ in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain $${83}_{-13}^{+7}$$% ($${81}_{-19}^{+52}$$%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). Our method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.« less

  20. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  1. The Cultural Exchange, A Cross-Cultural and Interdisciplinary Multicultural Education Curriculum for Grades 4-8. Probe Cards [and] Probe Booklets.

    ERIC Educational Resources Information Center

    Nethery, Mary; And Others

    These student probe cards for grades 4-8 provide a variety of values-oriented activities to help students explore, understand, and appreciate culturally diverse values. Activities are matched to one of seven objectives and are cross-referenced to the subject areas of social science, mathematics, fine arts, drama, physical education, language arts,…

  2. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  3. A Survey of PWNe around Narrow-Pulse Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Romani, Roger

    2010-09-01

    We propose here, on behalf of the Fermi LAT team, ACIS observations of the X-ray counterparts of six unusual gamma-ray pulsars discovered by the LAT. The targets, four seen only in the gamma-rays, two also radio-detected, have unusual single or narrow double pulse profiles, which require particular emission geometries for different pulsar models. By measuring the arcsecond-scale structure of the wind nebula termination shocks of these young (<100kyr) objects, CXO can pin down the viewing angle and test the pulsar physics. All have known X-ray fluxes and we can also extract spectral and distance estimates needed to interpret the GeV gamma-rays. The survey sample covers a range of ages, spindown powers and expected inclinations, making it a powerful test of pulsar emission models.

  4. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael

    2017-10-01

    A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatiblemore » with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.« less

  5. Pharmacological evidences for DFK167-sensitive presenilin-independent gamma-secretase-like activity.

    PubMed

    Sevalle, Jean; Ayral, Erwan; Hernandez, Jean-François; Martinez, Jean; Checler, Frédéric

    2009-07-01

    Amyloid-beta (Abeta) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer's disease (AD) pathology. A bulk of studies concur to propose that the C-terminal moiety of Abeta is released from its precursor beta-amyloid precursor protein by a high molecular weight enzymatic complex referred to as gamma-secretase, that is composed of at least, nicastrin (NCT), Aph-1, Pen-2, and presenilins (PS) 1 or 2. They are thought to harbor the gamma-secretase catalytic activity. However, several lines of evidence suggest that additional gamma-secretase-like activities could potentially contribute to Abeta production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the beta-amyloid precursor protein sequence targeted by gamma-secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Abeta production in an in vitrogamma-secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660-hydrolysing activity could be recovered in PS- and NCT-deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying gamma-secretase-like properties but independent of PS and still blocked by DFK167, suggesting that the PS-dependent complex could not be the unique gamma-secretase activity responsible for Abeta

  6. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  7. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  8. Virtual scanning tunneling microscopy: A local spectroscopic probe of two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.

    2010-09-01

    We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.

  9. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  10. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M; Spiro, A; Vogel, R

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less

  11. A future wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2017-01-01

    High-energy gamma-ray observations are an essential probe of cosmic-ray acceleration. Detection of the highest energies and the shortest timescales of variability are key motivations when designing the next generation of gamma-ray experiments. The Milagro experiment was the first-generation of gamma-ray detectors based on the water-Cherenkov technique, and demonstrated that it is possible to continuously monitor a large fraction of the TeV sky. The second-generation water-Cherenkov experiment, the High Altitude Water Cherenkov observatory, consists of an array of 300 water-Cherenkov detectors covering an area of 22,000 m2 at 4,100 m a.s.l. The larger effective area, the higher altitude, and the optical isolation of the detectors led to a 15-fold increase in sensitivity relative to Milagro. Instruments with a wide field of view and large duty cycle are capable of surveying the TeV sky, mapping the diffuse emission, detecting emission from extended regions, and observing transient events such as gamma ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the preliminary design of a third-generation water-Cherenkov observatory located at very high altitude in South America.

  12. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  13. H.E.S.S. observations of RX J1713.7-3946 with improved angular and spectral resolution: Evidence for gamma-ray emission extending beyond the X-ray emitting shell

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Fukuyama, T.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Naurois, M. de; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; los Reyes, R. de; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; Eldik, C. van; Rensburg, C. van; Soelen, B. van; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Volpe, F.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048° (0.036° above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H.E.S.S. image of RX J1713.7-3946 allows us to reveal clear morphological differences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism. All images (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A6

  14. Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Jun; Huang, Yong-Feng; Wu, Xue-Feng; Zhang, Bing; Zong, Hong-Shi

    2018-01-01

    The low-energy spectra of gamma-ray bursts’ (GRBs) prompt emission are closely related to the energy distribution of electrons, which is further regulated by their cooling processes. We develop a numerical code to calculate the evolution of the electron distribution with given initial parameters, in which three cooling processes (i.e., adiabatic, synchrotron, and inverse Compton cooling) and the effect of a decaying magnetic field are coherently considered. A sequence of results is presented by exploring the plausible parameter space for both the fireball and the Poynting flux–dominated regime. Different cooling patterns for the electrons can be identified, and they are featured by a specific dominant cooling mechanism. Our results show that the hardening of the low-energy spectra can be attributed to the dominance of synchrotron self-Compton cooling within the internal shock model or to decaying synchrotron cooling within the Poynting flux–dominated jet scenario. These two mechanisms can be distinguished by observing the hard low-energy spectra of isolated short pulses in some GRBs. The dominance of adiabatic cooling can also lead to hard low-energy spectra when the ejecta is moving at an extreme relativistic speed. The information from the time-resolved low-energy spectra can help to probe the physical characteristics of the GRB ejecta via our numerical results.

