Science.gov

Sample records for gamma radiation levels

  1. Measurement of gamma radiation levels in soil samples from Thanjavur using gamma-ray spectrometry and estimation of population exposure.

    PubMed

    Senthilkumar, B; Dhavamani, V; Ramkumar, S; Philominathan, P

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides (232)Th, (238)U and (40)K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using gamma-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of (232)Th, (238)U and (40)K is 42.9+/-9.4 Bq.kg(-1), 14.7+/-1.7 Bq.kg(-1) and 149.5+/-3.1 Bq.kg(-1) respectively are derived from all the soil samples studied. The activity concentration of (232)Th, (238)U and (40)K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h(-1) and 59.1 nGy.h(-1) with an arithmetic mean of 43.3 +/-9 nGy.h(-1). This value is lesser than the population weighted world-averaged of 60 nGy.h(-1). Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 muSv.y(-1) with an arithmetic mean of 53.1+/-11 muSv.y(-1). The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels.

  2. Measurements of gamma radiation levels and spectra in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Brozek, K. P.; Angell, C. T.; Norman, E. B.

    2011-10-01

    Much of the radiation received by an average person is emitted by naturally-occurring radioactive isotopes from the thorium, actinium, and uranium decay series, or potassium. In this study, we have measured gamma radiation levels at various locations in the San Francisco Bay Area and the UC Berkeley campus from spectra taken using an ORTEC NOMAD portable data acquisition system and a large-volume coaxial HPGe detector. We have identified a large number of gamma rays originating from natural sources. The most noticeable isotopes are 214Bi, 40K, and 208Tl. We have observed variations in counting rates by factors of two to five between different locations due to differences in local conditions - such as building, concrete, grass, and soil compositions. In addition, in a number of outdoor locations, we have observed 604-, 662-, and 795-keV gamma rays from 134,137Cs, which we attribute to fallout from the recent Fukushima reactor accident. The implications of these results will be discussed. This work was supported in part by a grant from the U. S. Dept. of Homeland Security.

  3. Estimation of {sup 237}U Level Density and Radiative Strength Functions from the (n-bar,{gamma}) Reaction

    SciTech Connect

    Sukhovoj, Anatoly M.; Khitrov, Valery A.; Maslov, Vladimir M.

    2009-01-28

    Intensity distribution of the primary {gamma}-transitions following resonance neutron capture in {sup 236}U about the mean value was approximated in different energy intervals of these quanta and neutrons. Extrapolation of the obtained functions to zero registration threshold of {gamma}-transitions allowed independent estimation of the expected level number of both parities for spin values J = 1/2, 3/2 and sum of radiative widths for both electric and magnetic gamma-transitions to levels with excitation energy up to {approx_equal}2.3 MeV.

  4. Use of gamma radiation on control of Clostridium botulinum in mortadella formulated with different nitrite levels

    NASA Astrophysics Data System (ADS)

    Dutra, Monalisa Pereira; Aleixo, Glécia de Cássia; Ramos, Alcinéia de Lemos Souza; Silva, Maurício Henriques Louzada; Pereira, Marcio Tadeu; Piccoli, Roberta Hilsdorf; Ramos, Eduardo Mendes

    2016-02-01

    This study investigated the effects of applying different doses of gamma radiation (0, 10 and 20 kGy) on Clostridium botulinum spores (107 spores/g) inoculated into mortadellas with different nitrite contents (0, 150 and 300 ppm). We also evaluated the order of application of heat (cooking) and irradiation processing. The products were evaluated for survival of C. botulinum, pH, water activity (Aw), redox potential (Eh) and residual nitrite content. In the non-irradiated raw batters, almost all spores could be recovered when no nitrite was added and only half was recovered with the addition of 150 ppm of nitrite. The use of 150 ppm of nitrite was able to inhibit the germination or growth of C. botulinum in non-irradiated cooked mortadellas after 48 h of processing. However, after 30 days of chilling storage (4 °C), it was possible to recover 105 UFC/g of this microorganism. The gamma irradiation (>10 kGy) had a positive effect on the inactivation of C. botulinum in mortadellas, independent of the sodium nitrite level used and the cooking/irradiation processing order.

  5. Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata

    NASA Astrophysics Data System (ADS)

    Gloria, Maria Beatriz A.; Adão, Regina C.

    2013-06-01

    Green Prata bananas at the full three-quarter stage were exposed to gamma radiation at doses of 0.0 (control), 1.0, 1.5 and 2.0 kGy and stored at 16±1 °C and 85% relative humidity. Samples were collected periodically and analyzed for peel color, pulp-to-peel ratio and levels of starch, soluble sugars and bioactive amines. Degradation of starch and formation of fructose and glucose followed first- and zero-order kinetics, respectively. Higher irradiation doses caused increased inhibitory effect on starch degradation and glucose formation. However, doses of 1.5 and 2.0 kGy caused browning of the peel, making the fruit unacceptable. Irradiation at 1.0 kGy was the most promising dose: it did not affect peel color, the pulp-to-peel ratio or the levels of the amines spermidine, serotonin and putrescine. However, it slowed down starch degradation and the formation and accumulation of fructose and glucose, delaying the ripening of the fruit for 7 days.

  6. Radioprotective effect of sesamol on gamma-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes.

    PubMed

    Prasad, N Rajendra; Menon, Venugopal P; Vasudev, V; Pugalendi, K V

    2005-05-05

    Sesamol pretreated (1, 5 and 10 microg/ml) lymphocytes were exposed to different doses of gamma-radiation, i.e., 1, 2 and 4 Gray (Gy) and the cellular changes were estimated by using cytokinesis blocked micronucleus assay (MN), dicentric aberration (DC), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Radiation significantly increased MN, DC frequencies, TBARS levels and decreased GSH and antioxidant enzyme levels in a dose dependent manner. The highest damage to lymphocytes was observed at 4 Gy irradiation. On the other hand, sesamol pretreatment significantly decreased MN, DC frequencies, TBARS levels and increased GSH levels and SOD, CAT and GPx activities in a concentration dependent manner. At 1 Gy irradiation all concentrations of sesamol (1, 5 and 10 microg/ml) significantly protects the lymphocytes from radiation damage. At 2 Gy irradiation 5 and 10 microg/ml of sesamol shows significant radioprotection. Since the highest damage was observed at 4 Gy irradiation both 1 and 5 microg/ml of sesamol pretreatment were not sufficient to protect the lymphocytes from radiation damage but 10 microg/ml of sesamol significantly (p<0.05) protects the lymphocytes from radiation effect. Thus, sesamol pretreatment gives significant protection to cultured human lymphocytes against gamma-radiation induced cellular damage. The possible mechanism involved in the radioprotective influence of sesamol is discussed.

  7. Studies of Background Levels for the NIF Yield Diagnostics from Neutron and Gamma Radiation

    SciTech Connect

    Song, P; Eder, D; Moran, M; Landen, O; O'Brien, D; Hsing, W

    2007-08-27

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is nearing completion of construction and is preparing for the National Ignition Campaign (NIC) with potentially significant yield in 2010. The design of a wide range of yield diagnostics in and outside the target-bay of the NIF must consider scattered background neutrons and neutron-induced gamma rays to measure neutrons and x-rays from target. The large and complex target chamber and facility make the calculation of scattered neutrons and gamma rays extremely challenging. The NIF was designed with shielded locations for many of the yield diagnostics including the neutron alcove and four diagnostic mezzanines. Accurate calculation of the background levels in these shielded locations requires advanced Monte Carlo techniques, e.g., variance reduction. Placement, size, and materials of collimators on the line of sight (LOS) through the shielding must be evaluated to trade off signal levels and unwanted backgrounds. The background at these locations is also affected by neutrons that pass through the laser beam tubes and scatter off of structures and walls in the switch yards. Detailed 3D Monte Carlo analyses are performed to determine neutron and gamma fluxes for some of the yield diagnostics.

  8. Outdoor 220Rn, 222Rn and terrestrial gamma radiation levels: investigation study in the thorium rich Fen Complex, Norway.

    PubMed

    Mrdakovic Popic, Jelena; Bhatt, Chhavi Raj; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    The present study was done in the Fen Complex, a Norwegian area rich in naturally occurring radionuclides, especially in thorium ((232)Th). Measurement of radioactivity levels was conducted at the decommissioned iron (Fe) and niobium (Nb) mining sites (TENORM) as well as at the undisturbed wooded sites (NORM), all open for free public access. The soil activity concentrations of (232)Th (3280-8395 Bq kg(-1)) were significantly higher than the world and the Norwegian average values and exceeded the Norwegian screening level (1000 Bq kg(-1)) for radioactive waste, while radium ((226)Ra) was present at slightly elevated levels (89-171 Bq kg(-1)). Terrestrial gamma dose rates were also elevated, ranging 2.6-4.4 μGy h(-1). Based on long-term surveys, the air concentrations of thoron ((220)Rn) and radon ((222)Rn) reached 1786 and 82 Bq m(-3), respectively. Seasonal variation in the outdoor gamma dose rates and Rn concentrations was confirmed. Correlation analyses showed a linear relationship between air radiation levels and the abundance of (232)Th in soil. The annual outdoor effective radiation doses for humans (occupancy 5 h day(-1)) were estimated to be in the range of 3.0-7.7 mSv, comparable or higher than the total average (summarized indoor and outdoor) exposure dose for the Norwegian population (2.9 mSv year(-1)). On the basis of all obtained results, this Norwegian area should be considered as enhanced natural radiation area (ENRA).

  9. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  10. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  11. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  12. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  13. Gamma radiation field intensity meter

    SciTech Connect

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  14. Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure

    PubMed Central

    Senthilkumar, B.; Dhavamani, V.; Ramkumar, S.; Philominathan, P.

    2010-01-01

    This study assesses the level of terrestrial gamma radiation and associated dose rates from the naturally occurring radionuclides 232Th, 238U and 40K in 10 soil samples collected from Thanjavur (Tamil Nadu, India) using γ-ray spectrometry. The activity profile of radionuclides has clearly showed the existence of low level activity in Thanjavur. The geometric mean activity concentrations of 232Th, 238U and 40K is 42.9±9.4 Bq.kg−1, 14.7±1.7 Bq.kg−1 and 149.5±3.1 Bq.kg−1 respectively are derived from all the soil samples studied. The activity concentration of 232Th, 238U and 40K in soil is due to the presence of metamorphic rocks like shale, hornblende-biotite gneiss and quartzofeldspathic gneiss in these areas. Gamma absorbed dose rates in air outdoors were calculated to be in the range between 32 nGy.h−1 and 59.1 nGy.h−1 with an arithmetic mean of 43.3 ±9 nGy.h−1. This value is lesser than the population weighted world-averaged of 60 nGy.h−1. Inhabitants of Thanjavur are subjected to external gamma radiation exposure (effective dose) ranging between 39.2 and 72.6 μSv.y−1 with an arithmetic mean of 53.1±11 μSv.y−1. The values of the external hazard index determined from the soil radioactivity of the study area are less than the recommended safe levels. PMID:20177570

  15. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  16. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure.

    PubMed

    Ramos Silva, Camila; Cabral, Fernanda Viana; de Camargo, Claudinei Francisco Morais; Núñez, Silvia Cristina; Mateus Yoshimura, Tania; de Lima Luna, Arthur Cássio; Maria, Durvanei Augusto; Ribeiro, Martha Simões

    2016-12-01

    Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm(-2) , 90 J cm(-2) , and 150 J cm(-2) . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4(th) day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity.

  17. Ambient gamma radiation levels (indoor and outdoor) in the villages around Jaduguda (India) using card-based CaSO₄: Dy TL dosemeters.

    PubMed

    Maharana, Mandakini; Swarnkar, M; Chougaonkar, M P; Mayya, Y S; Sengupta, D

    2011-01-01

    A systematic study of the gamma radiation levels (indoor and outdoor) in the villages surrounding the uranium-enriched regions around Jaduguda, India has been undertaken by monitoring selected dwellings in six villages. Each dwelling unit was monitored for a total duration of 1 y. The gamma radiation measurements were carried out using card-based CaSO(4): Dy thermoluminescent dosemeters. The estimated average annual gamma dose values for indoor and outdoor were 980 and 924 (µGy y(-1)), respectively, for the entire region studied. The maximum indoor and outdoor gamma doses experienced in North Dungridih and South Dungridih villages were 1305 and 1223 (µGy y(-1)), respectively. The minimum indoor and outdoor gamma dose values observed in Chatikocha village were 624 and 696 (µGy y(-1)), respectively. Seasonal variation of the indoor gamma values was not observed during the year; however, a small variation was seen with the type of building materials used for construction purposes. A statistical analysis was attempted to characterise the distribution of terrestrial gamma radiation obtained in the study area. The average quarterly indoor gamma values for spring, summer, monsoon and winter seasons as prevalent in the regions were 267±71, 262±54, 213±91, 238±66 (µGy 90 d(-1)), respectively. The annual effective doses to the local population residing in the selected dwelling units were estimated to be 0.6 and 0.1 (mSv y(-1)) for indoor and outdoor, respectively, using an occupancy factor of 0.8 and 0.2.

  18. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima.

    PubMed

    Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep

    2015-01-01

    The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.

  19. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima

    PubMed Central

    Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep

    2015-01-01

    The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves. PMID:26451896

  20. Variation in the radon concentrations and outdoor gamma radiation levels in relation to different geological formations in the thermal regions of Bursa, Turkey.

    PubMed

    Akkaya, Gizem; Kahraman, Ayşegül; Koray, Abdullah; Kaynak, Gökay

    2016-09-01

    Spring waters used as spas and their region may contain significant amounts of natural radionuclides. The main sources of exposure are the inhalation of radon and its decay products released from the water and soil and terrestrial gamma-radiation. In order to evaluate the potential risk of thermal regions in Bursa, located in the impact area of the NAF (North Anatolian Fault), radon and thoron concentrations in soil gas, radon concentrations in thermal waters and outdoor gamma radiation levels were measured in thermal regions that have different geological formations. The radon and thoron concentrations in soil-gas were found to vary from 2272  ±  121 to 245196  ±  3455 Bq m(-3) and from 999  ±  218 to 178 848  ±  17 742 Bq m(-3), respectively. The radon concentrations in thermal waters ranged from 0.99  ±  0.21 to 226.74  ±  2.51 Bq l(-1) in the rainy season and from 0.26  ±  0.10 to 178.03  ±  12.86 Bq l(-1) in the dry season. The measured outdoor gamma radiation levels varied from 38 to 180 nGy h(-1). The gamma dose rates were found to be strong positively correlating with the radon and thoron concentrations in soil-gas. The radon and outdoor gamma radiation levels were observed to be a function of the geological formations of the area.

  1. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  2. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.

    PubMed

    Srinivas, D; Ramesh Babu, V; Patra, I; Tripathi, Shailesh; Ramayya, M S; Chaturvedi, A K

    2017-02-01

    The Atomic Minerals Directorate for Exploration and Research (AMD) has conducted high-resolution airborne gamma ray spectrometer (AGRS), magnetometer and time domain electromagnetic (TDEM) surveys for uranium exploration, along the northern margins of Cuddapah Basin. The survey area includes well known uranium deposits such as Lambapur-Peddagattu, Chitrial and Koppunuru. The AGRS data collected for uranium exploration is utilised for estimating the average absorbed rates in air due to radio-elemental (potassium in %, uranium and thorium in ppm) distribution over these known deposit areas. Further, portable gamma ray spectrometer (PGRS) was used to acquire data over two nearby locations one from Lambapur deposit, and the other from known anomalous zone and subsequently average gamma dose rates were estimated. Representative in-situ rock samples were also collected from these two areas and subjected to radio-elemental concentration analysis by gamma ray spectrometer (GRS) in the laboratory and then dose rates were estimated. Analyses of these three sets of results complement one another, thereby providing a comprehensive picture of the radiation environment over these deposits. The average absorbed area wise dose rate level is estimated to be 130 ± 47 nGy h(-1) in Lambapur-Peddagattu, 186 ± 77 nGy h(-1) in Chitrial and 63 ± 22 nGy h(-1) in Koppunuru. The obtained average dose levels are found to be higher than the world average value of 54 nGy h(-1). The gamma absorbed dose rates in nGy h(-1) were converted to annual effective dose rates in mSv y(-1) as proposed by the United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). The annual average effective dose rates for the entire surveyed area is 0.12 mSv y(-1), which is much lower than the recommended limit of 1 mSv y(-1) by International Commission on Radiation protection (ICRP). It may be ascertained here that the present study establishes a reference data set (baseline) in these

  3. Evaluation of gamma radiation levels for reducing pathogenic bacteria and fungi in animal sewage and laboratory effluents.

    PubMed Central

    Garcia, M M; Brooks, B W; Stewart, R B; Dion, W; Trudel, J R; Ouwerkerk, T

    1987-01-01

    Sewage samples collected from animal wastes and from effluents at an animal disease laboratory were inoculated with known numbers of pathogenic organisms and subjected to various doses of gamma radiation from a 60Co source. Surviving test organisms were quantitatively determined by selective and enrichment techniques. The experiment was modeled as a quantal assay in which probit analysis was applied to obtain D10 values. The D10 value represents the irradiating dose required to reduce the population by 90%. The D10 value ranged from 13.4 krad for Campylobacter fetus to 156.6 krad for Streptococcus faecalis in animal sewage. However, the D10 value for the laboratory effluent was generally lower. Based on the estimated D10 values, the rating of the test organisms in decreasing order of radiosensitivity appeared as follows: Brucella abortus, Campylobacter fetus subsp. fetus, Campylobacter jejuni, Campylobacter coli, Campylobacter laridis, Mycobacterium fortuitum, Aspergillus fumigatus, Salmonella muenster, Candida albicans, Clostridium difficile and Streptococcus faecalis. If the D5 and D1 values were utilized, this listing would be only slightly altered. PMID:3651881

  4. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  5. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  6. Measurement of background gamma radiation in the northern Marshall Islands.

    PubMed

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  7. Measurement of background gamma radiation in the northern Marshall Islands

    PubMed Central

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of 137Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <<0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered. PMID:27274073

  8. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  9. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  10. Designing Equipment for Use in Gamma Radiation Environments

    SciTech Connect

    Vandergriff, K.U.

    1990-01-01

    High levels of gamma radiation are known to cause degradation in a variety of materials and components. When designing systems to operate in a high radiation environment, special precautions and procedures should be followed. This report (1) outlines steps that should be followed in designing equipment and (2) explains the general effects of radiation on various engineering materials and components. Much information exists in the literature on radiation effects upon materials. However, very little information is available to give the designer a step-by-step process for designing systems that will be subject to high levels of gamma radiation, such as those found in a nuclear fuel reprocessing facility. In this report, many radiation effect references are relied upon to aid in the design of components and systems.

  11. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  12. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  13. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  14. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  15. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines...

  16. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  17. Gamma -radiations connected to atmospheric precipitations

    NASA Astrophysics Data System (ADS)

    Vashenyuk, Eduard; Balabin, Yury; Gvozdevsky, Boris; Germanenko, Alexey

    Since 2008 we are monitoring the gamma -radiation in surface layer of atmosphere with scin-tillation gamma -spectrometers. Instruments consist of a crystal NaI (Tl), a photomultiplier and a pulse amplifier. The data are transmitted to a computer with a special card with the 4096 channel pulse-amplitude analyzer. The gamma-ray monitoring is presently carried out at two high-latitude points: Apatity (N 65.57, E 33.39) and Barentsburg, Spitsbergen(N 78.06, E 14.22). The detectors in Apatity and Barentsburg are covered from sides and bottom by metallic screen for shielding them from environmental radiations from a building and ground. Together with gamma-spectrometer in Apatity a precipitation measuring device (PMD) was installed, which allows us to estimate presence and intensity of precipitations. Information about precipitations in Barentsburg was taken from the local meteorological observatory. The observations have shown that sporadic increases of gamma -radiation registered by spectrome-ters are almost always accompanied by intensive precipitations (rain, snowfall). The measured spectrum of gamma -radiation was rather smooth and did not show peaks in a range from 1 up to 200 KeV. Two basic hypotheses of an origin of high-energy photons during precipitations are discussed. The first is probable connection with atmospheric radionuclides, which are at-tached to aerosols and are taken out from the atmosphere by precipitations (rain and snow). Against this hypothesis speaks lack of peaks on gamma-ray spectrum. The gamma-spectrum from radionuclides usually has characteristic and expressed spectral lines. The second probable cause is x-ray radiation arising at deceleration in air of free electrons, accelerated in an electric field between clouds and ground. All cases of precipitations are accompanied by dense cloudi-ness and strengthening of an atmospheric electric field. The arguments for this mechanism are resulted.

  18. Gamma and neutrino radiation dose from gamma ray bursts and nearby supernovae.

    PubMed

    Karam, P Andrew

    2002-04-01

    Supernovae and gamma ray bursts are exceptionally powerful cosmic events that occur randomly in space and time in our galaxy. Their potential to produce very high radiation levels has been discussed, along with speculation that they may have caused mass extinctions noted from the fossil record. It is far more likely that they have produced radiation levels that, while not lethal, are genetically significant, and these events may have influenced the course of evolution and the manner in which organisms respond to radiation insult. Finally, intense gamma radiation exposure from these events may influence the ability of living organisms to travel through space. Calculations presented in this paper suggest that supernovae and gamma ray bursts are likely to produce sea-level radiation exposures of about I Gy with a mean interval of about five million years and sea-level radiation exposures of about 0.2 Gy every million years. Comets and meteors traveling through space would receive doses in excess of 10 Gy at a depth of 0.02 m at mean intervals of 4 and 156 million years, respectively. This may place some constraints on the ability of life to travel through space either between planets or between planetary systems. Calculations of radiation dose from neutrino radiation are presented and indicate that this is not a significant source of radiation exposure for even extremely close events for the expected neutrino spectrum from these events.

  19. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  20. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1988-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  1. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  2. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  3. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  4. Inspection of cargo containers using gamma radiation

    NASA Astrophysics Data System (ADS)

    Hussein, Esam M. A.; Gokhale, Prasad; Arendtsz, Nina V.; Lawrence, Andre H.

    1997-02-01

    This paper investigate, with the aid of Monte Carlo simulations and laboratory experiments, a technique for the detection of narcotics in large cargo containers using gamma-radiation. The transmission and back-scattering of photons, at different energies, is used to provide information useful for identifying the presence of bulk quantities of commonly encountered narcotics.

  5. Gamma Radiation Tolerance of Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy

    2011-10-01

    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  6. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, Kenneth J.

    1994-01-01

    A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

  7. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, K.J.

    1994-08-09

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  8. AP-PCR assay of DNA alterations in the progeny of male mice exposed to low-level gamma-radiation.

    PubMed

    Vasil'eva, G V; Bezlepkin, V G; Lomaeva, M G; Sirota, N P; Gaziev, A I

    2001-03-07

    By comparative analysis of fingerprints of arbitrarily primed polymerase chain reaction (AP-PCR) products, DNA alterations in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-doses of gamma-radiation was investigated. Male BALB/c mice exposed to 10-50 cGy were mated with unirradiated females 15 days after irradiation. DNA was isolated from biopsies taken from tail tips of 2-month-old progeny. Preliminary AP-PCRs were carried out with 17 primers representing core sequences of micro- and/or minisatellites or their flanking oligonucleotides. Best quantitatively reproduced AP-PCR fingerprints of genomic DNA were obtained with one of these primers, a 20-mer oligonucleotide flanking the micro-satellite locus Atplb2 on mouse chromosome 11. Comparative analysis of individual fingerprints of AP-PCR products obtained on DNA templates from the progeny of irradiated and intact males revealed an increased variability of micro-satellite-associated sequences and an increased frequency of "non-parental bands" in DNA-fingerprints from the progeny of males chronically exposed to gamma-radiation 15 days before mating (at the postmeiotic stage of spermatogenesis). The results show that increased micro-satellite instability can be initiated by irradiation of the male parent to subsequently arise or be transmitted to the soma of the F1 generations.

  9. SSPM Scintillator Readout for Gamma Radiation Detection

    SciTech Connect

    Baker, S A; Wendelberger, B; Young, J A; Green, J A; Guise, R E; Franks, L; Staples, C

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube–based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT’s sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  10. SSPM scintillator readout for gamma radiation detection

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Stapels, Christopher; Green, J. Andrew; Guise, Ronald E.; Young, Jason A.; Franks, Larry; Stokes, Britany; Wendelberger, Elizabeth

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube-based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT's sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  11. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  12. Radiative Strength Functions and Level Densities

    SciTech Connect

    Schiller, A; Becker, J A; Bernstein, L A; Voinov, A; Guttormsen, M; Hjorth-Jensen, M; Rekstad, J; Siem, S; Mitchell, G E; Tavukcu, E

    2002-08-28

    Radiative strength functions and level densities have been extracted from primary {gamma}-ray spectra for {sup 27,28}Si, {sup 56,57}Fe, {sup 96,97}Mo, and several rare earth nuclei. An unexpectedly strong ({approx} 1 mb MeV) resonance at 3 MeV in the radiative strength function has been observed for well-deformed rare earth nuclei. The physical origin of this resonance and its connection to the scissors mode is discussed.

  13. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  14. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  15. Gamma radiation resistance of spin Seebeck devices

    NASA Astrophysics Data System (ADS)

    Yagmur, A.; Uchida, K.; Ihara, K.; Ioka, I.; Kikkawa, T.; Ono, M.; Endo, J.; Kashiwagi, K.; Nakashima, T.; Kirihara, A.; Ishida, M.; Saitoh, E.

    2016-12-01

    Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma (γ) rays with the total dose of around 3 × 105 Gy in order to investigate the γ-radiation resistance of the devices. To demonstrate this, Pt/Ni0.2Zn0.3Fe2.5O4/Glass and Pt/Bi0.1Y2.9Fe5O12/Gd3Ga5O12 SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the γ-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

  16. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  17. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  18. Long period grating response to gamma radiation

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Stǎncalie, Andrei; Neguţ, Daniel; Delepine-Lesoille, Sylvie; Lablonde, Laurent

    2016-04-01

    We report the evaluation of one long period grating (LPG) and one fiber Bragg grating (FBG) under gamma irradiation. The LPG was produced by the melting-drawing method based on CO2 laser assisted by a micro-flame and was engraved in a commercial single mode fiber SMF28 from Corning, grating length 25 mm, grating pitch of 720 μm. After the manufacturing of the grating, the fiber was re-coated with Acrylate and the grating was inserted into special ceramic case transparent to gamma radiation. The FBG is commercialized by Technica SA, and it is written in SMF-28 optical fiber (λ= 1546 nm; grating length of 12 mm; reflectivity > 80 %; bandwidth - BW @3 dB < 0.3 nm; side lobe suppress ratio - SLSR >15 dB; Acrylate recoating). By on-line monitoring of the LPG wavelength deep with an optical fiber interrogator during the irradiation exposure and pauses, both the irradiation induced shift (maximum 1.45 nm) and the recovery (in the range of 200 pm) phenomena were observed. Temperature sensitivity of the LPS was not affected by gamma irradiation.

  19. High Dose Gamma Radiation Selectively Reduces GABAA-slow Inhibition

    PubMed Central

    Dagne, Beza A; Sunay, Melis K; Cayla, Noëlie S; Ouyang, Yi-Bing; Knox, Susan J; Giffard, Rona G; Adler, John R.

    2017-01-01

    Studies on the effects of gamma radiation on brain tissue have produced markedly differing results, ranging from little effect to major pathology, following irradiation. The present study used control-matched animals to compare effects on a well characterized brain region following gamma irradiation. Male Sprague-Dawley rats were exposed to 60 Gy of whole brain gamma radiation and, after 24-hours, 48-hours, and one-week periods, hippocampal brain slices were isolated and measured for anatomical and physiological differences. There were no major changes observed in tissue appearance or evoked synaptic responses at any post-irradiation time point. However, exposure to 60 Gy of irradiation resulted in a small, but statistically significant (14% change; ANOVA p < 0.005; n = 9) reduction in synaptic inhibition seen at 100 ms, indicating a selective depression of the gamma-aminobutyric acid (GABAA) slow form of inhibition. Population spike (PS) amplitudes also transiently declined by ~ 10% (p < 0.005; n = 9) when comparing the 24-hour group to sham group. Effects on PS amplitude recovered to baseline 48 hour and one week later. There were no obvious negative pathological effects; however, a subtle depression in circuit level inhibition was observed and provides evidence for ‘radiomodulation’ of brain circuits.

  20. Effects of gamma-Radiation on Select Lipids and Antioxidants

    NASA Technical Reports Server (NTRS)

    Gandolph, Jacob; Mauer, Lisa; Perchonok, Michele

    2006-01-01

    Radiation encountered on an extended duration space mission (estimates of 3 Sieverts for a mission to Mars) poses a threat not only to human health, but also to the quality, nutritional value, and palatability of the food system. Free radicals generated by radiation interaction with foods may initiate many unwanted reactions including: 1) autoxidation in lipids that alters flavor, odor, and concentrations of essential fatty acids, and 2) depletion of antioxidants food products and dietary supplements. Studies have shown that antioxidants may provide long term health protection from oxidative stress caused by radiation exposure; therefore, consumption of antioxidants will be important. Stability of essential fatty acids is also important for astronauts long-term health status. The objectives of this study were to characterize the effects of low dose gamma-radiation on lipids and antioxidants by monitoring oxidation and reducing power, respectively, in model systems. Select oils and antioxidants were exposed to levels of gamma-radiation ranging from 0 to 1000 Gy (1 Gy = 1 Sv) using a Gammacell 220 and stored at ambient or elevated temperatures (65 C) for up to 3 months prior to analysis. A Fricke dosimeter was used to verify differences between the radiation doses administered. Primary and secondary products of lipid oxidation in soybean and peanut oils were monitored using conjugated diene and 2-thiobarbituric acid (TBARs) assays. Changes in fatty acid composition and formation and vitamin E levels were also measured. The reducing power of antioxidant compounds, including vitamins C and E and beta-carotene, was determined using the ferric reducing antioxidant power (FRAP) assay. Significant differences (alpha =0.05) were present between all radiation doses tested using the Fricke dosimeter. Increasing radiation doses above 3 Sv resulted in significantly (alpha =0.05) elevated levels of oxidation and free fatty acids in soybean and peanut oils. Decreases in

  1. Gamma radiation shielding analysis of lead-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A S; Singh, Gurmel

    2014-11-04

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content - 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662keV, 1173keV and 1332keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes.

  2. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  3. On the omnipresent background gamma radiation of the continuous spectrum

    NASA Astrophysics Data System (ADS)

    Banjanac, R.; Maletić, D.; Joković, D.; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.

  4. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

  5. Orchid flowers tolerance to gamma-radiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Olivia Kimiko

    2000-03-01

    Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.

  6. Carbohydrate based materials for gamma radiation shielding

    NASA Astrophysics Data System (ADS)

    Tabbakh, F.; Babaee, V.; Naghsh-Nezhad, Z.

    2015-05-01

    Due to the limitation in using lead as a shielding material for its toxic properties and limitation in abundance, price or non-flexibility of other commonly used materials, finding new shielding materials and compounds is strongly required. In this conceptual study carbohydrate based compounds were considered as new shielding materials. The simulation of radiation attenuation is performed using MCNP and Geant4 with a good agreement in the results. It is found that, the thickness of 2 mm of the proposed compound may reduce up to 5% and 50% of 1 MeV and 35 keV gamma-rays respectively in comparison with 15% and 100% for the same thickness of lead.

  7. Satellite observation of atmospheric nuclear gamma radiation.

    PubMed

    Letaw, J R; Share, G H; Kinzer, R L; Silberberg, R; Chupp, E L; Forrest, D J; Rieger, E

    1989-02-01

    We present a satellite observation of the spectrum of gamma radiation from the Earth's atmosphere in the energy interval from 300 keV to 8.5 MeV. The data were accumulated by the gamma ray spectrometer on the Solar Maximum Mission over 3 1/2 years, from 1980 to 1983. The excellent statistical accuracy of the data allows 20 atmospheric line features to be identified. The features are superimposed on a continuum background which is modeled using a power law with index -1.16. Many of these features contain a blend of more than one nuclear line. All of these lines (with the exception of the 511-keV annihilation line) are Doppler broadened. Line energies and intensities are consistent with production by secondary neutrons interacting with atmospheric 14N and 16O. Although we find no evidence for other production mechanisms, we cannot rule out significant contributions from direct excitation or spallation by primary cosmic ray protons. The relative intensities of the observed line features are in fair agreement with theoretical models; however, existing models are limited by the availability of neutron cross sections, especially at high energies. The intensity and spectrum of photons at energies below the 511-keV line, in excess of a power law continuum, can be explained by Compton scattering of the annihilation line photons in traversing an average of approximately 21 g cm-2 of atmosphere.

  8. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  9. Gamma radiation effects on siloxane-based additive manufactured structures

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  10. Environmental gamma radiation measurement in district Swat, Pakistan.

    PubMed

    Jabbar, T; Khan, K; Subhani, M S; Akhter, P; Jabbar, A

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from (226)Ra, (232)Th, (40)K and (137)Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for (226)Ra, (232)Th and (40)K were found to be 50.4 +/- 0.7, 34.8 +/- 0.7 and 434.5 +/- 7.4 Bq kg(-1), respectively, in soil samples, which are slightly more than the world average values. However, (137)Cs was only found in the soil sample of Barikot with an activity concentration of 34 +/- 1.2 Bq kg(-1). Only (40)K was determined in vegetation samples with an average activity of 172.2 +/- 1.7 Bq kg(-1), whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg(-1)). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h(-1), which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude.

  11. Inactivation of rabies diagnostic reagents by gamma radiation

    SciTech Connect

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  12. Radiative Striped Wind Model for Gamma-Ray Busrts

    NASA Astrophysics Data System (ADS)

    Bégué, D. P.; Pe'er, A.; Lyubarski, Y.

    2016-10-01

    I will show how the inclusion of radiation in the striped wind model changes the dynamics and the radial evolution of the hydrodynamical parameters. I will conclude by discussing the implications for gamma-ray bursts.

  13. An integrated view of gamma radiation effects on marine fauna: from molecules to ecosystems.

    PubMed

    Won, Eun-Ji; Dahms, Hans-U; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-11-01

    Accidental release of nuclides into the ocean is causing health risks to marine organisms and humans. All life forms are susceptible to gamma radiation with a high variation, depending on various physical factors such as dose, mode, and time of exposure and various biological factors such as species, vitality, age, and gender. Differences in sensitivity of gamma radiation are also associated with different efficiencies of mechanisms related to protection and repair systems. Gamma radiation may also affect various other integration levels: from gene, protein, cells and organs, population, and communities, disturbing the energy flow of food webs that will ultimately affect the structure and functioning of ecosystems. Depending on exposure levels, gamma radiation induces damages on growth and reproduction in various organisms such as zooplankton, benthos, and fish in aquatic ecosystems. In this paper, harmful effects of gamma-irradiated aquatic organisms are described and the potential of marine copepods in assessing the risk of gamma radiation is discussed with respect to physiological adverse effects that even affect the ecosystem level.

  14. Inhaled /sup 147/Pm and/or total-body gamma radiation: Early mortality and morbidity in rats

    SciTech Connect

    Filipy, R.E.; Lauhala, K.E.; McGee, D.R.; Cannon, W.C.; Buschbom, R.L.; Decker, J.R.; Kuffel, E.G.; Park, J.F.; Ragan, H.A.; Yaniv, S.S.; Scott, B.R.

    1989-05-01

    Rats were given doses of /sup 60/Co gamma radiation and/or lung burdens of /sup 147/Pm (in fused aluminosilicate particles) within lethal ranges in an experiment to determine and compare morbidity and mortality responses for the radiation insults within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Acute mortality and morbidity from inhaled promethium were caused primarily by radiation pneumonitis and pulmonary fibrosis that occurred more than 53 days after exposure. Acute mortality and morbidity from total-body gamma irradiation occurred within 30 days of exposure and resulted from the bone-marrow radiation syndrome. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell levels and by reduced body weight gain in animals that survived the acute gamma radiation syndrome. Inhaled promethium caused a loss of body weight and diminished pulmonary function, but its only effect on blood cell levels was lymphocytopenia. Combined gamma irradiation and promethium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Promethium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the later effect of promethium lung burdens. 70 refs., 68 figs., 21 tabs.

  15. Shielding for beta-gamma radiation.

    PubMed

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  16. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  17. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  18. Development of a novel gamma probe for detecting radiation direction

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  19. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  20. Gamma-ray laser based on storage level as the lasing level

    NASA Astrophysics Data System (ADS)

    S'heeren, G.; van den Bergh, M.; Coussement, R.; Enzweiler, R. N.; Harris, R.; Wu, Y.; Boolchand, P.; Taylor, R. D.; Cyamukungu, M.; Lehmann, J.

    The possibility of using the isomeric level as the storage and lasing level in a gamma-ray laser is investigated. Experiments on Ag-109 and B-12 are used to illustrate the effect of homogeneous broadening on the coupling to the radiation field and the enhancement of relaxation under the influence of a 'resonant' magnetic field. An analysis is presented which shows the essential role of relaxation. The experimental results show the possibility of tuning relaxation times.

  1. Gamma radiation induced resistivity changes in Iron

    NASA Astrophysics Data System (ADS)

    Tundwal, Ambika; Kumar, V.; Datta, A.

    2017-03-01

    Monte Carlo Code JA-IPU is used for estimation of Frenkel pairs and their effect on change of resistivity of Iron on irradiation by gamma spectrum of Co60. The Code includes three cascade processes of incident gamma, produced electrons and recoiled atoms and simulation of the lattice structure of the target material. Change in experimentally measured resistivity of Iron is found to vary with number of Frenkel pairs as (x - 1) ln N d .

  2. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    NASA Astrophysics Data System (ADS)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  3. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    SciTech Connect

    Osterhuber, R.; Fehrke, F.; Condreva, K.

    1998-05-01

    Incoming, background cosmic radiation constantly fluxes through the earth`s atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters` worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location.

  4. Reusable shielding material for neutron- and gamma-radiation

    NASA Astrophysics Data System (ADS)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  5. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.

    PubMed

    Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

    2010-01-01

    Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p < .05) in serum and testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats.

  6. Effect of gamma radiation on honey quality control

    NASA Astrophysics Data System (ADS)

    Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

    2009-07-01

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  7. Monitoring precipitation and lightning via changes in atmospheric gamma radiation

    SciTech Connect

    Greenfield, M.B.; Domondon, A.; Tsuchiya, S.; Tomiyama, G.

