Sample records for gamma ray activity

  1. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  2. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  3. Swift detection of increased X-ray activity from gamma-ray flaring blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Cutini, Sara

    2013-01-01

    Following enduring gamma-ray flaring activity of the flat spectrum radio quasar PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31) detected by Fermi LAT during January 2013, two Swift target of opportunity observations were performed on January 24 and 27, 2013. Recent gamma-ray and X-ray flaring activity from the source was observed on January 6 and January 7 (ATel#4714 and ATel #4717).

  4. Fermi-LAT detection of ongoing gamma-ray activity from the new gamma-ray source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.

  5. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  6. Internal absorption of gamma-rays in relativistic blobs of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Sitarek, Julian; Bednarek, Wlodek

    2007-06-01

    We investigate the production of gamma-rays in the inverse Compton (IC) scattering process by leptons accelerated inside relativistic blobs in jets of active galactic nuclei. Leptons are injected homogeneously inside the spherical blob and initiate IC e ± pair cascade in the synchrotron radiation (produced by the same population of leptons, SSC model), provided that the optical depth for gamma-rays is larger than unity. It is shown that for likely parameters internal absorption of gamma-rays has to be important. We suggest that new type of blazars might be discovered by the future simultaneous X-ray and γ-ray observations, showing peak emissions in the hard X-rays, and in the GeV γ-rays. Moreover, the considered scenario might be also responsible for the orphan X-ray flares recently reported from BL Lac type active galaxies.

  7. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  8. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  9. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  10. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  11. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  12. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  13. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  14. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  15. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  16. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  17. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  18. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; hide

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  19. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  20. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  1. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  2. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  3. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  4. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  5. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  6. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  7. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  8. Fermi LAT detection of increased gamma-ray activity from blazar S5 0716+71

    NASA Astrophysics Data System (ADS)

    Buson, S.

    2014-04-01

    The Large Area Telescope (LAT), one of two instruments on-board the Fermi Gamma-ray Space Telescope, has observed an increase in gamma-ray activity from a source positionally coincident with the BL Lac object S5 0716+71 (also known as 2FGL J0721.9+7120, Nolan et al. ...

  9. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  10. Gamma-Ray Burst Precursor Activity as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Koshut, Thomas M.; Kouveliotou, Chryssa; Paciesas, William S.; vanParadijs, Jan; Pendleton, Geoffrey N.; Briggs, Michael S.; Fishman, Gerald J.; Meegan, Charles A.

    1995-01-01

    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission.

  11. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  12. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  13. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  14. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  15. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  16. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  17. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  18. TEMPORAL CORRELATIONS BETWEEN OPTICAL AND GAMMA-RAY ACTIVITY IN BLAZARS

    DOE PAGES

    Cohen, Daniel P.; Romani, Roger W.; Filippenko, Alexei V.; ...

    2014-12-08

    For this research, we have been using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma-rays being detected with high significance (≥10σ) in one year by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. We attempt to observe each source on a three-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the five-year Fermi mission for several objects, and most have >100 optical measurements spanning the last three years.more » These blazars (flat-spectrum radio quasars and BL Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical-gamma-ray correlation in many of these sources at time delays of ~1 to ~10 days, ranging between –40 and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma-rays leading the optical, while intermediate- and high-synchrotron peak blazars with the most significant peaks have smaller lags/leads. In conclusion, it is clear that long-term monitoring at high cadence is necessary to reveal the underlying physical correlation.« less

  19. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  20. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  1. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  2. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  3. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  4. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  5. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  6. AGILE confirmation of gamma-ray activity from the IceCube-170922A error region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-09-01

    Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.

  7. Relativistic particles and gamma-ray in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1982-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  8. Relativistic particles and gamma-rays in quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.; Kazanas, D.

    1983-01-01

    A model for a class of quasars and active galactic nuclei is described in which a shock around a massive black hole randomizes the infall kinetic energy of spherically accreting matter producing a nonthermal spectrum of high energy protons. These protons may be responsible for the secondary production (via tau + or - decay) of the radio emitting high energy electrons and also of high energy gamma rays (via Pi decay and inverse Compton interactions of the electrons). The correlation between radio and gamma ray emission implied by the model is in good agreement with observations of 3C273. Observation of the flux of high energy neutrinos from quasars may provide a test for the model.

  9. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  10. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  11. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  12. Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission

    DOE PAGES

    Max-Moerbeck, W.; Hovatta, T.; Richards, J. L.; ...

    2014-09-22

    In order to determine the location of the gamma-ray emission site in blazars, we investigate the time-domain relationship between their radio and gamma-ray emission. Light-curves for the brightest detected blazars from the first 3 years of the mission of the Fermi Gamma-ray Space Telescope are cross-correlated with 4 years of 15GHz observations from the OVRO 40-m monitoring program. The large sample and long light-curve duration enable us to carry out a statistically robust analysis of the significance of the cross-correlations, which is investigated using Monte Carlo simulations including the uneven sampling and noise properties of the light-curves. Modeling the light-curvesmore » as red noise processes with power-law power spectral densities, we find that only one of 41 sources with high quality data in both bands shows correlations with significance larger than 3σ (AO0235+164), with only two more larger than even 2.25σ (PKS 1502+106 and B2 2308+34). Additionally, we find correlated variability in Mrk 421 when including a strong flare that occurred in July-September 2012. These results demonstrate very clearly the difficulty of measuring statistically robust multiwavelength correlations and the care needed when comparing light-curves even when many years of data are used. This should be a caution. In all four sources the radio variations lag the gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. Continuous simultaneous monitoring over a longer time period is required to obtain high significance levels in cross-correlations between gamma-ray and radio variability in most blazars.« less

  13. Gamma-ray background induced by atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Ma, Y.-Q.

    1984-03-01

    A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.

  14. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Katsoulakos, Grigorios; Rieger, Frank M.

    2018-01-01

    The rapidly variable, very high-energy (VHE) gamma-ray emission from active galactic nuclei (AGNs) has been frequently associated with non-thermal processes occurring in the magnetospheres of their supermassive black holes. The present work aims to explore the adequacy of different gap-type (unscreened electric field) models to account for the observed characteristics. Based on a phenomenological description of the gap potential, we estimate the maximum extractable gap power L gap for different magnetospheric setups, and study its dependence on the accretion state of the source. L gap is found in general to be proportional to the Blandford–Znajek jet power L BZ and a sensitive function of gap size h, i.e., {L}{gap}∼ {L}{BZ}{(h/{r}g)}β , where the power index β ≥slant 1 is dependent on the respective gap setup. The transparency of the vicinity of the black hole to VHE photons generally requires a radiatively inefficient accretion environment and thereby imposes constraints on possible accretion rates, and correspondingly on L BZ. Similarly, rapid variability, if observed, may allow one to constrain the gap size h∼ c{{Δ }}t. Combining these constraints, we provide a general classification to assess the likelihood that the VHE gamma-ray emission observed from an AGN can be attributed to a magnetospheric origin. When applied to prominent candidate sources these considerations suggest that the variable (day-scale) VHE activity seen in the radio galaxy M87 could be compatible with a magnetospheric origin, while such an origin appears less likely for the (minute-scale) VHE activity in IC 310.

  15. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  16. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  17. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  18. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search formore » a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).« less

  19. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  20. Fermi LAT detection of a continuing increase of gamma-ray activity of CTA 102

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.

    2012-09-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar CTA 102 (also known as 2FGL J2232.4+1143, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 338.1517038 deg, Dec: 11.7308067 deg (J2000, Johnston et al. 1995, AJ, 110, 880) at redshift z=1.037 (Schmidt 1965, ApJ, 141, 1295).