  15. Analytical investigation into the resonance frequencies of a curling probe

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2016-08-01

    The term ‘active plasma resonance spectroscopy’ (APRS) denotes a class of closely related plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency {ω\\text{pe}} ; an electrical radio frequency signal (in the GHz range) is coupled into the plasma via an antenna or a probe, the spectral response is recorded and a mathematical model is employed to determine plasma parameters such as the plasma density and the electron temperature. The curling probe, recently invented by Liang et al (2011 Appl. Phys. Express 4 066101), is a novel realization of the APRS concept which has many practical advantages. In particular, it can be miniaturized and flatly embedded into the chamber wall, thus allowing the monitoring of plasma processes without contamination nor disturbance. Physically, the curling probe can be understood as a ‘coiled’ form of the hairpin probe (Stenzel 1976 Rev. Sci. Instrum. 47 603). Assuming that the spiralization of the probe has little electrical effect, this paper investigates the characteristcs of a ‘straightened’ curling probe by modeling it as an infinite slot-type resonator that is in direct contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving the cold plasma model and Maxwell’s equations simultaneously. The resonance frequencies of the probe are derived and are found to be in good agreement with the numerical results of the probe inventors.

  16. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2017-06-28

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less

  17. Nuclear Physics Research at ELI-NP

    NASA Astrophysics Data System (ADS)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  18. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    number of high resolution PET experiments including the dual-ring small field- of-view configuration shown at left in Figure 5 . The benchtop system...detectors having 26 x 40 arrays of 1mm x 1mm x 1mm detector elements is shown at right in Figure 5 . Detectors used for probe experiments shown in...Figure 13). In the series of experiments geared towards PET application, but with the results applicable to the present single gamma case, we have

  19. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less

  20. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars from the MOJAVE Program

    NASA Technical Reports Server (NTRS)

    Lister, M.L.; Aller, M.; Aller, H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Meyer, E. T.; Pushkarev, A. B.; Ros, E.; Ackermann, M.; hide

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -300 during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.

  1. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  2. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  3. Microstructure and Mechanical Properties in Gamma(face-centered cubic) + Gamma Prime(L12) Precipitation-Strengthened Cobalt-based Superalloys

    NASA Astrophysics Data System (ADS)

    Bocchini, Peter J.

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x

  4. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.

    PubMed

    Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha

    2016-01-01

    When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.

  5. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe

    PubMed Central

    Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha

    2016-01-01

    When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814

  6. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  7. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited).

    PubMed

    Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  8. [Treatment of gamma-hydroxybutyrate withdrawal].

    PubMed

    Strand, Niels August Willer; Petersen, Tonny Studsgaard; Nielsen, Lars Martin; Boegevig, Soren

    2017-12-11

    Gamma-hydroxybutyrate (GHB) is a drug of abuse, for which physical addiction develops quickly. GHB withdrawal can develop into a life-threatening condition and has previously been treated mainly with benzodiazepines. These have not always proven effective, leading to long hospitalizations in intensive care units. Based on successful Dutch treatment results for using GHB to treat GHB withdrawal symptoms, we propose to implement a similar method in Denmark. The method requires an interdisciplinary effort for which The Danish Poison Information Centre should be consulted for expertise.

  9. Four-probe measurements with a three-probe scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less

  10. Four-probe measurements with a three-probe scanning tunneling microscope.

    PubMed

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  11. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  12. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Dermer, C. D.; Dhuga, K. S.

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less

  13. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; hide

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  14. Project Physics Tests 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 6 are presented in this booklet. Included are 70 multiple-choice and 24 problem-and-essay questions. Nuclear physics fundamentals are examined with respect to the shell model, isotopes, neutrons, protons, nuclides, charge-to-mass ratios, alpha particles, Becquerel's discovery, gamma rays, cyclotrons,…

  15. Quantum algorithm for solving some discrete mathematical problems by probing their energy spectra

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Fan, Heng; Li, Fuli

    2014-01-01

    When a probe qubit is coupled to a quantum register that represents a physical system, the probe qubit will exhibit a dynamical response only when it is resonant with a transition in the system. Using this principle, we propose a quantum algorithm for solving discrete mathematical problems based on the circuit model. Our algorithm has favorable scaling properties in solving some discrete mathematical problems.

  16. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  17. Fluorimetric determination of proteins using 4-chloro-(2'-hydroxylophenylazo)rhodanine-Ti(IV) complex as a spectral probe.

    PubMed

    Sun, Shuting; Ma, Hongmin; Chen, Xin; Zhang, Nuo; Wu, Dan; Du, Bin; Wei, Qin

    2008-01-01

    A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4-chloro-(2'-hydroxylophenylazo)rhodanine-Ti(IV) [ClHARP-Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2-ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and gamma-globin (gamma-G) were studied. The detection limits were 0.182 microg/mL for BSA, 0.0788 microg/mL for HSA, 0.216 microg/mL for Ova and 0.484 microg/mL for gamma-G. The linear ranges of the calibration were 0-12.0, 0-10.0, 0-18.0 and 0-18.0 microg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results.

  18. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  19. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpointmore » mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.« less

  20. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

  1. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  2. Spectrometer of high energy gamma quantums

    NASA Technical Reports Server (NTRS)

    Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

    1979-01-01

    A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

  3. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  4. Probing New Physics with Jets at the LHC

    ScienceCinema

    Harris, Robert

    2017-12-09

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  5. Exploring for oil with nuclear physics

    NASA Astrophysics Data System (ADS)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  6. Physics Flash August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."

  7. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  8. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  9. BC404 scintillators as gamma locators studied via Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  10. Focusing in Arthurs-Kelly-type joint measurements with correlated probes.