    2003-08-26

    Atmospheric {gamma}-radiation has been measured since 1999 and recently at three elevations 220m from the first site to ascertain position dependency and optimal elevation for observing {gamma}-rays from radon and radon-progeny found in precipitation. Radiation from time-independent and diurnal components was minimized in order to ascertain the reliability, accuracy and practicality of determining precipitation rates from correlated {gamma}-rates. Data taken with 4-12.9cm3 NaI detectors at elevations above ground of 9.91, 14.2, 15.7, and 21.4 m were fit with a model assuming a surface and/or volume deposition of radon progeny on/in water droplets during precipitation which predicts {gamma} -ray rates proportional to the 2/5 and/or 3/5 power of rain rates, respectively. With mostly surface deposition and age corrections for radon progeny, the correlation coefficients improved with elevation and reached a maximum at 0.95 around 20m. Atmospheric {gamma} radiation enables monitoring precipitation rates to 0.3 mm/h with time resolution limited only by counting statistics. High {gamma}-ray rates, decreasing with 40-minute half-life following lightning may be indirectly due to ions accelerated in electric field.

  8. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view.

  9. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  10. Gamma radiation transmission along the multibend mazes.

    PubMed

    Kim, Sangrok

    2016-08-01

    Installing a maze on the corridor reduces much shielding materials in shielding door at the end of the pathway. In this study, gamma transmission was measured along single-, double-, and triple-bend mazes, which were applied to nondestructive test workplace by Monte Carlo method. In the facility using (192)Ir 1.85TBq, the lengths of corridors to reduce the effective dose under the limitation without shielding door were 10 and 6m in double- and triple-bend mazes, respectively.

  11. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  12. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  13. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    SciTech Connect

    Patel, U.D.; Govindarajan, P.; Dave, P.J. )

    1989-02-01

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  14. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  15. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N. D.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

    1998-01-01

    The telescopes on the Compton Gamma Ray Observatory (CCRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  16. Gamma Radiation from PSR B1055-52

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

    1999-01-01

    The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

  17. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  18. Carbon Nanotubes Synthesis Through Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  19. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms.

    PubMed

    Chacko, Tiju; Menon, Aditya; Majeed, Teeju; Nair, Sivaprabha V; John, Nithu Sara; Nair, Cherupally Krishnan Krishnan

    2016-11-17

    Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.

  20. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population

    PubMed Central

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D.

    2010-01-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238U, 232Th, and 40K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238U, 232Th, and 40K in the surface soil were 53.8, 44.2 and 464.2 Bq kg−1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values. PMID:21170189

  1. Bioburden assessment and gamma radiation inactivation patterns in parchment documents

    NASA Astrophysics Data System (ADS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; Carolino, Maria Manuela; Portugal, António; Botelho, Maria Luísa

    2013-07-01

    Parchment documents are part of our cultural heritage and, as historical artifacts that they are, should be preserved. The aim of this study was to validate an appropriate methodology to characterize the bioburden of parchment documents, and to assess the growth and gamma radiation inactivation patterns of the microbiota present in that material. Another goal was to estimate the minimum gamma radiation dose (Dmin) to be applied for the decontamination of parchment as an alternative treatment to the current toxic chemical and non-chemical decontamination methods. Two bioburden assessment methodologies were evaluated: the Swab Method (SM) and the Destructive Method (DM). The recovery efficiency of each method was estimated by artificial contamination, using a Cladosporium cladosporioides spore suspension. The parchment samples' microbiota was typified using morphological methods and the fungal isolates were identified by ITS-DNA sequencing. The inactivation pattern was assessed using the DM after exposure to different gamma radiation doses, and using C. cladosporioides as reference. Based on the applied methodology, parchment samples presented bioburden values lower than 5×103 CFU/cm2 for total microbiota, and lower than 10 CFU/cm2 for fungal propagules. The results suggest no evident inactivation trend for the natural parchment microbiota, especially regarding the fungal community. A minimum gamma radiation dose (Dmin) of 5 kGy is proposed for the decontamination treatment of parchment. Determining the minimal decontamination dose in parchment is essential for a correct application of gamma radiation as an alternative decontamination treatment for this type of documents avoiding the toxicity and the degradation promoted by the traditional chemical and non-chemical treatments.

  2. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation.

    PubMed

    Saxena, Sudhanshu; Panicker, Lata; Gautam, Satyendra

    2014-01-01

    Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5-40°C) and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5-15 kGy) on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (T g ) of these honey analyzed by differential scanning calorimetry varied from -44.1 to -54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  3. New decay branches of the radiative capture reaction {sup 12}C({sup 16}O,{gamma}){sup 28}Si

    SciTech Connect

    Lebhertz, D.; Courtin, S.; Haas, F.; Salsac, M.-D.; Beck, C.; Michalon, A.; Rousseau, M.; Marley, P. L.; Glover, R. G.; Kent, P. E.; Hutcheon, D. A.; Davis, C.; Pearson, J. E.

    2009-01-28

    Resonances in the {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture process at energies around the Coulomb barrier have been probed using the very selective 0 deg. Dragon spectrometer at Triumf and its associated BGO {gamma}-array. For the first time the full level scheme involved in this process has been measured and shows previously unobserved {gamma}-decay to doorway states around 11 MeV in {sup 28}Si.

  4. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  5. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  6. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  7. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  8. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.

    1983-10-01

    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  9. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  10. Oxidation of naringenin by gamma-radiation

    NASA Astrophysics Data System (ADS)

    Nagy, Tristan O.; Ledolter, Karin; Solar, Sonja

    2008-06-01

    The reaction of rad OH with naringenin (4',5,7-trihydroxyflavanone) in the presence of air induced the formation of the hydroxylation product eriodictyol (3',4',5,7-tetrahydroxyflavanone). Its yield was dependent on pH. The initial degradation yield of naringenin was Gi(-Nar)=(2.5±0.2)×10 -7 mol dm -3 J -1. For the reaction with rad OH, a rate constant k ( rad OH+naringenin)=(7.2±0.7)×10 9 M -1 s -1 was determined. In the presence of N 2O and NaN 3/N 2O, no eriodyctiol was formed. Apigenin (4',5,7-trihydroxyflavon) was detected as decay product of the naringenin phenoxyl radicals. In Ar-saturated solutions, naringenin exhibited a pronounced radiation resistance, G(-naringenin) ˜0.3×10 -7 mol dm -3 J -1.

  11. Effects of gamma radiation on snake venoms

    NASA Astrophysics Data System (ADS)

    Nascimento, N.; Spencer, P. J.; Andrade, H. F.; Guarnieri, M. C.; Rogero, J. R.

    1998-06-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. Inn order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, susbequentely submitted to irradiaiton. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD 50 in mice. Native and irradiated crotoxin biodistribution ocured in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain).

  12. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Casimiro, M. H.; Oliveira, C.; Cabeço Silva, M. E.; Marques Abreu, M. J.; Coelho, A.

    2002-05-01

    The large number of surgical operations with post-operative infection problems and the appearing of new infectious diseases, contribute to the development of new materials in order to answer the needs of health care services. This development must take into account the modifications promoted by sterilisation methods in materials, namely by gamma radiation. The differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques show that a nonwoven and a laminate textiles maintain a good molecular cohesion, do not showing high levels of degradation, for gamma radiation dose values lower than 100 kGy in nonwoven and 200 kGy in laminate materials. The tensile strength and the elongation decrease slowly for the nonwoven textile and decrease faster for the laminate textile for 25 and 80 kGy absorbed dose. This paper shows that the DSC and TGA techniques can be helpful for the prevision of mechanical changes occurred in the materials as a consequence of the gamma irradiation.

  13. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  14. Characterization of muon and gamma radiations at the PTOLEMY site

    NASA Astrophysics Data System (ADS)

    Betts, Susannah; Gentile, Charles; Tully, Chris; Zapata, Sandra; Chris Tully Collaboration

    2013-10-01

    PTOLEMY is an experimental project at Princeton Plasma Physics Laboratory designed to determine the present day number density of relic neutrinos through measurement of electrons produced from neutrino capture on tritium. The weak interaction cross section for relic neutrino interactions necessitates high sensitivity measurements that could be influenced by high energy particles, like muons and gamma ray photons, which induce nuclear transitions and secondary electrons. Muons produced from the collision of cosmic rays with atmospheric nuclei are a significant source of background radiation at and below Earth's surface. The muon flux is measured by the coincidence of minimum ionization radiation loss in two plastic scintillator paddles. The spectrum of gamma ray photons is measured using sodium iodide based scintillators. These measurements will provide a characterization of the background and rates at the PTOLEMY site.

  15. Titanium-Water Thermosyphon Gamma Radiation Effects and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  16. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  17. Modeling the radiation doses from terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph; Liu, Ningyu; Rassoul, Hamid

    2013-04-01

    Terrestrial gamma-ray flashes (TGFs) are intense bursts of gamma-rays that originate from thunderclouds, from altitudes that commercial aircraft fly. Based upon the fluence of gamma-rays measured by the RHESSI spacecraft, Dwyer et al. [2010] inferred radiation doses to individuals inside aircraft in the 0.001 - 0.1 Sv range, depending upon the assumed size of the TGF source region. The largest doses occur when an aircraft is directly struck by the energetic electron beam that produces the TGF. The relativistic feedback discharge model is a self-consistent model that includes the generation of runaway electrons via the positron and x-ray feedback mechanisms and the electric field changes due to the resulting ionization and low-energy electron and ion currents. This model has successfully explained many properties of TGFs, including the gamma-ray intensities, durations, multi-pulsed structures as well as discharge currents and radio emissions. In this presentation we discuss new radiation dose calculations based upon the relativistic feedback discharge model and compare these calculations to previous work.

  18. The Gamma-ray galactic diffuse radiation and Cerenkov telescopes

    SciTech Connect

    Chardonnet, P. |; Salati, P. ||; Silk, J.; Grenier, I.; Smoot, G.

    1995-12-01

    By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

  19. Gamma radiation effects on Sporothrix schenckii yeast cells.

    PubMed

    Lacerda, Camila Maria de Souza; Martins, Estefânia Mara do Nascimento; de Resende, Maria Aparecida; de Andrade, Antero Silva Ribeiro

    2011-06-01

    Sporotrichosis is a subcutaneous mycosis caused by Sporothrix schenckii. Zoonotic transmission to man can occur after scratches or bites of animals, mainly cats. In this study, the gamma radiation effects on yeast of S. schenckii were analyzed with a view of developing a radioattenuated vaccine for veterinary use. The cultures were irradiated at doses ranging from 1.0 to 9.0 kGy. The reproductive capacity was measured by the ability of cells to form colonies. No colonies could be recovered above 8.0 kGy, using inocula up to 10(7) cells. Nevertheless, yeast cells irradiated with 7.0 kGy already were unable to produce infection in immunosuppressed mice. Evaluation by the FungaLight™ Kit (Invitrogen) indicated that yeast cells remained viable up to 9.0 kGy. At 7.0 kGy, protein synthesis, estimated by the incorporation of [L-(35)S] methionine, continues at levels slightly lower than the controls, but a significant decrease was observed at 9.0 kGy. The DNA of 7.0 kGy irradiated cells, analyzed by electrophoresis in agarose gel, was degraded. Cytoplasmic vacuolation was the main change verified in these cells by transmission electron microscopy. The dose of 7.0 kGy was considered satisfactory for yeast attenuation since irradiated cells were unable to produce infection but retained viability, metabolic activity, and morphology.

  20. Lung cancer in relation to airborne radiation levels

    SciTech Connect

    Helsing, K.J.; Natta, P.V.; Comstock, G.W. ); Kalin, Heidi ) Chee, E. )

    1992-01-01

    A 1986 aeroradiometric survey of the eastern two-thirds of Washington County, Maryland provided and opportunity to study lung cancers in relation to gamma radiation levels. In the first approach, lung cancer deaths between 1963 and 1975 in four areas of the county categorized as low, moderately low, moderately high, and high showed relative risks of 1.00, 0.93, 1.01, and 1.43, respectively, after adjustment of sex, age, and smoking. A second approach used lung cancer cases diagnosed between 1975 and 1989, controls matched to cases by race, sex, and age, and aerometric radiation readings above the individual residences. In four levels of increasing gamma radiation, odds ratios adjusted for smoking were 1.00, 0.84, 0.90, and 0.92, respectively. No differences were statistically significant.

  1. Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation

  2. Effects of gamma radiation on perfluorinated polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Mihai, Laura; Sporea, Dan; Neguţ, Daniel; Sturm, Heinz; Schukar, Marcus; Krebber, Katerina

    2016-08-01

    The paper presents the first complex study of gamma radiation effects on a low-loss perfluorinated polymer optical fiber (PF-POF) based on Cytop® polymer. Influence of gamma radiation on fiber's optical, mechanical and climatic performance is investigated. The radiation-induced attenuation (RIA) in the visible and near-infrared region (0.4 μm-1.7 μm) is measured and its origins are discussed. Besides attenuation increase, radiation is also shown to decrease the thermal degradation stability of the fiber and to increase its susceptibility to water. With regard to complex fiber transmission performance upon irradiation, the optimal operation wavelength region of PF-POF-based systems intended for use in radiation environments is determined to be around 1.1 μm. On the other hand, the investigated fiber holds potential for low-cost RIA-based optical fiber dosimetry applications with sensitivity as high as 260 dBm-1/kGy in the visible region.

  3. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  4. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi

    PubMed Central

    Hygum, Thomas L.; Andersen, Kasper N.; Clausen, Lykke K. B.; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance. PMID:27997621

  5. The effect of low doses of gamma radiation on the electrophysical properties of mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Bilenko, D. I.; Galushka, V. V.; Zharkova, E. A.; Sidorov, V. I.; Terin, D. V.; Khasina, E. I.

    2017-02-01

    The effect of low exposure doses (5-40 kR) of gamma radiation on the electrical properties of structures based on a mesoporous silicon (SiMP) layer is investigated. It is demonstrated that the conductivity of the SiMP layer increases, the Fermi level shifts, and the trap density changes in gamma-irradiated Al/SiMP/ p-Si/Al structures. Long-term stable switched-state memory in the region of the I-V curve hysteresis is revealed. This effect is controlled by the irradiation dose.

  6. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  7. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  8. The origin of the diffuse background gamma-radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

  9. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  10. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  11. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  12. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  13. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  14. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    SciTech Connect

    Daly, Michael J.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Zhai, M; Venkateswaran, Amudhan; Hess, M; Omelchenko, M V.; Kostandarithes, Heather M.; Makarova, S; Wackett, L. P.; Fredrickson, Jim K.; Ghosal, D

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  15. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  16. Predictions of induced background radiations at gamma/X-ray experiment envelopes in NASA spacecraft

    NASA Technical Reports Server (NTRS)

    Fischbein, W. L.; Debiak, T.; Rossi, M.; Stauber, M.; Suh, P.

    1979-01-01

    This work seeks to predict secondary radiation levels induced in spacecraft structures by space protons. The radiations analyzed are secondary neutrons from spallation and evaporation reactions and gamma and beta rays from the decay of induced radioactivity, as sources of interfering background to spaceborne measurements of galactic and planetary gamma rays below 10 MeV. The spacecraft considered are the Multi-Mission Spacecraft (MMS) and the Space Shuttle, modeled as spherical shells. The proton environment is that of the South Atlantic Anomaly, as well as cosmic ray protons. The induced radioactivity is analyzed in terms of its interference with various gamma-ray lines of astrophysical interest, as well as its contribution to several spectral regions of the gamma-ray continuum. The buildup of the line and continuum radioactivity background is predicted for a period of nearly 9 months in orbit (approximately 4100 orbits). In addition, background contributions from cosmic ray electron bremsstrahlung and earth gamma-ray albedo are estimated.

  17. Improvement of PVC floor tiles by gamma radiation

    NASA Astrophysics Data System (ADS)

    du Plessis, T. A.; Badenhorst, F.

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. The crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles.

  18. Shelf life of ground beef patties treated by gamma radiation.

    PubMed

    Roberts, W T; Weese, J O

    1998-10-01

    The effects of irradiation on microbial populations in ground beef patties vacuum package and irradiated frozen at target doses of 0.0, 1.0, 3.0, 5.0, and 7.0 kGy were determined. Irradiated samples were stored at 4 or -18 degrees C for 42 days, and mesophilic aerobic plate counts (APCs) were periodically determined. Fresh ground beef (initial APC of 10(2) CFU/g) treated with 3.0, 5.0, and 7.0 kGy was acceptable (< 10(7) CFU/g) for 42 days at 4 degrees C. The 1.0 kGy-treated beef samples were acceptable microbiologically (< 10(7) CFU/g) after 42 days but developed an unacceptable off-odor after 21 days. Shelf life diminished in fresh ground beef patties with an initial APC of 10(4) CFU/g. Only beef patties treated with 7.0 kGy were found to be acceptable at 42 days. Beef patties treated at 1.0 and 3.0 kGy reached spoilage APC levels (> 10(7) CFU/g) by day 14 and 21, respectively, whereas patties treated at 5.0 kGy did not spoil until 42 days. The nonirradiated control samples for both batches of ground beef spoiled within 7 days. Microbial counts in ground beef patties stored at -18 degrees C did not change over the 42-day period. Shelf life of ground beef patties stored at 4 degrees C may be extended with gamma radiation, especially at 5.0 and 7.0 kGy. Initial microbial load in ground beef samples was an important shelf life factor.

  19. Gamma radiation effects on time-dependent iodine partitioning

    SciTech Connect

    Marshall, P.W.; Lutz, J.B.; Kelly, J.L.

    1987-03-01

    A need for characterization of the iodine source term used in safety calculations for hypothesized light water reactor core disruptive accidents has motivated a study in iodine volatility. Previous experimental studies have been directed at evaluating volatility of iodine at a single time shortly (1 to 12 h) after introduction into the aqueous phase. The very important variables of time in solution and gamma radiation dose rate for a range of iodine concentrations (10/sup -8/ to 10/sup -5/ gI/ml) and pHs (5, 9, and 11) are explored. All experiments were performed at --25/sup 0/C, first in the absence of a significant radiation field and later with a gamma radiation dose rate ranging from 0.003 to 0.06 Mrad/h. Iodine was introduced as either molecular I/sub 2/ or NaI with /sup 131/I (8.04-day half-life) as a tracer. Results of experiments with nonirradiated systems indicated very little volatility with NaI-initiated studies. The I/sub 2/-initiated systems at pH 5 were the most volatile whereas experiments at pH 9 and 11 showed decreasing iodine volatility with time. From the experiments at pH 9, it is inferred that the partition coefficient of HOI is -- 1000.

  20. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  1. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  2. Cytokine levels affected by gamma-linolenic acid.

    PubMed

    Dirks, J; van Aswegen, C H; du Plessis, D J

    1998-10-01

    This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.

  3. Induction of transpositions of MGE Dm412 by {gamma}-radiation in an isogenic line of Drosophila melanogaster

    SciTech Connect

    Zabanov, S.A.; Vasil`eva, L.A.; Ratner, V.A. |

    1995-06-01

    In an isogenic line of Drosophila, transpositions of mobile genetic elements (MGE) Dm412 were induced by {gamma}-radiation at doses of 300, 800, and 1300 R. The rates of induced transpositions were (for each dose, respectively) 3.9 x 10{sup {minus}3}, 1.0 x 10{sup {minus}2}, and 1.87 x 10{sup {minus}2} events per occupied site per haploid genome of the isogenic line per generation. Thus, the transposition rate increased linearly with the radiation dose. The specific rate of {gamma}-radiation-induced transpositions was (1.3 {+-} 0.6) x 10{sup {minus}5} per occupied site per haploid genome of the isogenic line per Roentgen per generation. {gamma}-Radiation-induced hot transposition sites and haplotypes, very similar to those induced by heat shock, were found. It was suggested that the mechanism of induction by {gamma}-radiation involves the heat shock system. Thus, it is more similar to the mechanism of temperature induction than to the direct mutational effect of {gamma}-radiation. Estimates of induced transposition rates per genome for each dose were calculated as 1.1, 3.0, and 5.6 events, respectively, per genome per generation. This level probably corresponds to the subthreshold level of genomes near the {open_quotes}catastrophic border of transpositional losses.{close_quotes} 21 refs., 1 fig., 4 tabs.

  4. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats.

    PubMed

    Morcos, Nadia; Omran, Manar; Ghanem, Hala; Elahdal, Mahmoud; Kamel, Nashwa; Attia, Elbatoul

    2015-01-01

    One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.

  5. SAS 2 observations of the earth albedo gamma radiation above 35 MeV

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

    1981-01-01

    The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

  6. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  7. Portable radiation monitor assures cleanup levels

    SciTech Connect

    Hasbach, A.

    1995-10-01

    Sevenson Environmental Services, Niagara Falls, NY, is a contractor at the EPA Superfund site at Montclair, NJ. Working with the Army Corps of Engineers, they are cleaning up radium waste left by a watch factory from the early 1900s. With the hazards of radium unknown at the time, radium in its many forms was spread throughout the region. As sand, it was used for concrete, as ash for packing material, and sometimes as landfill. When a hazardous site is found, Sevenson excavates the contaminated material and replaces it with clean fill. A Reuter-Stokes RSS-112 portable gamma monitoring system is used to ensure radiation is at sample background levels. Using a pressurized ionization chamber (PIC), the RSS-112 measures exposure rates from background to serious alarm levels over a wide energy range. Measurement takes place every five seconds. The portable system is 50% lighter than its predecessor and includes 300 point data storage, graphic display panel, 120-hour battery life between recharges, and RS-232 interface for downloading to a PC.

  8. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  9. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    SciTech Connect

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    2016-12-19

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  10. Radiative striped wind model for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Pe'er, A.; Lyubarsky, Y.

    2017-01-01

    In this paper we revisit the striped wind model in which the wind is accelerated by magnetic reconnection. In our treatment, radiation is included as an independent component, and two scenarios are considered. In the first one, radiation cannot stream efficiently through the reconnection layer, while the second scenario assumes that radiation is homogeneous in the striped wind. We show how these two assumptions affect the dynamics. In particular, we find that the asymptotic radial evolution of the Lorentz factor is not strongly modified whether radiation can stream through the reconnection layer or not. On the other hand, we show that the width, density and temperature of the reconnection layer are strongly dependent on these assumptions. We then apply the model to the gamma-ray burst context and find that photons cannot diffuse efficiently through the reconnection layer below radius r_D^{Δ } ˜ 10^{10.5} cm, which is about an order of magnitude below the photospheric radius. Above r_D^{Δ }, the dynamics asymptotes to the solution of the scenario in which radiation can stream through the reconnection layer. As a result, the density of the current sheet increases sharply, providing efficient photon production by the Bremsstrahlung process which could have profound influence on the emerging spectrum. This effect might provide a solution to the soft photon problem in GRBs.

  11. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  12. Petroleum and diesel sulfur degradation under gamma radiation

    NASA Astrophysics Data System (ADS)

    Andrade, Luana dos Santos; Calvo, Wilson Aparecido Parejo; Sato, Ivone Mulako; Duarte, Celina Lopes

    2015-10-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries to remove sulfur compounds from petroleum fractions. However, it is not highly effective for removing thiophene compounds such as benzothiophene. Additionally, this process generates high costs for the oil industry. In the present work, ionizing radiation was used in order to study the effect on the degradation of petroleum and diesel sulfur compounds. Crude oil and diesel fuel samples were studied, without any pretreatment, and irradiated using a cobalt-60 gamma cell in a batch system at absorbed doses of 30 kGy and 50 kGy. The sulfur compounds were extracted and then analyzed by gas chromatography associated with mass spectrometry (GCMS). A high efficiency of ionizing radiation was observed regarding the degradation of sulfur compounds such as benzothiophene and benzenethiol and the formation of fragments, for example 1.2-dimethylbenzene and toluene.

  13. [Gamma-radiation action on cells of algae Euglena gracilis].

    PubMed

    Glinkova, E; Zhuchkina, N I; Koltovoĭ, N A; Koltovaia, N A

    2012-01-01

    Considering the potentials of algae Euglena to constitute a part of biological systems of human life support, effects of low radiation doses on algal cells and radiosensitivity dependence on their genotype were studied. In experiments with gamma-irradiation (60Co) of Euglena gracilis, the highest radioresistance was demonstrated by strain Z. OFL; the chloroplasts lacking Z-derived strain showed hypersensitivity to radiation. E. bacillaris and derived chlorophyll-lacking strains W3 and W10 had intermediate radiosensitivity. Irradiation with the doses of up to 10 Gy produced a hormetic effect in the stock strains. Cells death was observed only after irradiation by doses above 100 Gy. The stimulating effect was exerted both on radioresistance and growth rate. Dyes made possible rapid evaluation of the proportion of living and dead cells. Comparison of two survival tests showed that the classic medium inoculation overestimates cell deaths as it disregards the living non-proliferating cells.

  14. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Yun-Dong, Chen; Soares, C. G.; Miller, A.; Van Dyk, G.; Lewis, D. F.

    1991-04-01

    A new radiation-sensitive imaging material, called GafChromic™ Dosimetry Media, offers advances in high-dose radiation dosimetry and high-resolution radiography for gamma radiation and electrons. The potential uses in radiation processing, radiation sterilization of medical devices, population control of insects by irradiation, food irradiation, blood irradiation for organ-transplant immuno-suppression, clinical radiography, and industrial radiography have led to the present sensitometric study over the breadth of the wide dynamic range of this new routine detector and imaging material, namely, absorbed doses from 10 Gy to 5 × 10 4 Gy. The thin-coated film is colorless before irradiation, and registers a deep-blue image upon irradiation, with two absorption bands at about 650 nm (major band) and 600 nm (minor band). The response to electrons, in terms of increase in absorbance per unit absorbed dose, is the same as that to gamma radiation within the estimated uncertainty of the measurements (± 5%, 95% confidence level). The spatial resolving power is > 1200 lines/mm. After the first 24 hours, the image is stable over many months (within ± 5% in absorbance), however, the system should be irradiated and analyzed at approximately the temperatures used during calibration, because of temperature dependence during irradiation and readout, and temperatures greater than 55°C should be avoided.

  15. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  16. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  17. Recent progress in low-level gamma imaging

    SciTech Connect

    Mahe, C.; Girones, Ph.; Lamadie, F.; Le Goaller, C.

    2007-07-01

    The CEA's Aladin gamma imaging system has been operated successfully for several years in nuclear plants and during decommissioning projects with additional tools such as gamma spectrometry detectors and dose rate probes. The radiological information supplied by these devices is becoming increasingly useful for establishing robust and optimized decommissioning scenarios. Recent technical improvements allow this gamma imaging system to be operated in low-level applications and with shorter acquisition times suitable for decommissioning projects. The compact portable system can be used in places inaccessible to operators. It is quick and easy to implement, notably for onsite component characterization. Feasibility trials and in situ measurements were recently carried out under low-level conditions, mainly on waste packages and glove boxes for decommissioning projects. This paper describes recent low-level in situ applications. These characterization campaigns mainly concerned gamma emitters with {gamma} energy < 700 keV. In many cases, the localization of hot spots by gamma camera was confirmed by additional measurements such as dose rate mapping and gamma spectrometry measurements. These complementary techniques associated with advanced calculation codes (MCNP, Mercure 6.2, Visiplan and Siren) offer a mobile and compact tool for specific assessment of waste packages and glove boxes. (authors)

  18. Gamma radiation effects on commercial Mexican bread making wheat flour

    NASA Astrophysics Data System (ADS)

    Agúndez-Arvizu, Z.; Fernández-Ramírez, M. V.; Arce-Corrales, M. E.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    2006-04-01

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a 60C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  19. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  20. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  1. Calculations of background beta-gamma radiation dose through geologic time.

    PubMed

    Karam, P A; Leslie, S A

    1999-12-01

    Life on earth is exposed to a background level of ionizing radiation from a number of sources, including beta and gamma radiation from geologic and biologic materials. Radiation dose from geologic emitters has changed because of the chemical evolution of the continental crust, changes in the relative abundances of 235U and 238U, and the radioactive decay of uranium, thorium, and 40K with time. The radiation dose from internal 40K has decreased by a factor of about eight because of changes in the activity concentration of 40K in potassium over the past 4 billion years. Radiation exposure from geologic materials has decreased from about 1.6 mGy y(-1) to 0.66 mGy y(-1) over the past 4 billion years, and radiation exposure to an organism with a potassium concentration of 250 mmol L(-1) has decreased from about 5.5 to about 0.70 mGy y(-1). Accordingly, background radiation exposure from these two sources has dropped from about 7.0 to 1.35 mGy y(-1) during the time life has existed on Earth. The conservative nature of mutation repair mechanisms in modern organisms suggest that these mechanisms may have evolved in the distant past and that organisms may retain some of the capability of efficiently repairing damage from higher radiation levels than exist at present.

  2. [Protection of cadaver tissues exposed to high gamma radiation].

    PubMed

    Matus-Jiménez, J; Flores-Fletes, J R; Carrillo, A

    2013-01-01

    Bone tissue is the most widely used tissue for the treatment of various conditions. As a result of this, allografts are used at an increasing frequency and processes for their harvest, preservation and sterilization have improved. The sterilization method that grants the greatest sterilization is high-dose gamma radiation, which destroys prions and any microorganism thus assuring that patients will not experience any infection. But given that radiation use has proven to deteriorate bone and tendon tissue, efforts have been made to protect the latter. One way to do this is a commercially available substance called Clearant. Studies conducted elsewhere have found that it does protect bone and tendon tissue. This study was therefore conducted with allograft samples exposed to high-dose radiation. Its purpose was to assess, with photon microscopy using various dyes and electron microscopy, the presence of color changes as well as the destruction of the anatomical structure. The same tissue was followed-up throughout the process until it was placed in the patient. The review found no structural changes in bone and tendon tissues exposed to high radiation doses (60 kilograys) when the Clearant process was used, and concluded that the former may be used safely in orthopedic or traumatologic diseases.

  3. Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal.

    PubMed

    Chowdhury, Muhammed Alamgir Zaman; Jahan, Iffat; Karim, Nurul; Alam, Mohammad Khorshed; Abdur Rahman, Mohammad; Moniruzzaman, Mohammed; Gan, Siew Hua; Fakhruddin, Abu Naieum Muhammad

    2014-01-01

    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.

  4. Radiative Penguin Decays of B Mesons: Measurements of B to K* gamma, B to K2* gamma, and Search for B0 to phi gamma

    SciTech Connect

    Bauer, J.

    2005-01-03

    Electromagnetic radiative penguin decays of the B meson were studied with the BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching fractions and isospin asymmetry of the decay B {yields} K*{gamma}, branching fractions of B {yields} K*{sub 2}(1430){gamma}, and a search for B{sup 0} {yields} {phi}{gamma} are presented. The decay rates may be enhanced by contributions from non-standard model processes.

  5. Effects of low-level radiation

    SciTech Connect

    Goldman, M.

    1993-12-31

    The effects of low-level radiation inhumans are usually estimated by extrapolation from high-level effects. Biological radiation effects from low-level radiation can be defined as those from doses below which no deterministic or graded biological responses will occur. In addition, the health consequences are almost all probabilistic. There is incomplete knowledge regarding the role of sex, age at exposure, co-factors, or environmental pollutants.

  6. Effect of curcumin analog on gamma-radiation-induced cellular changes in primary culture of isolated rat hepatocytes in vitro.

    PubMed

    Srinivasan, M; Sudheer, A Ram; Rajasekaran, K N; Menon, Venugopal P

    2008-10-22

    The present study was aimed to evaluate the radioprotective effect of curcumin analog, on gamma-radiation-induced toxicity in primary cultures of isolated rat hepatocytes. Hepatocytes were isolated from the liver of rats by collagenase perfusion. The DNA damage was analysed by single cell gel electrophoresis (comet assay). An increase in the severity of DNA damage was observed with the increase in gamma-radiation dose at 1-4 Gy in cultured rat hepatocytes. The levels of lipid peroxidative indices like thiobarbituric acid reactive substances (TBARSs) were increased significantly, whereas the levels of reduced glutathione (GSH) and antioxidant enzymes were significantly decreased in gamma-irradiated groups. The maximum damage to hepatocytes was observed at 4Gy gamma-irradiation. Pretreatment with different concentrations of curcumin analog (1.38, 6.91 and 13.82 microM) shows a significant decrease in the levels of TBARS and DNA damage. Pretreatment with curcumin analog prevents the loss of enzymic and non-enzymic antioxidants like GSH upon gamma-irradiation. The maximum protection of hepatocytes was observed at 6.91 microM of curcumin analog pretreatment. Thus, our result shows that pretreatment with curcumin analog protects the hepatocytes against gamma-radiation-induced cellular damage.

  7. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  8. Method for imaging quantum dots during exposure to gamma radiation

    NASA Astrophysics Data System (ADS)

    Immucci, Andrea N.; Chamson-Reig, Astrid; Yu, Kui; Wilkinson, Diana; Li, Chunsheng; Stodilka, Robert Z.; Carson, Jeffrey J. L.

    2011-03-01

    Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, ~5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source.

  9. Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Plaček, V.; Hnát, V.

    2007-05-01

    The radiation degradation behavior of commercial low density polyethylene (LDPE) and ethylene-vinylacetate (EVA) cable materials has been investigated. The changes of mechanical properties, thermooxidative stability and density exhibit different radiation stability towards 60Co-gamma radiation and 160 keV electron beam radiation. This difference reflects much higher penetration of the gamma radiation through the polymeric material as a function of sample thickness. These results are discussed with respect to the role of beta radiation during design basis events in a nuclear power plants. In case when total accidental design basis event (DBE) dose (involving about 80% soft beta radiation) is simulated by 60Co-gamma radiation the conservatism is reached.

  10. [The effectiveness of fractionated exposure of sarcoma M-1 to gamma-radiation and fast neutrons].

    PubMed

    Iuzhakov, V V; Sevan'kaeva, L E; Ul'ianenko, S E; Iakovleva, N D; Kuznetsova, M N; Tsyganova, M G; Fomina, N K; Ingel', I E; Lychagin, A A

    2013-01-01

    The effectiveness of fractionated exposure to gamma- and neutron radiation in their separate and combined use on the growth and functional morphology of mutant p53 sarcoma M-1 in rats was studied. Investigation techniques included immunostaining of PCNA and mutant p53 expressing cells, determination of mitotic activity and apoptotic death of tumor cells, as well as computer analysis of microscopic images. The antitumor efficacy of different types of radiation is shown to be determined by different levels of apoptosis induction, reduced proliferation and cellularity. Neutron radiation of the impulse generator has a marked damaging effect on the vasculature and the development of tumor necrosis. Fractionated irradiation at equal daily doses led to the decrease in the relative effectiveness of radio-inactivation of tumor cells. After 9 fractions of irradiation, the calculated value of the RBE of fast neutrons normalized to the input dose of 1 Gy by the coefficient of tumor growth inhibition, a reduced proliferative activity of PCNA and induced apoptosis of tumor cells was 3.4, 3.7 and 3.1, respectively. In the mode of daily superfractionation with splitting the dose in two fractions, the effectiveness of the combined exposure corresponded to the additive effect of gamma- and neutron radiation with a tendency toward synergism. There are reasons to believe that high resistance of sarcoma M-1 to the ionizing radiation impact is due not only to a fraction of hypoxic cells, but also the mutant status of p53 gene.

  11. Secondary metabolite perturbations in Phaseolus vulgaris leaves due to gamma radiation.

    PubMed

    Ramabulana, T; Mavunda, R D; Steenkamp, P A; Piater, L A; Dubery, I A; Madala, N E

    2015-12-01

    Oxidative stress is a condition in which the balance between the production and elimination of reactive oxygen species (ROS) is disturbed. However, plants have developed a very sophisticated mechanism to mitigate the effect of ROS by constantly adjusting the concentration thereof to acceptable levels. Electromagnetic radiation is one of the factors which results in oxidative stress. In the current study, ionizing gamma radiation generated from a Cobalt-60 source was used to induce oxidative stress in Phaseolus vulgaris seedlings. Plants were irradiated with several radiation doses, with 2 kGy found to be the optimal, non-lethal dose. Metabolite distribution patterns from irradiated and non-irradiated plants were analyzed using UHPLC-qTOF-MS and multivariate data models such as principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Metabolites such as hydroxycinnamic phenolic acids, flavonoids, terpenes, and a novel chalcone were found to be perturbed in P. vulgaris seedlings treated with the aforementioned conditions. The results suggest that there is a compensatory link between constitutive protectants and inducible responses to injury as well as defense against oxidative stress induced by ionizing radiation. The current study is also the first to illustrate the power of a metabolomics approach to decipher the effect of gamma radiation on crop plants.

  12. The search for gamma radiation from supernova 1987A in an experiment aboard the Salut-7/Cosmos-1686 complex

    NASA Astrophysics Data System (ADS)

    Bachilova, R. N.; Bloch, G. M.; Pankov, V. M.; Prohin, V. L.; Rutkovsky, A. I.; Rumin, S. P.

    1988-07-01

    Gamma-quanta flux measurements were carried out during February-October 1987 in a search for radiation from SN 1987A. The time dependence of the mean monthly gamma-quanta flux measured with the Nega telescope at an altitude of 500 km in the equatorial region is analyzed. The upper limit of the gamma-quanta flux is determined to be 1.5 x 10 to the -6th/sq cm s keV on the 3-sigma level for the 1.5-4.4 MeV energy interval.

  13. Networked gamma radiation detection system for tactical deployment

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  14. Preliminary results on soil-emitted gamma radiation and its relation with the local atmospheric electric field at Amieira (Portugal)

    NASA Astrophysics Data System (ADS)

    Lopes, F.; Silva, H. G.; Bárias, S.; Barbosa, S. M.

    2015-10-01

    The atmospheric electric field near the Earth's surface is dominated by atmospheric pollutants and natural radioactivity, with the latter directly linked to radon (222Rn) gas. For a better comprehension on the temporal variability of both the atmospheric electric field and the radon concentration and its relation with local atmospheric variables, simultaneous measurements of soil-emitted gamma radiation and potential gradient (defined from the vertical component of the atmospheric electric field) were taken every minute, along with local meteorological parameters (e.g., temperature, atmospheric pressure, relative humidity and daily solar radiation). The study region is Amieira, part of the Alqueva lake in Alentejo Portugal, where an interdisciplinary meteorological campaign, ALEX2014, took place from June to August 2014. Soil gamma radiation is more sensitive to small concentrations of radon as compared with alpha particles measurements, for that reason it is more suited for sites with low radon levels, as expected in this case. Preliminary results are presented here: statistical and spectral analysis show that i) the potential gradient has a stronger daily cycle as compared with the gamma radiation, ii) most of the energy of the gamma signal is concentrated in the low frequencies (close to 0), contrary to the potential gradient that has most of the energy in frequency 1 (daily cycle) and iii) a short-term relation between gamma radiation and the potential gradient has not been found. Future work and plans are also discussed.