  1. Detecting Axionlike Particles with Gamma Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Serpico, Pasquale D.

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1 100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  2. Fermi: The Gamma-Ray Large Area Space Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  3. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  4. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  5. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  6. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  7. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  8. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  9. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  10. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  11. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  12. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  13. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  14. Very high energy gamma ray extension of GRO observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1992-01-01

    This has been an exiciting year for high energy gamma-ray astronomy, both from space and from ground-based observatories. It has been a particularly active period for the Whipple Observatory gamma-ray group. In phase 1 of the Compton Gamma Ray Observatory (GRO), there has not been too much opportunity for overlapping observations with the Energetic Gamma Ray Experiment Telescope (EGRET) and the other GRO telescopes; however, significant progress was made in the development of data analysis techniques and in improving the sensitivity of the technique which will have direct application in correlative observations in phase 2. Progress made during the period 1 Jul. 1991 - 31 Dec. 1991 is presented.

  15. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  16. Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky

    NASA Technical Reports Server (NTRS)

    Thomspon, D. J.

    2011-01-01

    Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  17. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  18. Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.

    1973-01-01

    An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.

  19. Fermi LAT detection of an increase of gamma-ray activity of S5 1044+71

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2014-01-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar S5 1044+71 (also known as 2FGL J1048.3+7144, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 162.1150829 deg, Dec: 71.7266494 deg (J2000; Johnston et al. 1995, AJ, 110, 880) at redshift z=1.15 (Polatidis et al.

  20. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  1. Discovery of very high energy gamma rays associated with an x-ray binary.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bussons Gordo, J; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J-M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-07-29

    X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

  2. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  3. Very high gamma ray extension of GRO observations

    NASA Astrophysics Data System (ADS)

    Weekes, Trevor C.

    1994-12-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  4. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  5. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  6. Long duration gamma-ray emission from thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.

    Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is

  7. Increased Gamma-ray Activity from the FSRQ PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Dutka, Michael

    2012-10-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has observed increased gamma-ray emission from a source positionally coincident with the flat spectrum radio quasar PKS 1424-41 (1424-418; 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31). PKS 1424-41 has the coordinates RA=14h27m56.3s, DEC= -42d06'19.4", J2000, (Johnston et al. 1995, AJ, 110, 880).

  8. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  9. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less

  10. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble

  11. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  12. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  13. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  14. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  15. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  16. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  17. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded

  18. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  19. Fermi Gamma-Ray Space Telescope: Science Highlights for the First 8 Months

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Fermi Gamma-ray Space Telescope was launched on June 11, 2008 and since August 2008 has successfully been conducting routine science observations of high energy phenomena in the gamma-ray sky. A number of exciting discoveries have been made during its first year of operation, including blazar flares, high-energy gamma-ray bursts, and numerous new,gamma-ray sources of different types, among them pulsars and Active Galactic Nuclei (AGN). fermi-LAT also performed accurate mea.<;urement of the diffuse gamma-radiation which clarifies the Ge V excess reported by EGRET almost 10 years ago, high precision measurement of the high energy electron spectrum, and other observations. An overview of the observatory status and recent results as of April 30, 2009, are presented. Key words: gamma-ray astronomy, cosmic rays, gamma-ray burst, pulsar, blazar. diffuse gamma-radiation

  20. Specification of High Activity Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    International Commission on Radiation Units and Measurements, Washington, DC.

    The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…

  1. "Chiron": A Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.

    2004-01-01

    Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.

  2. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; hide

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  3. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  4. Galactic gamma-ray sources, SNOBs, and giant H2 regions

    NASA Technical Reports Server (NTRS)

    Montmerle, T.

    1985-01-01

    Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.

  5. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  6. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  7. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  8. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  9. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  10. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  11. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  12. Prompt optical emission from gamma-ray bursts with multiple timescale variability of central engine activities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Yao; Li, Zhuo

    2014-04-01

    Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.

  13. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; hide

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  14. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  15. Elemental analysis using natural gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Naqvi, A. A.; Khiari, F. Z.; Abujarad, F.; Al-Ohali, M.; Sumani, M.

    1994-12-01

    A gamma-ray spectroscopy setup has been recently established to measure the natural gamma-ray activity from potassium ( 40K), uranium ( 238U), and thorium ( 232Th) isotopes in rock samples of oil well-logs. The setup mainly consists of a shielded 135 cm 3 Hyper Pure Germanium (HPGe) detector, a 5 in. × 5 in. NaT(Tl) detector and a PC based data acquisition system. The core samples, with 70-100 g weight, have cylindrical geometry and are sealed such that radon gas from 238U decay would not escape from the sample. For room background subtraction, pure quartz samples identical to core samples were used. The sample is first counted with the HPGe detector to identify the elements through its characteristics gamma rays. Then the elemental concentration is determined by counting the sample with a NaI detector. In order to determine the absolute concentrations, the sample activity is compared with the activities of standards supplied by NIST and IAEA. The concentration of 238U and 232Th has been determined in ppm range with that of 40K in wt.%.

  16. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  17. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  18. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  19. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  20. SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, definedmore » as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.« less

  1. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  2. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  3. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  4. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  5. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  6. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  7. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  8. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  9. Simulating Gamma-Ray Emission in Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate amore » bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.« less

  10. Simulating Gamma-Ray Emission in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  11. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  12. Fermi LAT detection of renewed gamma-ray flaring activity from the radio galaxy NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed GeV gamma-ray flaring activity from a source positionally consistent with NGC 1275 (also known as 2FGL J0319.8+4130, Nolan et al. 2012, ApJS, 199, 31, as Perseus A and 3C 84) a radio galaxy located at the center of the Perseus galaxy cluster (see also Abdo et al. 2009, ApJ, 699, 31).

  13. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  14. Low energy prompt gamma-ray tests of a large volume BGO detector.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A

    2012-01-01

    Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  16. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  17. Multiwavelength observations of unidentified high energy gamma ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1993-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.

  18. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  19. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  20. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  1. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  2. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  3. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  4. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  5. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  6. Performance of the EGRET astronomical gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hofstadter, R.; Hughes, E. B.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.

    1992-01-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. The EGRET instrument was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  7. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  8. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  9. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    PubMed

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  10. The AGILE Mission and Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; INFN, section of Trieste; Tavani, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  11. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  12. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  13. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  14. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  15. Gamma ray astrophysics and signatures of axion-like particles

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.

    2009-02-01

    We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light.

  16. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  17. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  18. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  19. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  20. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  1. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  2. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  3. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  4. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  5. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  6. Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Meszaros, P.

    1996-04-01

    In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.

  7. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  8. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  9. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  10. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  11. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  12. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  13. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ren-Bo; Hirotani, Kouichi, E-mail: rbwang1225@gmail.com, E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit correspondsmore » to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.« less

  14. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  15. Particle Swarm Imaging (PSIM) - Innovative Gamma-Ray Assay - 13497

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvin, Daniel; Clarke, Sean; Humes, Sarah J.

    2013-07-01

    Particle Swarm Imaging is an innovative technique used to perform quantitative gamma-ray assay. The innovation overcomes some of the difficulties associated with the accurate measurement and declaration of measurement uncertainties of radionuclide inventories within waste items when the distribution of activity is unknown. Implementation requires minimal equipment, with field measurements and results obtained using only a single electrically cooled HRGS gamma-ray detector. Examples of its application in the field are given in this paper. (authors)

  16. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    PubMed

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  17. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  18. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  19. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    NASA Technical Reports Server (NTRS)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  20. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  1. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  2. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  3. DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaunay, J. J.; Murase, K.; Mészáros, P.

    We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluencemore » ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.« less

  4. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  5. Terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  6. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  7. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  8. Fermi-LAT Observations of Continued Gamma-ray Activity from Nova ASASSN-16ma

    NASA Astrophysics Data System (ADS)

    Li, Kwan-Lok; Chomiuk, Laura; Strader, Jay; Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-11-01

    Following the report of a sudden gamma-ray onset detection of nova ASASSN-16ma coincident with the optical peak of 5.5 mag on November 8 (ATel #9736), ASASSN-16ma was observed to slowly decrease in gamma-rays but has remained bright enough to be detectable with Fermi-LAT over the last 9 days (test statistic, TS > 10 per day, except for November 17 with TS=5).