    PubMed

    Bullock, Thomas J; Busch, Paul

    2014-09-19

    Joint approximate measurement schemes of position and momentum provide us with a means of inferring pieces of complementary information if we allow for the irreducible noise required by quantum theory. One such scheme is given by the Arthurs-Kelly model, where information about a system is extracted via indirect probe measurements, assuming separable uncorrelated probes. Here, following Di Lorenzo [Phys. Rev. Lett. 110, 120403 (2013)], we extend this model to both entangled and classically correlated probes, achieving full generality. We show that correlated probes can produce more precise joint measurement outcomes than the same probes can achieve if applied alone to realize a position or momentum measurement. This phenomenon of focusing may be useful where one tries to optimize measurements with limited physical resources. Contrary to Di Lorenzo's claim, we find that there are no violations of Heisenberg's error-disturbance relation in these generalized Arthurs-Kelly models. This is simply due to the fact that, as we show, the measured observable of the system under consideration is covariant under phase space translations and as such is known to obey a tight joint measurement error relation.

  11. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  12. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  13. Gamma-Ray Bursts: Characteristics and Prospects

    NASA Astrophysics Data System (ADS)

    Azzam, W. J.; Zitouni, H.; Guessoum, N.

    2017-06-01

    Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. They have remained the object of intense research ever since their discovery was declassified in the early 1970s. Several space-borne missions have been dedicated to their study, including the Compton Gamma-Ray Burst Observatory (CGRO) in the 1990s and the current Swift and Fermi satellites. However, despite several decades of focused research, the precise mechanisms behind these enigmatic explosions have not been fully established. In the first part of this paper, we review what is currently known about GRBs. This includes: GRB light-curves and spectra; the different progenitor models, i.e., the "collapsar" and "merger" models; and the afterglow characteristics, including external shocks and the surrounding medium. In the second part of the paper, we present our work, which focuses on utilizing GRBs as cosmological probes. GRBs are ideal cosmological tools, because they have been observed to great distances (redshifts up to z = 9.4) and their radiation is unencumbered by any intervening dust. Although GRBs are not standard candles, the discovery of several energy and luminosity correlations, like the Amati relation which correlates the intrinsic spectral peak energy, Ep,i to the equivalent isotropic energy, Eiso , has ushered in a new era in which GRBs are used to investigate cosmological issues like the star formation rate and the value of the matter-density parameter, ΩM.

  14. Gamma time-dependency in Blaxter's compartmental model.

    NASA Technical Reports Server (NTRS)

    Matis, J. H.

    1972-01-01

    A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Method for reducing measurement errors of a Langmuir probe with a protective RF shield

    NASA Astrophysics Data System (ADS)

    Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.

    2018-04-01

    Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.

  17. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  18. Micro- and nanodevices integrated with biomolecular probes

    PubMed Central

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A.

    2016-01-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. PMID:26363089

  19. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2017-03-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  20. {gamma}-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, M. L.; Hovatta, T.; Aller, M.

    We investigate the Fermi Large Area Telescope {gamma}-ray and 15 GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 Degree-Sign during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED)more » parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing {gamma}-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the {gamma}-ray emission in these BL Lac objects over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED-peak-{gamma}-ray-loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQs) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lac objects have generally lower Doppler factors than the lower-synchrotron peaked BL Lac objects or FSRQs in our sample.« less

  1. Development of a Small-Sized, Flexible, and Insertable Fiber-Optic Radiation Sensor for Gamma-Ray Spectroscopy

    PubMed Central

    Yoo, Wook Jae; Shin, Sang Hun; Lee, Dong Eun; Jang, Kyoung Won; Cho, Seunghyun; Lee, Bongsoo

    2015-01-01

    We fabricated a small-sized, flexible, and insertable fiber-optic radiation sensor (FORS) that is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA) to obtain the energy spectra of radioactive isotopes. As an inorganic scintillator for gamma-ray spectroscopy, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal was used and two solid-disc type radioactive isotopes with the same dimensions, cesium-137 (Cs-137) and cobalt-60 (Co-60), were used as gamma-ray emitters. We first determined the length of the LYSO:Ce crystal considering the absorption of charged particle energy and measured the gamma-ray energy spectra using the FORS. The experimental results demonstrated that the proposed FORS can be used to discriminate species of radioactive isotopes by measuring their inherent energy spectra, even when gamma-ray emitters are mixed. The relationship between the measured photon counts of the FORS and the radioactivity of Cs-137 was subsequently obtained. The amount of scintillating light generated from the FORS increased by increasing the radioactivity of Cs-137. Finally, the performance of the fabricated FORS according to the length and diameter of the POF was also evaluated. Based on the results of this study, it is anticipated that a novel FORS can be developed to accurately measure the gamma-ray energy spectrum in inaccessible locations such as narrow areas and holes. PMID:26343667

  2. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  3. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  4. The Observer's Guide to the Gamma-Ray Burst-Supernova Connection

    NASA Astrophysics Data System (ADS)

    Cano, Z.

    2016-10-01

    In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity-decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the "average" GRB-SNe: which has a kinetic energy of EK≈2.5×10^52 erg, an ejecta mass of Mej≈6 M⊙, a nickel mass of MNi≈0.4 M⊙, a peak photospheric velocity of vph≈21,000 km s-1, a peak bolometric luminosity of Lp≈1×10^43 erg s-1, and it reaches peak bolometric light in tp≈13 days. We discuss their geometry, consider the various physical processes that are thought to power the luminosity of GRB-SNe, and whether differences exist between GRB-SNe and the SNe associated with ultra-long duration GRBs. We discuss how observations of the environments of GRB-SNe further constrain the physical properties of their progenitor stars, and give an overview of the current theoretical paradigms of their suspected central engines. We also present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs. We conclude the review by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe (abridged).