  15. Gamma radiation influence on technological characteristics of wheat flour

    NASA Astrophysics Data System (ADS)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  16. The Impact of Gamma Radiation on Sediment Microbial Processes

    PubMed Central

    Brown, Ashley R.; Boothman, Christopher; Pimblott, Simon M.

    2015-01-01

    Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1 for 8 weeks all displayed NO3− and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1 treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1 treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42− reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h−1 and 30-Gy h−1 treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation. PMID:25841009

  17. Trypanosoma cruzi Gene Expression in Response to Gamma Radiation

    PubMed Central

    Grynberg, Priscila; Passos-Silva, Danielle Gomes; Mourão, Marina de Moraes; Hirata Jr, Roberto; Macedo, Andrea Mara; Machado, Carlos Renato; Bartholomeu, Daniella Castanheira; Franco, Glória Regina

    2012-01-01

    Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress. PMID:22247781

  18. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOEpatents

    Hondorp, Hugh L.

    1984-01-01

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  19. Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.; Karam, Andrew

    2014-07-01

    Gamma-ray bursts (GRBs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ~0.5 Gyr. We define the level of catastrophic damage to the biosphere as approximation 100 kJ m-2, based on Thomas et al. (2005a, b). Using results in Melott & Thomas (2011), we estimate the probability of the Earth receiving this fluence from a GRB of any type, as 87% during the last 500 Myr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone (O3) layer. With depleted O3, there will be an increased flux of Solar UVB on the Earth's surface with potentially harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Among all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modelled the air showers produced by gamma-ray primaries up to 100 GeV. We found that the number of muons produced by the electromagnetic component of hypothetical galactic GRBs significantly increases the total muon flux. However, since the muon production efficiency is extremely low for photon energies below 100 GeV, and because GRBs radiate strongly for only a very short time, we find that the biological radiation dose from secondary muons is negligible. The main mechanism of biological damage from GRBs is through Solar UVB irradiation from the loss of O3 in the upper atmosphere.

  20. An Attempt to Measure the Gamma Radiation Dosage at Hiroshima from Photosensitive Material

    SciTech Connect

    Brixner, Berlyn; McmIllan, Edwin; Meade, Roger Allen

    2016-09-23

    After Japan surrendered in August 1945, a team of Los Alamos scientists entered both Hiroshima and Nagasaki to assess the damage of Little Boy and Fat Man. Two of these scientists, Berlyn Brixner and Edwin McMillan, discovered a stock of photographic film in Hiroshima that had been fogged by the gamma radiation from Little Boy. They devised an experiment that they thought might be used to determine the exposure levels in the city. Below is both their description of the film stock and the attempt to determine the exposure levels at Hiroshima.

  1. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  2. Concerns with low-level ionizing radiation

    SciTech Connect

    Yalow, R.S.

    1994-12-31

    Populations have been studied in geographic areas of increased natural radiation, in radiation-exposed workers, in patients medically exposed, and in accidental exposures. No reproducible evidence exists of harmful effects from increases in background radiation three to ten times the usual levels. There is no increase in leukemia or other cancers among American military participants in nuclear testing, no increase in leukemia or thyroid cancer among medical patients receiving {sup 131}I for diagnosis or treatment of hypothyroidism, and no increase in lung cancer among nonsmokers exposed to increased radon in the home. The association of radiation with the atomic bomb and with excessive regulatory and health physics as-low-as-reasonably-achievable (ALARA) radiation levels practices has created a climate of fear about the dangers of radiation at any level. However, there is no evidence that radiation exposures at the levels equivalent to medical usage are harmful. The unjustified excessive concern with radiation at any level, however, precludes beneficial uses of radiation and radioactivity in medicine, science, and industry.

  3. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  4. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan.

    PubMed

    Furukawa, M; Kina, S; Shiroma, M; Shiroma, Y; Masuda, N; Motomura, D; Hiraoka, H; Fujioka, S; Kawakami, T; Yasuda, Y; Arakawa, K; Fukahori, K; Jyunicho, M; Ishikawa, S; Ohomoto, T; Shingaki, R; Akata, N; Zhuo, W; Tokonami, S

    2015-11-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h(-1), respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time.

  5. JITTER RADIATION MODEL OF THE CRAB GAMMA-RAY FLARES

    SciTech Connect

    Teraki, Yuto; Takahara, Fumio

    2013-02-15

    The gamma-ray flares of the Crab nebula detected by the Fermi and AGILE satellites challenge our understanding of the physics of pulsars and their nebulae. The central problem is that the peak energy of the flares exceeds the maximum energy E {sub c} determined by synchrotron radiation loss. However, when turbulent magnetic fields exist with scales {lambda}{sub B} smaller than 2{pi}mc {sup 2}/eB, jitter radiation can emit photons with energies higher than E {sub c}. The scale required for the Crab flares is about two orders of magnitude less than the wavelength of the striped wind. We discuss a model in which the flares are triggered by plunging the high-density blobs into the termination shock. The observed hard spectral shape may be explained by the jitter mechanism. We make three observational predictions: first, the polarization degree will become lower in flares; second, no counterpart will be seen in TeV-PeV range; and third, the flare spectrum will not be harder than {nu}F {sub {nu}}{proportional_to}{nu}{sup 1}.

  6. Mediate gamma radiation effects on some packaged food items

    NASA Astrophysics Data System (ADS)

    Inamura, Patricia Y.; Uehara, Vanessa B.; Teixeira, Christian A. H. M.; del Mastro, Nelida L.

    2012-08-01

    For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.

  7. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    PubMed

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate.

  8. Adult myeloid leukaemia, geology, and domestic exposure to radon and gamma radiation: a case control study in central Italy

    PubMed Central

    Forastiere, F.; Sperati, A.; Cherubini, G.; Miceli, M.; Biggeri, A.; Axelson, O.

    1998-01-01

    OBJECTIVES: To investigate whether indoor randon or gamma radiation might play a part in myeloid leukaemia as suggested by studies based on crude geographical or geological data for exposure assessment. METHODS: For six months randon and gamma radiation was measured with solid state nuclear track detectors and thermoluminescent dosimeters in dwellings of 44 adult male cases of acute myeloid leukaemia and 211 controls (all subjects deceased). Conditional logistic regression ORs (ORs) and 95% confidence intervals (95% CIs) were estimated for quartiles of radon and gamma radiation and for municipality and dwelling characteristics. RESULTS: The risk of leukaemia was associated with an increasing urbanisation index (p value for trend = 0.008). An increased OR was found among those living in more modern houses (OR 3.0, 95% CI 1.4 to 6.6). Confirming the findings of a previous study in the same area, geological features bore a positive association with myeloid leukemia, even by adjusting for level of urbanisation. Contrary to expectations from the previous study, however, no association appeared between myeloid leukaemia and radon and gamma radiation; for the highest quartiles of exposure, ORs were 0.56 (95% CI 0.2 to 1.4) and 0.52 (95% CI 0.2 to 1.4), respectively. Considering only subjects who had lived > or = 20 years in the monitored home and adjusting for urbanisation, there was still no effect of exposure to radiation. CONCLUSIONS: In view of the limited numbers, the results do not in general refute a possible risk of myeloid leukaemia from exposure to indoor radon or gamma radiation, but decrease the credibility of such a relation in the area studied and also of other studies suggesting an effect without monitoring indoor radiation. Some other fairly strong determinants have appeared--that is, level of urbanisation and living in modern houses-- that might need further consideration.   PMID:9614394

  9. Effects of proton and gamma radiation on lymphocyte populations and acute response to antigen

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Gheorghe, C.; Andres, M. L.; Abell, G. A.; Folz-Holbeck, J.; Slater, J. M.; Nelson, G. A.; Gridley, D. S.

    1999-01-01

    BACKGROUND: The clinical use of proton radiation in the management of cancer, as well as benign disorders, is rapidly increasing. The major goal of this study was to compare the effects of proton and gamma (60Co) radiation on cell-mediated and humoral immunological parameters. MATERIALS AND METHODS: C57BL/6 mice were exposed to a single dose of 3 Gray (Gy) protons or gamma-rays and intraperitoneally injected 1 day later with sheep red blood cells (sRBC). On 4, 10, 15, and 29 days after exposure, subsets from each group were euthanised; nonirradiated controls (with and without sRBC injection) were included. Body and relative spleen weights, leukocyte counts, spontaneous blastogenesis, lymphocyte populations, and anti-sRBC titers were evaluated. RESULTS: The data showed significant depression (p < 0.05) in nearly all assays on days 4 and 10 after irradiation. B lymphocytes (CD19+) were the most radiosensitive, although reconstitution back to normal levels was observed by day 15. T cell (CD3+) and T helper cell (CD4+) recovery was evident by day 29, whereas the T cytotoxic cell (CD8+) count remained significantly below normal. Natural killer cells (NK1.1+) were relatively radioresistant. Anti-sRBC antibody production was slow and low titers were obtained after irradiation. No significant differences were noted between the two types of radiation. CONCLUSIONS: Taken together, the data show that whole-body irradiation with protons or gamma-rays, at the dose employed, results in marked, but transient, immunosuppression. However, at the time points of testing and with the assays used, little or no differences were found between the two forms of radiation.

  10. Terrestrial Gamma Flashes Observed from Nearby Thunderstorms at Ground Level

    NASA Astrophysics Data System (ADS)

    Cherry, M. L.; Chason, N.; Granger, D.; Guzik, T. G.; Pleshinger, D.; Rodi, J.; Stacy, J. G.; Stewart, M.; Zimmer, N.

    2014-12-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located on the campus of Louisiana State University in Baton Rouge, Louisiana. Since July 2010, TETRA has detected 37 millisecond bursts of gamma rays at energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. The ability to observe ground-level Terrestrial Gamma Flashes from close to the source allows a unique analysis of the storm cells producing these events. A description of the observations, the results of the analysis, and plans for future measurements will be presented.

  11. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation. [Paramecium tetraurelia; Synechococcus lividus

    SciTech Connect

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-05-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y.

  12. Effects of gamma radiation on fetal development in mice

    PubMed Central

    Dehghan, Tahere; Mozdarani, Hossein; Khoradmehr, Arezoo; Kalantar, Seyed Mehdi

    2016-01-01

    Background: Many cancer patients receive radiotherapy which may lead to serious damages to the ovary storage and the matrix muscle state. Some of these patients may admit to infertility clinics for having pregnancy and on the other hand hormonal administration for superovulation induction is a routine procedure in assisted reproduction technology (ART) clinics. Objective: This study aimed to investigate fertility and fetuses of hormone treated super ovulated female mice who had received whole-body gamma irradiation before mating. Materials and Methods: Female mice were randomly categorized into a control group and 3 experimental groups including: Group I (Irradiation), Group II (Superovulation), and Group III (Superovulation and Irradiation). In hormone treated groups, mice were injected with different doses of pregnant mare's serum gonadotropin (PMSG) followed with human chorionic gonadotropin (HCG). Irradiation was done using a Co-60 gamma ray generator with doses of 2 and 4 Gy. Number of fetuses counted and the fetus’s weight, head circumference, birth height, the number of live healthy fetuses, the number of fetuses with detected anomalies in the body, the sum of resorption and arrested fetuses were all recorded as outcome of treatments. Results: In the group I and group II, increased radiation and hormone dose led to a decrease in the number of survived fetuses (45 in 2 Gy vs. 29 in 4 Gy for irradiated group) as well as from 76 in 10 units into 48 in 15 units. In the group III, a higher dose of hormone in the presence of a 2 Gy irradiation boosted the slink rate; i.e. the number of aborted fetuses reached 21 cases while applying the dose of 15 Iu, whereas 6 cases of abortion were reported applying the hormone with a lower dose. Among different parameters studied, there was a significant difference in parameters of weight and height in the mouse fetuses (p=0.01). Conclusion: The data indicated that use of ovarian stimulating hormones in mice that received pre

  13. Gamma thermometer based reactor core liquid level detector

    DOEpatents

    Burns, Thomas J.

    1983-01-01

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  14. Gamma thermometer based reactor core liquid level detector

    SciTech Connect

    Burns, T.J.

    1983-09-20

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is midified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  15. Terrestrial Gamma Flashes at Ground and Balloon Level

    NASA Astrophysics Data System (ADS)

    Rodi, James; Ringuette, Rebecca; Cherry, Michael

    2014-03-01

    Terrestrial Gamma Flashes (millisecond-duration bursts of gamma rays produced by electrons and positrons accelerated by the electric fields accompanying lightning) have been observed by satellite detectors since the BATSE era. The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located on the campus of Louisiana State University in Baton Rouge, Louisiana. Since July 2010, TETRA has now detected 31 millisecond-scale bursts of gamma rays at ground level with energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. In addition to the TETRA array, we describe the plans for a balloon-borne instrument and a larger ground array.

  16. Gamma radiation effects in amorphous silicon and silicon nitride photonic devices.

    PubMed

    Du, Qingyang; Huang, Yizhong; Ogbuu, Okechukwu; Zhang, Wei; Li, Junying; Singh, Vivek; Agarwal, Anuradha M; Hu, Juejun

    2017-02-01

    Understanding radiation damage is of significant importance for devices operating in radiation-harsh environments. In this Letter, we present a systematic study on gamma radiation effects in amorphous silicon and silicon nitride guided wave devices. It is found that gamma radiation increases the waveguide modal effective indices by as much as 4×10-3 in amorphous silicon and 5×10-4 in silicon nitride at 10 Mrad dose. This Letter further reveals that surface oxidation and radiation-induced densification account for the observed index change.

  17. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation.

    PubMed

    Song, You; Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie; Rosseland, Bjørn Olav; Tollefsen, Knut Erik

    2014-11-01

    Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15mGy radiation affected DEGs associated with cellular signaling and immune response; 70mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280mGy radiation affected pathways related to cell cycle regulation and DNA

  18. Gamma radiation from blazar PKS 0537-441

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) observed high-energy gamma rays from PKS 0537-441 during observations in 1991 July-August. Upper limits from later EGRET observations suggest time variability.

  19. Health effects of low-level radiation in shipyard workers. Final report: [Draft

    SciTech Connect

    Matanoski, G.M.

    1991-06-01

    The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

  20. Evidence for a Solar Influence on Gamma Radiation from Radon

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J.

    2012-12-01

    We have analyzed 29,000 measurements of gamma radiation associated with the decay of radon confined to an airtight vessel at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of strong periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We consider it significant that these same oscillations have previously been detected in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt. We have suggested that these oscillations are due to some form of solar radiation (possibly neutrinos) that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. Time-frequency analysis also yields quite different results from daytime and nighttime data. These procedures have also been applied to data collected from subsurface geological sites in Israel, Tenerife, and Italy, which have a variety of geological and geophysical scenarios, different elevations, and depths below the surface ranging from several meters to 1000 meters. In view of these results, and in view of the fact that there is at present no clear understanding of the behavior of radon in its natural environment, there would appear to be a need for multi-disciplinary research. Investigations that clarify the nature and mechanisms of solar influences may help clarify the nature and mechanisms of geological influences.

  1. Effect of chronic HTO. beta. or /sup 60/Co. gamma. radiation on preimplantation mouse development in vitro

    SciTech Connect

    Yamada, T.; Yukawa, O.; Asami, K.; Nakazawa, T.

    1982-11-01

    Response of pronuclear, early 2-cell, and late 2-cell mouse embryos to chronic HTO ..beta.. and /sup 60/Co ..gamma.. irradiation was investigated. The pronuclear embryos fertilized in vitro and 2-cell stage embryos of BC3F/sub 1/ (C3H/C57BL) mice were grown in vitro in chemically defined medically defied media containing tritium oxide. Activity levels ranged from 100 to 2000 ..mu..Ci/ml. With development to blastocyst as the end point, the LD/sub 50/ was determined to be 118, 230, and 426 ..mu..Ci/ml for pronuclear, early 2-cell, and late 2-cell embryos, respectively. Similar embryos were exposed in vitro to chronic ..gamma.. radiation from /sup 60/Co during the same period of development, and RBE values of HTO ..beta.. radiation relative to /sup 60/Co ..gamma.. rays were calculated to be within the range of 1.0 to 1.7.

  2. Hydrogel membranes of PVAl/ clay by gamma radiation

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. J. A.; Parra, D. F.; Amato, V. S.; Lugão, A. B.

    2013-03-01

    In the last decades several studies concerning the new methods for drug delivery system have been investigated. A new field known as "smart therapy" involves devices and drug delivery systems to detect, identify and treat the site affected by the disease, not interfering with the biological system. Cutaneous Leishmaniasis is an endemic disease that is characterized by the development of single or multiple localized lesions on exposed areas of skin and one coetaneous treatment could be a potential solution. The aim of this study was to obtain polymeric hydrogel matrices of poly(vinylalcohol)(PVAl) and chitosan with inorganic nanoparticles, which can release a drug according to the need of the treatment of injury caused by leishmania on the skin. The hydrogels matrices were obtained with PVAl/ chitosan and PVAl/ chitosan 0.5; 1.0 and 1.5% laponite RD clay, crosslinked by ionizing gamma radiation with dose of 25 kGy. The techniques used for characterization were swelling, gel fraction, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). After synthesis, the samples were immersed in distilled water and weighed in periods of time until 60 h for the swelling determination. The obtained results have indicated that the swelling of the membranes increases with clay concentration, in consequence of ionic groups present in the clay.

  3. Natural gamma-radiation in the Aeolian volcanic arc.

    PubMed

    Chiozzi, P; Pasquale, V; Verdoya, M; Minato, S

    2001-11-01

    Pulse-height distributions of gamma-rays, obtained with a field NaI(Tl) scintillation spectrometer in numerous sites of the Lipari and Vulcano islands (Aeolian volcanic arc, Italy), were measured to determine the U, Th and K concentrations of the bedrock and the relative values of the air absorbed dose rate. U is spatially related to both Th and K and the Th/U ratio is on average 3.1-3.5. The magmatic evolution is reflected by the concentration of the three radioelements, as they are more abundant within the more felsic units of the volcanic series. The higher values of U (15.7-20.0 ppm) coincide with higher Th (48.3-65.9 ppm) and K (4.9-6.1%) concentrations associated with rhyolitic rocks of the third cycle (< 50 ky). The air absorbed dose rate varies from 20 to 470 nGy h(-1). The highest values (> 350 nGy h(-1)) are observed on outcrops of rhyolitic obsidian lava flows. The cosmic-ray contribution is also evaluated to estimate the total background radiation dose rate.

  4. APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION

    SciTech Connect

    Mao, Jirong; Wang, Jiancheng

    2013-10-10

    A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.

  5. Protective effects of erdosteine against nephrotoxicity caused by gamma radiation in male albino rats.

    PubMed

    Elkady, A A; Ibrahim, I M

    2016-01-01

    The aim of this study was focused on investigating the possible protective effect of erdosteine against gamma radiation-induced renal lesions in male albino rats. Twenty-eight albino rats were divided into four equal groups as follows: control group, irradiated group (animals subjected to whole-body gamma irradiation at a dose of 5 Gy), treated group (each rat received 100 mg/kg body weight once daily, orally by gastric tube, erdosteine for 1 week), and treated irradiated group (each rat received 100 mg/kg body weight once daily, orally by gastric tube, erdosteine for 1 week, then exposed to whole-body gamma irradiation at a dose of 5 Gy). The results revealed that the administration of erdosteine to rats before irradiation significantly ameliorated the changes occurred in kidney function (creatinine and urea) compared with irradiated group. Also the changes in serum tumor necrosis factor α, interleukin 1β, and interleukin 6 activities were markedly improved compared with the corresponding values of irradiated group. Kidney catalase and glutathione peroxidase (GPx) activities and reduced glutathione concentration showed approximately normal level when compared with the irradiated group. The histopathological results showed distinctive pattern of renal lesions in irradiated group, while in treated irradiated group the renal tissues showed relatively well-preserved architecture. Erdosteine acts in the kidney as a potent scavenger of free radicals to prevent or ameliorate the toxic effects of gamma irradiation as shown in the biochemical and histopathological changes and might provide substantial protection against radiation-induced inflammatory damage.

  6. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    NASA Technical Reports Server (NTRS)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  7. A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

    1977-01-01

    The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

  8. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  9. Registration of the Atmospheric Gamma Radiation on Board the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Andreevsky, S. E.; Kuznetsov, V. D.; Sinelnikov, V. M.

    2017-03-01

    The paper describes the complex of scientific instruments and the algorithm of the "Molniya-Gamma" experiment on measuring gamma-ray fluxes in the energy range of 32-750 keV carried out in 2011 on board the Russian Segment (RS) of the International Space Station (ISS). About 500 thousand energy spectra with a time resolution of 1 min were obtained in 512 energy channels during 232 days. One-second variations in the number of gamma quanta in four energy channels and the triggered fluxes of gamma quanta lasting less than 100 ms were recorded simultaneously. The data obtained allow us to study temporal and spatial variation of gamma-ray radiation to detect terrestrial gamma flashes (TGFs). Data on very large number of gamma-ray spikes were acquired through a trigger data mode with a low threshold.

  10. Registration of the Atmospheric Gamma Radiation on Board the Russian Segment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Andreevsky, S. E.; Kuznetsov, V. D.; Sinelnikov, V. M.

    2016-11-01

    The paper describes the complex of scientific instruments and the algorithm of the "Molniya-Gamma" experiment on measuring gamma-ray fluxes in the energy range of 32-750 keV carried out in 2011 on board the Russian Segment (RS) of the International Space Station (ISS). About 500 thousand energy spectra with a time resolution of 1 min were obtained in 512 energy channels during 232 days. One-second variations in the number of gamma quanta in four energy channels and the triggered fluxes of gamma quanta lasting less than 100 ms were recorded simultaneously. The data obtained allow us to study temporal and spatial variation of gamma-ray radiation to detect terrestrial gamma flashes (TGFs). Data on very large number of gamma-ray spikes were acquired through a trigger data mode with a low threshold.

  11. Influence of gamma radiation on microbiological parameters of the ethanolic fermentation of sugar-cane must

    NASA Astrophysics Data System (ADS)

    Alcarde, A. R.; Walder, J. M. M.; Horii, J.

    2003-04-01

    The influence of gamma radiation on reducing the population of some bacteria Bacillus and Lactobacillus that usually contaminate the sugar-cane must and its effects on acidity of the medium and viability of the yeast during fermentation were evaluated. The treatment with gamma radiation reduced the bacterial load of the sugar-cane must. Consequently, the volatile acidity produced during the fermentation of the must decreased and the viability of the yeast afterwards added increased.

  12. Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation

    NASA Astrophysics Data System (ADS)

    Brichard, B.; Fernandez, A. F.; Ooms, H.; Berghmans, F.

    2007-10-01

    We demonstrate the possibility of using Cerenkov radiation to monitor the reactor power and the high energy gamma-ray flux in a high neutron flux reactor. The system employs a radiation-resistant pure silica glass fibre to measure the Cerenkov radiation in the infrared region (800-1100 nm). A model is proposed to determine the order of magnitude of the gamma-ray flux from the measurement. The method and concept can be extended to the monitoring of low reactor powers if Cerenkov radiation is measured in the 450-500 nm region by means of hydrogen-treated fibres.

  13. Shelf life extension of fresh turmeric ( Curcuma longa L.) using gamma radiation

    NASA Astrophysics Data System (ADS)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.; Cheruth, Abdul Jaleel

    2009-09-01

    Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 °C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.

  14. Assessment of natural radioactivity concentrations and gamma dose levels around Shorapur, Karnataka

    SciTech Connect

    Rajesh, S.; Avinash, P.; Kerur, B. R.; Anilkumar, S.

    2015-08-28

    This study assesses the level of background radiation around Shorapur. The study region locates the western part of the Yadgir district of Karnataka. Shorapur and Shahapur talukas are mostly composed of clay, shale sandstone, granite rock and part of study area is black soil. Thirty sample locations were selected along the length and breadth of Shorapur and Shahapur taluka. Natural radionuclide activity concentrations in soil samples were determined using 4'X4' NaI (Tl) gamma spectroscopy. Outdoor gamma dose measurements in air at 1 m above ground level were determined using Rad Eye PRD survey meter. Estimated dose values are compared with the survey meter values and found to be good agreement between them and also with the data obtained from different other areas of Karnataka and India. The average values were found to be slightly higher in the present investigation.

  15. Estimation of neutron spectrum in the low-level gamma spectroscopy system using unfolding procedure

    NASA Astrophysics Data System (ADS)

    Knežević, D.; Jovančević, N.; Krmar, M.

    2016-03-01

    The radiation resulting from neutron interactions with Ge nuclei in active volume of HPGe detectors is one of the main concerns in low-level gamma spectroscopy measurements [1,2]. It is usually not possible to measure directly spectrum of neutrons which strike detector. This paper explore the possibility of estimation of neutron spectrum using measured activities of certain Ge(n,γ) and Ge(n,n') reactions (obtained from low-level gamma measurements), available ENDF cross section data and unfolding procedures. In this work HPGe detector with passive shield made from commercial low background lead was used for the measurement. The most important objective of this study was to reconstruct muon induced neutron spectrum created in the shield of the HPGe detector. MAXED [3] and GRAVEL [4] algorithms for neutron spectra unfolding were used. The results of those two algorithms were compared and we analyzed the sensitivity of the unfolding procedure to the various input parameters.

  16. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.; Demin, D. L.; Eijk, C. W. E. van; Filchenkov, V. V.; Grafov, N. N.; Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Mikhailyukov, K. L.; Rudenko, A. I.; Vinogradov, Yu. I.; Volnykh, V. P.; Yukhimchuk, A. A.; Yukhimchuk, S. A.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  17. Radiation protection from whole-body gamma irradiation (6.7 Gy): behavioural effects and brain protein-level changes by an aminothiol compound GL2011 in the Wistar rat.

    PubMed

    Ganesan, Minu Karthika; Jovanovic, Milos; Secerov, Bojana; Ignjatovic, Marija; Bilban, Martin; Andjus, Pavle; Pavle, Andjus; Refaei, Amal El; Jung, Gangsoo; Li, Lin; Sase, Ajinkya; Chen, Weiqiang; Bacic, Goran; Lubec, Gert

    2014-07-01

    GL2011 is a naturally occurring thiol compound and a series of thiol compounds have been proposed as radioprotectors. Radioprotective efficacy of a triple intraperitoneal dose of GL2011 of 100 mg/kg body weight of Wistar rats, 30 min prior to and 3 and 6 h following irradiation (6.7 Gy) was evaluated. Four groups of animals were used, vehicle-treated non-irradiated (VN), GL2011-treated and irradiated (GI), GL2011-treated and non-irradiated (GN) and vehicle-treated and irradiated (VI) (n = 30 per group). The radioprotective efficacy of GL2011 was determined by measuring 28-day survival and intestinal crypt cell survival. Neuroprotection in terms of behaviour was evaluated using the behavioural observational battery, open field test and elevated plus maze paradigm. An RNA microarray was carried out in order to show differences at the RNA level between VI and VN groups. Brain protein changes were identified using a gel-based proteomics method and major brain receptor complex levels were determined by blue-native gels followed by immunoblotting. 28-Day survival rate in VI was 30 %, in GI survival was 93 %, survival of VN and GN was 100 %. Jejunal crypt cell survival was significantly enhanced in GI. Protein-level changes of peroxiredoxin-5, Mn-superoxide dismutase 2, voltage-dependent anion-selective channel protein 1, septin 5 and dopamine D2 receptor complex levels were paralleling radiation damage and protection. Taken together, the findings demonstrate that GL2011 improves survival rates and jejunal crypt survival, provides partial neuroprotection at the behavioural level and modulates proteins known to be involved in protection against oxidative stress-mediated cell damage.

  18. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  19. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    PubMed

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.

  20. Induction of p53 protein by gamma radiation in lymphocyte lines from breast cancer and ataxia telangiectasia patients.

    PubMed Central

    Birrell, G. W.; Ramsay, J. R.

    1995-01-01

    Exposure of human cells to gamma-radiation causes levels of the tumour-suppressor nuclear protein p53 to increase in temporal association with the decrease in replicative DNA synthesis. Cells from patients with the radiosensitive and cancer-prone disease ataxia telangiectasia (AT) exhibit radioresistant DNA synthesis and show a reduced or delayed gamma-radiation-induced increase in p53 protein levels. We have used Western immunoblotting with semiquantitative densitometry to examine the gamma-radiation-induced levels of p53 protein in 57 lymphoblastoid cell lines (LCLs) derived from patients with AT, carriers of the AT gene, breast cancer patients and normal donors. We confirm the previously reported reduced induction in AT homozygote LCLs (n = 8) compared with normal donor LCLs (n = 17, P = 0.01). We report that AT heterozygote LCLs (n = 5) also have a significantly reduced p53 induction when compared with LCLs from normal donors (n = 17, P = 0.02). The response of breast cancer patient cells was not significantly different from normal donor cells but 18% (5/27) had a p53 response in the AT heterozygote range (95% confidence interval) compared with only 6% (1/17) of the normal donor cells. We found no significant correlation between p53 induction and cellular radiosensitivity in LCLs from breast cancer patients. These methods may be useful in identifying individuals at greater risk of the DNA-damaging effects of ionising radiation. Images Figure 2 PMID:7577453

  1. Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture.

    PubMed

    Kothamasi, David; Wannijn, Jean; van Hees, May; Nauts, Robin; van Gompel, Axel; Vanhoudt, Nathalie; Cranenbrouck, Sylvie; Declerck, Stéphane; Vandenhove, Hildegarde

    2016-04-01

    Long-lived radionuclides such as (90)Sr and (137)Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a (137)Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.

  2. Action levels for automatic gamma-measurements based on probabilistic radionuclide transport calculations.

    PubMed

    Lauritzen, Bent; Hedemann-Jensen, Per

    2005-12-01

    In the event of a nuclear or radiological emergency resulting in an atmospheric release of radioactive materials, stationary gamma-measurements, for example obtained from distributed, automatic monitoring stations, may provide a first assessment of exposures resulting from airborne and deposited activity. Decisions on the introduction of countermeasures for the protection of the public can be based on such off-site gamma measurements. A methodology is presented for calculation of gamma-radiation action levels for the introduction of specific countermeasures, based on probabilistic modelling of the dispersion of radionuclides and the radiation exposure. The methodology is applied to a nuclear accident situation with long-range atmospheric dispersion of radionuclides, and action levels of dose rate measured by a network of monitoring stations are estimated for sheltering and foodstuff restrictions. It is concluded that the methodology is applicable to all emergency countermeasures following a nuclear accident but measurable quantities other than ambient dose equivalent rate are needed for decisions on the introduction of foodstuff countermeasures.

  3. Effects of gamma radiation on raspberries: safety and quality issues.

    PubMed

    Verde, S Cabo; Trigo, M J; Sousa, M B; Ferreira, A; Ramos, A C; Nunes, I; Junqueira, C; Melo, R; Santos, P M P; Botelho, M L

    2013-01-01

    There is an ever-increasing global demand from consumers for high-quality foods with major emphasis placed on quality and safety attributes. One of the main demands that consumers display is for minimally processed, high-nutrition/low-energy natural foods with no or minimal chemical preservatives. The nutritional value of raspberry fruit is widely recognized. In particular, red raspberries are known to demonstrate a strong antioxidant capacity that might prove beneficial to human health by preventing free radical-induced oxidative stress. However, food products that are consumed raw, are increasingly being recognized as important vehicles for transmission of human pathogens. Food irradiation is one of the few technologies that address both food quality and safety by virtue of its ability to control spoilage and foodborne pathogenic microorganisms without significantly affecting sensory or other organoleptic attributes of the food. Food irradiation is well established as a physical, nonthermal treatment (cold pasteurization) that processes foods at or nearly at ambient temperature in the final packaging, reducing the possibility of cross contamination until the food is actually used by the consumer. The aim of this study was to evaluate effects of gamma radiation on raspberries in order to assess consequences of irradiation. Freshly packed raspberries (Rubus idaeus L.) were irradiated in a (60)Co source at several doses (0.5, 1, or 1.5 kGy). Bioburden, total phenolic content, antioxidant activity, physicochemical properties such as texture, color, pH, soluble solids content, and acidity, and sensorial parameters were assessed before and after irradiation and during storage time up to 14 d at 4°C. Characterization of raspberries microbiota showed an average bioburden value of 10(4) colony-forming units (CFU)/g and a diverse microbial population predominantly composed of two morphological types (gram-negative, oxidase-negative rods, 35%, and filamentous fungi, 41

  4. Aflatoxins and ochratoxin a reduction in black and white pepper by gamma radiation

    NASA Astrophysics Data System (ADS)

    Jalili, M.; Jinap, S.; Noranizan, M. A.

    2012-11-01

    Irradiation is an important means of decontamination of food commodities, especially spices. The aim of the current study was to investigate the efficacy of gamma radiation (60Co) for decontaminating ochratoxin A (OTA) and aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) residues in artificially contaminated black and white pepper samples. The moisture content of the pepper samples was set at 12% or 18%, and the applied gamma dose ranged from 5 to 30 kGy. Mycotoxin levels were determined by high-performance liquid chromatography (HPLC) after immunoaffinity column (IAC) chromatography. Both the gamma irradiation dose and moisture content showed significant effects (P<0.05) on mycotoxin reduction. The maximum toxin reductions, found at 18% moisture content and 30 kGy, were 55.2%, 50.6%, 39.2%, 47.7% and 42.9% for OTA, AFB1, AFB2, AFG1 and AFG2, respectively.

  5. Search for radiative penguin decays B(+)-->rho(+)gamma, B(0)-->rho(0)gamma, and B(0)-->omegagamma.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; Macfarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Vetere, M Lo; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Laplace, S; Diberder, F Le; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Cormack, C M; Harrison, P F; Lodovico, F Di; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Buono, L Del; Hamon, O; John, M J J; Leruste, Ph; Malcles, J; Ocariz, J; Pivk, M; Roos, L; T'jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; Groot, N De; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Nardo, G De; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Band, H R; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-01-14

    A search for the decays B-->rho(770)gamma and B0-->omega(782)gamma is performed on a sample of 211 x 10(6) Upsilon(4S)-->BB events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. No evidence for the decays is seen. We set the following limits on the individual branching fractions: B(B+-->rho(+)gamma)<1.8 x 10(-6), B(B0-->rho(0)gamma)<0.4 x 10(-6), and B(B0-->omegagamma)<1.0 x 10(-6) at the 90% confidence level. We use the quark model to limit the combined branching fraction B [B-->(rho/omega)gamma]<1.2 x 10(-6), from which we determine a constraint on the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V(td)|/|V(ts)|.

  6. Ultraviolet radiation levels during the Antarctic spring

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Snell, Hilary E.

    1988-01-01

    The decrease in atmospheric ozone over Antarctica during spring implies enhanced levels of ultraviolet (UV) radiation received at the earth's surface. Model calculations show that UV irradiances encountered during the occurrence of an Antarctic 'ozone hole' remain less than those typical of a summer solstice at low to middle latitudes. However, the low ozone amounts observed in October 1987 imply biologically effective irradiances for McMurdo Station, Antarctica, that are comparable to or greater than those for the same location at December solstice. Life indigenous to Antarctica thereby experiences a greatly extended period of summerlike UV radiation levels.

  7. Constraining |V(td)|/|V(ts)| Using Radiative Penguin B -> V(K*/rho/omega)gamma Decays

    SciTech Connect

    Tan, Ping; /Wisconsin U., Madison

    2006-03-08

    Exclusive radiative penguin B decays, B {yields} (K*{sup 0}/K*{sup +}) and B {yields} ({rho}/{omega}){gamma}, are flavor-changing neutral-current (FCNC) processes. Studies of these decays are of special interest in testing Standard Model (SM) predictions and searching for other beyond-the-SM FCNC interactions. Using 89 x 10{sup 6} B{bar B} pairs from BABAR, we measure the branching fraction ({Beta}), CP-asymmetry ({Alpha}), and isospin asymmetry ({Delta}{sub 0-}) of B {yields} (K*{sup 0}/K*{sup +}){gamma} as follows: {Beta}(B{sup 0} {yields} K*{sup 0}{gamma}) = 3.92 {+-} 0.20(stat.) {+-} 0.24(syst.); {Beta}(B{sup +} {yields} K*{sup +}{gamma}) = 3.87 {+-} 0.28(stat.) {+-} 0.26(syst.); {Alpha}(B {yields} K*{gamma}) = -0.013 {+-} 0.36(stat.) {+-} 0.10(syst.); {Delta}{sub 0-}(B {yields} K*{gamma}) = 0.050 {+-} 0.045(stat.) {+-} 0.028(syst.) {+-} 0.024(R{sup +/0}). The 90% confidence intervals for the CP-asymmetry and the isospin-asymmetry in the B {yields} K*{gamma} decay are given as: -0.074 < {Alpha}(B {yields} K*{gamma}) < 0.049, -0.046 < {Delta}{sub 0-} (B {yields} K*{gamma}) < 0.146. We also search for B {yields} ({rho}/{omega}){gamma} decays using 211 x 10{sup 6} B{bar B} pairs from BABAR. No evidence for these decays is found. We set the upper limits at 90% confidence level for these decays: {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) < 0.4 x 10{sup -6}; {Beta}(B{sup +}{yields} {rho}{sup =}{gamma}) < 1.8 x 10{sup -6}; {Beta}(B{sup 0} {yields} {omega}{gamma}) < 1.0 x 10{sup -6}; {bar {Beta}}(B {yields} ({rho}/{omega}){gamma}) < 1.2 x 10{sup -6}. These results are in good agreement with the SM predictions. The branching fractions of these decays are then used to constrain the ratio |V{sub td}|/|V{sub ts}|.

  8. Accuracy of soil water content estimates from gamma radiation monitoring data

    NASA Astrophysics Data System (ADS)

    Mao, Jie; Huisman, Johan Alexander; Reemt Bogena, Heye; Vereecken, Harry

    2016-04-01

    Terrestrial gamma radiation is known to be sensitive to soil water content, and could be promising for soil water content determination because of the availability of continental-scale gamma radiation monitoring networks. However, the accuracy of soil water content estimates that can be obtained from this type of data is currently unknown. Therefore, the aim of this study is to assess the accuracy of soil water content estimates from measured time series of gamma radiation. For this, four gamma radiation monitoring stations were each equipped with four soil water content sensors at 5 and 15 cm depth to provide reference soil water content measurements. The contributions of terrestrial radiation and secondary cosmic radiation were separated from the total amount of measured gamma radiation by assuming that the long-term contribution of secondary cosmic radiation was constant, and that variations were related to changes in air pressure and incoming neutrons. In addition, precipitation effects related to atmospheric washout of radon progenies to the ground that cause an increase of gamma radiation were considered by excluding time periods with precipitation and time periods less than three hours after precipitation. The estimated terrestrial gamma radiation was related to soil water content using an exponential function with two fit parameters. For daily soil water content estimates, the goodness of fit ranged from R2= 0.21 to 0.48 and the RMSE ranged from 0.048 to 0.117 m3m-3. The accuracy of the soil water content estimates improved considerably when a weekly resolution was used (RMSE ranged from 0.029 to 0.084 m3m-3). Overall, these results indicate that gamma radiation monitoring data can be used to obtain useful soil water content information. The remaining differences between measured and estimated soil water content can at least partly be explained by the fact that the terrestrial gamma radiation is strongly determined by the upper few centimeters of the soil

  9. Inhibition of radiation degradation by hydrogen-donating hydroaromatics. [gamma radiation

    SciTech Connect

    Kubo, Junichi . Central Technical Research Lab.)