  9. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  10. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  11. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  12. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  13. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  14. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  15. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  16. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  17. The Early Life Of A Gamma-ray Burst

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.; Willingale, D.

    2006-09-01

    We present results for 100 gamma-ray bursts observed promptly by the Swift satellite. Combining the early gamma-ray and X-ray data from the BAT and XRT, we show that although individual GRBs can display complex light curves, including a variety of decay phases and flares, their early emission can be described by a relatively simple combination of central engine activity and the interaction of a relativistic jet with the surrounding environment. We also discuss the later fading, which in the optical/IR has traditionally been explained as a jet-break. The Swift data reveal many bursts have a relatively early break in their X-ray light curves contradicting the standard jet break model derived from optical data. We discuss the implications of this for GRB jet models and for using GRBs as standard candles.

  18. The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E. (Editor); Hunter, Stanley D. (Editor); Sreekumar, Parameswaran (Editor); Stecker, Floyd W. (Editor)

    1990-01-01

    The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation.

  19. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  20. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  1. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  2. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  3. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  4. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-12-08

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  5. The e-ASTROGAM gamma-ray space mission

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.; Tavani, M.; von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; Bykov, A.; Campana, R.; Caraveo, P.; Cardillo, M.; Coppi, P.; De Angelis, A.; Diehl, R.; Donnarumma, I.; Fioretti, V.; Giuliani, A.; Grenier, I.; Grove, J. E.; Hamadache, C.; Hartmann, D.; Hernanz, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Marisaldi, M.; McBreen, S.; McEnery, J. E.; Mereghetti, S.; Mirabel, F.; Morselli, A.; Nakazawa, K.; Peyré, J.; Piano, G.; Pittori, C.; Sabatini, S.; Stawarz, L.; Thompson, D. J.; Ulyanov, A.; Walter, R.; Wu, X.; Zdziarski, A.; Zoglauer, A.

    2016-07-01

    e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 { 100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.

  6. The e-astrogam Gamma-Ray Space Mission

    NASA Technical Reports Server (NTRS)

    Tatischeff, V.; Tavani, M.; Von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; hide

    2016-01-01

    e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2-100 MeV, extending up to GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.

  7. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  8. A gamma-ray spectroscopy survey of Omani meteorites

    NASA Astrophysics Data System (ADS)

    Weber, Patrick; Hofmann, Beda A.; Tolba, Tamer; Vuilleumier, Jean-Luc

    2017-06-01

    The gamma-ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani-Swiss meteorite search campaigns 2001-2008 were nondestructively measured using an ultralow background gamma-ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0-1 and low 14C terrestrial age and (2) weathering degree W3-4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is 120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass 4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of 115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma-ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.

  9. Detection of nuclear gamma rays from Centaurus A

    NASA Technical Reports Server (NTRS)

    Hall, R. D.; Walraven, G. D.; Djuth, F. T.; Haymes, R. C.; Meegan, C. A.

    1976-01-01

    Results are reported for an observation of nuclear gamma rays in the energy range between 0.033 and 12.25 MeV from Centaurus A using a balloon-borne actively collimated NaI(Tl) crystal scintillation counter. The observing procedure is outlined, no systematic errors are found in the data, and power-law fits to the source's energy spectrum are attempted. A power law of approximately 0.86E to the -1.9 power photon/sq cm/sec per keV is shown to give an acceptable fit to the continuum, and the detection of two gamma-ray lines at 1.6 and 4.5 MeV, respectively, is discussed. It is found that the low-energy gamma-ray luminosity of Cen A is 9.4 by 10 to the 43rd power erg/sec for a distance of 5 Mpc and that Cen A is apparently variable in low-energy gamma radiation. It is suggested that the broad feature detected at 1.6 MeV may be due to three blended lines (possibly excited Ne-20, Mg-24, and Si-28), the 4.5-MeV line is most likely due to deexcitation of excited C-12, and the nuclear excitation results from either cosmic-ray bombardment of Cen A's interstellar medium or nucleosynthesis within the source.

  10. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  11. Analysis of Data from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.; Elliott, William W.

    1999-01-01

    The final report consists of summaries of work proposed, work accomplished, papers and presentations published and continuing work regarding the cooperative agreement. The work under the agreement is based on high energy gamma ray source data analysis collected from the Energetic Gamma-Ray Experiment Telescope (EGRET).

  12. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  13. GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Archambault, S.; Archer, A.

    2015-12-20

    Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet’s base. VERITAS detected gamma-ray emission up to ∼200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25more » suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths.« less

  14. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  15. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  16. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less

  17. Soft gamma-ray detector (SGD) onboard the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Tajima, Hiroyasu; Watanabe, Shin; Blandford, Roger; Hayashi, Katsuhiro; Harayama, Atsushi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shin'ya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.

  18. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  19. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-12-08

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  1. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  2. The EGRET high energy gamma ray telescope

    NASA Astrophysics Data System (ADS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.

    1992-02-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  3. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  4. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  5. Fermi-LAT detection of increased gamma-ray activity from the FSRQ PKS 1004-217

    NASA Astrophysics Data System (ADS)

    Kreter, Michael

    2018-03-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed an increasing gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar (FSRQ) PKS 1004-217 (3FGL J1006.7-2159) with coordinates RA: 10h06m46.4136s, DEC: -21d59m20.410s, J2000 (Beasley et al. 2002, ApJS, 141, 13) and redshift z=0.331 (Hewitt & Burbidge 1989, ApJS, 69, 1). Preliminary analysis indicates that on 4 March 2018, this source was in a high-flux state with a daily averaged gamma-ray flux (E > 100MeV) of (0.84+/-0.08) X 10^-6 photons cm^-2 s^-1 (statistical uncertainties only).

  6. First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Ishio, K.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Krauß, F.; Schulz, R.; Kadler, M.; Wilms, J.; Ros, E.; Bach, U.; Beuchert, T.; Langejahn, M.; Wendel, C.; Gehrels, N.; Baumgartner, W. H.; Markwardt, C. B.; Müller, C.; Grinberg, V.; Hovatta, T.; Magill, J.

    2017-07-01

    Context. The extragalactic very-high-energy gamma-ray sky is rich in blazars. These are jetted active galactic nuclei that are viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are so far known to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. Aims: We aim to report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10°-20°. Methods: The multi-instrument campaign was conducted between 2012 November and 2013 January, and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broadband spectral energy distribution. Results: IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements in this energy range, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behavior. No strong correlated flux variability was found in other frequency regimes. The broadband spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. Conclusions: The harder-when-brighter trend in the X-ray and VHE emission, observed for the first time during this campaign, is consistent with the behavior expected from a synchrotron self-Compton scenario. The contemporaneous broadband spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for

  7. The transient gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Owens, A.; Baker, R.; Cline, T. L.; Gehrels, N.; Jermakian, J.; Nolan, T.; Ramaty, R.; Smith, G.; Stilwell, D. E.; Teegarden, B. J.

    1991-01-01

    The authors describe the Transient Gamma-Ray Spectrometer (TGRS) to be flown onboard the WIND spacecraft. This instrument is designed to detect cosmic gamma-ray bursts over the energy range of 20 keV to 10 MeV with an expected spectroscopic resolution of 2 keV at 1 MeV (E/Delta-E = 500). The active detection element is a 215-cu cm high-purity n-type Ge crystal cooled to cryogenic temperatures by a passive radiative cooler. The geometric field of view (FOV) defined by the cooler is 170 deg FWFM. Burst data are stored directly in an onboard 2.75-Mb burst memory with an absolute timing accuracy of +/-1.5 ms. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. In addition to burst measurements, the instrument will also study solar flares, search for possible diffuse background lines, and monitor the 511-keV positron annihilation radiation from the galactic center. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on December 31, 1992.