  5. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  6. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  7. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  8. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less

  9. Effects of gamma-sterilization on the physicochemical properties of natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L; Madden, Andrew; Baldwin, Mark E

    2008-06-01

    Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-edge structure (XANES) spectroscopy revealed that {gamma}-sterilized sediments were actually better sorbents of U(VI), despite the absence of any measurable biological activity. These results indicate that {gamma}-irradiation induced significant physico-chemical changes in the sediment which is contrary to numerous other studies identifying {gamma}-sterilization as an effective and minimally invasive technique. To identify the extent and method of alteration of the soil as a result of {gamma}-sterilization, untreated soil samples, physically separated size fractions, and chemically extracted fractionsmore » of the soil were analyzed pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly with {gamma}-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments and affected both the organic and inorganic fractions. Moessbauer spectra of non-sterile and {gamma}-sterilized sediments measured more reduced iron present in {gamma}-sterilized sediments compared to non-sterile samples. Our results suggest that sterilization by {gamma}-irradiation induced iron reduction that may have increased the sorption and/or reduction of U(VI) onto these sediments. However, Moessbauer and batch sorption data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are more significantly reduced while the later indicates that reduced clay minerals account for greater sorption of U(VI).« less

  10. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  11. PHYSICS with HAWC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Jordan A.

    2008-12-24

    The Milagro Gamma-Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the overhead sky for sources of TeV gamma rays. The detector's unique design provides for unprecedented sensitivity compared to traditional sparse sampling arrays. As a result, Milagro has made a host of discoveries including the detection of several new gamma-ray sources and the detection of diffuse emission from the Galactic plane. The HAWC detector is a natural extension of the Milagro design. HAWC will be constructed as a joint Mexican-US collaboration on the Sierra Negra Mountain in Mexico at an elevation of 4100 m.more » The design and location of HAWC was optimized using the lessons learned from Milagro and will be 15 times more sensitive than Milagro when completed. In this paper, we briefly review Milagro results and discuss the physics we can do with HAWC.« less

  12. Effect on the properties of ITO thin films in Gamma environment

    NASA Astrophysics Data System (ADS)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-04-01

    The present study reports the effect of gamma irradiation of varying doses (0-200 kGy) on the physical properties of the indium tin oxide (ITO) thin films. The films were fabricated by thermal evaporation method using indium-tin (InSn) ingots followed by an oxidation in atmosphere at a temperature of 550 °C. X-ray diffraction analysis confirmed the body-centered cubic (BCC) structure corresponds to the ITO thin films, high phase purity and a variation in crystallite size between 30-44 nm. While the optical studies revealed an increase in transmission as well as variation in optical band gap, the electrical studies confirmed n-type semiconductive behavior of the thin films, increase in mobility and a decrease in resistivity from 2.33×10-2 - 9.31×10-4 Ωcm with the increase in gamma dose from 0-200 kGy. The gamma irradiation caused totally electronic excitation and resulted in this modifications. The degenerate electron gas model was considered when attempting to understand the prevalent scattering mechanism in gamma irradiated ITO thin films.

  13. The AGILE Mission and Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; INFN, section of Trieste; Tavani, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  14. Models of Interacting Supernovae: Understanding the Physics and Probing the Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    "Interacting supernovae" are poorly understood astronomical events with great potential for expanding our understanding of how stars evolve and die, and could provide important clues about the early formation of large-scale structures such as galaxies in the universe. Interacting supernovae occur when a star explodes within a dense cloud of material shed from the star in the course of its evolution. The resulting violent interaction between the expanding supernova explosion and the cloud of circumstellar material can lead to an enormously bright visual display --- indeed, many of the brightest supernovae ever recorded are thought to arise from circumstellar interaction. In order to understand the properties of the progenitor star and the details of the circumstellar interaction, there is a need for theoretical models of interacting supernovae. These simulated computer spectra can be directly compared to the spectra observed by telescopes. These models allow us to probe the physical circumstances that underlie the observations. The spectra of interacting supernovae are dominated by strong, narrow emission lines of light elements such as hydrogen and helium. These narrow lines give Type IIn supernovae their designation. Similarly, objects of Type Ian, Ibn, Icn, and IIn are somewhat distinct, but are all defined by the narrow emission lines that result from the interaction of their expanding envelopes with their surroundings. The photosphere in these supernovae is formed in the material accreted during the coasting phase, and most of the luminosity has its origin from the conversion of kinetic explosion energy into luminosity. Both thermonuclear (Type Ia) and core-collapse (Types Ib/Ic and II) supernovae may be the inner engine. In fact, several Type IIn supernovae at early times have later been classified as Type Ia, Type Ib/c, or Type II as their spectra reveal more details about the nature of the central explosion. As a result of the dominance of the interaction

  15. Methodology comparison for gamma-heating calculations in material-testing reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physicalmore » models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias

  16. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  17. MO-AB-206-00: Nuclear Medicine Physics and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT

  18. Probing Gamma-ray Emission of Geminga and Vela with Non-stationary Models

    NASA Astrophysics Data System (ADS)

    Chai, Yating; Cheng, Kwong-Sang; Takata, Jumpei

    2016-06-01

    It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps) via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope) cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included) and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

  19. Beta/gamma and alpha backgrounds in CRESST-II Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, R.; Angloher, G.; Ferreiro Iachellini, N.