    1993-08-01

    The inhibiting effect of a multicomponent hydroaromatic type additive (HHAP) produced from petroleum which showed prominent radical-scavenging ability with DPPH (2,2-diphenyl-1-picrylhydrazyl) was tested against the radiation degradation ([gamma]-ray in air at room temperature) of mineral oil in comparison with the effect of a hindered phenolic antioxidant, 2,6-di-tert-butyl-p-cresol (DBPC). The obvious effects of HHAP on the restriction of the increases of acid value and carbonyl absorbance were preserved up to 2,500 kGy. However, the structural changes that occurred in DBPC were shown by analyses of the carbonyl absorbance and of the OH group absorbance by IR. DBPC itself was analyzed by gas chromatography as the irradiation dose accumulated. The differences in the inhibiting effects of a hindered phenolic antioxidant and HHAP between the thermal oxidation and radiation degradation of polyolefins are discussed from these results. HHAP, which does not have a functional group containing heteroatoms, can be considered to be resistant to radiation as well as to heat.

  10. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation.

  11. Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Singh, S P; Mudahar, Gurmel S; Dhaliwal, A S

    2015-06-01

    Different gamma radiation interaction parameters has been measured experimentally for the prepared diaspore-flyash concretes at 59.54, 662, 1173 and 1332 keV using narrow-beam transmission geometry and results are found to be in good agreement with theoretical values computed with a computer programme, WinXCom. The radiation exposure rate and absorbed dose rate for the gamma radiation with and without shielding of diaspore-flyash concretes have been determined using linear attenuation results. The results show that on average, there is reduction of 95%, 53% and 40% in dose rate for gamma sources (241)Am, (137)Cs and (60)Co, respectively with diaspore-flyash concretes as shielding material. Other health physics parameters namely equivalent dose, effective dose, gamma flux and energy fluence rate have also been determined.

  12. Effect of gamma radiation on morphological & optical properties of ZnO nanopowder

    NASA Astrophysics Data System (ADS)

    Qindeel, Rabia

    Gamma radiation is the most energetic, highly penetrating electromagnetic radiation with extremely high frequency. In this light, the influence of gamma irradiation on the morphological and the optical properties of zinc oxide (ZnO) nanopowder is investigated for different applications. In particular, the zinc oxide (ZnO) nanopowder is prepared by the homogenous precipitation method with the post-oxidation annealing taking place in air atmosphere. The optical properties of the ZnO nanopowder are observed using a UV-Vis spectrophotometer in the wavelength range of 200-800 nm, while scanning electron microscopy (SEM) is used for surface analysis. Samples are irradiated using a Co60 gamma source with high and low dose. The energy band gap of ZnO nanopowder is calculated before and after gamma radiation.

  13. The effect of gamma radiation on the ultrastructure of sweet potatoes (Ipomoea batatas)

    SciTech Connect

    Brown, A.

    1986-12-01

    Radiation is being used to increase the storage life of fresh foods. Various doses of gamma radiation were administered to Jewel cultivar sweet potatoes and the effects were monitored by direct observation and by scanning and transmission electron microscopy. Potatoes were divided into two groups: those irradiated immediately after harvest (doses = 0 kGy - 0.4 KGy) and those irradiated one week after harvest (doses = 0 kGy - 0.4 kGy). Potatoes were examined and viewed each month for 7 months. Gross observations included weight, color and texture of the sweet potatoes. Those potatoes irradiated immediately after harvest spoiled faster than those irradiated one week after harvest. Scanning electron microscopy demonstrated several cellular modifications accompanying spoilage. Cell collapse was greatest at the higher radiation doses during the periods of 1 to 5 months post-irradiation. The shape and size of starch granules varied with storage time and radiation levels. The mitochondria, cell walls and plasma membranes appeared normal as seen by transmission electron microscopy until 6 months post-irradiation for potatoes irradiated both immediately after harvest and one week after harvest. Thereafter, degradative changes were observed.

  14. Progenitor Cell Mobilization by Gamma-tocotrienol: A Promising Radiation Countermeasure

    PubMed Central

    Singh, Vijay K.; Fatanmi, Oluseyi O.; Verma, Amit; Newman, Victoria L.; Wise, Stephen Y.; Romaine, Patricia L.P.; Berg, Allison N.

    2016-01-01

    Abstract This article reviews studies of progenitor mobilization with gamma-tocotrienol (GT3), a tocol under advanced development as a radiation countermeasure for acute radiation syndrome (ARS). GT3 protects mice against high doses of ionizing radiation and induces high levels of granulocyte colony-stimulating factor (G-CSF). GT3‐induced G-CSF in conjunction with AMD3100 (a chemokine receptor antagonist clinically used to improve the yield of mobilized progenitors) mobilizes progenitors; these mobilized progenitors mitigate injury when infused to mice exposed to acute, high-dose ionizing radiation. The administration of a G-CSF antibody to GT3‐injected donor mice abrogated the radiomitigative efficacy of blood or peripheral blood mononuclear cells (PBMC) in irradiated recipient mice. The efficacy of GT3‐injected donor mice blood or PBMC was comparable to a recently published article involving blood or mononuclear cells obtained from mice injected with G-CSF. The injected progenitors were found to localize in various tissues of irradiated hosts. The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised mice to recover. This suggests that GT3 is a highly effective agent for radioprotection and mobilizing progenitors with significant therapeutic potential. Therefore, GT3 may be considered for further translational development and ultimately for use in humans. PMID:27356050

  15. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    NASA Technical Reports Server (NTRS)

    Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

    2002-01-01

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

  16. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  17. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  18. Radiation exposure at ground level by secondary cosmic radiation.

    PubMed

    Wissmann, F; Dangendorf, V; Schrewe, U

    2005-01-01

    The contribution of the charged component of secondary cosmic radiation to the ambient dose equivalent H*(10) at ground level is investigated using the muon detector MUDOS and a TEPC detector surrounded by the coincidence detector CACS to identify charged particles. The ambient dose equivalent rate H*(10)T as measured with the TEPC/CACS is used to calibrate the MUDOS count rate in terms of H*(10). First results from long-term measurements at the PTB reference site for ambient radiation dosimetry are reported. The air pressure corrected dose rate shows, as expected, a strong correlation with the neutron count rate as measured with the Kiel neutron monitor. The measured seasonal variations exhibit a negative correlation with the temperature changes in the upper layers of the atmosphere where the ground level muons are produced.

  19. Vital parameters related low level laser radiation

    NASA Astrophysics Data System (ADS)

    Palmieri, Beniamino; Capone, Stefania

    2011-08-01

    The first work hypotesis is that biosensors on the patient detecting heart, breath rate and skin parameters, modulate laser radiation to enhance the therapeutic outcome; in the second work hypotesis: biofeedback could be effective, when integrated in the low level laser energy release.

  20. Gamma radiation monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo B.; Nitschke, Kim

    2016-04-01

    Continuous monitoring of gamma radiation is often performed in nuclear facilities and industrial environments as a way to control the ambient radioactivity and give warning of potential accidents. However, gamma radiation is also ubiquitous in the natural environment. The main sources are i) cosmic radiation from space, including secondary radiation from the interaction with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232) and their decay products (e.g. Radium, Ra-226) , and iii) airborne Radon gas (Rn-222), which is the dominant source of natural environmental radioactivity. The temporal variability of this natural radiation background needs to be well understood and quantified in order to discriminate non-natural sources of radiation in the environment and artificial radionuclides contamination. To this end, continuous gamma radiation monitoring is being performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The site is unique for the study of the natural radioactivity background on one hand due to the remote oceanic geographical location, in the middle of the North Atlantic Ocean and clear of direct continental influence, and on the other hand because of the comprehensive dataset of atmospheric parameters that is available for enhancing the interpretation of the radiation measurements, as a result of the vast array of very detailed and high-quality atmospheric measurements performed at the ARM-ENA facility. Gamma radiation in the range 475 KeV to 3000 KeV is measured continuously with a 3" x 3" NaI(Tl) scintillator. The campaign started started in May 2015, with gamma

  1. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  2. Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation

    SciTech Connect

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions

  3. METHOD AND APPARATUS FOR PRODUCING AND ANALYZING POLARIZED GAMMA RADIATION

    DOEpatents

    Hamermesh, M.; Hanna, S.S.; Perlow, G.J.

    1964-04-21

    A method of polarizing and resolving the plane of polarization of gamma rays is described. Polarization is produced by positioning a thin disc of ferromagnetic metal, cortaining /sup 57/Co, in a magnetic field. Resolution is accomplished by rotating a thin disc of iron enriched in /sup 57/Fe relative to a second magnetic field and noting the change of gamma absorption at each rotational position. (AEC)

  4. The radiation tolerance of MTP and LC optical fibre connectors to 500 kGy(Si) of gamma radiation

    NASA Astrophysics Data System (ADS)

    Hall, D. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.

    2012-04-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require high-speed optical links to read out data from the detectors. The optical fibre connectors contained within such a link must have a small form factor and be capable of operating in the harsh radiation environment at the HL-LHC. MTP ribbon fibre connectors and LC single fibre connectors were exposed to 500 kGy(Si) of gamma radiation and their radiation hardness was investigated. Neither type of connector exhibited evidence for any significant radiation damage and both connectors could be qualified for use at HL-LHC detectors.

  5. Galactic plane gamma radiation. [SAS-2 and COS-b observations

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tuner, T.; Ozel, M. E.

    1978-01-01

    Analysis of the complete data from SAS-2 accentuates the fact that the distribution of galactic gamma radiation has several similarities to that of other large-scale tracers of galactic structure. The gamma radiation shows no statistically significant variation with direction, and the spectrum seen along the plane is the same as that derived for the galactic component of the gamma radiation at high latitude. This uniformity of the energy spectrum, the smooth decrease in intensity as a function of galactic latitude, and the absence of any galactic gamma ray sources at high latitudes argue in favor of a diffuse origin for most of the galactic gamma radiation, rather than a collection of localized sources. All the localized sources identified in the SAS 2 data are associated with known compact objects on the basis of observed periodicities, except gamma195+5 Excluding those SAS 2 sources observed by COS-B and two other excesses (CG 312-1 and CG333+0) visible in the SAS 2 data associated with tangential directions of spiral arms, thera are eight remaining new sources in the COS-B catalog.

  6. Terrestrial gamma radiation dose study to determine the baseline for environmental radiological health practices in Melaka state, Malaysia.

    PubMed

    Ramli, Ahmad Termizi; Sahrone, Sallehudin; Wagiran, Husin

    2005-12-01

    Environmental terrestrial gamma radiation dose rates were measured throughout Melaka, Malaysia, over a period of two years, with the objective of establishing baseline data on the background radiation level. Results obtained are shown in tabular, graphic and cartographic form. The values of terrestrial gamma radiation dose rate vary significantly over different soil types and for different underlying geological characteristics present in the study area. The values ranged from 54 +/- 5 to 378 +/- 38 nGy h(-1). The highest terrestrial gamma dose rates were measured over soil types of granitic origin and in areas with underlying geological characteristics of an acid intrusive (undifferentiated) type. An isodose map of terrestrial gamma dose rate in Melaka was drawn by using the GIS application 'Arc View'. This was based on data collected using a NaI(Tl) scintillation detector survey meter. The measurements were taken at 542 locations. Three small 'hot spots' were found where the dose rates were more than 350 nGy h(-1). The mean dose rates in the main population areas in the mukims (parishes) of Bukit Katil, Sungai Udang, Batu Berendam, Bukit Baru and Bandar Melaka were 154 +/- 15, 161 +/- 16, 160 +/- 16, 175 +/- 18 and 176 +/- 18 nGy h(-1), respectively. The population-weighted mean dose rate throughout Melaka state is 172 +/- 17 nGy h(-1). This is lower than the geographical mean dose rate of 183 +/- 54 nGy h(-1). The lower value arises from the fact that most of the population lives in the central area of the state where the lithology is dominated by sedimentary rocks consisting of shale, mudstone, phyllite, slate, hornfels, sandstone and schist of Devonian origin which have lower associated dose rates. The mean annual effective dose to the population from outdoor terrestrial gamma radiation was estimated to be 0.21 mSv. This value is higher than the world average of 0.07 mSv.

  7. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    PubMed

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2016-11-25

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  8. Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production.

    PubMed

    Turick, Charles E; Ekechukwu, Amy A; Milliken, Charles E; Casadevall, Arturo; Dadachova, Ekaterina

    2011-08-01

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  9. GAMMA RADIATION INTERACTS WITH MELANIN TO ALTER ITS OXIDATION-REDUCTION POTENTIAL AND RESULTS IN ELECTRIC CURRENT PRODUCTION

    SciTech Connect

    Turick, C.; Ekechukwu, A.; Milliken, C.

    2011-05-17

    The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.

  10. MeV-level electron and gamma ray sensitivites of modern far ultraviolet sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Greathouse, Thomas K.; Cooke, Chathan M.; Blase, Ryan C.; Gladstone, G. Randall; Retherford, Kurt D.

    2016-07-01

    The Jovian system is the focus of multiple current and future NASA and ESA missions, but dangerously high radiation levels surrounding the planet make operations of instruments sensitive to high energy electrons or gamma rays problematic. Microchannel plate (MCP) detectors have been the detectors of choice in planetary ultraviolet spectrographs for decades. However, the same properties that give these detectors high response to vacuum ultraviolet photons also make them sensitive to high energy electrons and gamma rays. The success of ultraviolet investigations in the Jovian system depends on effectively shielding these MCP detectors to protect them as much as possible from this withering radiation. The design of such shielding hinges on our understanding of the response of MCP detectors to the high energy electrons and gamma rays found there. To this end, Southwest Research Institute and Massachusetts Institute of Technology collaborated in 2012-13 to measure the response of a flight-spare microchannel plate detector to a beam of high energy electrons. The detector response was measured at multiple beam energies ranging from 0.5-2.5 MeV and multiple currents. This response was then checked with MCNP6, a radiation transport simulation tool, to determine the secondary gamma rays produced by the primary electrons striking the detector window. We report on the measurement approach and the inferred electron and gamma sensitivities.

  11. Influence of relaxation transitions on radiation-initiated cationic graft polymerization. [Gamma radiation

    SciTech Connect

    Kudryavtsev, V.N.; Kabanov, V.Ya.; Chalykh, A.E.; Spitsyn, V.I.

    1982-05-01

    Radiation grafting of vinyl n-butyl ether (VBE) to polyvinyl chloride (PVC) over a broad temperature range was investigated. The relaxation transitions in the PVC/VBE system were also determined. Grafting of vinyl alkyl ethers proceeds entirely by a cationic mechanism in a reaction medium that has been dried to a water concentration no greater than 0.1-1.0 ppm. In this connection, the diffusion properties of water in the temperature region were studied. Commercial films of unplasticized PVC (thickness 200 M); were subjected to swelling in two systems: in a 50% solution of VBE in benzene at 25/sup 0/C, and in the pure monomer at 40/sup 0/C. The reaction mixtures were first dried over metallic sodium in a deaerated atmosphere. The specimens were irradiated in a Co gamma-radiation unit to a dose of 10 kGy at a dose rate of 3 Gy/sec. The first reaction mixture was investigated over a range of temperatures from -60/sup 0/ to +70/sup 0/C, and the second from -15/sup 0/ to +50/sup 0/C. The degree of grafting was determined from the increase in weight of the original ungrafted film. The temperature was held to within +/-1/sup 0/C. The relaxation transitions in the swollen polymer systems were determined by two methods, thermostimulated current (TSC) and thermomechanics (TM). It was found that in the region of the glass transition of a swollen PVC-VBE system, radiation-initiated cationic graft polymerization proceeds at a maximal rate, and there are changes in state of the water molecules (the agents of breaking the ion reaction chain) and in their diffusion properties within the matrix.

  12. TeV gamma rays from the blazar H 1426+428 and the diffuse extragalactic background radiation

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Barrio, J.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J.; Cornils, R.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Gonzalez, J.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Robrade, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Sevilla, I.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2002-03-01

    The detection of TeV gamma -rays from the blazar H 1426+428 at an integral flux level of (4 +/- 2stat +/- 1syst) x 10-12 erg cm-2 s-1 above 1 TeV with the HEGRA imaging atmospheric Cherenkov telescope system is reported. H 1426+428 is located at a redshift of z = 0.129, which makes it the most distant source detected in TeV gamma -rays so far. The TeV radiation is expected to be strongly absorbed by the diffuse extragalactic background radiation (DEBRA). The observed energy spectrum of TeV photons is in good agreement with an intrinsic power law spectrum of the source ~ E-1.9 corrected for DEBRA absorption. Statistical errors as well as uncertainties about the intrinsic source spectrum, however, do not permit strong statements about the density of the DEBRA infrared photon field.

  13. 'Fukusensor:' a genetically engineered plant for reporting DNA damage in response to gamma radiation.

    PubMed

    Peng, Yanhui; Allen, Sara; Millwood, Reginald J; Stewart, C Neal

    2014-12-01

    Transgenic plants can be designed to be 'phytosensors' for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)-transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co-60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination.

  14. Mortality of the harvester ant (Pogonomyrmex owyheei) after exposure to /sup 137/Cs gamma radiation

    SciTech Connect

    Gano, K.A.

    1981-01-01

    Harvester ants, Pogonomyrmex owyheei Cole, irradiated with 3.5 kR to 268 kR of /sup 137/Cs gamma radiation, were maintained at simulated summer (27/sup 0/C) and winter (7/sup 0/C) temperature regimes. After thirty days, the cool series was warmed to 27/sup 0/C and observed for mortality along with the warm series.Though mortality was delayed in the cool series, each series reached 50% mortality at similar rates. Because the harvester ant is extremely tolerant to radiation and experimental rates used far exceed possible environmental exposure, it is unlikely that ant colonies dwelling among low-level nuclear waste storage sites will be deleteriously affected by radiation. This species has the capability of tunneling to a depth well within the range of some buried waste. Since these harvester ants are potential transporters of buried waste, they should be considered as a biotic factor in radioactive waste management operations in semi-arid regions.

  15. Mortality of the harvester ant (Pogonomyrmex owyheei) after exposure to /sup 137/Cs gamma radiation

    SciTech Connect

    Gano, K.A.

    1981-01-01

    Harvester ants, Pogonomyrmex owyheei Cole, irradiated with 3.5 kR to 268 kR of /sup 137/Cs gamma radiation, were maintained at simulated summer (27/sup 0/C) and winter (7/sup 0/C) temperature regimes. After thirty days, the cool series was warmed to 27/sup 0/C and observed for mortality along with the warm series. Though mortality was delayed in the cool series, each series reached 50% mortality at similar rates. Because the harvester ant is extremely tolerant to radiation and experimental rates used far exceed possible environmental exposure, it is unlikely that ant colonies dwelling among low-level nuclear waste storage sites will be deleteriously affected by radiation. This species has the capability of tunneling to a depth well within the range of some buried waste. Since these harvester ants are potential transporters of buried waste, they should be considered as a biotic factor in radioactive waste management operations in semi-arid regions.

  16. High-energy gamma radiation from Geminga observed by EGRET

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Bertsch, D. L.; Brazier, K. T. S.; Chiang, J.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kwok, P. W.

    1994-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) has carried out extensive studies of the gamma-ray source Geminga. Following the detection of pulsed X-rays (Halpern and Holt 1992) from Geminga, Bertsch et al. (1992) reported the same 237 ms periodicity to be visible in the EGRET data. A full analysis of the Geminga source shows that the energy spectrum is compatible with a power law with a spectral index of -1.50 +/- 0.08 between 30 MeV and 2 GeV. A falloff relative to the power law is observed for energies above 2 GeV. Phase-resolved spectra also show power laws with high-energy cutoffs, but with significant variation of the spectral index with phase. No unpulsed emission is observed. No evidence for time variation was found within the EGRET observations.

  17. Study of bulk damage in high resistivity silicon detectors irradiated by high dose of {sup 60}Co {gamma}-radiation

    SciTech Connect

    Li, Z.; Li, C.J.

    1996-04-01

    High dose (> 200 Mrad) {gamma}-radiation induced displacement damage (or bulk damage) in high resistivity (6--10 k{Omega}-cm) silicon detectors has been studied. It has been found that detector bulk leakage current increases with {gamma} dose at a rate of 3.3 {times} 10{sup {minus}7} A/cm{sup 3}/Mrad. This introduction rate of bulk leakage current makes the introduction of generation centers by 210 Mrad of {gamma}-radiation comparable to that by 1 {times} 10{sup 12} n/cm{sup 2} of neutron radiation. Significant carrier removal (or donor removal), about 100%, was found in detectors irradiated to 215 Mrad. Space charge sign inversion (SCSI) (or type inversion) was observed in detectors irradiated to {ge} 215 Mrad using transient current technique (TCT). As many as seven deep levels have been observed by current deep level transient spectroscopy (I-DLTS). There was little or no annealing (or reverse annealing) for detectors irradiated to 215 Mrad. Some annealing for detectors irradiated to 500 Mrad have been observed.

  18. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Botelho, M. L.; Leal, J. P.; Gil, M. H.

    2005-04-01

    In the present study, 2-hydroxyethyl methacrylate has been grafted onto chitosan by using either chemical initiation, or photo-induction or gamma radiation-induced polymerisation, all under heterogeneous conditions. The evidence of grafting was provided by Fourier transform infrared spectroscopy and thermal analysis. The results concerning the effect of initiator concentration, initial monomer concentration and dose rate influencing on the yield of grafting reactions are presented. These suggest that gamma irradiation is the method that leads to higher yields of grafting.

  19. Quality of life: Gamma Knife surgery and whole brain radiation therapy.

    PubMed

    Nesbitt, Janice

    2007-01-01

    Cerebral metastasis of cancers originating outside the brain has traditionally been treated with whole brain radiation therapy (WBRT). Gamma Knife Radiosurgery (GKS) provides safe and effective alternative treatment that is less invasive and has fewer side effects. Both WBRT and GKS are reviewed and discussed in terms of quality of life and health outcomes. The case studies of two individuals who underwent Gamma Knife surgery are presented.

  20. LOWER BOUND ON THE COSMIC TeV GAMMA-RAY BACKGROUND RADIATION

    SciTech Connect

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.

    2016-02-20

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as 2.8 × 10{sup −8}(E/100 GeV){sup −0.55} exp(−E/2100GeV)[GeV cm{sup −2} s{sup −1} sr{sup −1}] < E{sup 2}dN/dE < 1.1 × 10{sup −7}(E/100 GeV){sup −0.49} [GeV cm{sup −2} s{sup −1} sr{sup −1}], where the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum. Two nearby blazars, Mrk 421 and Mrk 501, explain ∼70% of the cumulative background flux at 0.8–4 TeV, while extreme blazars start to dominate at higher energies. We also provide the cumulative background flux from each population, i.e., blazars, radio galaxies, and starburst galaxies which will be the minimum requirement for their contribution to the cosmic TeV gamma-ray background radiation.

  1. The properties of gamma-radiation and high-energy neutron fluxes in "MIR" station orbit.

    PubMed

    Bogomolov, A V; Bogomolov, V V; Denisov, Yu I; Logachev, Yu I; Svertilov, S I; Kudryavtsev, M I; Lyagushin, V I; Ershova, T V

    2002-10-01

    The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given.

  2. Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA

    PubMed Central

    Miao, YuJi; Hu, XiaoDan; Min, Rui; Liu, PeiDang; Zhang, HaiQian

    2016-01-01

    A zinc finger motif is an element of proteins that can specifically recognize and bind to DNA. Because they contain multiple cysteine residues, zinc finger motifs possess redox properties. Ionizing radiation generates a variety of free radicals in organisms. Zinc finger motifs, therefore, may be a target of ionizing radiation. The effect of gamma radiation on the zinc finger motifs in transcription factor IIIA (TFIIIA), a zinc finger protein, was investigated. TFIIIA was exposed to different gamma doses from 60Co sources. The dose rates were 0.20 Gy/min and 800 Gy/h, respectively. The binding capacity of zinc finger motifs in TFIIIA was determined using an electrophoretic mobility shift assay. We found that 1000 Gy of gamma radiation impaired the function of the zinc finger motifs in TFIIIA. The sites of radiation-induced damage in the zinc finger were the thiol groups of cysteine residues and zinc (II) ions. The thiol groups were oxidized to form disulfide bonds and the zinc (II) ions were indicated to be reduced to zinc atoms. These results indicate that the zinc finger motif is a target domain for gamma radiation, which may decrease 5S rRNA expression via impairment of the zinc finger motifs in TFIIIA. PMID:27803644

  3. Evaluation of the Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

    2011-01-01

    NASA is concerned with the health risks to astronauts, particularly those risks related to radiation exposure. Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of (A) peripheral leukocyte distribution; (B) plasma cytokine levels; (C) cytokine production profiles following whole blood stimulation of either T cells or monocytes.

  4. SAS-2 observations of the high energy gamma radiation from the Vela region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

    1974-01-01

    Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays.

  5. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1986-01-01

    Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.

  6. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation

    SciTech Connect

    Mitchel, R.E.; Smith, B.P.; Wheatly, N.; Chan, A.; Child, S.; Paterson, M.C.

    1985-11-01

    Human xeroderma pigmentosum (XP) or Fanconi anemia (FA) fibroblasts displayed shouldered 45/sup 0/C heat survival curves not significantly different from normal fibroblasts, a result similar to that previously found for ataxia telangiectasia (AT) cells, indicating heat resistance is not linked to either uv or low-LET ionizing radiation resistance. Hyperthermia (45/sup 0/C) sensitized normal and XP fibroblasts to killing by gamma radiation but failed to sensitize the cells to the lethal effects of 254 nm uv radiation. Thermal inhibition of repair of ionizing radiation lesions but not uv-induced lesions appears to contribute synergistically to cell death. The thermal enhancement ratio (TER) for the synergistic interaction of hyperthermia (45/sup 0/C, 30 min) and gamma radiation was significantly lower in one FA and two strains (TER = 1.7-1.8) than that reported previously for three normal strains (TER = 2.5-3.0). These XP and FA strains may be more gamma sensitive than normal human fibroblasts. Since hyperthermia treatment only slightly increases the gamma-radiation sensitivity of ataxia telangiectasia (AT) fibroblasts compared to normal strains, it is possible that the degree of thermal enhancement attainable reflects the genetically inherent ionizing radiation repair capacity of the cells. The data indicate that both repair inhibition and particular lesion types are required for lethal synergism between heat and radiation. We therefore postulate that the transient thermal inhibition of repair results in the conversion of gamma-induced lesions to irrepairable lethal damage, while uv-type damage can remain unaltered during this period.

  7. The high-energy radiation dose received aboard aircraft exposed to a terrestrial gamma- ray flash

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Grefenstette, B. W.; Hazelton, B. J.

    2008-12-01

    Terrestrial gamma-ray flashes (TGF) are large bursts of high energy radiation observed from space that originate from our atmosphere. These millisecond long flashes of gamma-rays are often so bright that they saturate detectors, even from 600 km away. Several independent observations suggest that terrestrial gamma-ray flashes originate from thunderstorms deep within the atmosphere, near the altitudes where commercial aircraft fly. Based upon the flux of gamma-rays observed by the RHESSI spacecraft, detailed gamma-ray propagation models show that at least 1.0E17 energetic, multi-MeV electrons, are typically produced at the source. This large number of energetic electrons could potentially be a hazard for aircraft passengers, pilots and electronics. Using theoretical and observational estimates of the size of the TGF source region, we calculate the high-energy radiation dose from the energetic electrons and the gamma-rays for an aircraft exposed to the TGF from a close range. Finally, we shall discuss upcoming observations that will help constrain this radiation risk from TGFs.

  8. Gamma radiation exposure of accompanying persons due to Lu-177 patients

    NASA Astrophysics Data System (ADS)

    Kovan, Bilal; Demir, Bayram; Tuncman, Duygu; Capali, Veli; Turkmen, Cuneyt

    2015-07-01

    Neuroendocrine tumours (NET) are cancers usually observed and arisen in the stomach, intestine, pancreas and breathing system. Recently, radionuclide therapy applications with Lu-177 peptide compound are rapidly growing; especially effective clinical results are obtained in the treatment of well-differentiated and metastatic NET. In this treatment, Lu-177-DOTA, a beta emitter radioisotope in the radiopharmaceutical form, is given to the patient by intravenous way. Lu-177 has also gamma rays apart from beta rays. Gamma rays have 175 keV average energy and these gamma rays should be under the control in terms of radiation protection. In this study, we measured the exposure dose from the Lu-177 patient.

  9. (Gamma scattering in condensed matter with high intensity Moessbauer radiation)

    SciTech Connect

    Not Available

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

  10. Virtuality Distributions in application to gamma gamma* to pi^0 Transition Form Factor at Handbag Level

    SciTech Connect

    Radyushkin, Anatoly V.

    2014-07-01

    We outline basics of a new approach to transverse momentum dependence in hard processes. As an illustration, we consider hard exclusive transition process gamma*gamma -> to pi^0 at the handbag level. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p. Treated as functions of (pz) and z^2, they are parametrized through a virtuality distribution amplitude (VDA) Phi (x, sigma), with x being Fourier-conjugate to (pz) and sigma Laplace-conjugate to z^2. For intervals with z^+=0, we introduce transverse momentum distribution amplitude (TMDA) Psi (x, k_\\perp), and write it in terms of VDA Phi (x, \\sigma). The results of covariant calculations, written in terms of Phi (x sigma) are converted into expressions involving Psi (x, k_\\perp. Starting with scalar toy models, we extend the analysis onto the case of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition form factor. We also discuss how one can generate high-k_\\perp tails from primordial soft distributions.

  11. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modifications.

    PubMed

    Batra, Vipen; Sridhar, Swathi; Devasagayam, Thomas Paul Asir

    2010-02-12

    Radiation exposure poses a major risk for workers in the nuclear power plants and other radiation related industry. In this context, we demonstrate that gamma-radiation is an efficient DNA demethylating agent and its injurious effect can be minimized by dietary methyl supplements (folate, choline and vitamin B12). To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on normal control diet (NCD) and methyl-supplemented diet (MSD). After 2 weeks of NCD and MSD dietary regimen, we exposed the animals to gamma-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activity levels of one-carbon (C(1)) flux generating enzymes. In MSD fed and irradiated animals, hepatic folate levels increased (P<0.01), while hepatic homocysteine levels decreased (P<0.01) compared to NCD fed and irradiated animals. Although hepatic folate level increased significantly in MSD fed animals (P<0.01), it showed a decrease in response to high doses of gamma-irradiation. Under these conditions, a marked suppression of S-adenosylmethionine (SAM) levels occurred in NCD fed and irradiated animals, suggesting reduced conversion of homocysteine to SAM. Concomitant with decline in liver SAM Pool, activities of DNA methyltransferase (Dnmt, that methylates DNA) and methionine synthase (MSase, that regenerates methionine from homocysteine) were both decreased in NCD fed and irradiated mice. However, in MSD fed and irradiated mice, they were increased. These results strongly indicated that increased levels of dnmt and MSase may enhance C(1) flux towards DNA methylation reactions in MSD fed animals. These results were confirmed and further substantiated by measuring genomic DNA methylation levels, which were maintained at normal levels in MSD fed and irradiated mice compared to NCD fed and irradiated animals (P<0.01). In conclusion, our results suggest that maintenance of genomic DNA methylation under gamma-radiation stress might be a very dynamic

  12. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  13. Formulation of a nasogastric liquid feed and shelf-life extension using gamma radiation.

    PubMed

    Hajare, Sachin N; Gautam, Satyendra; Nair, Anjali B; Sharma, Arun

    2014-08-01

    Nasogastric liquid feed formulation (NGLF) was developed for immunocompromised patients who are vulnerable targets of pathogenic assault. NGLF consisted of cereals, pulses, vegetables, and milk powder to provide balanced nutrients; however, the shelf life was only a few hours because this product was highly prone to microbial contamination and proliferation due to its high water content and rich nutrients. Postpreparation storage and distribution was very difficult, even at chilled temperatures. To overcome this problem, the NGLF was irradiated at various doses (2.5 to 10 kGy). Gamma irradiation at 10 kGy reduced the microbial load to nondetectable levels, and the product could be stored up to 1 month without any detectable increase in microbial load. The sensory evaluation did not indicate differences between the nonirradiated fresh, irradiated fresh, and stored samples. Nutritional quality in terms of total carbohydrates, dietary fiber, proteins, calories, vitamins A and C, and the micronutrients calcium, iron, and zinc was not affected by irradiation. NGLF also possessed antimutagenic potential against ethylmethanesulphonate-induced mutagenesis in Escherichia coli cells as evaluated by the rifampin resistance assay. This property of NGLF remained unchanged even after exposure to a 10-kGy dose of gamma radiation. Thus, irradiated NGLF seemed to be a safe and wholesome food for immunocompromised patients.

  14. Gamma radiation-induced conditioned taste aversions in rats: A comparison of the protective effects of area postrema lesions with differing doses of radiation

    SciTech Connect

    Ossenkopp, K.P.; Giugno, L. )

    1989-10-01

    Lesions which destroy the area postrema (AP) and damage the adjacent nucleus of the solitary tract (NTS) attenuate or abolish conditioned taste aversions (CTA) induced by a variety of pharmacological agents as well as exposure to radiation. In the present experiment, 4 groups of male rats received lesions of AP and 4 groups were given sham lesions. One sham-lesioned and one AP-lesioned group were given a single pairing of 1-hr access to a novel 0.10% sodium saccharin solution followed immediately with exposure to 0, 100, 200, or 400 rad of gamma radiation, respectively. Four days later all groups were given daily two-bottle preference tests (saccharin vs. water) on 4 consecutive days. The sham-lesioned groups exposed to the radiation (100, 200, or 400 rad) developed profound aversions to the saccharin on all test days (p less than 0.001). In contrast, all of the AP-lesioned groups as well as the sham-irradiated (0 rad) sham-lesioned group exhibited strong, comparable (p greater than 0.30) preferences for saccharin. Thus, lesion of AP abolished the radiation-induced CTA at all dose levels of radiation. These results raise the possibility of pharmacological intervention at the level of AP to prevent radiation-induced CTA in cancer patients undergoing radiation therapy.

  15. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  16. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.; Medina, N. H.; Aguiar, V. A. P.

    2010-08-04

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  17. Glycine facilitates gamma-glutamylcysteinylethyl ester-mediated increase in liver glutathione level.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1997-08-27

    gamma-Glutamylcysteinylethyl ester (gamma-GCE) increases reduced glutathione (GSH) levels in GSH-depleted rat hepatocytes. Because glycine, a constituent of GSH, exists at 0.3 to 0.4 mM in rat plasma, we examined the influence of glycine added to the medium on the action of gamma-GCE to increase GSH levels in the rat hepatocytes. Glycine (0.2-0.8 mM) dose-dependently enhanced gamma-GCE-mediated increase in intracellular GSH levels with an increase in intracellular gamma-GCE levels. These results indicate that exogenous glycine facilitates gamma-GCE-mediated increase in intracellular GSH levels in rat hepatocytes possibly by enhancing the uptake of gamma-GCE into the cells.

  18. Lung tumorigenic response of strain A mice exposed to hypoxic cell sensitizers alone and in combination with gamma-radiation

    SciTech Connect

    Mian, T.A.; Theiss, J.C.; Grdina, D.J.

    1983-01-01

    The influence of metronidazole, misonidazole, and desmethylmisonidazole on the induction of lung adenomas in the strain A mouse was examined. Two dose levels of the hypoxic cell sensitizers, 0.2 and 0.6 mg/g, were used either alone or in combination with 900 rads of gamma-radiation in a fractionated dose schedule of twice a week for 3 weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased (p less than 0.10) in the group receiving the higher dose (0.6 mg/g) of misonidazole but was not significantly different from results for the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with that in the control group. Thus, under the experimental exposure conditions used in this investigation, which were somewhat similar to the exposure conditions occurring in clinical treatment, each of the hypoxic cell sensitizers tested failed to sensitize significantly the mice to the carcinogenic effects of gamma-radiation.

  19. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  20. Gamma evaluation combined with isocenter optimal matching in intensity modulated radiation therapy quality assurance

    NASA Astrophysics Data System (ADS)

    Bak, Jino; Choi, Jin Hwa; Park, Suk Won; Park, Kwangwoo; Park, Sungho

    2015-12-01

    Two-dimensional (2D) dose comparisons are widely performed by using a gamma evaluation with patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) or dose delivery quality assurance (DQA). In this way, a pass/fail determination is made for a particular treatment plan. When gamma evaluation results are close to the failure criterion, the pass/fail decision may change applying a small shift to the center of the 2D dose distribution. In this study, we quantitatively evaluated the meaning of such a small relative shift in a 2D dose distribution comparison. In addition, we propose the use of a small shift for a pass/fail criterion in gamma analysis, where the concept of isocenter optimal matching (IOM) is applied to IMRT QA of 20 patients. Gamma evaluations were performed to compare two dose distributions, one with and the other without IOM. In-house software was developed in C++ in order to find IOM values including both translational and rotational shifts. Upon gamma evaluation failure, further investigation was initiated using IOM. In this way, three groups were categorized: group 1 for `pass' on gamma evaluation, group 21 for `fail' on the gamma evaluation and `pass' on the gamma the evaluation with IOM, and group 22 for `fail' on the both gamma evaluations and the IOM calculation. IOM results revealed that some failures could be considered as a `pass'. In group 21, 88.98% (fail) of the averaged gamma pass rate changed to 90.45% (pass) when IOM was applied. On average, a ratio of γ ≥ 1 was reduced by 11.06% in 20 patients. We propose that gamma evaluations that do not pass with a rate of 85% to 90% may be augmented with IOM to reveal a potential pass result.