  8. Determination quercetin content, antioxidant and antimicrobial activity of genotype mutant Samosir shallots irradiated by gamma rays

    NASA Astrophysics Data System (ADS)

    Sinuraya, M.; Hanafiah, D. S.; Romulo, A.; Barus, A.

    2018-02-01

    The aim of the research was to study the variation in antioxidant and antimicrobial activity as well as the total quercetin content of the fifth generation genotypes mutant Samosir shallot irradiated by gamma rays. The studies conducted included the assessment of quercetin content, antioxidant and antimicrobial activity in shallot bulbs after long-term storage (6 months in the room temperature). Quercetin content of 20 selected genotype mutants of irradiated shallot bulbs along with untreated populations were calculated using quercetin (QU) as a standard. Antioxidant activities of 8 genotype mutant were determined using DPPH. Antimicrobial activity of bulb extracts were tested against six bacteria including Staphylococcus aurous, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae and oneyeastCandida albicans. The results showed that population of genotype mutants irradiated with dosage 2Gy, 4 Gy, 5 Gy and 6 Gy have higher quercetin content than control samples. None of the genotype mutants exhibited antibacterial inhibitory against all microorganism tested except for the sample number 2 and 6 (bulbs generated from the plants irradiated by gamma rays with dosage at 2 Gy and 6 Gy). There was also none of the genotypes observed exhibited significant antioxidant efficacy.

  9. Solar X-Ray and Gamma-Ray Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.; Christe, S. D.; Shih, A. Y.; Holman, G. D.; Emslie, A. G.; Caspi, A.

    2018-02-01

    X-ray and gamma-ray Sun observations from a lunar-based observatory would provide unique information on solar atmosphere thermal and nonthermal processes. EUV and energetic neutral atom imaging spectroscopy would augment the scientific value.

  10. Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less

  11. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  12. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  13. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    NASA Astrophysics Data System (ADS)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  14. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  15. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  16. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  17. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  18. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  19. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  20. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including

  1. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1977-01-01

    Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.

  2. Fermi LAT detection of increased gamma-ray activity from the blazar TXS 1318+225

    NASA Astrophysics Data System (ADS)

    Torresi, E.; D'Ammando, F.; Tanaka, Y.

    2012-11-01

    The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, has observed an increase in the gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar TXS 1318+225 (z=0.943, Sowards-Emmerd et al. 2003, ApJ, 590, 109; RA=200.2966771 deg, Dec=22.2700300 deg, J2000), also known as 2FGL J1321.1+2215 (Nolan et al. 2012, ApJS, 199, 31).

  3. The gamma-ray light curves of SN 1987A

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Share, Gerald H.

    1990-01-01

    Observations of the SN 1987A ejecta in four Co-56-decay gamma-ray lines, obtained using the SMM gamma-ray spectrometer between February 1987 and May 1989, are reported and analyzed. The instrument characteristics and data-reduction procedures are described, and the results are presented in extensive tables and graphs and discussed with reference to theoretical models. Gamma-ray fluxes significantly above possible instrumental levels (as determined from analysis of pre-1987 data) were detected in the second half of 1987 and the first half of 1988. The data are found to favor a model with some Co-56 in regions of low gamma-ray optical depth by 200 d after the SN outburst over models with all Co-56 at one depth within a uniform expanding envelope. Also investigated are the gamma-ray contribution to the total bolometric luminosity and the escape (and potential observability) of Co-57 gamma rays.

  4. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  5. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  6. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  7. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  8. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  9. The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies. [Compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Leiter, D.

    1979-01-01

    A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.

  10. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  11. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  12. Results from the energetic gamma-ray experiment telescope (EGRET) on the Compton Observatory

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.

    1993-01-01

    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) covers the high energy gamma ray energy range, approximately 30 MeV to 30 GeV, with a sensitivity considerably greater than earlier high energy gamma-ray satellites. Thus far, 4 pulsars have been detected and their properties measured, including in 3 cases the energy spectrum as a function of phase. The details of the galactic plane are being mapped and a spectra of the center region has been obtained in good agreement with that expected from cosmic ray interactions. The Magellanic clouds have been examined with the Large Magellanic Cloud (LMC) having been detected at a level consistent with it having a cosmic ray density compatible with quasi-stable equilibrium. Sixteen Active Galactic Nuclei (AGN's) have been seen thus far with a high degree of certainty including 12 quasars and 4 BL Lac objects, but no Seyferts. Time variation has been detected in some of these AGN's

  13. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  14. AGIS -- the Advanced Gamma-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  15. Gamma-Ray Flares from the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costamante, L.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Khangulyan, D.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sanchez, D.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Wang, P.; Wood, K. S.; Yang, Z.; Ziegler, M.

    2011-02-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 × 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  16. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  17. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  18. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  19. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  20. High energy gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Sood, R. K.; Thomas, J. A.; Waldron, L.; Manchanda, R. K.; Rochester, G. K.

    1988-01-01

    Results are presented from observations of SN 1987A made with a combined high energy gamma ray and hard X-ray payload carried on a balloon flight over Alice Springs, Australia on April 5, 1988. The payload instrumentation is described, emphasizing the characteristics of the gamma-ray detector. The gamma-ray emission profile is illustrated and the preliminary results of the observations are summarized.

  1. Hard gamma-ray background from the coding collimator of a gamma-ray telescope during in conditions of a space experiment

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.

    1984-11-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  2. An Ordinary Gamma-Ray Burst with Extraordinary Consequences

    NASA Image and Video Library

    2017-10-18

    On Aug. 17, the Gamma-ray Burst Monitor on NASA's Fermi Gamma-ray Space Telescope caught a short burst of gamma rays from the spectacular smashup of two neutron stars, setting off a chain of events that marks the first-ever detection of a cosmic event in gravitational waves and different kinds of light. NASA scientists Colleen Wilson-Hodge and Tyson Littenberg explain what happened and what it means for science and discovery.

  3. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  4. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  5. Fermi LAT detection of an increase in gamma-ray activity of the FSRQ S5 1044+71

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Carpen, Bryce

    2017-01-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar S5 1044+71 (also known as 3FGL J1048.4+7144, Acero et al. 2015, ApJS 218, 23) with radio coordinates R.A: 10h48m27.6199s, Dec: +71d43m35.938s (J2000; Johnston et al. 1995, AJ, 110, 880) and redshift z=1.15 (Polatidis et al. 1995, ApJS, 98, 1). Preliminary results indicate that S5 1044+71 showed a marked increase in activity on 2016 December 29, with a daily flux (E > 100 MeV) of (1.1+/-0.2) x10^-6 ph cm^-2 s^-1 (errors are statistical only) which is a factor of about 16 greater than the average flux reported in the third Fermi LAT catalog (3FGL).

  6. Understanding uncertainties in modeling the galactic diffuse gamma-ray emission

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Calore, Francesca; Weniger, Christoph

    2017-01-01

    The nature of the Galactic diffuse gamma-ray emission as measured by the Fermi Gamma-ray Space Telescope has remained an active area of research for the last several years. A standard technique to disentangle the origins of the diffuse emission is the template fitting approach, where predictions for various diffuse components, such as emission from cosmic rays derived from Galprop or Dragon, are compared to the data. However, this method always results in an overall bad fit to the data, with strong residuals that are difficult to interpret. Additionally, there are instrinsic uncertainties in the predicted templates that are not accounted for naturally with this method. We therefore introduce a new template fitting approach to study the various components of the Galactic diffuse gamma-ray emission, and their correlations and uncertainties. We call this approach Sky Factorization with Adaptive Constrained Templates (SkyFACT). Rather than using fixed predictions from cosmic-ray propagation codes and examining the residuals to evaluate the quality of fits and the presence of excesses, we introduce additional fine-grained variations in the templates that account for uncertainties in the predictions, such as uncertainties in the gas tracers and from small scale variations in the density of cosmic rays. We show that fits to the gamma-ray diffuse emission can be dramatically improved by including an appropriate level of uncertainty in the initial spatial templates from cosmic-ray propagation codes. We further show that we can recover the morphology of the Fermi Bubbles from its spectrum alone with SkyFACT.