    2015-06-01

    The experiment CRESST-II aims at the detection of dark matter with scintillating CaWO{sub 4} crystals operated as cryogenic detectors. Recent results on spin-independent WIMP-nucleon scattering from the CRESST-II Phase 2 allowed to probe a new region of parameter space for WIMP masses below 3 GeV/c{sup 2}. This sensitivity was achieved after background levels were reduced significantly. We present extensive background studies of a CaWO{sub 4} crystal, called TUM40, grown at the Technische Universität München. The average beta/gamma rate of 3.51/[kg keV day] (1-40 keV) and the total intrinsic alpha activity from natural decay chains of 3.08±0.04 mBq/kg are the lowestmore » reported for CaWO{sub 4} detectors. Contributions from cosmogenic activation, surface-alpha decays, external radiation and intrinsic alpha/beta emitters are investigated in detail. A Monte-Carlo based background decomposition allows to identify the origin of the majority of beta/gamma events in the energy region relevant for dark matter search.« less

  20. ESR/spin probe study of ice cream.

    PubMed

    Gillies, Duncan G; Greenley, Katherine R; Sutcliffe, Leslie H

    2006-07-12

    Spin probes based on the 1,1,3,3-tetramethylisoindolin-2-yl structure have been used, in conjunction with electron spin resonance spectroscopy (ESR), to study the physical changes occurring in ice cream during freezing and melting. The ESR measurements allowed the rotational correlation times, tau(B), of the spin probes to be determined. Two probes were used together in a given sample of ice cream, namely, 1,1,3,3-tetramethylisoindolin-2-yl (TMIO), which samples the fat phase, and the sodium salt of 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS), which samples the aqueous phase. Data from the TMIO probe showed that when ice cream is cooled, the fat phase is a mixture of solid and liquid fat until a temperature of approximately -60 degrees C is reached. The water-soluble probe NaTMIOS showed that the aqueous phase changes completely from liquid to solid within 1 degrees C of -18 degrees C. On cooling further to -24.7 degrees C and then allowing it to warm to +25.0 degrees C, the rotational correlation times of the NaTMIOS were slow to recover to their previous values. For the lipid phase, tau(B)(298) was found to be 65.7 +/- 2.0 ps and the corresponding activation enthalpy, DeltaH, was 32.5 +/- 0.9 kJ mol(-)(1): These values are typical of those expected to be found in the type of fat used to make ice cream. The water phase gave corresponding values of 32.2 +/- 0.5 ps and 24.5 +/- 0.4 kJ mol(-)(1) values, which are those expected for a sucrose concentration of 24%.

  1. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  2. Physics of vascular brachytherapy.

    PubMed

    Jani, S K

    1999-08-01

    Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.

  3. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  4. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE PAGES

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...

    2016-08-30

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  5. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  6. DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack

    2013-09-10

    Gamma-ray bursts (GRBs), which have been observed up to redshifts z Almost-Equal-To 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of thismore » correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission.« less

  7. An Overview of GRETINA and its Physics Program

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Augusto

    2016-09-01

    GRETINA, a first implementation of a gamma-ray tracking array, combines unparalleled position resolution, large Ge efficiency, and good P/T to provide a powerful tool for in-beam gamma-ray spectroscopy. The commissioning in 2012 demonstrated the technical feasibility and unique capabilities of a gamma-ray tracking array, and successful physics campaigns have followed at NSCL/MSU(2013/14) and ATLAS/ANL (2014/15). New and exciting physic results have been shown in a broad range of topics, clearly confirming the expectations of excellent performance in both high- and Coulomb barrier-energy environments, and in multiple configurations. GRETINA is again operating at NSCL for a second campaign coupled to the S800 spectrometer. Following a brief status report of the array, I will present some selected highlights from the science campaigns, complementing the latest results to be discussed in this mini-symposium. Future plans, with an emphasis on the development and construction of the full 4 π GRETA, will also be discussed. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231.

  8. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  9. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  10. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    PubMed

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry

    NASA Astrophysics Data System (ADS)

    Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume

    We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  12. The e-ASTROGAM gamma-ray space mission

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.; Tavani, M.; von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; Bykov, A.; Campana, R.; Caraveo, P.; Cardillo, M.; Coppi, P.; De Angelis, A.; Diehl, R.; Donnarumma, I.; Fioretti, V.; Giuliani, A.; Grenier, I.; Grove, J. E.; Hamadache, C.; Hartmann, D.; Hernanz, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Marisaldi, M.; McBreen, S.; McEnery, J. E.; Mereghetti, S.; Mirabel, F.; Morselli, A.; Nakazawa, K.; Peyré, J.; Piano, G.; Pittori, C.; Sabatini, S.; Stawarz, L.; Thompson, D. J.; Ulyanov, A.; Walter, R.; Wu, X.; Zdziarski, A.; Zoglauer, A.

    2016-07-01

    e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 { 100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.

  13. The e-astrogam Gamma-Ray Space Mission

    NASA Technical Reports Server (NTRS)

    Tatischeff, V.; Tavani, M.; Von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; hide

    2016-01-01

    e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2-100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.

  14. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-10-01

    This study evaluated the changes of solubility and anti-inflammatory properties of structurally modified gamma-irradiated chrysin. Chrysin was irradiated at various doses for a physical analysis and determining any structural changes and solubility. As shown through the physical analysis, the main peak of the chrysin was decreased as the irradiation dose increased, and it was concomitant with the appearance of several new peaks, which were highly increased in 50 kGy gamma-irradiated chrysin. The solubility was markedly increased in the gamma-irradiated groups. As shown through a physiological analysis, both gamma-irradiated- (15-50 kGy) and intact-chrysin (0 kGy) did not exert cytotoxicity to bone-marrow derived macrophages. The treatment of LPS-stimulated macrophages with 50 kGy gamma-irradiated chrysin resulted in a dose-dependent decrease in pro-inflammatory mediators, such as iNOS-mediated NO, PGE2, COX-2, and cell surface marker (CD80 and CD86), as well as pro-inflammatory cytokines (TNF-α and IL-6), when compared to the intact-chrysin treated group. Mechanically, we found that the inhibition of these pro-inflammatory mediators induced by gamma-irradiated chrysin occurred through an inhibition of MAPKs (ERK1/2 and p38) and the NF-κB signaling pathways. Furthermore, the anti-inflammatory activity remained in the LPS-injected animal model. In this model, gamma-irradiated chrysin treatment highly increased the mouse survival, and significantly decreased the serum cytokine (TNF-α, IL-6 and IL-1β) levels. From these findings, the anti-inflammatory action by gamma-irradiated chrysin may be closely mediated with structural modification. It seems likely that gamma irradiation can be an effective tool for improvement of the physical and physiological properties of polyphenols.