  1. Patient doses in {gamma}-intracoronary radiotherapy: The Radiation Burden Assessment Study

    SciTech Connect

    Thierens, Hubert . E-mail: hubert.thierens@Ughent.be; Reynaert, Nick; Bacher, Klaus; Eijkeren, Marc van; Taeymans, Yves

    2004-10-01

    Purpose: To determine accurately the radiation burden of both patients and staff from intracoronary radiotherapy (IRT) with {sup 192}Ir and to investigate the importance of IRT in the patient dose compared with interventional X-rays. Methods and materials: The Radiation Burden Assessment Study (RABAS) population consisted of 9 patients undergoing {gamma}-IRT after percutaneous transluminal coronary angioplasty and 14 patients undergoing percutaneous transluminal coronary angioplasty only as the control group. For each patient, the dose to the organs and tissues from the internal and external exposure was determined in detail by Monte Carlo N-particle simulations. Patient skin dose measurements with thermoluminescence dosimeters served as verification. Staff dosimetry was performed with electronic dosimeters, thermoluminescence dosimeters, and double film badge dosimetry. Results: With respect to the patient dose from IRT, the critical organs are the thymus (58 mGy), lungs (31 mGy), and esophagus (27 mGy). The mean effective dose from IRT was 8 mSv. The effective dose values from interventional X-rays showed a broad range (2-28 mSv), with mean values of 8 mSv for the IRT patients and 13 mSv for the control group. The mean dose received by the radiotherapist from IRT was 4 {mu}Sv/treatment. The doses to the other staff members were completely negligible. Conclusion: Our results have shown that the patient and personnel doses in {gamma}-IRT remain at an acceptable level. The patient dose from IRT was within the variations in dose from the accompanying interventional X-rays.

  2. Comparative toxicity and micronuclei formation in Tribolium castaneum, Callosobruchus maculatus and Sitophilus oryzae exposed to high doses of gamma radiation.

    PubMed

    Ahmadi, Mehrdad; Mozdarani, Hossein; Abd-Alla, Adly M M

    2015-07-01

    The effects of gamma radiation on mortality and micronucleus formation in Tribolium castaneum Herbst, Callosobruchus maculatus (F.) and Sitophilus oryzae (L.) genital cells were evaluated. Two groups of healthy and active adult insects 1-3 and 8-10 days old were irradiated with various doses (50-200 Gy) gamma ray. Seven days post-irradiation; mortality rates and micronucleus formation were assessed in genital cells of the irradiated insects. The results show that with increasing gamma doses, the mortality rate of each species increased and T. castaneum and S. oryzae showed the low and high sensitivity respectively. It was shown that the micronucleus appearance in the tested insects had correlation with amount and intensity of radiation doses. Moreover our results indicate different levels in the genotoxicity of gamma radiation among the insects' genital cells under study. The frequency of micronuclei in genital cells of 1-3 days old insects exposed to 50 and 200 Gy were 12.6 and 38.8 Mn/1000 cells in T. castaneum, 20.8 and 46.8 Mn/1000 cells in C. maculatus and 16.8 and 57.2 Mn/1000 cells in S. oryzae respectively. A high sensitivity of the genital cells to irradiation exposure was seen in S. oryzae correlated with its high mortality rate compared with the other two species. These results might be indicative of inflicting chromosomal damage expressed as micronucleus in high mortality rates observed in the pest population; an indication of genotoxic effects of radiation on the studied species.

  3. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  4. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  5. ENERGETIC GAMMA RADIATION FROM RAPIDLY ROTATING BLACK HOLES

    SciTech Connect

    Hirotani, Kouichi; Pu, Hung-Yi

    2016-02-10

    Supermassive black holes (BHs) are believed to be the central powerhouse of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to BH magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating BH. In this particle accelerator (or a gap), electrons and positrons are created by photon–photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null-charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole’s rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive BH, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC 310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.

  6. Immunotherapy of acute radiation syndromes with antiradiation gamma G globulin.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Casey, Rachael; Jones, Jeffrey; Kedar, Prasad

    Introduction: If an immunotherapy treatment approach to treatment of acute radiation syndromes (ARS) were to be developed; consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants- SRD) by specific antiradiation antibodies. To accomplish this objective, irradiated animals were injected with a preparation of antiradiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-indeced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic and enterotoxic) characteristics as well as specific antigenic properties that combined with the direct physiochemical direct radiation damage, induce the development of many of the pathological processes associated with ARS. We tested several specific hyperimmune IgG preparations against these radiation toxins and observed that their toxic properties were neutralized by specific antiradiation IgGs. Material and Methods: Rabbits were inoculated with SRD radiation toxins to induce hyperimmune serum. The hyperimmune serum was pooled from several animals, purified, and concentrated. Enzyme-linked immunosorbent assays of the hyperimmune serum revealed high titers of IgG with specific binding to radiation toxins. The antiradiation IgG preparation was injected into laboratory animals one hour before and three hours after irradiation, and was evaluated for its ability to protect inoculated animals against the development of acute radiation syndromes. Results: Animals that were inoculated with specific antiradiation antibodies before receiving lethal irradiation at LD 100/30 exhibited 60-75% survival rate at 30 days, whereas all control animals expired by 30 days following exposure. These inoculated animals also exhibited markedly reduced clinical symptoms of ARS, even those that did not survive irradiation. Discussion: The results of our experiments demonstrate that rabbit hyperimmune serum directed against SRD toxins afford significant, albeit

  7. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    SciTech Connect

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O.; Naydenov, S.; Pochet, T.; Smith, C.

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards

  8. Radiation-induced inhibition of thymidine incorporation in vivo as a measure of the initial slope and RBEn/gamma.

    PubMed

    Dubravsky, N B; Maor, M H; Withers, H R

    1985-08-01

    Radiation damage can be measured by decreased incorporation of 3H-TdR. The early effect of total body irradiation of mice, with doses up to 300-400 rad, of gamma rays of neutrons, on thymidine-3H incorporation into the DNA of murine proliferating normal and tumor cells are described. Total body irradiation with single doses up to 300 rad resulted in a steep dose-dependent depression of 3H-TdR incorporation into the DNA of the jejunal crypt, testis, spleen, fibrosarcoma (FSa), and FSa metastasis cells. The dose required to depress 3H-TdR incorporation values to 37% of control level (D37/thymidine) after gamma-irradiation was calculated to be 405, 443, 72, 303, and 531 rad, for jejunal crypt, testis, spleen, FSa metastasis, and FSa tumor cells, respectively. The depression progressed during the first 3 hours after irradiation. After neutron irradiation, the D37/thymidine was calculated to be 81, 140, 35, and 155 rad for jejunal crypt, testis, spleen, and FSa metastasis cells, respectively. The RBEn/gamma derived from these results were 5.00, 3.16, 2.06, and 1.95 for jejunal crypt, testis, spleen, and FSa metastasis cells, respectively. These results of D37/thymidine after gamma-irradiation and the RBEn/gamma correlate well with the 1Do for the initial slope of the survival curve and RBEn/gamma published in the literature for C3H/Kam mice using the same gamma and neutron beams. These findings show that cell survival after small doses of irradiation correlate with the effect of irradiation on the actively proliferating cells at the time of irradiation.

  9. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  10. Joint gamma generation and radiation heat regime (GG&RH) theory for gamma laser screening in the first approach of soft prompt transplantation of excited nuclei

    NASA Astrophysics Data System (ADS)

    Karyagin, Stanislav V.

    2001-03-01

    Joint theory of gamma-generation and radiation-heat regime in active medium of (gamma) -laser (GL) was created and applied for the analyses of the total world experience in the GL-problem in order to choose those nuclei-candidates, active media, GL-schemes which are indeed actual for the GL- creation.

  11. The high energy gamma-ray background and the interstellar radiation field

    NASA Astrophysics Data System (ADS)

    Chary, Ranga-Ram

    This thesis provides an independent estimate of the high latitude (! b! > 20°) contribution to the E > 30 MeV gamma-ray background from Galactic nucleon-nucleon, electron bremsstrahlung and inverse Compton processes. In particular, the inverse Compton contribution has been estimated for different cosmic ray electron distributions and after factoring in the anisotropy in the interstellar radiation field and the anisotropic Klein-Nishina scattering cross section. A model for the interstellar radiation field from 0.1 μm to 1000 μm is also presented to fit the intensities observed by recent satellite experiments, especially the DIRBE and FIRAS instruments on COBE. I find that the emission from the inverse Compton process when the anisotropy in the radiation field is included can be higher by up to 50% when compared to estimates that adopt an isotropic radiation field. Simulated inverse Compton maps with a cosmic ray electron distribution represented by a ``pill box'' extending up to a distance of 5 kpc above the Galactic plane provide better fits to the EGRET intensity maps suggesting that the cosmic ray halo may be larger than previously thought. With this distribution, I find that the net contribution from the IC process to the gamma-ray background can be as high as 20% at high Galactic latitudes. Fitting for the Galactic components of gamma-ray emission confirms the existence of an isotropic component with an intensity that can be represented by the form 27.7 × E(MeV)-2.16 photons m-2 s-1 sr -1 MeV-1, in excellent agreement with previous estimates. The spectrum of the isotropic component further argues strongly in favor of unresolved gamma-ray blazars being the source of this emission. Introduction of an anisotropic component improves the quality of the fits. However, this component, which could potentially arise from the dark matter in the Galactic halo, is not well characterized by a single power law which might be associated with any single dark matter

  12. Migration levels of PVC plasticisers: Effect of ionising radiation treatment.

    PubMed

    Zygoura, Panagiota D; Paleologos, Evangelos K; Kontominas, Michael G

    2011-09-01

    Migration levels of commercial plasticisers [di-(2-ethylhexyl) adipate (DEHA) and acetyl tributyl citrate (ATBC)] from polyvinyl chloride (PVC) film into the EU specified aqueous food simulants (distilled water, 3% w/v acetic acid and 10% v/v ethanol) were monitored as a function of time. Migration testing was carried out at 40°C for 10days (EEC, 1993). Determination of the analytes was performed by applying the analytical methodology based on surfactant (Triton X-114) mediated extraction prior to gas chromatographic-flame ionisation detection (GC-FID) recently proposed by our group. The study focuses on the determination of the effect of gamma radiation on plasticiser migration into the selected simulants. PVC cling film used was subjected to ionising treatment with a [(60)Co] source at doses equal to 5, 15 and 25kGy. DEHA and ATBC migration into the EU aqueous simulating solvents was limited, yielding final concentrations in the respective ranges 10-100μg/l and 171-422μg/l; hence, ATBC demonstrated a stronger interaction with all three simulants compared to DEHA. Migration data, with respect to ATBC, showed that the most aggressive simulant seemed to be the 10% ethanol, while in the case of DEHA the 3% aqueous acetic acid exhibited the highest extraction efficiency; distilled water demonstrated the lowest migration in both cases. With regard to PVC treatment with gamma rays, high radiation doses up to 25kGy produced a statistically significant (p<0.05) effect on the migration of both plasticisers.

  13. Influence of gamma-radiation on the nutritional and functional qualities of lotus seed flour.

    PubMed

    Bhat, Rajeev; Sridhar, Kandikere Ramaiah; Karim, Alias A; Young, Chiu C; Arun, Ananthapadmanabha B

    2009-10-28

    In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.

  14. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  15. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  16. Response of organic liquid scintillators to fast neutrons and gamma radiation

    NASA Astrophysics Data System (ADS)

    Hoertz, Paul G.; Mills, Karmann; Davis, Lynn; Baldasaro, Nicholas; Gupta, Vijay

    2013-03-01

    Liquid organic scintillators are cocktails of aromatic fluorophores in an aromatic solvent. They find widespread use in Liquid Scintillation Counters with applications in medical diagnostics as well as fundamental nuclear and particle physics. Ultima Gold™ XR, a commercially available organic liquid scintillator from Perkin Elmer, can be used in both aqueous and non-aqueous systems and is typically used for beta detection in medical diagnostics. Its performance under gamma radiation and neutron radiation is less well-characterized. Special and normal Ultima Gold™ XR liquid scintillators were exposed in separate experiments to fast neutrons and high energy photons from a nuclear reactor and to gamma rays from a Co-60 source. To perform the measurements in the radiation chamber, a custom light collection system consisting of a fiber optic cable, spectrometer and a diffuse reflecting optical cavity was fabricated. Advanced calibration procedures, traceable to NIST standards, were developed to determine photon fluxes and flux densities of the scintillators under ionizing radiation conditions. The scintillator emission spectra under gamma radiation from a Co-60 source and neutron radiation from a pool-type nuclear reactor were recorded and compared. Results on the spectrometer design and comparison of the spectra under different exposure are presented.

  17. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  18. 77 FR 62267 - Proposed Extension of Existing Information Collection; Gamma Radiation Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... be provided for all persons exposed to average gamma radiation measurements in excess of 2.0... to the person listed in the FOR FURTHER INFORMATION section of this notice. III. Current Actions The... as the total burden hours and burden costs supporting this information collection extension...

  19. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report

    SciTech Connect

    Not Available

    1985-01-01

    This progress report covers: harvest and conditioning following harvest; effects of ..gamma.. radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates). Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses. (DLC)

  20. Use of gamma radiation as a form of preservation of sweet potatoes

    NASA Astrophysics Data System (ADS)

    The effects of (GAMMA) radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates) are discussed. Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses.

  1. Comparison of antibodies raised against heat-and gamma radiation-killed bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For antibody generation, pathogenic bacteria are often heat-treated prior to inoculation into host animals in order to prevent infection and subsequently, premature death of the host. Inoculation of host rabbits with gamma radiation-killed pathogenic bacteria was employed with the hopes of generati...

  2. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  3. Inactivation of foodborne pathogens on crawfish tail meat using cryogenic freezing and gamma radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness outbreaks occasionally occur as a result of microbiologically contaminated crustaceans, including crawfish. Cryogenic freezing and gamma radiation are two technologies which can be used to improve the microbiological safety and shelf-life of foods. In the U.S. the majority of non-c...

  4. New Spherical Gamma-Ray and Neutron Emitting Sources for Testing of Radiation Detection Instruments

    PubMed Central

    Lucas, L.; Pibida, L.

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed new gamma-ray and neutron emitting sources for testing radiation detection systems. These radioactive sources were developed for testing of detection systems in maritime applications. This required special source characteristics. PMID:27504230

  5. The production and composition of rat sebum is unaffected by 3 Gy gamma radiation

    PubMed Central

    Lanz, Christian; Ledermann, Monika; Slavík, Josef; Idle, Jeffrey R.

    2013-01-01

    Purpose The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers. Materials and methods Rats were gamma-irradiated (3 Gy) or sham irradiated and groups of rats were euthanised at 1 h or 24 h post-irradiation. Sebum was collected by multiple washings of the carcasses with acetone. Nonpolar lipids were extracted, methylated, separated and quantitated using gas chromatography-mass spectrometry (GCMS). Metabolomic analysis of the GCMS data was performed using both orthogonal projection to latent structures-discriminant analysis and random forests machine learning algorithm. Results Irradiation did not alter sebum production. A total of 35 lipids were identified in rat sebum, 29 fatty acids, five fatty aldehydes, and cholesterol. Metabolomics showed that three fatty acids, palmitic, 2-hydroxypalmitic, and stearic acids were potential biomarkers. Sebaceous palmitic acid was marginally statistically significantly elevated (7.5–8.4%) at 24 h post-irradiation. Conclusions Rat sebaceous gland appears refractory to 3 Gy gamma-irradiation. Unfortunately, collection of sebum shortly after gamma-irradiation is unlikely to form the basis of high-throughput non-invasive radiation biodosimetry in man. PMID:21158499

  6. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    NASA Astrophysics Data System (ADS)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  7. Monte Carlo Calculations for Neutron and Gamma Radiation Fields on a Fast Neutron Irradiation Device

    NASA Astrophysics Data System (ADS)

    Vieira, A.; Ramalho, A.; Gonçalves, I. C.; Fernandes, A.; Barradas, N.; Marques, J. G.; Prata, J.; Chaussy, Ch.

    We used the Monte Carlo program MCNP to calculate the neutron and gamma fluxes on a fast neutron irradiation facility being installed on the Portuguese Research Reactor (RPI). The purpose of this facility is to provide a fast neutron beam for irradiation of electronic circuits. The gamma dose should be minimized. This is achieved by placing a lead shield preceded by a thin layer of boral. A fast neutron flux of the order of 109 n/cm2s is expected at the exit of the tube, while the gamma radiation is kept below 20 Gy/h. We will present results of the neutron and gamma doses for several locations along the tube and different thickness of the lead shield. We found that the neutron beam is very collimated at the end of the tube with a dominant component on the fast region.

  8. Orbital Observatory GLAST - New Step in the Study of Cosmic Gamma Radiation: Mission Overview

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2008-01-01

    This viewgraph presentation is a overview of the Gamma-ray Large Area Space Telescope (GLAST), now named Fermi Space Telescope. The new telescope is scheduled for launch in the middle of 2008. It contains the high energy gamma-ray telescope LAT (Large Area Telescope) and the GMB (GLAST Burst Monitor). The science objectives of GLAST cover almost every area of high energy astrophysics, including Active Galactic Nuclei (AGN), including Extragalactic background light (EBL), Gamma-ray bursts (GRB), Pulsars, Diffuse gamma-radiation, EGRET unidentified sources, Solar physics, Origin of Cosmic Rays and, Dark Matter and New Physics. Also included in this overview is a discussion of the preparation to the analysis of the science data.

  9. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  10. External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946-2008.

    PubMed

    Kreuzer, M; Dufey, F; Sogl, M; Schnelzer, M; Walsh, L

    2013-03-01

    It is currently unclear whether exposure of the heart and vascular system, at lifetime accumulated dose levels relevant to the general public (<500 mGy), is associated with an increased risk of cardiovascular disease. Therefore, data from the German WISMUT cohort of uranium miners were investigated for evidence of a relationship between external gamma radiation and death from cardiovascular diseases. The cohort comprises 58,982 former employees of the Wismut company. There were 9,039 recorded deaths from cardiovascular diseases during the follow-up period from 1946 to 2008. Exposures to external gamma radiation were estimated using a detailed job-exposure matrix. The exposures were based on expert ratings for the period 1946-1954 and measurements thereafter. The excess relative risk (ERR) per unit of cumulative gamma dose was obtained with internal Poisson regression using a linear ERR model with baseline stratification by age and calendar year. The mean cumulative gamma dose was 47 mSv for exposed miners (86 %), with a maximum of 909 mSv. No evidence for an increase in risk with increasing cumulative dose was found for mortality from all cardiovascular diseases (ERR/Sv = -0.13; 95 % confidence interval (CI): -0.38; 0.12) and ischemic heart diseases (n = 4,613; ERR/Sv = -0.03; 95 % CI: -0.38, 0.32). However, a statistically insignificant increase (n = 2,073; ERR/Sv = 0.44; 95 % CI: -0.16, 1.04) for mortality from cerebrovascular diseases was observed. Data on smoking, diabetes, and overweight are available for subgroups of the cohort, indicating no major correlation with cumulative gamma radiation. Confounding by these factors or other risk factors, however, cannot be excluded. In conclusion, the results provide weak evidence for an increased risk of death due to gamma radiation only for cerebrovascular diseases.

  11. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study.

    PubMed

    Erol, Fatih S; Topsakal, Cahide; Ozveren, M Faik; Kaplan, Metin; Ilhan, Nevin; Ozercan, I Hanifi; Yildiz, Oguz G

    2004-01-01

    Gamma radiation is known to cause serious damage in the brain, and many agents have been used for neuroprotection. In this study, lipid peroxidation levels and histopathological changes in brain tissues of whole-body irradiated rats with likely radiation injury were compared to those with melatonin and vitamin E protection. Forty rats in four equal groups were used. The control group received neither radiation nor medication. The remaining groups received doses of 720 cGy in two equal fractions 12 h apart. The second group received radiation but no medication, the third received radiation plus 100 mg/kg per day of vitamin E i.p., and the fourth received radiation plus 100 mg/kg per day of melatonin i.p. over 5 days. On the 10th postoperative day, all the rats were decapitated and specimens from parietal cortices were analyzed for tissue malondialdehyde (MDA) levels and histopathological changes. Increases in MDA were relatively well prevented by melatonin treatment but less so with vitamin E therapy. On histopathological examination, melatonin significantly reduced the rates of edema, necrosis, and neuronal degeneration, whereas vitamin E reduced only necrosis. Neither substance was capable of preventing vasodilatation. In conclusion, melatonin may be useful in preventing the pathological changes of secondary brain damage as a result of free oxygen radicals generated by irradiation.

  12. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  13. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  14. Gamma radiation sensitivity of foodborne pathogens on meat and poultry

    SciTech Connect

    Thayer, D.W.; Boyd, G.

    1994-12-31

    Several factors have been identified that may affect the responses of foodborne pathogens to ionizing radiation. Among these are the temperature and atmosphere during the process of irradiation; the medium in which the pathogen is suspended; and the genus, species, serovar, and physiological state of the organism. In addition to these factors, variations in {open_quotes}apparent{close_quotes} radiation sensitivity of bacteria may occur because of the incubation conditions and media used to estimate the number of surviving colony-forming units. Both incubation temperature and culture media frequently affect the ability of injured bacteria to recover. Because there are so many possible variables, it is often difficult to compare data on the radiation sensitivity of foodborne pathogens from different studies. The objectives of the studies reported here were to compare the radiation sensitivities of Bacillus cereus on beef, beef gravy, chicken, pork, and turkey; and of Escherichia coli 0157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus on beef, pork, lamb, turkey breast, and turkey leg meats. Examples of the effects of serovar, irradiation temperature, growth phase, and atmosphere during irradiation were also examined.

  15. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  16. CARBON FIBRE COMPOSITE MATERIALS PRODUCED BY GAMMA RADIATION INDUCED CURING OF EPOXY RESINS

    SciTech Connect

    Dispenza, C.; Spadaro, G.; Alessi, S.

    2008-08-28

    It is well known that ionizing radiation can initiate polymerization of suitable monomers for many applications. In this work an epoxy difunctional monomer has been used as matrix of a carbon fibre composite in order to produce materials through gamma radiation, for aerospace and advanced automotive applications. Radiation curing has been performed at different absorbed doses and, as comparison, also thermal curing of the same monomer formulations has been done. Furthermore some irradiated samples have been also subjected to a post irradiation thermal curing in order to complete the polymerization reactions. The properties of the cured materials have been studied by moisture absorption isotherms, dynamic mechanical thermal analysis and mechanical flexural tests.

  17. Gamma-irradiated onions as a biological indicator of radiation dose.

    PubMed

    Vaijapurkar, S G; Agarwal, D; Chaudhuri, S K; Senwar, K R; Bhatnagar, P K

    2001-10-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied.

  18. Response of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), eggs to gamma radiation

    NASA Astrophysics Data System (ADS)

    Silva, W. D.; Arthur, V.; Mastrangelo, T.

    2010-10-01

    As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae's cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD 90 and LD 99 were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile.

  19. Effects of Gamma and Electron Beam Radiation on Brazil Nuts Artificially Inoculated with Aspergillus flavus.

    PubMed

    Assunção, Ednei; Reis, Tatiana Alves; Baquião, Arianne Costa; Corrêa, Benedito

    2015-07-01

    The aim of this study was to evaluate the effects of gamma radiation (GR) and electron beam (EB) on Brazil nut samples contaminated with Aspergillus flavus. Fifty samples were spread with an A. flavus suspension and incubated at 30°C and a relative humidity of 93%. After 15 days of incubation, mycobiota and aflatoxin analysis were performed. The samples were divided into three groups (control, group 1, and group 2) that received radiation doses of 0 kGy (control) and 5 and 10 kGy each of GR and EB (groups 1 and 2). Noninoculated samples were irradiated with the same doses for sensory evaluation. The results showed that after 15 days of incubation, the average water activity of the samples was 0.80. The irradiation with GR and EB at doses of 5 and 10 kGy was able to eliminate A. flavus in Brazil nut samples. Aflatoxin analysis showed that EB doses of 5 and 10 kGy reduced aflatoxin B1 levels by 53.32 and 65.66%, respectively, whereas the same doses of GR reduced the levels of this toxin by 70.61 and 84.15% compared with the level in the control groups. Sensory evaluation demonstrated that the texture and odor of irradiated Brazil nut samples were acceptable. The taste evaluation indicated that 5 kGy of GR was judged acceptable. The results highlight that both irradiation processes (5- and 10-kGy doses) showed efficiency in A. flavus and aflatoxin elimination. GR and EB treatments resulted in some alterations in the sensory attributes of samples with the doses used in this study; however, Brazil nut samples irradiated with 5-kGy GR doses were considered acceptable.

  20. Modification of silicone sealant to improve gamma radiation resistance, by addition of protective agents

    NASA Astrophysics Data System (ADS)

    González-Pérez, Giovanni; Burillo, Guillermina

    2013-09-01

    Poly (dimethylsiloxane) (PDMS) sealant (SS) was modified with the addition of different protective compounds to conserve its physical-chemical properties during gamma irradiation. 2-Vinyl naphthalene (2-VN), bisphenol-A (BPA) and poly (vinyl carbazole) (PVK) were used to evaluate radiation protection through the crosslinking effect of radiation. The samples were irradiated with doses from 100 kGy to 500 kGy at room temperature in air, with a 60Co gamma source, and the changes in molecular weight, thermal behavior, elastic properties and infrared spectra (FTIR-ATR) absorbance analysis were determined. The molecular weight of unmodified silicone sealant increases with the absorbed dose because of crosslinking as predominant effect. However, the crosslinking effect was inhibited with the addition of protective agent due to the aromatic compounds present. Modified silicone sealant films present better radiation resistance than unmodified system.

  1. Removing Noises Induced by Gamma Radiation in Cerenkov Luminescence Imaging Using a Temporal Median Filter

    PubMed Central

    Li, Yang; Zhan, Yonghua; Kang, Fei; Wang, Jing

    2016-01-01

    Cerenkov luminescence imaging (CLI) can provide information of medical radionuclides used in nuclear imaging based on Cerenkov radiation, which makes it possible for optical means to image clinical radionuclide labeled probes. However, the exceptionally weak Cerenkov luminescence (CL) from Cerenkov radiation is susceptible to lots of impulse noises introduced by high energy gamma rays generating from the decays of radionuclides. In this work, a temporal median filter is proposed to remove this kind of impulse noises. Unlike traditional CLI collecting a single CL image with long exposure time and smoothing it using median filter, the proposed method captures a temporal sequence of CL images with shorter exposure time and employs a temporal median filter to smooth a temporal sequence of pixels. Results of in vivo experiments demonstrated that the proposed temporal median method can effectively remove random pulse noises induced by gamma radiation and achieve a robust CLI image. PMID:27648450

  2. Degradation in Thermal Properties and Morphology of Polyetheretherketone-Alumina Composites Exposed to Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Lawrence, Falix; Mishra, Satyabrata; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S. K.; Sampath Kumar, T. S.

    2012-07-01

    Sheets of polyetheretherketone (PEEK) and PEEK-alumina composites with micron-sized alumina powder with 5, 10, 15, 20, and 25% by weight were fabricated, irradiated with gamma rays up to 10 MGy and the degradation in their thermal properties and morphology were evaluated. The radicals generated during irradiation get stabilized by chain scission and crosslinking. Chain scission is predominant on the surface and crosslinking is predominant in the bulk of the samples. Owing to radiation damage, the glass transition temperature, T g increased for pure PEEK from 136 to 140.5 °C, whereas the shift in T g for the composites decreased with increase in alumina content and for PEEK-25% alumina, the change in T g was insignificant, as alumina acts as an excitation energy sink and reduces the crosslinking density, which in turn decreased the shift in T g towards higher temperature. Similarly, the melting temperature, T m and enthalpy of melting, Δ H m of PEEK and PEEK-alumina composites decreased on account of radiation owing to the restriction of chain mobility and disordering of structures caused by crosslinks. The decrease in T m and Δ H m was more pronounced in pure PEEK and the extent of decrease in T m and Δ H m was less for composites. SEM images revealed the formation of micro-cracks and micro-pores in PEEK due to radiation. The SEM image of irradiated PEEK-alumina (25%) composite showed negligible micro-cracks and micro-pores, because of the reinforcing effect of high alumina content in the PEEK matrix which helps in reducing the degradation in the properties of the polymer. Though alumina reduces the degradation of the polymer matrix during irradiation, an optimum level of ceramic fillers only have to be loaded to the polymer to avoid the reduction in toughness.

  3. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  4. The effect of gamma radiation on recombination frequency in Caenorhabditis elegans.

    PubMed

    Kim, J S; Rose, A M

    1987-06-01

    We have studied the effect of gamma radiation on recombination frequency for intervals across the cluster of linkage group I in Caenorhabditis elegans. Recombination frequency increased approximately twofold across the dpy-5-unc-13 interval after treatment with 2000 rads (1 rad = 10 mGy) of cobalt 60 gamma radiation. Several factors affecting the magnitude of the increase have been characterized. Recombination frequency increased more with higher doses of radiation. However, the increase in recombination frequency with increasing dose was accompanied by a reduced average number of progeny from radiation-treated individuals. The amount of the increase was affected by meiotic stage, age at the time of treatment (premeiotic), and radiation dose. The increase in recombination was detectable in the B brood and remained elevated for the remainder of egg production. X-chromosome nondisjunction was also increased by radiation treatment. A high frequency of the recombinant progeny produced with radiation treatment were sterile unlike their nonrecombinant siblings. When parameters affecting recombination frequency are held constant during treatment, chromosomal regions of high gene density on the meiotic map increased more (fourfold) than an adjacent region of low gene density (no increase). The greatest increase was across the dpy-14-unc-13 interval near the center of the gene cluster. These results may suggest that the physical length of DNA per map unit is greater within the cluster than outside.

  5. Determination of activity of 51Cr on gamma radiation measurements

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2017-01-01

    A method of determining the activity of intensive distributed -sources on the measurement of the continuous spectrum of radiation, for example the internal bremsstrahlung, is developed. The recurrent formula for reconstructing of a continuous spectrum, registered in a Ge detector, at distorting it in the detector. The method of precise measurements of the spectrum of 51Cr internal bremsstrahlung using two point sources of low activity is described.

  6. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  7. Cereal alkylresorcinols elevate gamma-tocopherol levels in rats and inhibit gamma-tocopherol metabolism in vitro.

    PubMed

    Ross, Alastair B; Chen, Yan; Frank, Jan; Swanson, Joy E; Parker, Robert S; Kozubek, Arkadiusz; Lundh, Torbjörn; Vessby, Bengt; Aman, Per; Kamal-Eldin, Afaf

    2004-03-01

    Alkylresorcinols (AR) are a class of amphiphilic phenolic lipids present in high amounts in wheat and rye bran. They have been reported to be both growth retarding and innocuous when fed to rats, and to have a broad range of bioactivities in vitro, suggested to be related to their ability to bind to proteins and modify membranes. This study was designed to test the effects of AR (purified from rye bran) on growth, tocopherol levels, and cholesterol levels in rats. Rats were fed 1 of 4 different levels of AR for 4 wk: 0 (control), 1, 2, and 4 g/kg diet. AR did not affect final body, liver, or lung weights. The AR diets increased the levels of gamma-tocopherol in liver and lungs (P < 0.05). To investigate whether AR could have increased gamma-tocopherol levels via inhibition of tocopherol-omega-hydroxylase, HepG2 cells were incubated with AR and the metabolism of gamma-tocopherol measured. AR significantly inhibited the conversion of gamma-tocopherol to its water-soluble hydroxychroman metabolite in vitro, indicating that AR may increase gamma-tocopherol levels via inhibition of tocopherol metabolism in vivo. The 4 g AR/kg diet decreased liver cholesterol (P < 0.001), but did not affect plasma lipids. AR were detected in the perirenal adipose tissue samples of rats fed AR, indicating that they can accumulate in the fatty tissues of rats. High levels of dietary AR moderately affect gamma-tocopherol, possibly via inhibition of tocopherol metabolism, and decrease liver cholesterol in rats.

  8. Evaluation of fungal burden and aflatoxin presence in packed medicinal plants treated by gamma radiation.

    PubMed

    Aquino, Simone; Gonçalez, Edlayne; Rossi, Maria Helena; Nogueira, Juliana Hellmeister de Campos; Reis, Tatiana Alves Dos; Corrêa, Benedito

    2010-05-01

    This study was developed to evaluate the fungal burden, toxigenic molds, and mycotoxin contamination and to verify the effects of gamma radiation in four kinds of medicinal plants stored before and after 30 days of irradiation treatment. Eighty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia, and Cassia angustifolia) purchased from drugstores, wholesale, and open-air markets in São Paulo city, Brazil, were analyzed. The samples were treated using a (60)Co gamma ray source (Gammacell) with doses of 5 and 10 kGy. Nonirradiated samples were used as controls of fungal isolates. For enumeration of fungi on medicinal plants, serial dilutions of the samples were plated in duplicate onto dichloran 18% glycerol agar. The control samples revealed a high burden of molds, including toxigenic fungi. The process of gamma radiation was effective in reducing the number of CFU per gram in all irradiated samples of medicinal plants after 30 days of storage, using a dose of 10 kGy and maintaining samples in a protective package. No aflatoxins were detected. Gamma radiation treatment can be used as an effective method for preventing fungal deterioration of medicinal plants subject to long-term storage.

  9. Development and characterization of the integrated fiber-optic radiation sensor for the simultaneous detection of neutrons and gamma rays.

    PubMed

    Jang, Kyoung Won; Lee, Bong Soo; Moon, Joo Hyun

    2011-04-01

    Sometimes, detection of thermal neutrons in the presence of gamma rays is required. This study developed and characterized an integrated fiber-optic radiation sensor for the simultaneous detection of thermal neutrons and gamma rays in a mixed radiation field. The performance of the integrated sensor was verified by measuring the distributions of thermal neutrons and gamma rays released from a nuclear fuel rod at the Kyoto University Critical Assembly. The experimental results show that the integrated sensor produced similar distribution patterns to those of thermal neutrons and gamma rays released from a fuel rod.

  10. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  11. The COS-B experiment and mission. [high energy extraterrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The COS-B satellite carries a single experiment, capable of detecting gamma rays with energies greater than 30 MeV to study the spatial, energy, and time characteristics of high-energy radiation of galactic and extragalactic origin. The capability to search for gamma ray pulsations is enhanced by the inclusion in the payload of a proportional counter sensitive of X-rays of 2 to 12 keV. The experiment was calibrated using particle accelerators. The results of these measurements are presented, and the performance of the system in orbit is discussed.

  12. Gamma radiation in the reduction of S almonella spp. inoculated on minimally processed watercress ( Nasturtium officinalis)

    NASA Astrophysics Data System (ADS)

    Martins, C. G.; Behrens, J. H.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B.; Landgraf, M.

    2004-09-01

    Consumer attitudes towards foods have changed in the last two decades increasing requirements for freshlike products. Consequently, less extreme treatments or additives are being required. Minimally processed foods have freshlike characteristics and satisfy this new consumer demand. Besides freshness, the minimally processing also provide convenience required by the market. Salad vegetables can be source of pathogen such as Salmonella, Escherichia coli O157:H7, Shigella spp. The minimal processing does not reduce the levels of pathogenic microorganisms to safe levels. Therefore, this study was carried out in order to improve the microbiological safety and the shelf-life of minimally processed vegetables using gamma radiation. Minimally processed watercress inoculated with a cocktail of Salmonella spp was exposed to 0.0, 0.2, 0.5, 0.7, 1.0, 1.2 and 1.5 kGy. Irradiated samples were diluted 1:10 in saline peptone water and plated onto tryptic soy agar that were incubated at 37°C/24 h. D 10 values for Salmonella spp. inoculated in watercress varied from 0.29 to 0.43 kGy. Therefore, a dose of 1.7 kGy will reduce Salmonella population in watercress by 4 log 10. The shelf-life was increased by 1 {1}/{2} day when the product was exposed to 1 kGy.

  13. Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system.

    PubMed

    Cao, Yi; Xu, Qian; Jin, Zong-Da; Zhang, Jun; Lu, Min-Xia; Nie, Ji-Hua; Tong, Jian

    2010-01-01

    Exposure of humans simultaneously to microwave and gamma-ray irradiation may be a commonly encountered phenomenon. In a previous study data showed that low-dose microwave radiation increased the survival rate of mice irradiated with 8Gy gamma-ray; however, the mechanisms underlying these findings remain unclear. Consequently, studies were undertaken to examine the effects of microwave exposure on hematopoietic system adversely altered by gamma-ray irradiation in mice. Preexposure to low-dose microwaves attenuated the damage produced by gamma-ray irradiation as evidenced by less severe pathological alterations in bone marrow and spleen. The protective effects of microwaves were postulated to be due to up-expression of some hematopoietic growth factors, stimulation of proliferation of the granulocyte-macrophages in bone marrow, and inhibition of the gamma-ray induced suppression of hematopoietic stem cells/hematopoietic progenitor cells. Data thus indicate that prior exposure to microwaves may be beneficial in providing protection against injuries produced by gamma-ray on the hematopoietic system in mice.

  14. Identification and control of spacecraft radiation sources of interference to X-ray and gamma-ray experiments

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.

    1972-01-01

    Apollo 15 and 16 will carry instruments for the purpose of measuring X-ray and gamma ray fluxes from the lunar surface and in cis-lunar space. The intensity levels expected are low over most of the energy range of interest, requiring that background contributions be minimized. The radiation sources on Apollo determined and their interference with these instruments evaluated. The results were used as a basis for dealing with this problem and for recommendations applicable to future manned and unmanned missions.

  15. Development of a low-level background gamma-ray spectrometer by KRISS.

    PubMed

    Lee, K B; Park, Tae Soon; Lee, Jong Man; Oh, Phil-Je; Lee, Sang-Han

    2008-01-01

    A new low-level background and high-efficiency gamma-ray spectrometric system, to be used mainly for the activity certification of natural-matrix certified reference materials (CRMs) and environmental reference materials (RMs) that has been developed on the grounds of the Korea Research Institute of Standards and Science (KRISS). The spectrometer consists of a low-background high-purity germanium detector with a relative efficiency of 120% and various shielding devices to reduce radiation background. The cabinet-shaped device made of 10ton of shielding materials encloses the germanium detector for protection against background from natural radioactivity and neutrons. Three plates of 50-mm-thick plastic scintillation detectors on top of the passive shielding cabinet suppress cosmogenic background by detecting high-energetic cosmic muons bombarding the germanium detector. The measured background rate of the spectrometer for the energy range 50-3000keV was 1.72s(-1).

  16. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    SciTech Connect

    Fokapic, S.; Bikit, I.; Mrda, D.; Veskovic, M.; Slivka, J.; Mihaljev, Z.; Cupic, Z.

    2007-04-23

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450 deg. C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  17. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    NASA Astrophysics Data System (ADS)

    Fokapić, S.; Bikit, I.; Mrđa, D.; Vesković, M.; Slivka, J.; Mihaljev, Ž.; Ćupić, Ž.

    2007-04-01

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450°C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  18. Foods for a Mission to Mars: Investigations of Low-Dose Gamma Radiation Effects

    NASA Technical Reports Server (NTRS)

    Gandolph, J.; Shand, A.; Stoklosa, A.; Ma, A.; Weiss, I.; Alexander, D.; Perchonok, M.; Mauer, L. J.