  7. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  8. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  9. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  10. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  11. Superconducting High Energy Resolution Gamma-ray Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction ofmore » TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular

  12. Gamma-Ray Flares from the Crab Nebula

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-01-06

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega–electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta–electron-volt (10more » 15 electron volts) electrons in a region smaller than 1.4 × 10 -2 parsecs. In conclusion, these are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.« less

  13. Chandra X-Ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.

    2012-01-01

    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.

  14. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  15. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  16. Gamma-ray detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  17. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  18. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-12-08

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  19. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  20. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  1. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  2. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  3. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maselli, A.; Cusumano, G.; La Parola, V.

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources andmore » WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.« less

  4. Observation of pulsed hard X-rays/gamma-rays from PSR 1509-58

    NASA Astrophysics Data System (ADS)

    Gunji, S.; Hirayama, M.; Kamae, T.; Miyazaki, S.; Sekimoto, Y.; Takahashi, T.; Tamura, T.; Tanaka, M.; Yamasaki, N.; Yamagami, T.; Nomachi, M.; Murakami, H.; Braga, J.; Neri, J. A.

    1994-06-01

    We observed a young rotation-powered pulsar, PSR 1509-58, in the hard X-ray/gamma-ray or the soft gamma-ray band with a balloon-borne detector in Brazil on 1991 November 19 (UT). With a timing analysis we detected pulsations in the energy band 94-240 keV at the 150.687 ms period determined from radio observations. The pulsating flux is (7.1 +/- 1.7) x 10-4 per sq cm per sec in this band, and the energy spectrum follows a power law with photon index alpha = 1.64 +/- 0.4. The averaged pulse profile shows a broad single peak with a sharp rise and has a duty cycle around 50% or higher: these features are similar to what have been observed in the X-ray band by the Ginga satellite. Based on the data available now, the fraction of energy transformed from rotational energy loss to pulsed/nonpulsed soft gamma-ray radiation is estimated. If the solid angle swept by the pulsed beam is about the same as for the Crab pulsar (PSR 0531+21) and the Vela pulsar (PSR 0833-45), PSR 1509-58 turn out to be an extremely efficient pulsar, converting a large fraction of its rotational energy loss to radiation, as the outer gap model predicts. The observed pulsed spectrum, however, is strong in the soft gamma-ray band, in a sharp contrast to what has been observed in the Vela pulsar, a pulsar expected to be similar PSR 1509-58 in the outer gap model. The fact that the pulse profile remains broad and single-peaked in the soft gamma-ray band is also new for Crab-like pulsars. In these regards, PSR 1509-58 may require some alteration to the standard outer gap model or even a new model for gamma-ray emission in pulsars.

  5. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  6. Fermi LAT detection of increase gamma-ray emission from OJ 248

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.

    2012-09-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar OJ 248 (also known as 2FGL J0830.5+2407, Nolan et al. 2012, ApJS, 199, 31) with radio coordinates R.A.: 127.7170254 deg, Dec: 24.1832836 deg (J2000, Johnston et al. 1995, AJ, 110, 880) at redshift z=0.94 (Hewitt & Burbidge 1993, ApJS, 87, 451).

  7. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  8. Search for gamma ray lines from supernovae and supernova remnants

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.

    1974-01-01

    A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.

  9. Gammapy: Python toolbox for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph; Donath, Axel; Owen, Ellis; Terrier, Regis; Bühler, Rolf; Armstrong, Thomas

    2017-11-01

    Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

  10. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  11. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  12. ESA's Integral solves thirty-year old gamma-ray mystery

    NASA Astrophysics Data System (ADS)

    Integral solves mystery hi-res Size hi-res: 60 kb Credits: Credit: ESA, F. Lebrun (CEA-Saclay). ESA's Integral solves thirty-year old gamma-ray mystery The central regions of our galaxy, the Milky Way, as seen by Integral in gamma rays. With its superior ability to see faint details, Integral correctly reveals the individual sources that comprised the foggy, gamma-ray background seen by previous observatories. The brightest 91 objects seen in this image were classified by Integral as individual sources, while the others appear too faint to be properly characterized at this stage. During the spring and autumn of 2003, Integral observed the central regions of our Galaxy, collecting some of the perpetual glow of diffuse low-energy gamma rays that bathe the entire Galaxy. These gamma rays were first discovered in the mid-1970s by high-flying balloon-borne experiments. Astronomers refer to them as the 'soft' Galactic gamma-ray background, with energies similar to those used in medical X-ray equipment. Initially, astronomers believed that the glow was caused by interactions involving the atoms of the gas that pervades the Galaxy. Whilst this theory could explain the diffuse nature of the emission, since the gas is ubiquitous, it failed to match the observed power of the gamma rays. The gamma rays produced by the proposed mechanisms would be much weaker than those observed. The mystery has remained unanswered for decades. Now Integral's superb gamma-ray telescope IBIS, built for ESA by an international consortium led by Principal Investigator Pietro Ubertini (IAS/CNR, Rome, Italy), has seen clearly that, instead of a fog produced by the interstellar medium, most of the gamma-rays are coming from individual celestial objects. In the view of previous, less sensitive instruments, these objects appeared to merge together. In a paper published today in "Nature", Francois Lebrun (CEA Saclay, Gif sur Yvette, France) and his collaborators report the discovery of 91 gamma-ray

  13. Giant collimated gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.

    2018-06-01

    Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.

  14. Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013

    NASA Technical Reports Server (NTRS)

    Carol, Ladd

    1999-01-01

    The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.

  15. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  16. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  17. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    PubMed

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  18. Fermi LAT detection of renewed gamma-ray activity from the FSRQ PKS 2326-502

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Torresi, E.

    2012-06-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has observed an increasing gamma-ray flux from a source positionally consistent with the Flat Spectrum Radio Quasar PKS 2326-502 (also known as 2FGL J2329.2-4956, Nolan et al. 2012, ApJS, 199, 31; R.A.=23:29:20.880 Dec.=-49:55:40.68, J2000.0, Costa and Loyola 1996, A&AS, 115, 75) at redshift z=0.518 (Jauncey et al. 1984, ApJ, 286, 498).

  19. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  20. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  1. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  2. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less

  3. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  4. Thermal-neutron capture gamma-rays. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuli, J.K.

    1997-05-01

    The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented in ascending order of gamma energy. All those gamma-rays with intensity of {ge} 2% of the strongest transition are included. The two strongest transitions seen for the target nuclide are indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computermore » file of evaluated nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).« less

  5. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  6. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  7. Energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  8. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  9. Fermi LAT detection of gamma-ray flaring activity from the blazar MG J221916+1806 through the Fermi All-sky Variability Analysis (FAVA)

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Kocevski, D.; Gasparrini, D.; Buehler, R.; Thompson, D.; Ciprini, S.

    2014-03-01

    During the week between March 17 and March 24, 2014, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increased gamma-ray activity from a source positionally coincident with the flat-spectrum radio quasar MG J221916+1806 (also known as 2FGL J2219.1+1805, Nolan et al., 2012, ApJS, 199, 31, and CGRaBS J2219+1806, Healey et al. ...

  10. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  11. Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.

    PubMed

    Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2009-11-01

    Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.

  12. Computational techniques in gamma-ray skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D.L.

    1988-12-01

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified tomore » use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs.« less

  13. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  14. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  15. Development of the instruments for the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Madden, J. J.; Kniffen, D. A.

    1986-01-01

    The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.