  15. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2016-12-15

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To

  16. Micro- and nanodevices integrated with biomolecular probes.

    PubMed

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A

    2015-12-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  18. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  19. Electronic system for Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Mitov, M.; Bankova, A.; Dimitrova, M.; Ivanova, P.; Tutulkov, K.; Djermanova, N.; Dejarnac, R.; Stöckel, J.; Popov, Tsv K.

    2012-03-01

    A newly developed Langmuir probe system for measurements of current-voltage (IV) characteristics in the tokamak divertor area is presented and discussed. The system is partially controlled by a computer allowing simultaneous and independent feeding and registration of signals. The system is mounted in the COMPASS tokamak, Institute of Plasma Physics, Academy of Sciences of the Czech Republic. The new electronic circuit boards include also active low-pass filters which smooth the signal before recording by the data acquisition system (DAQ). The signal is thus less noisy and the data processing is much easier. We also designed and built a microcontroller-driven waveform generator with resolution of 1 Ms/s. The power supply is linear and uses a transformer. We avoided the use of a switching power supply because of the noise that it could generate. Examples of measurements of the IV characteristics by divertor probes in the COMPASS tokamak and evaluation of the EEDF are presented.

  20. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  1. Dark energy two decades after: observables, probes, consistency tests.

    PubMed

    Huterer, Dragan; Shafer, Daniel L

    2018-01-01

    The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

  2. A quantitative theory of gamma synchronization in macaque V1.

    PubMed

    Lowet, Eric; Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter

    2017-08-31

    Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.

  3. A quantitative theory of gamma synchronization in macaque V1

    PubMed Central

    Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter

    2017-01-01

    Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. PMID:28857743

  4. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  5. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  6. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food.

    PubMed

    Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L

    2017-05-01

    Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Fermi-LAT Gamma-ray Bursts and Insight from Swift

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.

    2011-01-01

    A new revolution in GRB observation and theory has begun over the last 3 years since the launch of the Fermi gamma-ray space telescope. The new window into high energy gamma-rays opened by the Fermi-LAT is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts. In this talk I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by Swift over the last 7 years and how through comparisons between the Swift, GBM, and LAT GRB samples, we can learn about the unique characteristics and relationships between each population.

  8. Science with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  9. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  10. Terrestrial gamma-ray flash production by lightning

    NASA Astrophysics Data System (ADS)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  11. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  12. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  13. SU-E-J-205: Monte Carlo Modeling of Ultrasound Probes for Real-Time Ultrasound Image-Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hristov, D; Schlosser, J; Bazalova, M

    2014-06-01

    Purpose: To quantify the effect of ultrasound (US) probe beam attenuation for radiation therapy delivered under real-time US image guidance by means of Monte Carlo (MC) simulations. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their CT images in the EGSnrc BEAMnrc and DOSXYZnrc codes. Due to the metal parts, the probes were scanned in a Tomotherapy machine with a 3.5 MV beam. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2–8.0 g/cm{sup 3}.more » Beam attenuation due to the probes was measured in a solid water phantom for a 6 MV and 15 MV 15x15 cm{sup 2} beam delivered on a Varian Trilogy linear accelerator. The dose was measured with the PTW-729 ionization chamber array at two depths and compared to MC simulations. The extreme case beam attenuation expected in robotic US image guided radiotherapy for probes in upright position was quantified by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities were 4.6 and 4.2 g/cm{sup 3} in the C5-2 and X6-1 probe, respectively. Gamma analysis of the simulated and measured doses revealed that over 98% of measurement points passed the 3%/3mm criteria for both probes and measurement depths. The extreme attenuation for probes in upright position was found to be 25% and 31% for the C5-2 and X6-1 probe, respectively, for both 6 and 15 MV beams at 10 cm depth. Conclusion: MC models of two US probes used for real-time image guidance during radiotherapy have been built. As a Result, radiotherapy treatment planning with the imaging probes in place can now be performed. J Schlosser is an employee of SoniTrack Systems, Inc. D Hristov has financial interest in SoniTrack Systems, Inc.« less

  14. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  15. Probe tip heating assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Roger William; Oh, Yunje

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less

  16. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  17. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  18. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  19. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.