    2007-01-01

    Food must be safe, nutritious, and acceptable throughout a long duration mission to maintain the health, well-being, and productivity of the astronauts. In addition to a developing a stable pre-packaged food supply, research is required to better understand the ability to convert edible biomass into safe, nutritious, and acceptable food products in a closed system with many restrictions (mass, volume, power, crew time, etc.). An understanding of how storage conditions encountered in a long-term space mission, such as elevated radiation, will impact food quality is also needed. The focus of this project was to contribute to the development of the highest quality food system possible for the duration of a mission, considering shelf-stable extended shelf-life foods, bulk ingredients, and crops to be grown in space. The impacts of space-relevant radiation doses on food, bulk ingredient, and select candidate crop quality and antioxidant capacity were determined. Interestingly, increasing gamma-radiation doses (0 to 1000 Gy) did not always increase dose-related effects in foods. Intermediate radiation doses (10 to 800Gy) often had significantly larger impact on the stability of bulk ingredient oils than higher (1000Gy) radiation doses. Overall, most food, ingredient, and crop systems investigated showed no significant differences between control samples and those treated with 3 Gy of gamma radiation (the upper limit estimated for a mission to Mars). However, this does not mean that all foods will be stable for 3-5 years, nor does it mean that foods are stable to space radiation comprising more than gamma rays.

  19. Measurements of longitudinal gamma ray distribution using a multichannel fiber-optic Cerenkov radiation sensor

    NASA Astrophysics Data System (ADS)

    Shin, S. H.; Jeon, D.; Kim, J. S.; Jang, J. S.; Jang, K. W.; Yoo, W. J.; Moon, J. H.; Park, B. G.; Kim, S.; Lee, B.

    2014-11-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, Cerenkov radiation can also be generated due to the fiber’s dielectric components. Accordingly, the radiation-induced light signals can be obtained using the optical fibers without any scintillating material. In this study, we fabricated a multichannel, fiber-optic Cerenkov radiation sensor (FOCRS) system using silica optical fibers (SOFs), plastic optical fibers (POFs), an optical spectrometer, multi-anode photomultiplier tubes (MA-PMTs) and a scanning system to measure the light intensities of Cerenkov radiation induced by gamma rays. To evaluate the fading effects in optical fibers, the spectra of Cerenkov radiation generated in the SOFs and POFs were measured based on the irradiation time by using an optical spectrometer. In addition, we measured the longitudinal distribution of gamma rays emitted from the cylindrical type Co-60 source by using MA-PMTs. The result was also compared with the distribution of the electron flux calculated by using the Monte Carlo N-particle transport code (MCNPX).

  20. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  1. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  2. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  3. Effect of pretreatment with cysteamine on gamma-radiation-induced sister chromatid exchanges in mouse bone marrow cells in vivo

    SciTech Connect

    Mendiola-Cruz, M.T.; Morales-Ramirez, P.

    1989-04-01

    The effect of pretreatment with cysteamine on gamma-radiation-induced sister chromatid exchanges (SCEs) and on the mitotic index and average generation time was determined. Groups of mice were treated in one of the following regimens: (1) irradiated, (2) treated with cysteamine and irradiated, (3) treated with cysteamine only, or (4) left untreated. Intraperitoneal administration of cysteamine preceding gamma-radiation exposure protected against SCE induction. However, radioprotection was not reflected by change in the mitotic index or in the average generation time. The results suggest that, under the experimental conditions of this study, the SCEs are caused by free radicals produced by gamma radiation, but not the additional damage indices measured.

  4. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    SciTech Connect

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S.; Ratnayake, A.; Robinson, J.

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  5. Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull

    NASA Astrophysics Data System (ADS)

    Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

    2011-09-01

    The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

  6. Detection of galactic Al-26 gamma radiation by the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Forrest, D. J.; Chupp, E. L.; Rieger, E.

    1985-01-01

    The Solar Maximum Mission satellite's gamma-ray spectrometer has detected a line near 1.81 MeV in each of the three years (1980-1982) over which the Galactic center traversed the broad aperture of that instrument. No significant intensity variation is noted over this period. The Galactic center/anticenter intensity ratio is greater than 2.5, and the center of the emission is noted to be consistent with the location of the Galactic center. For an assumed source distribution which follows the more than 100 MeV Galactic gamma radiation, the total flux in the direction of the Galactic center and the measured energy of the line are consistent with the detection of a narrow gamma-ray line from interstellar Al-26 by HEAO 3 in 1979-1980.

  7. Transcription profile of DNA damage response genes at G₀ lymphocytes exposed to gamma radiation.

    PubMed

    Saini, Divyalakshmi; Shelke, Shridevi; Mani Vannan, A; Toprani, Sneh; Jain, Vinay; Das, Birajalaxmi; Seshadri, M

    2012-05-01

    Ionizing radiation induces a plethora of DNA damages in human cells which may alter the level of mRNA expression. We have analyzed mRNA expression profile of DNA damage response genes involved in G(0)/G(1) check point pathway in whole blood to assess their radio-adaptive response, if any, to gamma radiation. Blood samples were collected from twenty-five random, normal, and healthy male donors with written informed consent and irradiated at doses between 0.1 and 2.0 Gy (0.7 Gy/min). DNA strand breaks were studied using comet assay, whereas DNA double-strand breaks were visualized using γH2AX as a biomarker. Dose response if any, at transcriptional level was studied for all these dose groups at 1 and 5-h post-irradiation. Adaptive response at transcriptional level was studied at three different priming doses (0.1, 0.3, and 0.6 Gy) separately followed by a challenging dose of 2.0 Gy after 4 h. For both the experiments, total RNA was isolated from PBMCs obtained from irradiated whole blood and reverse transcribed to cDNA. The level of mRNA expression of ATM, ATR, GADD45A, CDKN1A, P53, CDK2, MDM2, and Cyclin E was studied using real-time quantitative PCR. A significant dose-dependant increase in the percentage of DNA damage in tail was observed using comet assay. Similarly, increased number of foci was observed at γH2AX with increasing dose. At transcriptional level, a significant dose-dependent up-regulation at GADD45A, CDKN1A, and P53 genes up to 1.0 Gy was observed at 5-h post-irradiation (P ≤ 0.05). Radio-adaptive response at mRNA expression level was observed at CDK2, Cyclin E, and P53, whereas ATM, ATR, GADD45A, MDM2, ATM, and ATR have not shown any radio-adaptive changes in the expression profile. DNA damage response genes involved in G(0)/G(1) checkpoint pathway has important implications in terms of radiosensitivity in vivo and changes in the transcriptional profile might throw some new insights to understand the mechanism of adaptive response.

  8. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action.

    PubMed

    Wang, Hong; Sethi, Gautam; Loke, Weng-Keong; Sim, Meng-Kwoon

    2015-01-01

    ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely

  9. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action

    PubMed Central

    Wang, Hong; Sethi, Gautam; Loke, Weng-Keong; Sim, Meng-Kwoon

    2015-01-01

    ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely

  10. Effects of gamma radiation on Clostridium botulinum type E under various parameters

    SciTech Connect

    Lim, Y.H.

    1986-01-01

    Spores of Clostridium botulinum type E strain Eklund (Eklund) was irradiated with gamma radiation and its recovery was tested on the tryptone-peptone-glucose-yeast extract-agar (TPGYA) containing various levels of NaCl and Na-thioglycollate. The presence of 0.5% or more NaCl in the media decreased the viable counts, while Na-thioglycollate of up to 0.15% did not affect the recovery of both irradiated and non-irradiated spores. Eklund spores were also irradiated under air (21% O/sub 2/), N/sub 2/O and N/sub 2/, with or without the additive of one of the following agents (additive/concentration): disodium ethylenediaminetetraacetate (EDTA), 0.01 M; t-butanol, 0.1 M; NaCl, 0.01 M; catalyze, 10 mg/ml and DL-cysteine, 0.1 mM. Radiation process was most effective in destroying the spores when carried out under air (21% O/sub 2/), followed by N/sub 2/O and N/sub 2/. Among the additives tested, EDTA was the most efficient protector followed by t-butanol when irradiation process was carried under N/sub 2/O and N/sub 2/ gas environment. Catalase and DL-cysteine sensitized the spores when irradiated under N/sub 2/O and N/sub 2/, while NaCl only sensitized under N/sub 2/. Spores kept frozen at -75/sup 0/C for 30 days but thawed prior to irradiation were more sensitive to radiation damage than freshly prepared spores. Radiation resistance of the spores increased when 15% glycerol was added to the phosphate bugger (0.06 M, pH 7.0) and used as suspending media. When the concentration of the spore increased from 10/sup 6//ml to 10/sup 11//ml, the radiosensitivities also increased. Seven strains of C. botulinum type E were screened for plasmids by agarose gel electrophoresis.

  11. Three-dimensional radiation dosimetry for gamma knife using a gel dosimeter

    NASA Astrophysics Data System (ADS)

    Hussain, Kazi Muazzam

    The use of three-dimensional radiation dosimetry has been limited. With the use of water phantoms and ionization chambers, it has been possible to determine three dimensional dose distributions on a gross scale for cobalt 60 and linear accelerator sources. This method has been somewhat useful for traditional radiotherapy. There is, however, a need for more precise dosimetry, particularly with stereotactic radiosurgery. Most gamma knife facilities use either thermoluminescant dosimetry or film, neither of which provides three dimensional dose distributions. To overcome this limitation, we have developed a gel dosimetry system that relies on the production of a ferric ion-xylenol orange colored complex. This work demonstrates the use of laser light and a detector to quantify radiation-induced colorimetric changes in absorbance for the gel dosimeter. The absorbance has been reconstructed by the back projection technique to demonstrate the applicability of the gel dosimeter to gamma knife 3D-dose distributions.

  12. A new natural gamma radiation measurement system for marine sediment and rock analysis

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.; Blum, P.; Chubarian, G.; Olsen, R.; Bennight, C.; Cobine, T.; Fackler, D.; Hastedt, M.; Houpt, D.; Mateo, Z.; Vasilieva, Y. B.

    2011-11-01

    A new high-efficiency and low-background system for the measurement of natural gamma radioactivity in marine sediment and rock cores retrieved from beneath the seabed was designed, built, and installed on the JOIDES Resolution research vessel. The system includes eight large NaI(Tl) detectors that measure adjacent intervals of the core simultaneously, maximizing counting times and minimizing statistical error for the limited measurement times available during drilling expeditions. Effect to background ratio is maximized with passive lead shielding, including both ordinary and low-activity lead. Large-area plastic scintillator active shielding filters background associated with the high-energy part of cosmic radiation. The new system has at least an order of magnitude higher statistical reliability and significantly enhances data quality compared to other offshore natural gamma radiation (NGR) systems designed to measure geological core samples. Reliable correlations and interpretations of cored intervals are possible at rates of a few counts per second.

  13. Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro

    PubMed Central

    Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

  14. Thermal, mechanical and ionic conductive behaviour of gamma-radiation induced PEO/PVDF(SIN)-LiClO 4 polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Song, Yongxian; Wu, Shuyun; Jing, Xiabing; Sun, Jiazhen; Chen, Donglin

    1997-05-01

    An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO 4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10 7 Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10 -4 S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity. In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium.

  15. An integrated systems approach for understanding cellular responses to gamma radiation.

    PubMed

    Whitehead, Kenia; Kish, Adrienne; Pan, Min; Kaur, Amardeep; Reiss, David J; King, Nichole; Hohmann, Laura; DiRuggiero, Jocelyne; Baliga, Nitin S

    2006-01-01

    Cellular response to stress entails complex mRNA and protein abundance changes, which translate into physiological adjustments to maintain homeostasis as well as to repair and minimize damage to cellular components. We have characterized the response of the halophilic archaeon Halobacterium salinarum NRC-1 to (60)Co ionizing gamma radiation in an effort to understand the correlation between genetic information processing and physiological change. The physiological response model we have constructed is based on integrated analysis of temporal changes in global mRNA and protein abundance along with protein-DNA interactions and evolutionarily conserved functional associations. This systems view reveals cooperation among several cellular processes including DNA repair, increased protein turnover, apparent shifts in metabolism to favor nucleotide biosynthesis and an overall effort to repair oxidative damage. Further, we demonstrate the importance of time dimension while correlating mRNA and protein levels and suggest that steady-state comparisons may be misleading while assessing dynamics of genetic information processing across transcription and translation.

  16. Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation

    SciTech Connect

    Gazizov, I. M.; Zaletin, V. M.; Kukushkin, V. M.; Khrunov, V. S.

    2011-05-15

    The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence of the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.

  17. Effect of exposure to low-dose [gamma] radiation during late organogenesis in the mouse fetus

    SciTech Connect

    Devi, P.U.; Baskar, R.; Hande, M.P. )

    1994-04-01

    The adominal region of pregnant Swiss mice was exposed to 0.05 to 0.50 of [gamma] radiation on day 11.5 postcoitus. The animals were sacrificed on day 18 gestation and the fetuses were examined for mortality, growth retardation, changes in head size and brain weight, and incidence of microphthalmia. No marked increase in fetal mortality or growth retardation was observed below 0.25 Gy; the increase in these parameters was significant only at 0.50 Gy. A significant reduction in head size and brain weight and a significant increase in the incidence of microphthalmia were observed at doses above 0.15 Gy. Detectable levels of microcephaly and microphthalmia were evident even at 0.10 Gy. A linear dose response was seen for these effects in the dose range of 0.05 to 0.15 Gy. It is concluded that the late period of organogenesis in the mouse, especially between days 10 and 12 postcoitus, is a particularly sensitive phase in the development of the skull, brain and eye. 21 refs., 4 figs., 4 tabs.

  18. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  19. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Margutti, Raffaella; Begelman, Mitchell C.

    2013-03-10

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  20. Radiation effects on rat testes. IX. Studies on oxidative enzymes after partial body gamma irradiation.

    PubMed

    Gupta, G S; Bawa, S R

    1975-08-01

    Oxidative enzymes in the rat testes have been studied after gamma irradiation. The role of these enzymes in relation to spermatogenesis and steroidogenesis after radiation injury to testis has been discussed. Loss of succinic dehydrogenase and sorbitol dehydrogenase reflects the losts of germ cell population. Malic enzyme and malic dehydrogenase seem to the related to the deficiency of steroid hormones, whereas increase in glucose-6-phosphate dehydrogenase and NADP isocitric dehydrogenase is due to secondary stimulation of pituitary.

  1. Sewage sludge pasteurization by gamma radiation: A Canadian demonstration project — 1988-91

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Wilson, Bruce K.

    Nordion International Inc. and a Canadian city, in cooperation with the Federal & Provincial Ministries of the Environment, began a project in 1988 to construct and operate a commercial-scale sewage sludge pasteurization facility using gamma radiation technology. The facility is scheduled to begin operations in 1991. This paper discusses the objectives and scope of the project, the design of the irradiation system, and the plans to market the pasteurized sludge as a high-value, organic soil conditioner and fertilizer.

  2. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  3. Gamma-radiation-induced wood-plastic composites from Syrian tree species

    NASA Astrophysics Data System (ADS)

    Bakraji, Elias Hanna; Salman, Numan; Al-kassiri, Haroun

    2001-05-01

    Wood-plastic composites (WPC) have been prepared with five low-grade woods, native to Syria, using three monomer systems; acrylamide, butylmethacrylate, and styrene, with methanol as the swelling solvent. Polymerization was induced at various radiation doses (10, 20, and 30 kGy) at a dose rate of 3.5 kGy/h using a 60Co gamma radiation source. Some physical properties of WPC, namely polymer loading and compression strength have been measured. The polymer loading decreases approximately with increasing density of the wood species used.

  4. Isomerization of 1,4-dioxane under the effect of {gamma}-radiation

    SciTech Connect

    Dan, A.V.; Kruglov, D.E.; Pastushenko, E.V.; Shostenko, A.G.

    1992-09-01

    Data were presented previously on the composition of products of {gamma}-radiolysis of 1,4-dioxane. The main products are called H{sub 2} and a polymer, the radiation yield of which does not exceed 1.5-3.5 molecules per 100 eV. Gaseous hydrocarbons and CO were identified in small amounts. The authors studied in detail the reaction mixture obtained as a result of radiation-chemical transformations of 1,4-dioxane (reaction time 10-15 h and temperature 130-150{degrees}C) by chromatography-mass spectrometry.

  5. Comparison of radiation damage in lead tungstate crystals under pion and gamma irradiation

    SciTech Connect

    Batarin, V.A.; Butler, J.; Davidenko, A.M.; Derevschikov, A.A.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Lukanin, V.S.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Nogach, L.V.; Ryazantsev, A.V.; /Serpukhov, IHEP /Fermilab /Minnesota U. /Syracuse U. /Nanjing U.

    2003-12-01

    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40 GeV pion beam. After full recovery, the same crystals were irradiated using a {sup 137}Cs {gamma}-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.

  6. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOEpatents

    Condreva, K.J.

    1997-01-14

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  7. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOEpatents

    Condreva, Kenneth J.

    1997-01-01

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  8. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    SciTech Connect

    Faustov, A V; Mégret, P; Wuilpart, M; Kinet, D; Gusarov, A I; Zhukov, A V; Novikov, S G; Svetukhin, V V; Fotiadi, A A

    2016-02-28

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ∼100 kGy, the shift is ∼20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing. (laser crystals and braggg ratings)

  9. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  10. Properties of radiation cured vinyl-divinyl copolymers. [Gamma rays

    SciTech Connect

    Micko, M.M.; Paszner, L.

    1980-04-01

    Analysis of compression stress-strain curves of radiation-cured vinyl methacrylate copolymers shows that addition of small concentrations of vinyl comonomers significantly alter all mechanical strength properties in compression. Stress-strain behavior is found to be a function of the copolymer composition. Best strength results are limited to a narrow comonomer concentration region; between 5 to 10% of divinyl monomer (DVM) for the four systems studied. This concentration range broadens with increasing molecular bridge length of the crosslinking agent being narrowest for ethylene glycol dimethylacrylate and broadest for tetraethylene glycol dimethacrylate. Copolymer connection number (CN/sub co/), as introduced earlier, is found to be useful structural parameter for crosslinked copolymers in that it correlates quantitatively mechanical or thermomechanical properties with crosslink densities within copolymers. The Methyl methacrylate-TEGDMA comonomer system was found to be the most suitable and economically attractive. It represents a well balanced compromise of improved polymerization parameters and copolymer properties desirable in many polymeric products. 9 figures, 2 tables.

  11. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro.

    PubMed

    Srinivasan, M; Sudheer, A Ram; Pillai, K Raveendran; Kumar, P Raghu; Sudhakaran, P R; Menon, V P

    2007-04-01

    The present study was designed to evaluate the radioprotective effect of lycopene, a naturally occurring dietary carotenoid, on gamma-radiation induced toxicity in cultured rat hepatocytes. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), ceruloplasmin, vitamins A, E, C and uric acid. The DNA damage was analysed by single cell gel electrophoresis (comet assay). The increase in the severity of DNA damage was observed with the increase in gamma-radiation dose (1, 2 and 4 Gy) in cultured rat hepatocytes. TBARS were increased significantly whereas the levels of GSH, vitamins C, E and A, ceruloplasmin, uric acid and antioxidant enzymes were significantly decreased in gamma-irradiated groups. The maximum damage to hepatocytes was observed at 4 Gy irradiation. Pretreatment with lycopene (1.86, 9.31 and 18.62 microM) showed a significant decrease in the levels of TBARS and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH, vitamins A, E, C, uric acid and ceruloplasmin. The maximum protection of hepatocytes was observed at 9.31 muM of lycopene pretreatment. Thus, our results show that pretreatment with lycopene offers protection against gamma-radiation induced cellular damage and can be developed as an effective radioprotector during radiotherapy.

  12. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    NASA Astrophysics Data System (ADS)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  13. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  14. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  15. Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Teo, W. R.; Moritaka, Toseo; Takabe, H.

    2016-05-01

    Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2 ×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.

  16. Branching Fractions and CP-Violating Asymmetries in Radiative B Decays to eta K gamma

    SciTech Connect

    Aubert, B.

    2008-05-14

    The authors present measurements of the CP-violation parameters S and C for the radiative decay B{sup 0} {yields} {eta}K{sub S}{sup 0}{gamma}; for B {yields} {eta}K{gamma} they also measure the branching fractions and for B{sup +} {yields} {eta}K{sup +}{gamma} the time-integrated charge asymmetry {Alpha}{sub ch}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation. The results are S = -0.18{sub -0.46}{sup +0.49} {+-} 0.12, C = -0.32{sub -0.39}{sup +0.40} {+-} 0.07, {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = (7.1{sub -2.0}{sup +2.1} {+-} 0.4) x 10{sup -6}, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = (7.7 {+-} 1.0 {+-} 0.4) x 10{sup -6}, and {Alpha}{sub ch} = (-9.0{sub -9.8}{sup +10.4} {+-} 1.4) x 10{sup -2}. The first error quoted is statistical and the second systematic.

  17. Celestial diffuse gamma radiation above 30 MeV observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1973-01-01

    The Small Astronomy Satellite (SAS)-2, launched on November 15, 1972, carried into orbit a 32-deck magnetic-core digitized spark chamber gamma ray telescope to study celestial gamma radiation in the energy range above 30 MeV. In the study of several regions with b sub 2 15 deg, a finite, diffuse flux of gamma rays with a steep energy spectrum in the energy region from 35 to 200 MeV is observed. Representing the energy spectrum by a power law of the form dJ/dE = AE to - alpha power over this energy range, alpha is found along with the integral flux above 100 MeV. Combining this result with existing low energy gamma ray data yields an energy spectrum which is not a simple power law in energy, as in the X-ray region, but which demonstrates first an increase and then a decrease in slope, consistent within uncertainties with that predicted by cosmological theories, including the continuous production of high energy gamma rays primarily from neutral pi mesons throughout the history of the universe.

  18. Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.

    PubMed

    Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A

    2017-02-01

    A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters.

  19. SAS-2 observations of the galactic gamma radiation from the Vela region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

    1974-01-01

    Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays.

  20. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body.

    PubMed

    Pattison, John E; Hugtenburg, Richard P; Green, Stuart

    2010-04-06

    Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500-1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1-10, it is considerably smaller than that suggested previously.

  1. Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body

    PubMed Central

    Pattison, John E.; Hugtenburg, Richard P.; Green, Stuart

    2010-01-01

    Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500–1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1–10, it is considerably smaller than that suggested previously. PMID:19776147

  2. Impact of gamma radiation on the eruption rate of rat incisors

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; El-Haddad, Khaled; Ali, Mohamed; Talaat, Mona

    2015-09-01

    The present work aims to test the effect of gamma radiation on the rate of eruption of rat incisors. One hundred and five adult male albino rats were used and irradiated at different gamma doses. The effects of irradiation were investigated by numerical measurements of eruption rate, histological investigation using light microscope and spectral analysis using Fourier Transform Infra-Red (FTIR). No detectable changes were observed in the groups with smaller radiation doses. There was a significant decrease in the eruption rate starting from the 4 Gy radiation dose. The observation of histological sections revealed disturbance in cellular elements responsible for eruption as well as periodontal disturbance in the samples irradiated with 4 and 6 Gy. FTIR Spectroscopy of control group and the group irradiated by 0.5 Gy showed similar absorption bands with minor differences. However, samples irradiated by 1 Gy showed significant changes in both molecular structure and conformation related to carbonates and hydroxyl groups. From the previous results, it could be concluded that gamma irradiation negatively affects the eruption rate of the rat incisors especially with higher doses.

  3. The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1991-01-01

    The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

  4. Gamma radiation effects on some properties of YBCO

    NASA Astrophysics Data System (ADS)

    Luo, L.; Zhang, Y. H.; Hu, S. H.; Liu, W. H.; Zhang, G. L.; Hu, W. X.

    1991-07-01

    Radiation effects of polycrystalline YBCO bulk sample irradiated by 60Co γ-rays, dose of 1×10 6 up to 7.5×10 8 rad, at room temperature on critical temperature and critical current were investigated. IR spectrum was also used to study the mechanism of the irradiation. A considerably strong dependence of these parameters upon the irradiation dose was observed. No significant effects on the critical temperature were found, but the critical current in zero magnetic field changed greatly. It shows a tendency to decrease with the increase of the irradiation dose except for a slight increase with the dose less than about 2×10 7 rad and no simple relations between critical currents and irradiation doses was found. A typical case is that the critical current is reduced to about 60% when the dose reaches 5×10 9 rad, but the dependence of critical currents on the magnetic field shows that the critical currents are higher than those of the unirradiated one in the range of magnetic field higher than 100 G and decrease more slowly in a magnetic field compared with the unirradiated one. The results indicate that the defects produced by γ-ray irradiation are beneficial to flux pinning in higher fields. IR spectra analysis reveals that the intensity of the peak responsible for the Cu(1)- O(1) chain vibration is decreased, indicating that the bond of the Cu(1)-O(1) may be partly broken through collision process of the Compton electron produced by the γ-ray. This effect probably gives rise to a decrease of the critical currents.

  5. Radiation Resistance Study of Semi-Insulating GaAs-Based Radiation Detectors to Extremely High Gamma Doses

    NASA Astrophysics Data System (ADS)

    Ly Anh, T.; Perd'ochová, A.; Nečas, V.; Pavlicová, V.

    2006-01-01

    In our previous paper [V. Nečas et al.: Nucl. Inst. and Meth. A 458 (2001) 348-351] we reported on the study on radiation stability of semi-insulating (SI) LEG GaAs detectors to doses of photons from 60Co up to 19.2 kGy. Later we presented a study, which covered radiation hardness to the same doses on the base of detector material itself, where strong dependence has been proved [T. Ly Anh et al., Proceedings of the XII th International Conference on Semiconducting and Insulating Materials (SIMC-XII-2002). Smolenice Castle, Slovakia (2002) 292-295 (0-7803-7418-5)]. In this paper we present both the key electrical and detection characteristics of SI GaAs radiation detectors prepared using substrates from four various supplies and two different types of contacts, which were exposed to several gamma doses from 60Co up to the integral dose of about 1 MGy. The obtained results show that SI LEG GaAs detectors provide good spectroscopic performances and even their slight improvement after low to middle gamma irradiation doses (3 -10 kGy) was observed. Further dose exposure caused the degradation of detection properties with an extreme and following improvement depending on detector material properties. SI GaAs detector still retains its working capabilities even after very high doses applied, up to 1 MGy.

  6. Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes.

    PubMed

    Prasad, N Rajendra; Srinivasan, M; Pugalendi, K V; Menon, Venugopal P

    2006-02-28

    In this study we examined radioprotective effect of ferulic acid (FA) on gamma radiation-induced dicentric aberration and lipid peroxidation with reference to alterations in cellular antioxidant status in cultured lymphocytes. To establish most effective protective support we used three different concentrations of FA (1, 5 and 10 microg/ml) and three different doses of gamma-radiation (1, 2 and 4 Gy). Treatment of lymphocytes with FA alone (at 10 microg/ml) gave no significant change in micronuclei (MN), dicentric aberration (DC), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) or glutathione peroxidase (GPx) activities when compared with normal lymphocytes; irradiation at 1, 2 and 4 Gy increased the MN and DC frequencies in a dose-dependent manner. Treatment with FA for 30 min before radiation exposure resulted in a significant decline of MN and DC yields as FA concentration increased. Compared to 1 Gy exposure alone, the extent to which FA (1 microg/ml) reduced the MN and DC yields was 75% and 50%, respectively. With 4 Gy irradiation, FA (10 microg/ml) decreased 45% MN and 25% DC frequencies. FA-pretreated lymphocytes (1, 5 and 10 microg/ml) showed progressively decreased TBARS levels after irradiation. Irradiation (1, 2 and 4 Gy) significantly decreased GSH levels, SOD, CAT and GPx activities in a dose-dependent manner. Pretreatment with 10 microg/ml of FA significantly (p<0.05) prevented the decreases in the radiation-induced GSH, SOD, CAT and GPx activities. These findings suggest potential use and benefit of FA as a radioprotector.

  7. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    SciTech Connect

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slight enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.

  8. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  9. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  10. Tracking Human Adenovirus Inactivation by Gamma Radiation under Different Environmental Conditions

    PubMed Central

    Pimenta, Andreia I.; Guerreiro, Duarte; Madureira, Joana; Margaça, Fernanda M. A.

    2016-01-01

    ABSTRACT Adenovirus is the most prevalent enteric virus in waters worldwide due to its environmental stability, which leads to public health concerns. Mitigation strategies are therefore required. The aim of this study was to assess the inactivation of human adenovirus type 5 (HAdV-5) by gamma radiation in aqueous environments. Various substrates with different organic loads, including domestic wastewater, were inoculated with HAdV-5 either individually or in a viral pool (with murine norovirus type 1 [MNV-1]) and were irradiated in a Cobalt-60 irradiator at several gamma radiation doses (0.9 to 10.8 kGy). The infectivity of viral particles, before and after irradiation, was tested by plaque assay using A549 cells. D10 values (dose required to inactivate 90% of a population or the dose of irradiation needed to produce a 1 log10 reduction in the population) were estimated for each substrate based on virus infectivity inactivation exponential kinetics. The capability of two detection methods, nested PCR and enzyme-linked immunosorbent assay (ELISA), to track inactivated viral particles was also assessed. After irradiation at 3.5 kGy, a reduction of the HAdV-5 titer of 4 log PFU/ml on substrates with lower organic loads was obtained, but in highly organic matrixes, the virus titer reduction was only 1 log PFU/ml. The D10 values of HAdV-5 in high organic substrates were significantly higher than in water suspensions. The obtained results point out some discrepancies between nested PCR, ELISA, and plaque assay on the assessments of HAdV-5 inactivation. These results suggest that the inactivation of HAdV-5 by gamma radiation, in aqueous environments, is significantly affected by substrate composition. This study highlights the virucidal potential of gamma radiation that may be used as a disinfection treatment for sustainable water supplies. IMPORTANCE Human adenovirus (HAdV) is the most prevalent of the enteric viruses in environmental waters worldwide. The purposes of

  11. Ionizing radiation induced changes in phenotype, photosynthetic pigments and free polyamine levels in Vigna radiata (L.) Wilczek.

    PubMed

    Sengupta, Mandar; Chakraborty, Anindita; Raychaudhuri, Sarmistha Sen

    2013-05-01

    Effects of gamma rays on the free polyamine (PA) levels were studied in Vigna radiata (L.) Wilczek. Seeds exposed to different doses of gamma rays were checked for damage on phenotype, germination frequency and alteration in photosynthetic pigments. Free polyamine levels were estimated from seeds irradiated in dry and water imbibed conditions. Polyamine levels of seedlings grown from irradiated seeds, and irradiated seedlings from unexposed seeds were also measured. Damage caused by gamma irradiation resulted in decrease in final germination percentage and seedling height. Photosynthetic pigments decreased in a dose dependent manner as marker of stress. Polyamines decreased in irradiated dry seeds and in seedlings grown from irradiated seeds. Radiation stress induced increase in free polyamines was seen in irradiated imbibed seeds and irradiated seedlings. Response of polyamines towards gamma rays is dependent on the stage of the life cycle of the plant.

  12. Modelling of ground-level UV radiation

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Schwander, H.; Thomalla, E.

    1996-06-01

    A number of modifications were made on the STAR radiation transmission model for greater ease of use while keeping its fault liability low. The improvements concern the entire aerosol description function of the model, the option of radiation calculation for different receiver geometries, the option of switching off temperature-dependent ozone absorption, and simplications of the STAR menu. The assets of using STAR are documented in the studies on the accuracy of the radiation transmission model. One of these studies gives a detailed comparison of the present model with a simple radiation model which reveals the limitations of approximation models. The other examines the error margin of radiation transmission models as a function of the input parameters available. It was found here that errors can be expected to range between 5 and 15% depending on the quality of the input data sets. A comparative study on the values obtained by measurement and through the model proved this judgement correct, the relative errors lying within the predicted range. Attached to this final report is a comprehensive sensitivity study which quantifies the action of various atmospheric parameters relevant to UV radiation, thus contributing to an elucidation of the process.

  13. LiCaAlF6 scintillators in neutron and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Klupák, V.; Vinš, M.; Koleška, M.; Šoltés, J.; Yoshikawa, A.; Nikl, M.

    2016-09-01

    Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to6Li. A plutonium-beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 137Cs and 60Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.

  14. Disinfection of domestic effluents by gamma radiation: effects on the inactivation of Ascaris lumbricoides eggs.

    PubMed

    de Souza, Gloria S M B; Rodrigues, Ludmila A; de Oliveira, Warllem J; Chernicharo, Carlos A L; Guimarães, Marcos P; Massara, Cristiano L; Grossi, Pablo A

    2011-11-01

    This work investigated the inactivation of Ascaris lumbricoides eggs in domestic effluents by gamma radiation from a (60)Co source. Domestic wastewater was treated in a compact demo-scale system consisting of a UASB reactor and a trickling filter; treatment was carried out at the Center for Research and Training on Sanitation (CePTS), Federal University of Minas Gerais, in Belo Horizonte-MG, Brazil. One-liter of treated wastewater samples was artificially contaminated with an average of 1000 non-embryonated Ascaris lumbricoides eggs from human feces; samples were then irradiated in a multiple-purpose irradiator at different doses (0.5-5 kGy). Eggs were recovered from the wastewater and the viability of these irradiated eggs was evaluated; the description of the egg developmental phases with each dose of gamma radiation was recorded. Radiation doses of 3.5 kGy effectively disinfected effluents with lower concentrations of A. lumbricoides eggs; higher radiation doses of 5 kGy were necessary to disinfect effluents with higher eggs concentrations.

  15. Size effects on gamma radiation response of magnetic properties of barium hexaferrite powders

    SciTech Connect

    McCloy, John; Kukkadapu, Ravi; Crum, Jarrod; Johnson, Brad; Droubay, Tim

    2011-12-01

    Little is currently known about the effects of gamma-ray irradiation on oxide magnet materials. In particular, the effect of particle size on radiation susceptibility was investigated. Two commercial powders of BaFe{sub 12}O{sub 19} were thoroughly characterized, then exposed to 1 MGy of gamma radiation from a {sup 60}Co source. AC susceptibility and DC magnetometry and Moessbauer spectroscopy were performed after irradiation and compared to pre-irradiated measurements. DC magnetization and AC susceptibility decreased for both samples with the relative change of DC magnetization being larger for the micrometer-sized particles and the relative change of the AC susceptibility being larger for the nanometer-sized particles. Moessbauer spectroscopy indicated a decrease in both the hyperfine fields and in their distribution for each Fe site, particularly in the larger particle sample. Decreases in susceptibility are believed to be due to radiation-induced amorphization at the particle surfaces as well as amorphization and nucleation of new crystallites at internal crystallite boundaries, resulting in overall reduction in the particle magnetic moment. This radiation damage mechanism is different than that seen in previous studies of neutron and heavy ion irradiation of BaFe{sub 12}O{sub 19}.

  16. Assessment effect of gamma radiation on the flight ability of the peach fruit fly, Bactrocera zonata (Saunders).

    PubMed

    El-Gendy, Ismail Ragab; El-Aw, M A M; Hashem, A G; Draz, K A

    2013-12-01

    The sterile insect technique is one of the most methods of fruit flies control. Flight ability of the Peach Fruit Fly (PFF), Bactrocera zonata was conducted under laboratory conditions to evaluate the effect of gamma radiation on flight ability of PFF, B. zonata. Pupae of PFF, B. zonata, were irradiated in an air atmosphere at 24, 48 and 72 h before adult emergence with three doses of Cobalt 60 (10, 30 and 50 Gray) and tested against 6, 12 and 20 cm tube heights. Flight Ability Percentage (FAP) of PFF was carried out for newly emerged flies and six-days-old of adult flies. FAP of newly emerged-and six- days-old of adult flies was inversely proportional to the tube heights, doses of gamma rays and with progress the age of flies. The FAP value was significantly higher at 6 cm tube height, followed by 12 cm then 20 cm tube heights for all tested levels of gamma rays, respectively.

  17. Gamma radiations induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with chicken gizzard leaves extracts

    NASA Astrophysics Data System (ADS)

    Batool, Fatima; Adeel, Shahid; Azeem, Muhammad; Ahmad Khan, Ali; Ahmad Bhatti, Ijaz; Ghaffar, Abdul; Iqbal, Naeem

    2013-08-01

    Cotton fabric and chicken gizzard leaves powder were treated with different absorbed doses of 5, 10, 15, 20 and 25 kGy using Cs-137 gamma irradiator. Effects of different mordants on dyeing of un-irradiated and irradiated cotton fabrics were investigated in the CIE Lab system using Spectraflash SF650. Methods suggested by International Standard Organization (ISO) were followed throughout the study period. The results indicated that color strength of cotton fabric was significantly improved by the gamma ray treatment. Absorbed dose of 10 kGy was proved to be most effective in improving cotton dyeing properties compared with other levels of gamma radiation used in the study. The optimum temperature for dyeing was 60 °C with the time duration of 60 min using 4 g/L of electrolyte with alkali solubilized extract of chicken gizzard. Furthermore, 4% of iron (Fe) as pre-mordant and 1% of tannic acid (TA) as post-mordant proved to be more effective in enhancing the color fastness properties of irradiated cotton fabric.

  18. Gamma radiation impact on performance of OOK, DPSK and homodyne BPSK based optical inter-satellite communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Hou, Rui; Qiang, Ruoxin

    2015-09-01

    Performance of optical inter-satellite communication system is influenced by the harsh space radiation environment. Gamma radiation effects on main devices of communication system are analyzed and on the basis of existing experimental data, performance degradation of on off keying (OOK), differential phase shift keying (DPSK) and homodyne binary phase shift keying (BPSK) based system under 1 kGy gamma irradiation is simulated. Variation of Q factors and bit error ratio of these systems with different radiation position are achieved and discussed. The result shows that it is more urgent to improve the radiation hardness of transmitter, and the introduction of local laser is a considerable method to reduce gamma radiation impact on system performance.

  19. High-level production of recombinant chicken interferon-gamma by Brevibacillus choshinensis.

    PubMed

    Yashiro, K; Lowenthal, J W; O'Neil, T E; Ebisu, S; Takagi, H; Moore, R J

    2001-10-01

    Cytokines, such as interferon-gamma have been shown to have adjuvant and growth promoting activity in poultry and livestock and have the potential to be used as alternatives to antibiotics. We have developed an efficient system for commercial-scale synthesis of recombinant chicken interferon-gamma (ChIFN-gamma) using Brevibacillus choshinensis as the host for protein production. The ChIFN-gamma expression vector, pNCIFN, was constructed using the novel Escherichia coli-B. choshinensis shuttle vector, pNCMO2. ChIFN-gamma expression was optimized by investigating different culture conditions and different host B. choshinensis mutants. The highest level of production was observed using the B. choshinensis HPD31-MB2 strain grown at 30 degrees C, where ChIFN-gamma was produced at approximately 300-500 mg/L. ChIFN-gamma was also produced as a His-tagged fusion protein by using the pNCHis-IFN expression vector, a derivative of pNCMO2. The protein was constitutively secreted into the culture supernatant and could be partially purified in a single step using a Ni-nitrilotriacetic acid column. This recombinant His-ChIFN-gamma was shown to have the same biological activity as native ChIFN-gamma.