  16. AGIS: A Next-generation TeV Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Justin

    2010-05-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation array of imaging atmospheric Cherenkov telescopes for gamma-ray astronomy in the 100 GeV to 100 TeV band. TeV astronomy has flourished in the last few years. Together with the extremely successful first year of the Fermi LAT telescope for GeV gamma-ray astronomy, we are now in a golden age of gamma-ray astronomy. AGIS seeks to continue the success of gamma-ray astronomy by discovering hundreds of new TeV sources and improving our understanding of known sources, as well as searching for signals from dark matter annihilation. AGIS will feature 36 Schwarzschild-Couder (SC) telescopes spanning 1 km2. The two-mirror SC design allows a wide field of view (8 deg diameter) and high-resolution (0.05 deg diameter) pixellation. I will present the science capabilities of the AGIS observatory as well as the technical design and current status of the project.

  17. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  18. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  19. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the

  20. Cosmic-ray physics with the milagro gamma-ray observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    The Milagro gamma-ray observatory is a water Cherenkov detector with an energy response between 100 GeV and 100 TeV. While the major scientific goals of Milagro were to detect and study cosmic sources of TeV gamma rays, Milagro has made measurements important to furthering our understanding of the cosmic radiation that pervades our Galaxy. Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux {approx}2.7 times that predicted by GALPROP. Milagro has also made measurements of the anisotropy of the arrival directions of the local cosmicmore » radiation. On large scales the measurements made by Milagro agree with those previously reported by the Tibet AS{gamma} array. However, we have also discovered a time dependence to this anisotropy, perhaps due to solar modulation. On smaller scales, {approx}10 degrees, we have detected two regions of excess. These excesses have a spectrum that is inconsistent with the local cosmic-ray spectrum.« less

  1. Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    D'Andrea, C. P.; D'Andrea, Christopher; Gress, Joseph; Race, Doran

    2003-07-01

    project GRAND is a 100m × 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-p enetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within ±5° of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7σ ) is for the event that was predicted to be the most likely to be observed (GRB 971110).

  2. Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2010-01-01

    Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.

  3. The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu; hide

    2012-01-01

    The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.

  4. Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray and Optical Bands

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Villata, M.; Balonek, T. J.; Bertsch, D. L.; Bock, H.; Boettcher, M.; Carini, M. T.; Collmar, W.; DeFrancesco, G.; Ferrera, E. C.; hide

    2001-01-01

    Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of approximately 2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma-ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than one day.

  5. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  6. The sensitivity of EGRET to gamma ray polarization

    NASA Astrophysics Data System (ADS)

    Mattox, John R.

    1990-05-01

    A Monte Carlo simulation shows that EGRET (Energetic Gamma-Ray Experimental Telescope) does not even have sufficient sensitivity to detect 100 percent polarized gamma-rays. This is confirmed by analysis of calibration data. A Monte Carlo study shows that the sensitivity of EGRET to polarization peaks around 100 MeV. However, more than 10 5 gamma-ray events with 100 percent polarization would be required for a 3 sigma significance detection - more than available from calibration, and probably more than will result from a single score source during flight. A drift chamber gamma ray telescope under development (Hunter and Cuddapah 1989) will offer better sensitivity to polarization. The lateral position uncertainty will be improved by an order of magnitude. Also, if pair production occurs in the drift chamber gas (xenon at 2 bar) instead of tantalum foils, the effects of multiple Coulomb scattering will be reduced.

  7. Some aspects of the scientific significance of high energy gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1991-01-01

    The attraction of high energy gamma-ray astronomy lies in this radiation relating directly to those processes in astrophysical situations which deviate most from thermo-dynamic equilibrium. Some examples of these phenomena which are known to or expected to emit gamma rays are cosmic rays as they interact in intergalactic space, the high energy particles in the magnetic fields of neutron stars, the death of a black hole, the explosion and residual of a supernova, lumps of Weakly Interacting Massive Particles, energetic solar particles interacting near the sun, and very high energy particles in the extreme conditions associated with active galaxies. Although the intensities are known to be low as seen near the earth, a partially compensating characteristic is that the very penetrating nature of high energy gamma rays increases the probability that they can escape from their origin and reach the solar system.

  8. NEW CLASS OF VERY HIGH ENERGY {gamma}-RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kino, Motoki; Ito, Hirotaka; Kawakatu, Nozomu

    We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobemore » and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.« less

  9. THE EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY. I. SEARCH METHODS, SENSITIVITY, AND DISCOVERY OF NEW YOUNG GAMMA-RAY PULSARS

    DOE PAGES

    Clark, C. J.; Wu, J.; Pletsch, H. J.; ...

    2017-01-05

    Here, we report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 10 34 and 4 × 10 36 erg s -1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitchmore » $${\\rm{\\Delta }}f/f\\approx 3.5\\times {10}^{-6}$$ during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. Lastly, we also present the results of precise timing analyses for each of the newly detected pulsars.« less

  10. THE EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY. I. SEARCH METHODS, SENSITIVITY, AND DISCOVERY OF NEW YOUNG GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. J.; Wu, J.; Pletsch, H. J.

    Here, we report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 10 34 and 4 × 10 36 erg s -1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitchmore » $${\\rm{\\Delta }}f/f\\approx 3.5\\times {10}^{-6}$$ during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. Lastly, we also present the results of precise timing analyses for each of the newly detected pulsars.« less

  11. The Einstein@Home Gamma-ray Pulsar Survey. I. Search Methods, Sensitivity, and Discovery of New Young Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Clark, C. J.; Wu, J.; Pletsch, H. J.; Guillemot, L.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Kramer, M.; Machenschalk, B.; Nieder, L.

    2017-01-01

    We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 1034 and 4 × 1036 erg s-1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitch {{Δ }}f/f≈ 3.5× {10}-6 during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. We also present the results of precise timing analyses for each of the newly detected pulsars.

  12. AGILE detection of increasing gamma-ray activity from CTA 102

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Verrecchia, F.; Pittori, C.; Tavani, M.; Vercellone, S.; Colafrancesco, S.; Bulgarelli, A.; Cardillo, M.; Piano, G.; Fioretti, V.; Parmiggiani, N.; Pilia, M.; Donnarumma, I.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-12-01

    AGILE is detecting increasing gamma-ray emission above 100 MeV from a source positionally consistent with the FSRQ CTA 102. Integrating from 2017-12-07 06:00 UT to 2017-12-09 06:00 UT, a preliminary maximum likelihood analysis yields a detection above 6 sigma and a flux F(E > 100 MeV)=(3.6 +/- 0.9) x 10^-6 ph cm^-2 s^-1.

  13. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  14. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  15. Gamma-ray line afterglow from burst environments

    NASA Technical Reports Server (NTRS)

    Fencl, H. S.; Boyd, R. N.; Hartmann, Dieter

    1992-01-01

    We consider photoerosion and direct pair production in a medium surrounding a gamma-ray burst. The resulting secondary gamma-rays may provide diagnostic tools of these environments and, in turn, of the nature of the bursters themselves. In some instances short-lived nuclides are formed; the beta-delayed gamma-rays produced from their decays provide the signatures of the photoerosion. In addition, annihilation radiation produced from positrons resulting from direct pair production is related to the plasma conditions in the medium. We investigate the plausibility of detecting the various radiations. Under extremely favorable conditions, the photoerosion afterglow might be detectable with the present generation of detectors. However, the positron annihilation line should be detectable under a fairly wide range in the conditions of the medium.

  16. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  17. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  18. Dissecting the Gamma-Ray Background in Search of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less

  19. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; hide

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  20. The self-absorption effect of gamma rays in /sup 239/Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsiao-Hua

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less

  1. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less

  2. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  3. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE PAGES

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  4. The influence of exogenous conditions on mobile measured gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-12-01

    the measurement under variable field conditions and their impacts on gamma ray data quality. These activities are done within the iSOIL project. iSOIL- Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment; iSOIL is one member of the SOIL TECHNOLOGY CLUSTER of Research Projects funded by the EC.