    PubMed

    Polak, Leo; Wijngaarden, Rinke J

    2016-12-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  1. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  2. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  3. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Towards a global network of gamma-ray detector calibration facilities

    NASA Astrophysics Data System (ADS)

    Tijs, Marco; Koomans, Ronald; Limburg, Han

    2016-09-01

    Gamma-ray logging tools are applied worldwide. At various locations, calibration facilities are used to calibrate these gamma-ray logging systems. Several attempts have been made to cross-correlate well known calibration pits, but this cross-correlation does not include calibration facilities in Europe or private company calibration facilities. Our aim is to set-up a framework that gives the possibility to interlink all calibration facilities worldwide by using `tools of opportunity' - tools that have been calibrated in different calibration facilities, whether this usage was on a coordinated basis or by coincidence. To compare the measurement of different tools, it is important to understand the behaviour of the tools in the different calibration pits. Borehole properties, such as diameter, fluid, casing and probe diameter strongly influence the outcome of gamma-ray borehole logging. Logs need to be properly calibrated and compensated for these borehole properties in order to obtain in-situ grades or to do cross-hole correlation. Some tool providers provide tool-specific correction curves for this purpose. Others rely on reference measurements against sources of known radionuclide concentration and geometry. In this article, we present an attempt to set-up a framework for transferring `local' calibrations to be applied `globally'. This framework includes corrections for any geometry and detector size to give absolute concentrations of radionuclides from borehole measurements. This model is used to compare measurements in the calibration pits of Grand Junction, located in the USA; Adelaide (previously known as AMDEL), located in Adelaide Australia; and Stonehenge, located at Medusa Explorations BV in the Netherlands.

  5. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  6. Coupled gamma/alpha phase transformations in low-carbon steels

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasushi

    Since steels have been the most prevalently utilized materials for many years, the desire for steels with low alloying components with a well-balanced combination of high strength and toughness is increasing. Low carbon steels consisting of bainitic microstructures are ideally suited to meeting such technological and economic requirements. Thus it is extremely important to fully clarify the mechanism of bainite formation in order to produce this type of engineering steel by optimized alloy and process design. This research focuses on understanding the mechanism of coupled displacive/diffusional gamma/alpha transformation in low-carbon steels including bainitic and martensitic transformation, and establishing a more comprehensive and physically rational computational model for predictive control of coupled gamma/alpha transformation phenomena. Models for coupled gamma/alpha phase transformation proposed in this study are based on a mechanistic and unified theory and the following assumptions: (1) The energy dissipation due to interface motion can be linearly combined with the energy dissipation due to carbon diffusion. (2) The carbon concentrations at the interface in both gamma and alpha phases are constrained by an interface solute trapping law. (3) Interface motion during nucleation is also governed by the carbon diffusion field velocity. (4) The response function of glissile interface motion can be expressed in the form of thermally activated dislocation glide. In contrast to the conventional semi-empirical models of the previous literature, the computational model proposed in this study is demonstrated to successfully provide a comprehensive and quantitative prediction of the effects of temperature, composition, microstructure, and the interactions among them. This includes the effects of substitutional solutes, morphology of the parent gamma phase, density of nucleation sites, temperature dependent variation of flow stress of matrix, and dynamic recovery of

  7. Nuclear-Physics Aspects of Controlled Thermonuclear Fusion: Analysis of Promising Fuels and Gamma-Ray Diagnostics of Hot Plasma

    NASA Astrophysics Data System (ADS)

    Voronchev, V. T.; Kukulin, V. I.

    2000-12-01

    A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydrogen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B, and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is considered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of low-energy D+6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear-structure factors leads to an additional enhancement of the rate parameters <σv> for the ( d, pt) and ( d, nτ) channels by 10-40%. The possibility of using nuclear reactions that lead to photon emission as a means for determining the ion temperature of a thermonuclear plasma is discussed.

  8. The igmspec database of public spectra probing the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Prochaska, J. X.

    2017-04-01

    We describe v02 of igmspec, a database of publicly available ultraviolet, optical, and near-infrared spectra that probe the intergalactic medium (IGM). This database, a child of the specdb repository in the specdb github organization, comprises 403 277 unique sources and 434 686 spectra obtained with the world's greatest observatories. All of these data are distributed in a single ≈ 25GB HDF5 file maintained at the University of California Observatories and the University of California, Santa Cruz. The specdb software package includes Python scripts and modules for searching the source catalog and spectral datasets, and software links to the linetools package for spectral analysis. The repository also includes software to generate private spectral datasets that are compliant with International Virtual Observatory Alliance (IVOA) protocols and a Python-based interface for IVOA Simple Spectral Access queries. Future versions of igmspec will ingest other sources (e.g. gamma-ray burst afterglows) and other surveys as they become publicly available. The overall goal is to include every spectrum that effectively probes the IGM. Future databases of specdb may include publicly available galaxy spectra (exgalspec) and published supernovae spectra (snspec). The community is encouraged to join the effort on github: https://github.com/specdb.

  9. Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites

    NASA Astrophysics Data System (ADS)

    Abou Zeid, M. M.; Rabie, S. T.; Nada, A. A.; Khalil, A. M.; Hilal, R. H.

    2008-01-01

    Composites of ethylene propylene dine terpolymer rubber (EPDM), high density polyethylene (HDPE) and ground tire rubber powder (GTR) at different ratios were subjected to gamma irradiation at various doses up to 250 kGy. The physical, mechanical and thermal properties were investigated as a function of irradiation dose and blend composition. Gamma irradiation led to a significant improvement in the properties for all blend compositions. The results indicate that the improvement in properties is inversely proportional to the substituted ratio of GTR, attributed to the development of an interfacial adhesion between GTR and blend components. The results were confirmed by examining the fracture surfaces by scanning electron microscopy.

  10. TEMPORAL CORRELATIONS BETWEEN OPTICAL AND GAMMA-RAY ACTIVITY IN BLAZARS

    DOE PAGES

    Cohen, Daniel P.; Romani, Roger W.; Filippenko, Alexei V.; ...