  20. EPR investigation of the gamma radiation response of different types of glasses.

    PubMed

    Gancheva, Veselka; Yordanov, Nicola D; Karakirova, Yordanka

    2006-03-13

    Several types of laboratory glasses such as: "Jena", "Rasotherm", "Thüring" as well as window and windscreen glasses were studied by the method of EPR spectroscopy as possible emergency radiation dosimeters for gamma-ray irradiation. The most appropriate values of modulation amplitude and microwave power were found to obtain best sensitivity for the measured signals. Dose measurements have shown a linear dependence between the EPR signal intensity of radiation created defects in glasses and applied dose in the dose range 50-500 Gy. "Thüring" glass was found to be the most sensitive sample to radiation. The magnitude of window glass absorbed dose was evaluated as the difference between the intensity of its EPR signal recorded after irradiation and the background signal, obtained after thermal relaxation of the former.

  1. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  2. GeV emission from gamma-ray bursts: a radiative fireball?

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A.

    2010-04-01

    We study the emission observed at energies >100 MeV of 11 gamma-ray bursts (GRBs) detected by the Fermi-Large Area Telescope (LAT) until 2009 October. The GeV emission has three main properties: (i) its duration is often longer than the duration of the softer emission detected by the Gamma Burst Monitor onboard Fermi (this confirms earlier results from the Energetic Gamma-Ray Experiment Telescope); (ii) its spectrum is consistent with Fν ~ ν-1 and does not show strong spectral evolution; and (iii) for the brightest bursts the flux detected by the LAT decays as a power law with a typical slope t-1.5. We argue that the observed >0.1 GeV flux can be interpreted as afterglow emission shortly following the start of the prompt phase emission as seen at smaller frequencies. The decay slope is what is expected if the fireball emission is produced in the radiative regime, i.e. all dissipated energy is radiated away. We also argue that the detectability in the GeV energy range depends on the bulk Lorentz factor Γ of the bursts, being strongly favoured in the case of large Γ. This implies that the fraction of bursts detected at high energies corresponds to the fraction of bursts having the largest Γ. The radiative interpretation can help to explain why the observed X-ray and optical afterglow energetics are much smaller than the energetics emitted during the prompt phase, despite the fact that the collision with the external medium should be more efficient than internal shocks in producing the radiation that we see.

  3. Effect of Gamma Radiations on the Quality and Shelf Life of Strawberry Fruit of the Uttrakhand Region

    NASA Astrophysics Data System (ADS)

    Sharma, Prianka; Rastogi, Meetu

    2016-08-01

    Present study was conducted to investigate the effect of gamma radiations on the quality and shelf life of strawberries. The aim of this study was to evaluate gamma radiation doses in range of 0.3- 1.5 kGy. The irradiated strawberries were stored in ambient (temperature 25 +- 2oC, RH 70 %) and refrigerated (3 +-1oC, RH 80%) conditions. In samples treated with dose 1.2-1.5 kGy no decay was recorded up to 9 days of ambient conditions. Under refrigerated conditions, strawberry samples of unirradiated and irradiated in the range of 0.3-0.9 kGy started decaying after 14 days of storage. No decay was observed in the samples treated with 1.2-1.5 kGy up to 28 days of refrigerated storage. Dose of 1.2 kGy was significantly effective in reducing the weight loss and in maintaining the higher overall acceptability under both the storage conditions compared to the other treatments. This dose also proved effective in retention of significantly higher levels of total sugars compared to the other treatments. Thus, it was established that irradiating strawberries with dose of 1.2 kGy can prove beneficial in facilitating the marketing of the fruit to distant places other than the local markets, thereby benefiting the growers.

  4. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  5. Kinetics of the radiation-induced radicals in gamma irradiated solid cefazolin sodium

    NASA Astrophysics Data System (ADS)

    Yurus, S.; Korkmaz, M.

    2005-01-01

    Room and high temperature kinetic and spectroscopic features of the radical species produced in gamma irradiated cefazolin sodium (here after CS) were investigated in detail using electron spin resonance (ESR) spectroscopy to determine the feasibility of its sterilization by radiation and to explore the dosimetric properties of this semi-synthetic representative of cephalosporins. Irradiated CS exhibits an unresolved ESR doublet as other cephalosporins reported up to date. Signal intensity data derived from microwave saturation, dose-response, decays at room and at high temperature studies were analysed assuming a model of two radical species giving rise to doublet and singlet ESR signals. Spectroscopic parameters of these species were determined through spectrum simulation calculations. Decay parameters calculated from annealing studies at seven different temperatures were used to calculate the activation energies of the contributing species. Radiosensitivity of CS to gamma rays was found to be relatively low in the dose range of 0-25 kGy. This conclusion was considered as an indication of the feasibility of radiosterilization of CS by gamma radiation. Five different functions were tried to explore dose-response data of CS in the dose range of 0-25 kGy and it was concluded that a function comprising a linear and a quadratic terms of applied dose describes best experimental results.

  6. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  7. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  8. Relationship between intracranial granulomas and cerebrospinal fluid levels of gamma interferon and interleukin-10 in patients with tuberculous meningitis.

    PubMed

    Mansour, Adel M; Frenck, Robert W; Darville, Toni; Nakhla, Isabelle A; Wierzba, Thomas F; Sultan, Yehia; Bassiouny, Magdy I; McCarthy, Kathryn; Jacobs, Richard F

    2005-02-01

    Cerebrospinal fluid gamma interferon (IFN-gamma) and interleukin-10 levels in 39 patients with tuberculous meningitis were serially measured. Cytokine levels did not predict intracranial granuloma (IG) development, but IFN-gamma levels in the top quartile after 1 month of therapy were highly associated (odds ratio = 18) with detection of an IG by computed tomography scanning.

  9. Responses to the low-level-radiation controversy

    SciTech Connect

    Bond, V.P.

    1981-10-07

    Some data sets dealing with the hazards of low-level radiation are discussed. It is concluded that none of these reports, individually or collectively, changes appreciably or even significantly the evaluations of possible low-level radiation effects that have been made by several authoritative national and international groups. (ACR)

  10. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  11. Pipe corrosion and deposit study using neutron- and gamma- radiation sources

    NASA Astrophysics Data System (ADS)

    Balaskó, Márton; Sváb, Erzsébet; Kuba, Attila; Kiss, Zoltán; Rodek, Lajos; Nagy, Antal

    2005-04-01

    The problems of corrosion and deposit are crucial issues in the pipelines of the chemical, nuclear and petrochemical industries. Radiography (neutron, gamma, X-ray) has long been used as a technique for pipe inspection and corrosion monitoring. The 10 MW Budapest research reactor site is a source of various energy neutron (thermal and epithermal) and gamma radiation. The detector system was a Peltier-cooled LLL CCD camera controlled by a PC with Image ProLite software and imaging plate equipment with a BAS 2500 scanner that used AIDA software. The objects inspected were corroded tubes and various kinds of test specimens with a large wall thickness (25 mm) inside and outside steps. In the evaluation part we used tomographic algorithms. A software simulation study was made as well. Fan-beam projections were computed of the given software phantoms and a new discrete tomography method was used to reconstruct the unknown objects from these projections.

  12. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  13. Enhancement of ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor

    NASA Astrophysics Data System (ADS)

    Noor Azmy, Noor Azwen; A. Bakar, Ahmad Ashrif; Arsad, Norhana; Idris, Sarada; Mohmad, Abdul Rahman; Abdul Hamid, Aidil

    2017-01-01

    The fabricated E. coli sensor of ZnO-rGO nanocomposite thin films by gamma radiation was investigated. Nanocomposite films were prepared via sol-gel method and were irradiated at 10 kGy at room temperature. The surface characteristic of as-prepared samples have been characterized by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The proposed structure shows that exposed gamma radiation may change the microstructure of the films occurs as a result of their flexible structure. Uv-vis spectra of nanocomposite were studied to investigate the optical behavior of ZnO-rGO films and the optical energy band gap and Urbach energy were found to be gamma dose dependent. The sensing properties were identified by measuring the changes of conductivity of film using I-V measurement. Upon exposure to E. coli, the radiated ZnO-rGO films (1.00 vol% GO) exhibited higher sensitivity, as much as 4.62 × 10-3, than un-radiated films, 1.04 × 10-3. This enhancement of the I-V response was attributed to a positive influence of the gamma radiation in these films. The results prove that our ZnO-rGO nanocomposites thin films by gamma radiation demonstrate a strong performance for the detection of microbiological organisms in water.

  14. Synthesis and radiation degradation of vinyl polymers with fluorine: search for improved lithographic resists. [Gamma rays

    SciTech Connect

    Pittman, C.U. Jr.; Chen, C.Y.; Ueda, M.; Helbert, J.N.; Kwiatkowski, J.H.

    1980-12-01

    Homopolymers of methyl ..cap alpha..-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the /sup 60/Co ..gamma..-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl ..cap alpha..-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The G/sub s/-G/sub x/ and G/sub s/ values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl ..cap alpha..-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of G/sub s/ that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the homopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components (present in smaller concentrations (3 to 5 mole %) than the threshold levels (25 to 50% necessary for significant crosslinking).

  15. Evaluation of phenolic compounds in maté ( Ilex paraguariensis) processed by gamma radiation

    NASA Astrophysics Data System (ADS)

    Furgeri, C.; Nunes, T. C. F.; Fanaro, G. B.; Souza, M. F. F.; Bastos, D. H. M.; Villavicencio, A. L. C. H.

    2009-07-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The maté ( Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrão or tererê, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of tererê beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of tererê beverage processed by gamma radiation.

  16. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  17. Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems

    NASA Astrophysics Data System (ADS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth L. C.; Lugao, Ademar B.

    2012-09-01

    The development of halogenated butyl rubber (chlorobutyl) in the 1950s and 1960s greatly extended the usefulness of butyl. Their properties allowed the development of more durable tubeless tires with the air retaining innerliner, chemically bonded to the body of the tire. Tire innerliners are by far the largest application for halobutyl. When polymers are subjected to high energy radiation, a number of chemical reactions may occur following the initial ionization and excitation events. These reactions lead to changes in the molecular weight of the polymer through scission (S) and crosslinking (X) of the molecules and affect the physical and mechanical properties. In the halobutyl rubbers the chain scission may predominate. This work aims to show effects of gamma radiation in properties of chlorobutyl rubbers vulcanized with sulfur, sulfur donor and phenolic resin. The butyl rubber has been already studied by us previously. The samples were characterized before and after irradiation. Gamma radiation doses used were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy, in order to identify which cure system is the most stable under irradiation. In this study we observed that the properties of all samples were affected irrespective of the vulcanization system.

  18. Gamma radiation effects on mechanical properties and morphology of a polyurethane derivate from castor oil

    NASA Astrophysics Data System (ADS)

    Azevedo, Elaine Cristina; Orivaldo Chierice, Gilberto; Claro Neto, Salvador; Scheidegger Soboll, Daniel; Mauro Nascimento, Eduardo; Lepienski, Carlos Mauricio

    2011-03-01

    In this study, an adhesive of a polyurethane derivate from castor oil was irradiated with gamma radiation from a 60Co source, at doses from 0.2 to 25 kGy. This adhesive polyurethane is considered for use in hospital furniture because it does not liberate dangerous solvents. Hardness and elastic modulus were measured by instrumented indentation with a pyramidal Berkovich indenter, using loads from 0.08-40 mN with a nanoindenter XP. The instrumented indentation hardness was 110 MPa for an untreated sample, increasing to 124 MPa after irradiation with 25 kGy, at penetration depths of about 5 μm. The increases in elastic modulus induced by radiation were less pronounced. This polyurethane is naturally cross-linked and the relative modifications in the hardness are attributed to an additional cross-linking process induced by radiation. X-ray diffraction indicates a slight increase in crystallinity. The roughness measured by atomic force microscopy increases after gamma irradiation.

  19. Size Effects on Gamma Radiation Response of Magnetic Properties of Barium Hexaferrite Powders

    SciTech Connect

    McCloy, John S.; Kukkadapu, Ravi K.; Crum, Jarrod V.; Johnson, Bradley R.; Droubay, Timothy C.

    2011-12-08

    Little is currently known about the effects of gamma-ray irradiation on oxide magnet materials. In particular, the effect of particle size on radiation susceptibility was investigated. Two commercial powders of BaFe12O19 were thoroughly characterized, then exposed to 1 MGy of gamma radiation from a 60Co source. AC susceptibility and DC magnetometry and Mössbauer spectroscopy were performed after irradiation and compared to pre-irradiated measurements. DC magnetization and AC susceptibility decreased for both samples with the relative change of DC magnetization being larger for the micrometer-sized particles and the relative change of the AC susceptibility being larger for the nanometer-sized particles. Mössbauer spectroscopy indicated a decrease in both the hyperfine fieldsand in the distribution of hyperfine fields for each Fe site, particularly in the larger particle sample. Decreases in susceptibility are believed to be due to recrystallization of the particles and redistribution of an amorphous component, in the bulk or on the surface, and consequent reduction in the particle magnetic moment. This radiation damage mechanism is different than that seen in previous studies of neutron and heavy ion irradiation of BaFe12O19.

  20. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    SciTech Connect

    Jeon, Jong Ho Nakajima, Kazuhisa Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo; Rhee, Yong Joo; Shin, Jung Hun; Jo, Sung Ha; Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  1. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation.

    PubMed

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Hojbota, Calin; Jo, Sung Ha; Shin, Kang Woo; Sung, Jae Hee; Lee, Seung Ku; Cho, Byeoung Ick; Choi, Il Woo; Nam, Chang Hee

    2015-12-01

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  2. Gamma radiation process for destruction of toxic polychlorinated biphenyls (Pcbs) in transformer oils.

    PubMed

    Singh, R K; Nayak, Poonam; Niyogi, U K; Khandal, R K; Singh, Gurdeep

    2006-01-01

    Polychlorinated biphenyls (PCBs) are synthetic organic chemicals commercially used worldwide in many applications. PCBs were used in oils because of their excellent properties such as good thermal stability, flame resistance, dielectric constant, high break down voltage, high boiling point and low volatility. However, because of their adverse affects on environment and human health, the use of PCBs has been banned now. PCBs are today considered among the widespread pollutants in the global system. PCBs sources still exist in various industrial products and in waste streams such as capacitor oils, lubricating oils, transformer oils, hydraulic oils, paints, rubbers, cables, etc. Several such materials containing PCBs emanating from various sources need to be detoxified before their reuse or before going to landfill for final disposal. Various remedial technologies have been developed in the world to destroy toxic PCBs. The radiolysis has been investigated as an environment-friendly process for waste oil treatment contaminated with PCBs, which may be a better alternative to the globally most widely accepted incineration method. A study was undertaken to detoxify PCBs in transformer oil by gamma radiation using Cobalt 60 source. Analysis of PCBs in transformer oils before and after radiation was carried out by GC-MS instrument. The effect of radiation dose and destruction of PCBs in transformer oils are discussed in details in the present paper. The method used was found to be highly effective and destruction was as high as 79 %. Further, the transformer oil samples were also evaluated before and after radiation to check their quality. The properties of oils were not significantly altered by gamma radiation treatment as evident from the results given in the paper.

  3. Interaction of ultraviolet and X-ray radiation with gamma rays produced by a jet in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zbyszewska, Magda

    1994-01-01

    Recent observations by the Compton Gamma-Ray Observatory give evidence for the existence of a type of blazar with strong gamma-ray emission. Data obtained by EGRET for the quasar 3C 279 show a spectrum between 100 MeV and 10 GeV. Photons of such energies should interact with the X-rays and produce positron/electron pairs. If the optical depth against pair production for the gamma rays is large (tau(gamma gamma) greater than 1), the gamma-ray spectrum should be affected. The importance of this process has been pointed out by, e.g., Maraschi, Ghisellini, & Celotti (1992). Several works (e.g., Dermer 1993; Zbyszewska 1993; Sikora, Begelman, & Rees 1993) concerning gamma-ray radiation from quasar 3C 279 have proposed a model in which the gamma rays are produced via interaction between a moving cloud of relativistic electrons and external soft photons. The presence of gamma rays in active galactic nuclei spectra gives constraints on the localization and the luminosity of the medium which produces ultraviolet/X-ray photons. We investigate what conditions should be fulfilled in the above model to avoid the absorption of the gamma rays due to pair production.

  4. Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates.

    PubMed

    Máduar, M F; Campos, M P; Mazzilli, B P; Villaverde, F L

    2011-06-15

    Phosphogypsum, a fertilizer industry by-product, is being worldwide stockpiled, posing environmental concerns. Since this material contains natural radionuclides in significant concentrations, its use as a building material has radiological implications. In order to confirm the feasibility of the use of a new material mainly composed by phosphogypsum, an experimental house was built, having some of its rooms entirely lined with this material. Measurements of samples of phosphogypsum plates from different origins resulted in values of 0.2 to 2.6 for the external radiation index, thus justifying a more detailed investigation. In this paper, the application of a previously developed computational model to forecast external doses indoors is described. A comprehensive radiological evaluation is being performed, including measurement of the external gamma exposure and radon concentrations in one of the rooms of the house. The results show that the annual increment in the effective dose to an inhabitant of the house will remain below the 1 mSv limit for every reasonable scenario. The radon measurements were carried out over a period of 18 months, in order to determine the long-term average levels of the indoor radon concentrations. The results obtained are below 200 Bq m(-3), the recommended investigation level for radon.

  5. Decomposition Byproducts Induced by Gamma Radiation and their Toxicity: the Case of 2-Nitrophenol.

    PubMed

    Alsager, Omar A; Basfar, Ahmed A; Muneer, Majid

    2017-04-10

    The induced degradation and detoxification of 2-nitrophenol (2-NP) in aqueous media by gamma irradiation were carefully evaluated in this study. Gamma radiation at absorbed doses as low as 20 kGy was able to degrade 2-NP to reach a removal of at least 85% across the investigated range of concentration (50-150 ppm). 2-NP breaks down to aromatic based compounds with increasing number of byproducts upon increasing the radiation treatment from the absorbed dose of 50% decomposition (D50) to the absorbed dose of 90% decomposition (D90), after which no byproducts could be detected indicating the formation of undetectable aliphatic hydrocarbons, insoluble, or volatile byproducts. Toxicology studies showed that the degradation of 2-NP under absorbed doses up to D90 resulted in a more toxic byproducts than the parent compound and a remarkable reduction in the toxicity was observed with the irradiated samples with absorbed doses above D90. Furthermore, the effect of other experimental conditions on the decomposition efficiency of 2-NP were investigated along with their influence on the toxicity. Varying the pH of the media to acidic or basic conditions did not significantly alter the degradation behavior of 2-NP. However, a notable improvement of the detoxification was associated with the samples of acidic pH. Adding 0.5% of H2O2 to 2-NP solutions had a positive effect by reducing D90 by a factor of nine and diminishing the toxicity by two folds. The results of the present study pave the way to the real application of gamma radiation and similar technologies to decompose contaminates such as 2-NP of high toxicity, poor biodegradability and carcinogenic and recalcitrant properties.

  6. Blood lead levels in radiator repair workers in Colorado.

    PubMed

    Dalton, C B; McCammon, J B; Hoffman, R E; Baron, R C

    1997-01-01

    A laboratory-based blood lead surveillance system in Colorado identified radiator repair workers as having the highest blood lead levels of all worker groups reported. A survey of 42 radiator repair shops in ten locales throughout Colorado was undertaken to estimate the prevalence of workers with elevated blood lead levels > 25 micrograms/dL. The survey was designed to test the sensitivity of the surveillance system and to assess working conditions and practices in the radiator repair industry in Colorado. Of 63 workers, 39 (62%) had blood lead levels > 25 micrograms/dL. The sensitivity of the surveillance system for detecting radiator repair workers with elevated blood lead levels was estimated at 11%. None of the radiator repair shops had adequate local exhaust ventilation. Work practice and engineering modifications are needed to reduce lead exposure in this industry.

  7. Quantification of gamma-H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure.

    PubMed

    Roch-Lefèvre, Sandrine; Mandina, Tania; Voisin, Pascale; Gaëtan, Gruel; Mesa, Jorge Ernesto Gonzàlez; Valente, Marco; Bonnesoeur, Pierre; García, Omar; Voisin, Philippe; Roy, Laurence

    2010-08-01

    Recent studies have suggested that visualization of gamma-H2AX nuclear foci can be used to estimate exposure to very low doses of ionizing radiation. Although this approach is widely used for various purposes, its suitability for individual human biodosimetry has not yet been assessed. We therefore conducted such an assessment with the help of available software for observing and automatically scoring gamma-H2AX foci. The presence of gamma-H2AX foci was evaluated in human peripheral blood lymphocytes exposed ex vivo to gamma rays in a dose range of 0.02 to 2 Gy. We analyzed the response of gamma-H2AX to ionizing radiation in relation to dose, time after exposure, and individual variability. We constructed dose-effect calibration curves at 0.5, 8 and 16 h after exposure and evaluated the threshold of detection of the technique. The results show the promise of automatic gamma-H2AX scoring for a reliable assessment of radiation doses in a dose range of 0.6 Gy to 2 Gy up to 16 h after exposure. This gamma-H2AX-based assay may be useful for biodosimetry, especially for triage to distinguish promptly among individuals the ones who have received negligible doses from those with significantly exposures who are in need of immediate medical attention. However, additional in vivo experiments are needed for validation.

  8. Gamma radiation effects on the dynamic fatigue measurements of glass discs

    NASA Technical Reports Server (NTRS)

    Ananaba, T. O. J.; Kinser, D. L.

    1985-01-01

    Circular specimens of low iron soda lime silicate glass were blasted with grit after having a circular notch etched into their centers. After separation into two groups, one group was exposed to gamma radiation. The fracture strengths of all samples were then tested by the biaxial technique, i.e., specimens were balanced on three balls and loaded in the center by a piston. The irradiated samples had received a 140,000 Gy dose from a Co-60 source. An enhanced interaction between the ambient moisture and the grit-blasted central notch was observed in the irradiated samples, which displayed accelerated corrosion.

  9. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  10. Determination of canine dose conversion factors in mixed neutron and gamma radiation fields. Technical report

    SciTech Connect

    Torres, B.A.; Bhatt, R.C.; Myska, J.C.; Holland, B.K.

    1996-07-01

    The primary objective of mixed-field neutron/gamma radiation dosimetry in canine irradiation experiments conducted at the Armed Forces Radiobiology Research Institute (AFRRI) is to determine the absorbed midline tissue dose (MLT) at the region of interest in the canine. A dose conversion factor (DCF) can be applied to free-in-air (FIA) dose measurements to estimate the MLT doses to canines. This report is a summary of the measured DCFs that were used to determine the MLT doses in canines at AFRRI from 1979 to 1992.

  11. Alterations in the hematological profile in rat following whole body gamma radiation with and without venoruton pretreatment

    SciTech Connect

    Kanwar, K.C.; Verma, A.

    1992-07-01

    The radioprotective effect of venoruton [O-({beta}-hydroxyethyl)-rutoside] has been assessed in the hematological profile of Swiss albino male rats subjected to a single dose of 300 rads whole body gamma radiation. The results showed that the severity of the radiation-induced abnormalities in the red and white blood cells is significantly lessened by venoruton administered prior to radiation exposure. 34 refs., 2 tabs.

  12. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  13. Effects of Dietary Iron and Gamma Radiation on the Rat Retina

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer; Marshall, Grace; Theriot, Corey A.; Chacon, Natalia; Zwart, Sara; Zanello, Susana B.

    2012-01-01

    A health risk of concern for NASA relates to radiation exposure and its synergistic effects with other space environmental factors, includi ng nutritional status of the crew. Astronauts consume almost three times the recommended daily allowance of iron due to the use of fortifie d foods aboard the International Space Station, with iron intake occa sionally exceeding six times the recommended values. Recently, NASA has become concerned with visual changes associated with spaceflight, a nd research is being conducted to elucidate the etiology of eye structure alterations in the spaceflight environment. Terrestrially, iron o verload is also associated with certain optic neuropathies. In additi on, due to its role in Fenton reactions, iron can potentiate oxidative stress, which is a recognized cause of cataract formation. As part o f a study investigating the combined effects of radiation exposure an d iron overload on multiple physiological systems, we focused on defining the effects of both treatments on eye biology. In this study, 12- week-old Sprague-Dawley rats were assigned to one of four experimental groups: normal iron/no radiation (Control/Sham), high iron/no radiat ion (Fe/Sham), normal iron/gamma radiation (3 Gy cumulative dose, fra ctionated at 0.375 Gy/d every other day for 16 d) (Control/Rad), and high iron/gamma radiation (Fe/Rad). Oxidative stress-induced DNA damag e, measured as concentration of the marker 8-hydroxy-2'-deoxyguanosine (8OHdG) in eye retinal tissue by enzyme-immunoanalysis did not show significant changes among treatments. However, there was an overall i ncrease in 8OHdG immunostaining density in retina sections due to radiation exposure (P = 0.05). Increased dietary iron and radiation expos ure had an interactive effect (P = 0.02) on 8OHdG immunostaining of t he retinal ganglion cell layer with iron diet increasing the signal in the group not exposed to radiation (P = 0.05). qPCR gene expression profiling of relevant target genes

  14. Observation of a gamma-ray flash at ground level in association with a cloud-to-ground lightning return stroke

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Schaal, M. M.; Cramer, E.; Arabshahi, S.; Liu, N.; Rassoul, H. K.; Hill, J. D.; Jordan, D. M.; Uman, M. A.

    2012-10-01

    Terrestrial gamma-ray flashes (TGFs) are bright, sub-millisecond bursts of gamma-rays, originating within the Earth's atmosphere. Most TGFs have been detected by spacecraft in low-Earth orbit. Only two TGFs have previously been observed from within our atmosphere: one at ground level and one from an aircraft at 14.1 km. We report on a new TGF-like gamma-ray flash observed at ground level, detected by the 19-station Thunderstorm Energetic Radiation Array (TERA) at the University of Florida/Florida Tech International Center for Lightning Research and Testing (ICLRT). The gamma-ray flash, which had a duration of 52.7 μs, occurred on June 30, 2009 during a natural negative cloud-to-ground lightning return stroke, 191 μs after the start of the stroke. This event is the first definitive association of a gamma-ray flash with natural CG lightning and is among the most direct links to a specific lightning process so far. For this event, 19 gamma-rays were recorded, with the highest energy exceeding 20 MeV. The high-energy radiation exhibited very different behavior from the typical x-ray emission from lightning. Specifically, the gamma-ray flash had a much harder energy spectrum, consistent with relativistic runaway electron avalanche (RREA) multiplication; it did not arrive in sub-microsecond bursts, typical of leader emission from lightning, and it occurred well after the start of the return stroke, which has not been previously observed for the x-ray emission from lightning. Nevertheless, we present evidence that the source region for the gamma ray flash was the same as that for the preceding leader x-ray bursts.

  15. Radiation threshold levels for noise degradation of photodiodes. Technical report

    SciTech Connect

    Aukerman, L.W.; Vernon, F.L.; Song, Y.

    1986-09-30

    Space radiation can increase the noise of photodiodes as a result of either a sustained ionizing-dose-rate effect or displacement damage. Elementary, straightforward models are presented for calculating radiation threshold levels and rad hit susceptibility. Radiation-effects experiments that verify these models are discussed. Calculations for room-temperature silicon p-i-n photodetectors, an avalanche photodiode, and a hypothetical cooled staring detector indicate that this damage mechanism should not be ignored for space and nuclear environments.

  16. The effect of gamma radiation on some succinic acid derivatives in the solid state

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem; Osmanoǧlu, Y. Emre

    2017-01-01

    2,2-dimethyl succinic acid, 2,3-dimethyl succinic acid and monomethyl succinate were exposed to gamma radiation in the form of powder. EPR measurements were carried out to investigate the free radicals produced in all of them, following irradiation. Three of the radical species formed after irradiation were identified and spectroscopic parameters were discussed thereafter. The radical species were attributed to the ĊHCH2, HOOCCH(CH3)2ĊCOOH and H3COOCCH2ĊHCOOH radicals, respectively. The hyperfine splitting constants for all radicals were confirmed by the simulation of the experimental spectra. The radiation sensitivity of the samples was mainly attributed to the EPR line properties of stable radicals.

  17. The effects of electron and gamma radiation on epoxy-based materials

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Memory, J. D.; Gilbert, R. D.; Long, E. R., Jr.

    1982-01-01

    Specimens of graphite/epoxy composites and epoxy resins were exposed to electron and gamma radiation, followed by mechanical property and fundamental measurements. Measurement techniques included: scanning electron microscopy, X-ray diffraction analysis, and electron spin resonance spectroscopic analysis. Results indicate little or no change in flexural properties of miniature specimens of a graphite/epoxy composite and no change in failure mode at the fiber-resin interface and in the crystallinity of the fiber and the resin. Some doubt in the observation of stable flexural properties is cast by electron paramagnetic resonance spectra of a relatively large number of radiation-generated radicals. These generally lead to a change in cross-linking and in chain-scissioning which should alter mechanical properties.

  18. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    PubMed

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  19. DETECTORS AND EXPERIMENTAL METHODS: A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Zhang, Feng-Qi

    2009-06-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔVth) generated by 60Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔVth) generated by 60Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes.

  20. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation

    PubMed Central

    Schubauer-Berigan, M K

    2010-01-01

    Context More than 400 000 workers annually receive a measurable radiation dose and may be at increased risk of radiation-induced leukaemia. It is unclear whether leukaemia risk is elevated with protracted, low-dose exposure. Objective We conducted a meta-analysis examining the relationship between protracted low-dose ionising radiation exposure and leukaemia. Data sources Reviews by the National Academies and United Nations provided a summary of informative studies published before 2005. PubMed and Embase databases were searched for additional occupational and environmental studies published between 2005 and 2009. Study selection We selected 23 studies that: (1) examined the association between protracted exposures to ionising radiation and leukaemia excluding chronic lymphocytic subtype; (2) were a cohort or nested case–control design without major bias; (3) reported quantitative estimates of exposure; and (4) conducted exposure–response analyses using relative or excess RR per unit exposure. Methods Studies were further screened to reduce information overlap. Random effects models were developed to summarise between-study variance and obtain an aggregate estimate of the excess RR at 100 mGy. Publication bias was assessed by trim and fill and Rosenthal's file drawer methods. Results We found an ERR at 100 mGy of 0.19 (95% CI 0.07 to 0.32) by modelling results from 10 studies and adjusting for publication bias. Between-study variance was not evident (p=0.99). Conclusions Protracted exposure to low-dose gamma radiation is significantly associated with leukaemia. Our estimate agreed well with the leukaemia risk observed among exposed adults in the Life Span Study (LSS) of atomic bomb survivors, providing increased confidence in the current understanding of leukaemia risk from ionising radiation. However, unlike the estimates obtained from the LSS, our model provides a precise, quantitative summary of the direct estimates of excess risk from studies of

  1. Progenitors Mobilized by Gamma-Tocotrienol as an Effective Radiation Countermeasure

    PubMed Central

    Singh, Vijay K.; Wise, Stephen Y.; Fatanmi, Oluseyi O.; Scott, Jessica; Romaine, Patricia L. P.; Newman, Victoria L.; Verma, Amit; Elliott, Thomas B.; Seed, Thomas M.

    2014-01-01

    The purpose of this study was to elucidate the role of gamma-tocotrienol (GT3)-mobilized progenitors in mitigating damage to mice exposed to a supralethal dose of cobalt-60 gamma-radiation. CD2F1 mice were transfused 24 h post-irradiation with whole blood or isolated peripheral blood mononuclear cells (PBMC) from donors that had received GT3 72 h prior to blood collection and recipient mice were monitored for 30 days. To understand the role of GT3-induced granulocyte colony-stimulating factor (G-CSF) in mobilizing progenitors, donor mice were administered a neutralizing antibody specific to G-CSF or its isotype before blood collection. Bacterial translocation from gut to heart, spleen and liver of irradiated recipient mice was evaluated by bacterial culture on enriched and selective agar media. Endotoxin in serum samples also was measured. We also analyzed the colony-forming units in the spleens of irradiated mice. Our results demonstrate that whole blood or PBMC from GT3-administered mice mitigated radiation injury when administered 24 h post-irradiation. Furthermore, administration of a G-CSF antibody to GT3-injected mice abrogated the efficacy of blood or PBMC obtained from such donors. Additionally, GT3-mobilized PBMC inhibited the translocation of intestinal bacteria to the heart, spleen, and liver, and increased colony forming unit-spleen (CFU-S) numbers in irradiated mice. Our data suggests that GT3 induces G-CSF, which mobilizes progenitors and these progenitors mitigate radiation injury in recipient mice. This approach using mobilized progenitor cells from GT3-injected donors could be a potential treatment for humans exposed to high doses of radiation. PMID:25423021

  2. Neutron and gamma-radiation sensitivity of plasmid DNA of varying superhelical density

    SciTech Connect

    Swenberg, C.E.; Speicher, J.M.

    1995-12-01

    Several families of negatively supercoiled topoisomers of plasmid pIBI30 were prepared by a modification of the procedure of Singleton and Wells. The average superhelical density ({sigma}) was determined by two-dimensional agarose gel electrophoresis and varied from -0.010 to -0.067, corresponding to a change in the number of supercoils from 3 to 19 and an effective volume change from 1.6 x 10{sup 8} to 4 x 10{sup 8} {angstrom}{sup 3}. Samples were exposed to either fission-neutron or {sup 60}Co {gamma} radiation and assayed for single-strand breaks by agarose gel electrophoresis. Form I DNA for all topoisomers decreased exponentially with increasing dose. The D{sub 37} values for both neutron and {gamma} radiation increased monotonically with increasing {vert_bar}{sigma}{vert_bar}. Using a branched plectonemic (interwound) form for DNA over the range of {sigma} studied and standard (single-hit) target theory, a quantitative linear fit to (D{sub 37}{sup -1}) as a function of the effective DNA radius, S({angstrom}), was obtained. The model predicts that both the slope (a) and the intercept (b) of (D{sub 37}){sup -1} as a function of S({angstrom}) are directly proportional to the length of DNA and the radiation fluence. Furthermore, the ratio b/a (= r{sub o}) at {sigma} = 0 depends only on the ionic strength of the medium and is independent of the radiation source parameters. Our results support the model and we calculate r{sub o} = 13.4 {+-} 1.4 nm, a value consistent with other investigations. Our results are consistent with studies using {sup 137}Cs but disagree with data obtained for X rays. 31 refs., 6 figs., 1 tab.

  3. The effect of high dose rate transient gamma radiation on high-energy optical fibers

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Bowden, M. D.; Cheeseman, M. C.; Knowles, S. L.; Meister, D. C.; Pecak, S. N.; Simmons Potter, K.

    2009-08-01

    High power laser systems have a number of uses in a variety of scientific and defense applications, for example laser induced breakdown spectroscopy (LIBS) or laser-triggered switches. In general, high power optical fibers are used to deliver the laser energy from the source to the target in preference to free space beams. In certain cases, such as nuclear reactors, these optical systems are expected to operate in ionizing radiation environments. In this paper, a variety of modern, currently available commercial off-the-shelf (COTS) optical fiber designs have been assessed for successful operation in the transient gamma radiation environment produced by the HERMES III accelerator at Sandia National Laboratories, USA. The performance of these fibers was evaluated for high (~1 MW) and low (<1 W) optical power transmission during high dose rate, high total dose gamma irradiation. A significant reduction in low optical power transmission to 32% of maximum was observed for low OH- content fibers, and 35% of maximum for high OH- fibers. The high OH- fibers were observed to recover to 80% transmission within 1 μs and 100% transmission within 1 ms. High optical power transmission losses followed generally similar trends to the low optical power transmission losses, though evidence for an optical power dependent recovery was observed. For 10-20 mJ, 15 ns laser pulses, around 46% was transmitted coincident with the radiation pulse, recovering to 70% transmission within 40 ns of the radiation pulse. All fibers were observed to completely recover within a few minutes for high optical powers. High optical power densities in excess of 1 GW/cm2 were successfully transmitted during the period of highest loss without any observed damage to the optical fibers.

  4. Radiation grafting of methyl methacrylate monomer on natural rubber latex. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah, S.

    1984-05-01

    A method of radiation grafting of methyl methacrylate (MMA) monomer on natural rubber (NR) latex has been studied. The irradiation dose in radiation emulsion polymerization of MMA monomer was lower compared to the irradiation dose for grafting of MMA monomer on NR latex, in order to obtain the same degree of conversion. This is due to the size of the rubber particles which are quite large and, hence, not sufficient to ensure an ideal emulsion polymerization. The irradiation dose for radiation grafting of MMA monomer on latex was around 300 krad to obtain a 75% degree of conversion. However, this irradiation dose was lower compared to the irradiation dose for bulk polymerization of MMA momomer, in order to obtain the same degree of conversion. This is due to the gel effect in the viscous media. Radiation grafting of MMA monomer on NR latex does not influence the pH of the latex, but influences the viscosity significantly. The viscosity of the NR latex increased with an increase in irradiation dose, due to the increase of the total solid content in the latex. The MMA monomer converted to P-MMA in NR latex was largely grafted on the NR, or at least insoluble in a solvent for P-MMA, such as acetone or toluene. The hardness of the pure gum vulcanizate increased with an increase in the degree of grafting or P-MMA content, but the other physical properties, such as tensile strength, modulus, elongation at break, and thermal stability, were not greatly influenced by the degree of grafting. 9 references, 3 figures, 5 tables.

  5. Radiation levels on empty cylinders containing heel material

    SciTech Connect

    Shockley, C.W.

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  6. Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites).