  5. The goals of gamma-ray spectroscopy in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  6. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  7. Helios-2 Vela-Ariel-5 gamma-ray burst source position

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Trainor, J. H.; Desai, U. D.; Klebesadel, R. W.; Ricketts, M.; Heluken, H.

    1979-01-01

    The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure.

  8. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less

  9. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  10. The Radio/Gamma-Ray Connection in Active Galactic Nuclei in the Era of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Angelakis, E.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; hide

    2011-01-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose.We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the OwensValley RadioObservatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10(exp -7) for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 10(exp -6) to 9.0 10(exp -8). Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10(exp -7)) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  11. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  12. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  13. Gamma-ray burst theory: Back to the drawing board

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1994-01-01

    Gamma-ray bursts have always been intriguing sources to study in terms of particle acceleration, but not since their discovery two decades ago has the theory of these objects been in such turmoil. Prior to the launch of Compton Gamma-Ray Observatory and observations by Burst and Transient Source Experiment (BATSE), there was strong evidence pointing to magnetized Galactic neutron stars as the sources of gamma-ray bursts. However, since BATSE the observational picture has changed dramatically, requiring much more distant and possibly cosmological sources. I review the history of gamma-ray burst theory from the era of growing consensus for nearby neutron stars to the recent explosion of halo and cosmological models and the impact of the present confusion on the particle acceleration problem.

  14. Gamma-ray Astrophysics: a New Look at the Universe

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Fichtel, C. E.; Grindlay, J.; Hofstadter, R.

    1978-01-01

    Gamma-ray astronomy which includes the spectral region from above approximately 100 keV to greater than or equal to 1000 GeV permits investigation of the most energetic photons originating in our galaxy and beyond and provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. Of all the electromagnetic spectrum, high-energy gamma-ray astronomy measures most directly the presence and dynamic effects of the energetic charged cosmic ray particles, element synthesis, and particle acceleration. Further, gamma rays suffer negligible absorption or scatterings as they travel in straight paths; hence, they may survive billions of years and still reveal their source. The high energy processes in stellar objects (including our Sun), the dynamics of the cosmic-ray gas, the formation of clouds and nebulae, galactic evolution and even certain aspects of cosmology and the origin of the universe may be explored by gamma-ray observations.

  15. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, A.; Buckley, J. H.; Bugaev, V.

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less

  16. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  17. Characterization of gamma rays existing in the NMIJ standard neutron field.

    PubMed

    Harano, H; Matsumoto, T; Ito, Y; Uritani, A; Kudo, K

    2004-01-01

    Our laboratory provides national standards on fast neutron fluence. Neutron fields are always accompanied by gamma rays produced in neutron sources and surroundings. We have characterised these gamma rays in the 5.0 MeV standard neutron field. Gamma ray measurement was performed using an NE213 liquid scintillator. Pulse shape discrimination was incorporated to separate the events induced by gamma rays from those by neutrons. The measured gamma ray spectra were unfolded with the HEPRO program package to obtain the spectral fluences using the response matrix prepared with the EGS4 code. Corrections were made for the gamma rays produced by neutrons in the detector assembly using the MCNP4C code. The effective dose equivalents were estimated to be of the order of 25 microSv at the neutron fluence of 10(7) neutrons cm(-2).

  18. Very-High-Energy Solar Gamma Rays From Cosmic-Ray Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Bei; Ng, Kenny; Beacom, John; Peter, Annika; Rott, Cartsen

    2017-01-01

    Cosmic-ray induced gamma rays from the Sun has been observed up to 100 GeV. However, there are no theoretical predictions beyond 10 GeV. We provide the first calculation of the hadronic disk component in TeV-PeV, where solar magnetic fields can be ignored. We also consider the leptonic gamma-ray halo, taking into account electrons from local pulsars. With Fermi and soon HAWC & LHAASO observations, our results provide new insights on local cosmic rays, solar magnetic fields, and solar dark matter studies. BZ is supported by OSU Fowler Fellowship. KN and FB are supported by NSF Grant PHY-1404311. AK is supported by NSF GRFP Grant No. DGE-1321846. CR is supported by the Korea Neutrino Research Center. KN is also supported by the OSU Presidential Fellowship.

  19. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  20. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2011-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.

  1. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  2. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  3. A model for the UHE gamma-rays from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Eichler, D.; Vestrand, W. T.

    1985-01-01

    An outburst of gamma rays with energies E gamma 10 to the 12th power eV was recently detected from the X-ray pulsar Hercules X-1. The outburst had a 3 minute duration and occurred at a time during the 35 day X-ray modulation that is associated with X-ray turnon. The gamma rays also have the same 1.24 second modulation that is observed at X-ray energies. Subsequently a 40 minute outburst was detected at E gamma 10 to the 14th power eV. The interaction of ultrahigh energy particles with a precessing accretion disk explain the observed gamma ray light curve. The constraints one can place on acceleration mechanisms and the possibility that the UHE particles are accelerated by shocks in an accretion flow are explained.

  4. Thermal-neutron capture gamma-rays. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuli, J.K.

    1997-05-01

    The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented ordered by Z, A of target nuclei. All gamma-rays with intensity of {ge}2% of the strongest transition are included. The strongest transition is indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computer file of evaluated nuclear structure data maintainedmore » by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).« less

  5. Recent high energy gamma-ray results from SAS-2

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.

    1977-01-01

    Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.

  6. Pair Creation Transparency in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Pulsars are rapidly rotating, highly magnetized neutron stars that produce photon pulses in energies from radio to gamma-rays. The population of known gamma-ray pulsars has been increased nearly twenty-fold in the past six years since the launch of the Fermi Gamma-Ray Space Telescope; it now exceeds 145 sources and has defined an important part of Fermi's science legacy. In order to understand the detectability of pulsars in gamma-rays, it is important to consider not only the radiative mechanisms that produce gamma-rays, but the processes that can attenuate photons before they can leave the pulsar magnetosphere. Here I explore two such processes, one-photon magnetic pair creation and two-photon pair creation. Magnetic pair creation has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. Among the population characteristics well established for Fermi pulsars is the common occurrence of exponential turnovers in the spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. In this thesis, I explore such pair transparency constraints below the turnover energy and update earlier altitude bound determinations that have been deployed in various gamma-ray pulsar papers by the Fermi-LAT collaboration. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the

  7. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  8. Cosmic-ray effects on diffuse gamma-ray measurements.

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1972-01-01

    Evaluation of calculations and experimental evidence from 600-MeV proton irradiation indicating that cosmic-ray-induced radioactivity in detectors used to measure the diffuse gamma-ray background produces a significant counting rate in the energy region around 1 MeV. It is concluded that these counts may be responsible for the observed flattening of the diffuse photon spectrum at this energy.

  9. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  10. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    NASA Astrophysics Data System (ADS)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  11. Evaluation of the Environmental Gamma-ray Dose Rate by Skyshine Analysis During the Maintenance of an Activated TFC in ITER

    NASA Astrophysics Data System (ADS)

    Sato, S.; Takatsu, H.; Maki, K.; Yamada, K.; Mori, S.; Iida, H.; Santoro, R. T.

    1997-09-01

    Gamma-ray exposure dose rates at the ITER site boundary were estimated for the cases of removal of a failed activated Toroidal Field (TF) coil from the torus and removal of a failed activated TF coil together with a sector of the activated Vacuum Vessel (VV). Skyshine analyses were performed using the two-dimensional SN radiation transport code, DOT3.5. The exposure gamma-ray dose rates on the ground at the site boundary (presently assumed to be 1 km from the ITER building), were calculated to be 1.1 and 84 μSv/year for removal of the TF coil without and with a VV sector, respectively. The dose rate level for the latter case is close to the tentative radiation limit of 100 μSv/year so an additional ˜14 cm of concrete is required in the ITER building roof to satisfy the criterion for a safety factor often for the site boundary dose rate.