    2014-12-08

    For this research, we have been using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma-rays being detected with high significance (≥10σ) in one year by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. We attempt to observe each source on a three-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the five-year Fermi mission for several objects, and most have >100 optical measurements spanning the last three years.more » These blazars (flat-spectrum radio quasars and BL Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical-gamma-ray correlation in many of these sources at time delays of ~1 to ~10 days, ranging between –40 and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma-rays leading the optical, while intermediate- and high-synchrotron peak blazars with the most significant peaks have smaller lags/leads. In conclusion, it is clear that long-term monitoring at high cadence is necessary to reveal the underlying physical correlation.« less

  11. Supersymmetric Localization and Probe Branes in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Robinson, Brandon

    In this thesis, a precise, rigorous test of probe brane holography will be constructed. Since its discovery, the AdS/CFT correspondence has provided a window into the strongly coupled dynamics of supersymmetric gauge theories. The ability to include degrees of freedom that provide analogs for the physics of heavy quarks via the probe brane paradigm has further expanded the utility of the duality. The deformation away from a strictly conformal theory by the addition of flavor degrees of freedom induces a Landau pole outside of the 't Hooft limit where Nc → infinity and Nf/Nc " 1, which invites questions about the utility of the probe brane paradigm. Following from the recent application equivariant localization to massive supersymmetric gauge theories on curved backgrounds, a precise question can be formulated to compare, e.g., the free energy of a supersymmetric probe brane embedding and that of the localized dual field theory. This thesis will apply those concepts to the D3/D7 probe brane system dual to Nf N = 2 fundamental hypermultiplets on an S4 and the D3/D5 probe brane system dual to Nf N = 2 fundamental hypermultiplets living on a co-dimension one defect- an equatorial S3 ⊂ S4. In that framework, exact matching to the localization results are found.

  12. The gamma cycle.

    PubMed

    Fries, Pascal; Nikolić, Danko; Singer, Wolf

    2007-07-01

    Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  13. Six faint gamma-ray pulsars seen with the Fermi Large Area Telescope: Towards a sample blending into the background

    DOE PAGES

    Hou, X.; Smith, D. A.; Guillemot, L.; ...

    2014-10-14

    Context. Here, GeV gamma-ray pulsations from over 140 pulsars have been characterized using the Fermi Large Area Telescope, enabling improved understanding of the emission regions within the neutron star magnetospheres, and the contributions of pulsars to high energy electrons and diffuse gamma rays in the Milky Way. The first gamma-ray pulsars to be detected were the most intense and/or those with narrow pulses. Aims. As the Fermi mission progresses, progressively fainter objects can be studied. In addition to more distant pulsars (thus probing a larger volume of the Galaxy), or ones in high background regions (thus improving the sampling uniformitymore » across the Galactic plane), we detect pulsars with broader pulses or lower luminosity. Adding pulsars to our catalog with inclination angles that are rare in the observed sample, and/or with lower spindown power, will reduce the bias in the currently known gamma-ray pulsar population. Methods. We use rotation ephemerides derived from radio observations to phase-fold gamma rays recorded by the Fermi Large Area Telescope, to then determine the pulse profile properties. Spectral analysis provides the luminosities and, when the signal-to-noise ratio allows, the cutoff energies. We constrain the pulsar distances by different means in order to minimize the luminosity uncertainties. Results. We present six new gamma-ray pulsars with an eclectic mix of properties. Three are young, and three are recycled. They include the farthest, the lowest power, two of the highest duty-cycle pulsars seen, and only the fourth young gamma-ray pulsar with a radio interpulse. Finally, we discuss the biases existing in the current gamma-ray pulsar catalog, and steps to be taken to mitigate the bias.« less

  14. A Platinum-Enriched gamma+gamma' Two-Phase Bond Coat on Ni-Base Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Haynes, James A

    2005-01-01

    Pt-enriched {gamma} + {gamma}{prime} two-phase coating was applied to directionally-solidified Ni-based superalloy Ren{acute e} 142 substrates with three different Hf levels (0.02, 0.76, and 1.37 wt.%). The coating was prepared by electroplating a thin layer of Pt on the superalloy followed by a diffusion treatment. The as-deposited coating exhibited a {gamma} + {gamma}{prime} two-phase microstructure with a major composition of Ni-16Al-18Pt-7Cr-9Co (in at.%) along with some incorporation of refractory elements from the substrates. Cyclic oxidation testing at 1100 C in air indicated improved oxidation resistance of the Ren{acute e} 142 alloys with the Pt-enriched {gamma} + {gamma}{prime} coatings. In addition,more » the oxidation resistance of both uncoated and coated alloys was proportional to the Hf content in the substrate. Compared with the single-phase {beta}-(Ni,Pt)Al coating, slightly higher mass gains and localized spallation were observed on the {gamma} + {gamma}{prime} two-phase coating, which might be due to the segregation of refractory elements and high sulfur levels in these superalloy substrates.« less

  15. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  16. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  17. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  18. Spectral properties of blast-wave models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  19. Evaluation of gamma dose effect on PIN photodiode using analytical model

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Feghhi, S. A. H.; Boorboor, S.

    2018-03-01

    The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.

  20. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Williams, David A.; AGIS Collaboration

    2009-01-01

    The spectacular astrophysical discoveries made by the present generation of ground-based gamma-ray observatories have opened a new era in the exploration of the highest energy Universe and have conclusively established the field of very-high-energy (VHE) astronomy, covering the energy regime above about 50 GeV. The detection of nearly 100 galactic and extragalactic sources has generated considerable interest in the astronomy, astrophysics and particle physics communities and has stimulated ambitious ideas and plans for future gamma-ray observatories. AGIS is a concept for a next generation VHE observatory with a collecting area on the scale of a square kilometer being developed by an international collaboration. It would have significantly improved angular and energy resolution, increased field of view, and an order of magnitude increase in sensitivity over existing space or ground-based instruments in the energy range 40 GeV to 100 TeV. The scientific motivations and R&D roadmap for AGIS will be discussed.