    PubMed

    Tzortzis, Michalis; Tsertos, Haralabos; Christofides, Stelios; Christodoulides, George

    2003-01-01

    The gamma radiation in samples of a variety of natural tiling rocks (granites) imported in Cyprus for use in the building industry was measured, employing high-resolution gamma-ray spectroscopy. The rock samples were pulverised, sealed in 1-l plastic Marinelli beakers, and measured in the laboratory with an accumulating time between 10 and 14 h each. From the measured gamma-ray spectra, activity concentrations were determined for (232)Th (range from 1 to 906 Bq kg(-1)), (238)U (from 1 to 588 Bq kg(-1)) and (40)K (from 50 to 1606 Bq kg(-1)). The total absorbed dose rates in air calculated from the concentrations of the three radionuclides ranged from 7 to 1209 nGy h(-1) for full utilization of the materials, from 4 to 605 nGy h(-1) for half utilization and from 2 to 302 nGy h(-1) for one quarter utilization. The total effective dose rates per person indoors were determined to be between 0.02 and 2.97 mSv y(-1) for half utilization of the materials. Applying dose criteria recently recommended by the EU for superficial materials, 25 of the samples meet the exemption dose limit of 0.3 mSv y(-1), two of them meet the upper dose limit of 1 mSv y(-1) and only one clearly exceeds this limit.

  7. Spectroscopic evaluation of painted layer structural changes induced by gamma radiation in experimental models

    NASA Astrophysics Data System (ADS)

    Manea, Mihaela M.; Moise, Ioan V.; Virgolici, Marian; Negut, Constantin D.; Barbu, Olimpia-Hinamatsuri; Cutrubinis, Mihalis; Fugaru, Viorel; Stanculescu, Ioana R.; Ponta, Corneliu C.

    2012-02-01

    The degradation of cultural heritage objects by insects and microorganisms is an important issue for conservators, art specialists and humankind in general. Gamma irradiation is an efficient method of polychrome wooden artifacts disinfestation. Color changes and other modifications in the physical chemical properties of materials induced by gamma irradiation are feared by cultural heritage responsible committees and they have to be evaluated objectively and precisely. In this paper FTIR and FT-Raman spectroscopy methods were used to investigate the structural changes in some experimental models of tempera paint layers on wood following 11 kGy gamma irradiation at two dose rates. Radiation chemistry depends on the particular pigment, matrix formed by protein, resin (in case of varnished samples) and water presence. For the majority of painted layer in experimental models very small spectral variations were observed. Small changes in the FTIR spectra were observed for the raw sienna experimental model: for the higher dose rate the egg yolk protein oxidation peaks and the CH stretching bands due to lipids degradation products increased.

  8. Effects of low levels of radiation on humans

    SciTech Connect

    Auxier, J.A.

    1981-01-01

    The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed. (ACR)

  9. Radiation levels in the SSC interaction regions

    SciTech Connect

    Groom, D.E.

    1988-06-10

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  10. Low doses of gamma radiation in the management of postharvest Lasiodiplodia theobromae in mangos

    PubMed Central

    Santos, Alice Maria Gonçalves; Lins, Severina Rodrigues Oliveira; da Silva, Josenilda Maria; de Oliveira, Sônia Maria Alves

    2015-01-01

    The postharvest life of mango is limited by the development of pathogens, especially fungi that cause rot, among which stands out the Lasiodiplodia theobromae. Several control methods have been employed to minimize the damages caused by this fungus, chemical control can leave residues to man and nature; physical control by the use of gamma radiation in combination with modified atmosphere and cold storage. The use of gamma radiation helps to reduce the severity of the pathogen assist in the ripening process of fruits, even at low doses (0.25, 0.35 and 0.45 kGy) chemical properties such as pH, soluble solids, acid ascorbic, titratable acidity and also the quality parameters of the pulp showed no damage that are ideal for trade and consumption of mangoes. This treatment can be extended for use in the management of diseases such as natural infections for penducular rot complex that has as one of L. theobroma pathogens involved. PMID:26413068

  11. Improvement of microbiological safety of sous-vide meals by gamma radiation

    NASA Astrophysics Data System (ADS)

    Farkas, J.; Polyák-Fehér, K.; Andrássy, É.; Mészáros, L.

    2002-03-01

    Experimental batches of smoked-cured pork in stewed beans sauce were inoculated with spores of psychrotrophic Bacillus cereus, more heat and radiation resistant than spores of non-proteolytic C. botulinum. After vacuum packaging, the meals were treated with combinations of pasteurizing heat treatments and gamma irradiation of 5 kGy. Prior and after treatments, and periodically during storage at 10°C, total aerobic and total anerobic viable cell counts, and selectively, the viable cell counts of B. cereus and sulphite-reducing clostridia have been determined. The effects of the treatment order as well as addition of nisin to enhance the preservative efficiency of the physical treatments were also studied. Heat-sensitization of bacterial spores surviving irradiation occurred. The quality-friendly sous-vide cooking in combination with this medium dose gamma irradiation and/or nisin addition increased considerably the microbiological safety and the keeping quality of the meals studied. However, approx. 40% loss of thiamin content occurred as an effect of combination treatments, and adverse sensorial effects may also limit the feasible radiation doses or the usable concentrations of nisin.

  12. Influence of gamma radiation on the gel rigidity index and binding capability of gelatin

    SciTech Connect

    Fassihi, A.R.; Parker, M.S.

    1988-10-01

    Changes in the rigidity indices of gelatin gel before and after gamma irradiation were characterized by dynamic mechanical testing, and the significance of these changes on the strength of granules was evaluated. Results illustrate the difficulty of obtaining reproducible values for gels containing less than 20% gelatin. However, rigidity indices for gels with a gelatin content of 20% and higher are consistent and may provide a useful controlling factor for preparation of gelatins of more precise specifications. The data indicate that rigidity degradation kinetics of several concentrations of gelatin gel at different radiation doses are complex, showing both increasing and decreasing rates. These findings strongly suggest that doses of less than 2.0 Mrad of gamma radiation should be used in order to obtain gelatins of acceptable quality for pharmaceutical applications. The crushing strength of granules of lactose powder granulated with irradiated gelatin reveals that the binding capability of such gelatin is significantly reduced. The results obtained for various size fractions and granule hardnesses containing different binder concentrations also suggest that particle size influences the granule strength to a lesser extent than does binder concentration and its consistency.

  13. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  14. Advances in commercial application of gamma radiation in tropical fruits at Brazil

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Silva, J. M.; Cruz, J. N.; Broisler, P. O.; Rela, P. R.; Salmieri, S.; Lacroix, M.

    2009-07-01

    All regions of Brazil are potential areas for growing tropical fruits. As this country is already a great producer and exporter of tropical fruits, ionizing radiation has been the subject of studies in many commodities. An important project has been carried out to increase the commercial use of gamma radiation in our country. Instituto de Pesquisas Energeticas e Nucleares (IPEN)-CNEN/SP together with field producers in northeast region and partners like International Atomic Energy Agency (IAEA), CIC, Empresa Brasileira Pesquisa na Agricultura (EMBRAPA) joined to demonstrate this technology, its application and commercial feasibility. The objective of this study is to show advances in feasibility demonstrate the quality of the irradiated fruits in an international consignment from Brazil to Canada. In this work, Tommy Atkins mangoes harvested in northeast region of Brazil were sent to Canada. The fruits were treated in a gamma irradiation facility at doses 0.4 and 1.0 kGy. The control group was submitted to hydrothermal treatment (46 °C for 110 min). The fruits were stored at 11 °C for 10 days until the international transportation and kept at an environmental condition (22 °C) for 12 days, where their physical-chemical and sensorial properties were evaluated. The financial part of the feasibility study covers the scope of the investment, including the net working capital and production costs.

  15. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    SciTech Connect

    Triplett, G.H. ); Foutz, W.L.; Lesperance, L.R. )

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 {plus minus} 3.4 pCi/g for {sup 40}K, 1.6 {plus minus} 0.5 pCi/g for {sup 226}Ra, and 1.2 {plus minus} 0.3 pCi/g for {sup 232}Th. The Durango background gamma exposure rate was found to be 16.5 {plus minus} 1.3 {mu}R/h. Average gamma spectral count rate measurements for {sup 40}K, {sup 226}Ra and {sup 232}Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs.

  16. Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation

    NASA Astrophysics Data System (ADS)

    Soler, Dulce María; Rodríguez, Yanet; Correa, Hector; Moreno, Ailed; Carrizales, Lila

    2012-08-01

    This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25-30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.

  17. Luminescence sensors on the basis of quartz glasses with localization of gamma-radiation source

    NASA Astrophysics Data System (ADS)

    Yanukovich, Tatjana P.; Poliakov, Alexander V.

    2006-04-01

    Optical fibers as detectors of radiation have a lot of advantages: big length, little diameter, no electrical interference, and an opportunity to measure radiation from the spread source. Optical characteristics of pure silica glasses as a material for optical fibers are very important. Luminescence spectra of high-purity silica glasses made by sol-gel technology have been investigated. Silica glasses are very stable and their characteristics are changed in narrow range. Sol-gel technology was chosen because it allows obtaining samples with different properties during changing technology. In other technologies, uncontrolled admixtures presence leads to big number of luminescence bands appearance. Their analysis is difficult. Luminescence band with energy of 1,9 eV appeared during exposition of glasses to gamma-irradiation. Luminescence intensity dependence on irradiation dose is analyzed. Appearance reasons are investigated. Absorption band with energy 2,0 eV appears in glasses during irradiation due to nonbridging oxygen hole centers (NBOHC:identical to Si- 0upward arrow). The same centers are responsible for luminescence with 1,9 eV. Energetic diagram is proposed. Principle scheme of gamma-irradiation optical fiber sensor is proposed on the basis of optical fiber made by sol-gel technology. Optical fiber is illuminated from the lightsource with energy of 2,0 eV. Luminescence appears at those portions of optical fiber, which are exposed to gamma irradiation. Such luminescence pulses are registered from both sides of optical fiber. Travel time is proportional to the distance from the end of fiber to irradiated portion. Length of pulse is proportional to the length of portion. Thermal annealing of optical fiber is discussed.

  18. Isolation and characterization of mold fungi and insects infecting sawmill wood, and their inhibition by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kalawate, Aparna; Mehetre, Sayaji

    2015-12-01

    This article describes the isolation, identification, and characterization of wood-rotting fungi and insects, and their inhibition was studied using gamma radiation. Products manufactured from plantation timber species are deteriorated by wood-rotting fungi such as Hypocrea lixii, Fusarium proliferatum, and Aspergillus flavus, and insects such as powderpost beetles. Proper preservation methods are necessary for ensuring a long service life of wood products. In this study, wood samples were treated with 2.5% copper ethanolamine boron (CEB) (10% w/v) and subsequently irradiated with gamma rays (10 kGy). It was observed that CEB-treated and gamma-irradiated samples controlled fungi and powderpost beetles significantly. As wood is a dead organic material, penetration of chemicals into it is very difficult. Gamma rays easily pass through wooden objects with hidden eggs and dormant spores of insects and fungi, respectively. Gamma irradiation was proved very effective in reducing damage caused by both fungi and insects.

  19. Synergistic effects in the short-term preservation of hides with antiseptics and gamma radiation

    NASA Astrophysics Data System (ADS)

    Du Plessis, TA; Russell, AE; Stevens, RCB; Galloway, AC

    The normal time lapse between the skinning and tanning processes of green hides necessitates the need for a short-term preservation technique to be employed. The most common method of bringing about such preservation is the coarse salting of the flesh side of hides. More recently the antiseptic treatment of hides was introduced to overcome the serious environmental pollution brought about by the salting process. The antiseptic treatment, however, must also be carefully controlled to avoid upsetting the biological breakdown processes in effluent plants. The gamma sterilization of such hides presents a non-polluting alternative to these methods. As the nature of this product demands excessively high radiation doses to be effective, which negatively influences the economics of the process and the physical properties of the resultant leather, a combination process employing radiation and antiseptics was investigated. It was observed that the radiation dose could be lowered from 50 kGy to 8 kGy in combination with certain antiseptics, whilst the required antiseptic concentration could be substantially lowered in the presence of radiation. The resultant leather was of an excellent quality whilst minimizing the environmental pollution problem.

  20. The effect of perinatal sup 60 Co gamma radiation on brain weight in beagles

    SciTech Connect

    Hamilton, B.F.; Benjamin, S.A.; Angleton, G.M.; Lee, A.C. )

    1989-08-01

    Beagle dogs were given single, whole-body {sup 60}Co gamma-radiation exposures at one of three prenatal (8, 28, or 55 days postcoitus) or three postnatal (2, 70, or 365 days postpartum) ages to evaluate the relative radiosensitivity of various stages of brain development. A total of 387 dogs received mean doses ranging from 0.16 to 3.83 Gy, and 120 dogs were sham-irradiated. Groups of dogs were sacrificed at preselected times from 70 days to 11 years of age. Brain weight decreased significantly with increasing dose in dogs irradiated at 28 or 55 days postcoitus or at 2 days postpartum. Irradiations at 28 days postcoitus were dramatically more effective in causing a reduction in brain weight than those at 55 days postcoitus or 2 days postpartum. Among dogs given 1.0 Gy or more and followed for up to 4 years, there was a radiation effect evident at all three sensitive exposure ages. Among dogs given lower doses and followed for up to 11 years, there was a significant decrease in brain weight in dogs given 0.80-0.88 Gy at 28 days postcoitus. All decreases in brain weight were present after normalization for radiation-induced reductions in skeletal (body) size. No specific morphologic changes were noted in the brains which showed the radiation-related reductions in size.

  1. Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation

    NASA Astrophysics Data System (ADS)

    Abd El All, S.; Fawzy, Y. H. A.; Radwan, R. M.

    2007-09-01

    The preparation process of zinc aluminate (ZnAl2 O4) ceramic powder, as well as the sintering temperature have been consequently governed using scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques. A broad exothermic peak in the range 223-310 °C is observed due to the crystallization of ZnAl2O4 powder. Then the final resultant powder was irradiated with gamma rays at different doses from 30 to 150 kGy. The effect of gamma irradiation on the structure and the electrical behaviour of ZnAl2O4 ceramics has been obtained. The induced changes in the structure have been studied via SEM, XRD and FTIR spectrometers. The obtained results reveal no changes in the spinel phase of ZnAl2O4, while some displacements of the constituent individual atoms for the irradiated samples are observed. The I-V characteristic curves and the dielectric properties of the prepared ceramic powder have been measured for unirradiated and irradiated samples. These curves exhibit nonlinearity of this type of ceramics, where the dc current gradually increases with the increase in the dose. The irradiation of ZnAl2O4 with gamma radiation was found to increase the nonlinearity of the I-V curves. The dielectric constant and loss were found to decrease as the dose increases. Therefore, the irradiation of ZnAl2O4 with gamma rays can improve its utility as an electronic protector in electrical circuits against sudden overvoltage.

  2. Examining a link between SPEs and ground level radiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2015-01-01

    Researchers have previously found a correlation between solar proton events (SPEs) and congenital malformations (CMs). A similar correlation has also been found between long term solar variability and CMs. We examine the ionizing radiation dose from these events as well as the largest events on record to determine whether these events are capable of producing these effects. We show that the total ionizing radiation dose (consisting of neutrons and muons) at ground level is insufficient for production of the observed increases in CM rate under the current paradigm regarding ionizing radiation from muons and neutrons. Current research on the subject shows that our assumptions regarding muonic ionizing radiation may be underestimating their biologic effect. We recommend further experimentation regarding the radiation dose due to muons, as this may prove to be a more substantial contribution to our radiation environment than previously assumed.

  3. Abdominal {gamma}-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    SciTech Connect

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc; Linard, Christine

    2011-07-01

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effector cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.

  4. Network-level fallout radiation effects assessment. Final report

    SciTech Connect

    Not Available

    1991-05-01

    National Security calls for the ability to maintain communication capabilities in times of national disaster, which could include a nuclear attack. Nuclear detonation has two basic by-products for which telecommunication equipments are susceptible to damage. These are electromagnetic pulse (EMP) and fallout radiation. The purposes of the EMP Mitigation Program are to analyze and to lessen the effects of EMP and fallout radiation on national telecommunications resources. Fallout radiation occurs after the initial intense high-frequency EMP, and is the subject of this analysis. Fallout radiation is the residual radiation that remains in the atmosphere after a nuclear blast, and which can be carried by weather conditions to locations far from the detonation point. This analysis focuses on the effects of fallout radiation on the telecommunications network of the American Telephone and Telegraph Co. (AT and T). This assessment of AT and T-network's communications-capabilities uses a network-level approach to assess fallout-radiation effects on the network's performance. The approach used was developed for assessing network-level EMP effects on Public Switched Network communication capabilities. Details are given on how EMP assessments utilize this method. Equipment-level fallout-radiation survivability data is also required.

  5. Effects of high vs low-level radiation exposure

    SciTech Connect

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  6. A new analytical formula for neutron capture gamma dose calculations in double-bend mazes in radiation therapy

    PubMed Central

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    Background Photoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms. Aim In the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms. Materials and methods A total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes. Results For capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods. Conclusion Our results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations. PMID:24377027

  7. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  8. A new automated and precise calibration method for gamma level gauges with rod detector arrangement.

    PubMed

    Peyvandi, Reza Gholipour; Taheri, Ali; Olfateh, Ali; Islami, Seyyedeh Zahra

    2016-06-01

    Gamma-ray liquid level gauging is of particular importance in several industries. Industrial vessels, tanks, and reactors, which work at high temperatures and pressures, usually have thick metal walls up to 20cm. These factors make it impossible to know the exact level of liquid or fluid while the system is operating. For this reason, the calibration process of the gamma level gauges is difficult as it is impossible to gain access to the inside of the vessels, which is important during the calibration process. In this study, a new auto-calibration method was proposed for the aforementioned situations.

  9. Inactivation of murine norovirus-1 in the edible seaweeds Capsosiphon fulvescens and Hizikia fusiforme using gamma radiation.

    PubMed

    Park, Shin Young; Kang, Sujin; Ha, Sang-Do

    2016-06-01

    This study investigated the effects of gamma radiation (3-10 kGy) upon the inactivation of murine norovirus-1 (MNV-1), a human norovirus (NoV) surrogate. The edible green and brown algae, fulvescens (Capsosiphon fulvescens) and fusiforme (Hizikia fusiforme), respectively, were experimentally contaminated with 5-6 log10 plaque forming units (PFU)/ml MNV-1. The titer of MNV-1 significantly decreased (P < 0.05) as the dose of gamma radiation increased. MNV-1 titer decreased to 1.16-2.46 log10 PFU/ml in fulvescens and 0.37-2.21 log10 PFU/ml in fusiforme following irradiation. However, all Hunters ('L', 'a' and 'b') and sensory qualities (appearance, color, flavor, texture and overall acceptability) were not significantly (P > 0.05) different in both algae following gamma radiation. The Weibull model was used to generate non-linear survival curves and to calculate Gd values for 1, 2, and 3 log10 reductions of MNV-1 in fulvescens (R(2) = 0.992) and fusiforme (R(2) = 0.988). A Gd value of 1 (90% reduction) corresponded to 2.89 and 3.93 kGy in fulvescens and fusiforme, respectively. A Gd value of 2 (99% reduction) corresponded to 7.75 and 9.02 kGy in fulvescens and fusiforme, respectively, while a Gd value of 3 (99.9% reduction) in fulvescens and fusiforme corresponded with 13.83 and 14.93 kGy of gamma radiation, respectively. A combination of gamma radiation at medium doses and other treatments could be used to inactivate ≥ 3 log10 PFU/ml NoV in seaweed. The inactivation kinetics due to gamma radiation against NoV in these algae might provide basic information for use in seaweed processing and distribution.

  10. Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia

    SciTech Connect

    Al-Ghorabie, Fayez H.H. . E-mail: alghorabie_f@hotmail.com

    2005-06-01

    This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the season of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.

  11. Measurement of Branching Fractions in Radiative BDecays to eta K gamma and Search for B Decays to eta' K gamma

    SciTech Connect

    Aubert, B.

    2006-03-31

    The authors present measurements of the B {yields} {eta}K{gamma} branching fractions and upper limits for the B {yields} {eta}'K{gamma} branching fractions. For B{sup +} {yields} {eta}K{sup +}{gamma} they also measure the time-integrated charge asymmetry. The data sample, collected with the BABAR detector at the Stanford Linear Accelerator Center, represents 232 x 10{sup 6} produced B{bar B} pairs. The results for branching fractions and upper limits at 90% C.L. in units of 10{sup -6} are: {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = 11.3{sub -2.6}{sup +2.8} {+-} 0.6, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = 10.0 {+-} 1.3 {+-} 0.5, {Beta}(B{sup 0} {yields} {eta}'K{sup 0}{gamma}) < 6.6, {Beta}(B{sup +} {yields} {eta}'K{sup +}{gamma}) < 4.2. The charge asymmetry in the decay B{sup +} {yields} {eta}K{sup +}{gamma} is {Alpha}{sub ch} = -0.09 {+-} 0.12 {+-} 0.01. The first errors are statistical and the second systematic.

  12. Gamma watermarking

    SciTech Connect

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  13. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.; Micic, M.

    2015-01-01

    The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer-solvent (OPGMA375-water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2-9.0) and temperature (4-70 °C) ranges. Additional characterisation of structure and properties was conducted by UV-vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol-gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

  14. Determination of radiative neutron capture cross sections for unstable nuclei by the {gamma}-ray strength function method

    SciTech Connect

    Utsunomiya, H.; Goriely, S.

    2012-11-12

    An indirect method referred to as the {gamma}-ray strength function method has been devised to determine radiative neutron capture cross sections for unstable nuclei along the valley of {beta}-stability. This method is based on the {gamma}-ray strength function which interconnects radiative neutron capture and photoneutron emission within the statistical model. The method was applied to several unstable nuclei such as {sup 93,95}Zr, {sup 107}Pd, and 121,123Sn. This method offers a versatile application extended to unstable nuclei far from the stability when combined with Coulomb dissociation experiments at RIKEN-RIBF and GSI.

  15. Effect of high-power gamma-radiation on the /sup 90/Sr distribution in the ground

    SciTech Connect

    Sobolev, I.A.; Barinov, A.S.; Khomchik, L.M.; Ozhovan, M.I.; Timofeev, E.M.

    1986-02-01

    This paper examines the effect of gamma-radiation on the Sr-90 distribution in argillaceous soil. For the irradiated argillaceous ground specimens, the authors investigated the ion-exchange capacity and the Sr-90 distribution coefficient concentration in the solid phase to the Sr-90 concentration in the contacting equilibrium solution. The investigation of the irradiated ground samples has shown that the ion-exchange capacity remains virtually unchanged up to a total dose of 2.3 x 10/sup 8/ rd. The effect of gamma-radiation on the Sr-90 distribution coefficient was investigated in two series of experiments.

  16. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  17. IMPACT OF NEUTRON AND GAMMA RADIATION ON THE DESIGN OF DIAGNOSTICS AND OTHER TARGET-BAY SYSTEMS

    SciTech Connect

    Eder, D C; Song, P M; Latkowski, J F; Reyes, S; O'Brien, D W; Lee, F D; Young, B K; Koch, J A; Watts, P W; Kimbrough, J R; Ng, E W; Landen, O L; MacGowan, B J

    2005-09-01

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range ({approx}3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.

  18. Evaluation of the in vivo genotoxic effects of gamma radiation on the peripheral blood leukocytes of head and neck cancer patients undergoing radiotherapy.

    PubMed

    Kadam, Samit B; Shyama, Soorambail K; Almeida, Valentine G

    2013-04-15

    The present study aimed to evaluate the genotoxic effects of ionizing radiation on non-target cells of Head and Neck Squamous Cell Carcinoma (HNSCC) patients exposed to various cumulative doses of gamma rays during radiotherapy. The ten patients (P1-P10) were treated with cobalt 60 gamma radiation (External Beam Radiotherapy) for a period of five to six weeks with a daily fraction of 2Gy for 5 days each week. The genotoxic effects of radiation (single strand breaks - SSBs) in these patients were analyzed using the alkaline single cell gel electrophoresis (SCGE) technique, with the Olive Tail Moment (OTM) as the critical parameter. A sample of each patient's peripheral blood before starting with radiotherapy (pre-therapy) served as the control, and blood collected at weekly time intervals during the course of the radiotherapy served as treated (10, 20, 30, 40, 50 and 60Gy) samples. In vivo radiosensitivity of these patients, as indicated by SSB's after the cumulative radiation doses at the various times, was assessed using Student's t-test. Significant DNA damage relative to the individual patient's pre-therapy baseline data was observed in all patients. Inter-individual variation of the genotoxic effects was analyzed using two-way ANOVA. The correlation between doses for the means of smoker and non-smoker patients was calculated using the Pearson test. The results of this study may indicate the need to reduce the daily radiotherapy dose further to prevent genotoxic effects on non-target cells, thus improving safety. Furthermore, these results may indicate that the estimation of DNA damage following exposure to a gamma radiation, as measured by the comet assay in whole blood leukocytes, can be used to screen human populations for radiation-induced genetic damage at the molecular level.

  19. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  20. Chromosome aberration analysis in persons exposed to low-level radiation from the JCO criticality accident in Tokai-mura.

    PubMed

    Sasaki, M S; Hayata, I; Kamada, N; Kodama, Y; Kodama, S

    2001-09-01

    Chromosome aberrations were studied in peripheral blood lymphocytes of 43 persons who were exposed to low-level radiation of mixed neutrons and gamma-rays resulting from the JCO criticality accident. When the age-adjusted frequencies of dicentric and ring chromosomes were compared with the dose calibration curve established in vitro for 60Co gamma-rays as a reference radiation, a significant correlation was observed between the chromosomally estimated doses and the documented doses evaluated by physical means. The regression coefficient of the chromosomal doses against the documented doses, 1.47 +/- 0.33, indicates that the relative biological effectiveness of fission neutrons at low doses is considerably higher than that currently adopted in the radiation protection standard.

  1. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    SciTech Connect

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.; Bernacki, Bruce E.; Jordan, David V.; Stewart, Trevor N.; Seifert, Carolyn E.; Kernan, Warnick J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.

  2. Coffee-mediated protective effects against directly acting genotoxins and gamma-radiation in mouse lymphoma cells.

    PubMed

    Abraham, S K; Vukicevic, V; Stopper, H

    2004-03-01

    The cytokinesis-block micronucleus test was performed using L5178Y mouse lymphoma cells to ascertain whether or not standard (caffeinated) instant coffee, the commonly consumed polyphenolic beverage with antioxidant activity can protect against chromosomal damage induced by the directly acting agents N-methyl-N-nitro-N-nitrosoguanidine (MNNG), mitomycin C (MMC), methyl methanesulfonate (MMS) and gamma radiation. Our results demonstrated significant reductions in the in vitro genotoxic effects of MNNG, MMC, and MMS following co-treatment of mouse lymphoma cells with standard instant coffee. Subsequently, the comet assay was carried out to assess the effect of coffee co-treatment on the level of DNA damage induced by MMS in mouse lymphoma cells. The results demonstrated a significant reduction in MMS-induced DNA damage following co-treatment with standard instant coffee. Protective effects were observed in mouse lymphoma cells which were treated with coffee immediately after exposure to gamma radiation (1 and 2 Gy). Another experiment showed protection when the mammalian cells were irradiated (0.5 and 1 Gy) midway (at 2 h) during a 4 h coffee treatment. However, the protective effect against the lower dose (0.5 Gy) was not significant. In addition we assessed the modulatory effect of coffee on MNNG-induced apoptotic frequency by flow cytometry. The results revealed only a minor influence of coffee on the frequency of apoptotic cells induced by the test compounds, rendering an increase in sensitivity for apoptosis as a reason for the reduced genomic damage an unlikely or at least incomplete explanation.

  3. Protection by pantothenol and beta-carotene against liver damage produced by low-dose gamma radiation.

    PubMed

    Slyshenkov, V S; Omelyanchik, S N; Moiseenok, A G; Petushok, N E; Wojtczak, L

    1999-01-01

    Rats were exposed to a total dose of 0.75 Gy of gamma radiation from a 60Co source, receiving three doses of 0.25 Gy at weekly intervals. During two days before each irradiation, the animals received daily intragastric doses of 26 mg pantothenol or 15 mg beta-carotene per kg body mass. The animals were killed after the third irradiation session, and their blood and livers were analyzed. As found previously (Slyshenkov, V.S., Omelyanchik, S.N., Moiseenok, A.G., Trebukhina, R.V. & Wojtczak, L. (1998) Free Radical Biol. Med. 24, 894-899), in livers of animals not supplied with either pantothenol or beta-carotene and killed one hour after the irradiation, a large accumulation of lipid peroxidation products, as conjugated dienes, ketotrienes and thiobarbituric acid-reactive substances, could be observed. The contents of CoA, pantothenic acid, total phospholipids, total glutathione and GSH/GSSG ratio were considerably decreased, whereas the NAD/NADH ratio was increased. All these effects were alleviated in animals supplied with beta-carotene and were completely abolished in animals supplied with pantothenol. In the present paper, we extended our observations of irradiation effects over a period of up to 7 days after the last irradiation session. We found that most of these changes, with the exception of GSH/GSSG ratio, disappeared spontaneously, whereas supplementation with beta-carotene shortened the time required for the normalization of biochemical parameters. In addition, we found that the activities of glutathione reductase, glutathione peroxidase, catalase and NADP-dependent malate (decarboxylating) dehydrogenase ('malic enzyme') in liver were also significantly decreased one hour after irradiation but returned to the normal level within 7 days. Little or no decrease in these activities, already 1 h after the irradiation, could be seen in animals supplemented with either beta-carotene or pantothenol. It is concluded that pantothenol is an excellent radioprotective

  4. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  5. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  6. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  7. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients.

  8. Gamma radiation effect on structural properties of PLLA/PCL blends

    NASA Astrophysics Data System (ADS)

    Kodama, Y.; Machado, L. D. B.; Giovedi, C.; Nakayama, K.

    2007-12-01

    Poly(L-lactic acid) (PLLA) and poly(ɛ-caprolactone) (PCL) extruded homopolymers and PLLA/PCL blends films were irradiated with gamma rays from Co-60 at doses in the range of 25-500 kGy to investigate the effect of the ionizing radiation on the morphological properties of the samples. The morphology of the homopolymers and the blends were observed by scanning electron microscope (SEM). The micrographs of the fractured homopolymers and blends have shown immiscibility of the blends. The crystallization of PLLA can be observed in the annealed samples. Samples irradiated with 100 kGy presented few variations in the morphology. But in PCL homopolymer and PCL/PLLA 50/50 wt% blend irradiated with 500 kGy dose it was possible to observe significant alteration. The ruptured sample surface of irradiated PCL with 500 kGy became full of scales probably due to an increase of crosslinking density induced by the ionizing radiation, but apparently no changes promoted by ionizing radiation could be observed on the irradiated PLLA by SEM.

  9. Gamma-Radiation-Induced Degradation of Actively Pumped Single-Mode Ytterbium-Doped Optical Laser - Postprint

    DTIC Science & Technology

    2015-01-01

    discussed. Keywords: Radiation effects, radiation-induced absorption, gamma irradiation, rare- earth doped fibers, rare- earth doped fiber amplifiers...passive optical fibers have identified that the major mechanism of performance degradation is the creation of absorbing species in the fiber, which in...turn inhibit the transmission of light at certain wavelengths1,2,3,4. In recent years, the use of rare- earth (RE) doped optical fibers has expanded

  10. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  11. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  12. Operation Upshot-Knothole. Project 29. 1. Comparison and evaluation of dosimetry methods applicable to gamma radiation, Nevada Proving Ground. Report for March-June 1953

    SciTech Connect

    Taplin, G.V.; Sigoloff, S.C.; Douglas, C.H.; Paglia, D.E.; Heller, C.J.

    1984-10-31

    The three major objectives and parts of this project were to compare and evaluate the accuracy and practicality of chemical vs film and other methods of gamma dosimetry for radiations encountered under bomb conditions at sites receiving (1) either prompt- or residual-gamma exposures or mixtures of both, (2) only residualgamma radiations, either neutron induced or from fission-product fallout, and (3) mixed neutron-gamma irradiation plus correlation with biological effects.

  13. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    SciTech Connect

    Bruce J. Mincher; Stephen P. Mezyk; Gary S. Groenewold

    2016-05-01

    Abstract The group actinide/lanthanide complexing agent octylphenylcarbamoylmethyl phosphine oxide (CMPO) has been examined for its radiation stability by measuring the kinetics of its reactions with free radicals in both the aqueous and organic phases for the free and metal-complexed ligand, identifying its degradation products for both alpha and gamma irradiation, measuring the effects on solvent extraction performance, and measuring the G-values for its degradation under various conditions. This includes the G-values for CMPO in the absence of, and in contact with the acidic aqueous phase, where it is shown that the acidic aqueous phase provides radio-protection for this ligand. It was found that both solvent and metal complexation affect the kinetics of the reaction of the •NO3 radical, a product of HNO3 radiolysis, with CMPO. For example, CMPO complexed with lanthanides has a rate constant for this reaction an order of magnitude higher than for the free ligand, and the reaction for the free ligand in the organic phase is about three times faster than in the aqueous phase. In steady state radiolysis kinetics it was determined that HNO3, although not NO3- anion, provides radio-protection to CMPO, with the G-value for its degradation decreasing with increasing acidity, until it was almost completely suppressed by irradiation in contact with 5 M HNO3. The same degradation products were produced by irradiation with alpha and gamma-sources, except that the relative abundances of these products varied. For example, the product of C-C bond scission was produced only in low amounts for gamma-radiolysis, but it was an important product for samples irradiated with a He ion beam. These results are compared to the new data appearing in the literature on DGA radiolysis, since CMPO and the DGAs both contain the amide functional group.

  14. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    PubMed Central

    Kaviarasu, Karunakaran; Raj, N. Arunai Nambi; Murthy, K. Krishna; Babu, A. Ananda Giri; Prasad, Bhaskar Laxman Durga

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was carried out for the calculated and the measured portal images for the criteria of 3% dose difference and 3 mm distance-to-agreement (DTA). Three gamma parameters: Maximum gamma, average gamma, and percentage of the field area with a gamma value>1.0 were analyzed. Three gamma index parameters were evaluated for 40 IMRT plans (315 IMRT fields) which were calculated for 400 monitor units (MU)/min dose rate and maximum multileaf collimator (MLC) speed of 2.5 cm/s. Gamma parameters for all 315 fields are within acceptable limits set at our center. Further, to improve the gamma results, we set an action level for this study using the mean and standard deviation (SD) values from the 315 fields studied. Forty out of 315 IMRT fields showed low gamma agreement (gamma parameters>2 SD as per action level of the study). The parameters were recalculated and reanalyzed for the dose rates of 300, 400 and 500 MU/min. Lowering the dose rate helped in getting an enhanced gamma agreement between the calculated and measured portal doses of complicated fields. This may be attributed to the less complex motion of MLC over time and the MU of the field/segment. An IMRT QA work flow was prepared which will help in improving the quality of IMRT delivery. PMID:26865759

  15. Effect of gammaradiation on vicine and convicine in broad beans ( Vicia faba L. )

    NASA Astrophysics Data System (ADS)

    Jaddou, H.

    Broad bean ( Vicia faba L. ) is considered to be a good source of protein. The presence of vicine and convicine and their role as a causative agents of favism limited their use. The effect of gamma radiation from 60Co source was tested on solutions of a mixture of vicine and convicine. Analysis was carried out using spectrophotometric method. Reduction of 92% in vicine and convicine was observed when a dose of 10.0 kGy was used. The reduction was very much lower when powdered dry beans was irradiated. Research in progress in order to attain a higher destructive effect. Further chemical and biological studies are also required to follow up this effect.

  16. Disinfection of the bee hive's American foulbrood by gamma radiation from Cobalt-60

    NASA Astrophysics Data System (ADS)

    Gosselin, P.; Charbonneau, R.

    Gamma radiation from Cobalt-60 was used to sterilize honeybee combs contaminated by Bacilluslarvae. The determination of the radiosensibility (D 10) was done on cultured cells in Brain Heart Infusion broth and was found to be determined at 125 Gy. The D 10 of isolated spores from contaminated combs was then determined at 0,518 kGy and the D 10 of spores irradiated in their own original environment was found at 2,05 kGy. These treated combs were then sent back in the beehives. The bees cleaned the combs thouroughly and started the storage of honey in some cells. Eggs were also layed in others. Forty five days later, there were still no sign of re-appearance of the American Foulbrood disease.

  17. Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation

    NASA Astrophysics Data System (ADS)

    Barba, Bin Jeremiah D.; Tranquilan-Aranilla, Charito; Abad, Lucille V.

    2016-01-01

    Various raw materials and hydrogels prepared from their combination were assessed for hemostatic capability using swine whole blood clotting analysis. Initial screening showed efficient coagulative properties from κ-carrageenan and its carboxymethylated form, and α-chitosan, even compared to commercial products like QuikClot Zeolite Powder. Blending natural and synthetic polymers formed into hydrogels using gamma radiation produced materials with improved properties. KC and CMKC hydrogels were found to have the lowest blood clotting index in granulated form and had the higher capacity for platelet adhesion in foamed form compared to GelFoam. Possible mechanisms involved in the evident thrombogenicity of the materials include adsorption of platelets and related proteins that aid in platelet activation (primary hemostasis), absorption of water to concentrate protein factors that control the coagulation cascade, contact activation by its negatively charged surface and the formation of gel-blood clots.

  18. Determination of changes induced by gamma radiation in nectar of kiwi fruit ( Actinidia deliciosa)

    NASA Astrophysics Data System (ADS)

    Harder, M. N. C.; De Toledo, T. C. F.; Ferreira, A. C. P.; Arthur, V.

    2009-07-01

    The kiwi ( Actinidia deliciosa; Actinidaceae) is an exotic fruit to Brazil, introduced from southeastern China. The kiwi fruit presents a high nutritional value, rich mainly in vitamin C and fibers, calcium, iron and phosphorus, which give it an excellent nutritional value. Its quality attributes and flavor has lead to acceptance in consuming markets, mainly among children. The objective of this work was to formulate a non-alcoholic sweetened drink based on kiwi fruits, to submit the drink to gamma radiation using increasing doses: 0 (control), 0.5, 1.0 and 2.0 kGy, and to evaluate changes in physical and chemical quality attributes. We found that no significant difference was observed between treatments relative to the control. So we could conclude that for the doses tested significant alterations in the physiochemical characteristics of the kiwi nectar were introduced.

  19. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples.

    PubMed

    El Arabi, A M; Ahmed, N K; Salahel Din, K

    2008-01-01

    External exposures of population to ionising radiation due to naturally occurring radionuclides in sixty-three granite samples from three different locations in south eastern desert of Egypt were considered in this article. Average outdoor gamma dose rates in air were 190, 290 and 330 nGy h(-1) for Elba, Qash Amir and Hamra Dome granites, respectively. The corresponding doses in indoor air are 270, 400 and 470 nGy h(-1), respectively. These average values give rise to annual effective dose (outdoor, indoor and in total) 0.24, 1.4 and 1.6 mSv for Elba granite. For Qash Amir and Hamra Dome granites the corresponding values were 0.35, 2 and 2.3 mSv and 0.41, 2.3 and 2.7 mSv, respectively.

  20. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.