  12. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  13. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  14. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  15. FERMI Observations of Gamma -Ray Emission From the Moon

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  16. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; hide

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large

  17. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  18. Low energy gamma ray emission from the Cygnus OB2 association

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.

  19. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  20. A TIGHT CONNECTION BETWEEN GAMMA-RAY OUTBURSTS AND PARSEC-SCALE JET ACTIVITY IN THE QUASAR 3C 454.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Ivan

    2013-08-20

    We analyze the multi-frequency behavior of the quasar 3C 454.3 during three prominent {gamma}-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each {gamma}-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the {gamma}-ray outbursts, although the {gamma}-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly overmore » the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the {gamma}-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the {gamma}-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that {gamma}-ray outbursts with variability timescales as short as {approx}3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.« less

  1. Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.

    2005-03-01

    The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.

  2. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  3. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y; Ullmann, J

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  4. X-ray and gamma-ray line production by nonthermal ions

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Omidvar, K.; Ramaty, R.

    1977-01-01

    X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature.

  5. Observations of TeV Gamma Rays from Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Buckley, James H.

    1994-12-01

    Measurements of the gamma ray flux from a number of supernova remnants (SNRs) at energies above 250 GeV have been made with the Whipple Imaging air \\v Cerenkov detector. Observation of the gamma ray emission of SNRs at energies above 1 GeV should provide a sensitive test of shock acceleration models of particle acceleration in SNRs. Gamma-ray luminosities of supernova remnants are well constrained by the observed supernova rate and the cosmic ray flux if supernovae are indeed the source of cosmic rays. Drury et al. (Astron. Astrophys. 287, 959 (1994)) predict that the luminosity of nearby Sedov-phase SNRs should be observable by the Whipple telescope. In this model, diffusive shock acceleration produces energetic charged particles which interact with the ambient medium forming gamma rays. There is an indication that a number of unidentified EGRET sources may correspond to supernova remnants (G. Kanbach, private communication), although at these energies (>100 MeV) the diffuse background is somewhat uncertain. Measurements of the gamma-ray flux with the Whipple instrument have a similar sensitivity to the EGRET detector for a source spectral index of 2.15, and less sensitivity to diffuse background. A number of observations of SNRs including: Tycho, W66, IC443, and others have been made. Currently for Tycho an upper limit of 9times 10(-12) cm(-2) sec(-1) is obtained. The status of these observations will be presented, and it will be shown that these measurements combined with the EGRET observations are beginning to provide a useful constraint on models of cosmic ray origin. Gamma-ray observations may also be used to constrain models of particle acceleration in SNRs exhibiting pulser-powered synchrotron nebula (plerions). The status of observations of this class of objects, including the Crab nebula, will also be presented. Supported in part by the U.S. Dept. of Energy.

  6. BATSE Observations of Gamma-Ray Burst Tails

    NASA Technical Reports Server (NTRS)

    Connaughton, Valerie; Six, N. Frank (Technical Monitor)

    2001-01-01

    With the discovery of low-energy radiation appearing to come from the site of gamma-ray bursts in the hours to weeks after the initial burst of gamma rays, it would appear that astronomers have seen a cosmological imprint made by the burster on its surroundings. I discuss in this paper the phenomenon of post-burst emission in BATSE (Burst and Transient Source Experiment) gamma-ray bursts at energies traditionally associated with prompt emission. By summing the background-subtracted signals from hundreds of bursts, I find that tails out to hundreds of seconds after the trigger may be a common feature of long events (duration greater than 2s), and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component appears independent of both the duration (within the long GRB sample) and brightness of the prompt burst emission, and may be softer. Some individual bursts have visible tails at gamma-ray energies and the spectrum in at least a few cases is different from that of the prompt emission. Afterglow at lower energies was detected for one of these bursts, GRB-991216, raising the possibility of afterglow observations over large energy ranges using the next generation of GRB detectors in conjunction with sensitive space or ground-based telescopes.

  7. BATSE Observations of Gamma-Ray Burst Tails

    NASA Technical Reports Server (NTRS)

    Connaughton, Valerie

    2002-01-01

    With the observation of low-energy radiation coming from the site of gamma-ray bursts in the hours to weeks after the initial gamma ray burst, it appears that astronomers have discovered a cosmological imprint made by the burster on its surroundings. This paper discusses the phenomenon of postburst emission in Burst and Transient Source Experiment (BATSE) gamma-ray bursts at energies usually associated with prompt emission. After summing up the background-subtracted signals from hundreds of bursts, it is found that tails out to hundreds of seconds after the trigger could be a common feature of events of a duration greater than 2 seconds, and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component may be softer and seems independent of the duration (within the long-GRB sample) and brightness of the prompt burst emission. Some individual bursts have visible tails at gamma-ray energies, and the spectrum in a few cases differs from that of the prompt emission. For one of these bursts, GRB 991216, afterglow at lower energies was detected, which raised the possibility of seeing afterglow observations over large energy ranges using the next generation of GRB detectors in addition to sensitive space- or ground-based telescopes.

  8. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  9. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; hide

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  10. A luminous gamma-ray binary in the large magellanic cloud

    DOE PAGES

    Corbet, R. H. D.; Chomiuk, L.; Coe, M. J.; ...

    2016-09-27

    Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Previously, only a handful of such systems have been discovered, all within our Galaxy. We report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. Furthermore, the system has an orbital period ofmore » 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.« less

  11. Effects of Shielding on Gamma Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-03-13

    The interaction of gamma rays with matter results in an effect we call attenuation (i.e. ‘shielding’). Attenuation can dramatically alter the appearance of a spectrum. Attenuating materials may actually create features in a spectrum via x-ray fluorescence

  12. Development of observational and instrumental techniques in hard X-ray and medium energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Pelling, M.

    1985-01-01

    The technical activities, scientific results, related space hardware projects and personnel of the high energy astrophysics program are reported. The development of observational and instrumental techniques in hard X-ray (0.001 to 100 keV) and medium energy gamma-ray (0.1 to 10 MeV) astronomy are examined. Many of these techniques were developed explicitly for use on high altitude balloons where most of the scientific results were obtained. The extensive observational activity using balloons are tabulated. Virtually every research activity will eventually result in a major space hardware development effort.

  13. A search for low energy gamma rays from CG 195+4

    NASA Technical Reports Server (NTRS)

    Haymes, R. C.; Meegan, C. A.; Fishman, G. J.

    1979-01-01

    A 13-deg-wide region of sky containing the high-energy gamma-ray source CG 195+4 was searched for X-ray and gamma-ray emission in the energy interval from 0.035 to 8.737 MeV. The balloon-altitude measurements were undertaken on October 4, 1977, at Palestine, Texas, and used an actively collimated scintillation counter. As a result of the measurements, low upper limits have been found for the spectrum from the source. Combined with the positive detections made with satellites at high energies, the measurements show that the photon number spectrum must have a spectral index harder than 2.0. The data appear inconsistent with models of the source in which the presumed neutron star is surrounded by a cloud thick to X-rays. Negative results of the search for periodicity are discussed.

  14. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; hide

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  15. THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using amore » surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10{sup -7} for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 x 10{sup -6} to 9.0 x 10{sup -8}. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10{sup -7}) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.« less

  16. The radio/gamma-ray connection in active galactic nuclei in the era of the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2011-10-12

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using amore » surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10 –7 for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 × 10 –6 to 9.0 × 10 –8. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. As a result, we find that the correlation is very significant (chance probability < 10 –7) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.« less

  17. Current Topics in Gamma-Ray Astrophysics

    PubMed Central

    Mathews, Grant J.; Maronetti, P.; Salmonson, Jay; Wilson, J. R.

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼1053 ergs lasting several seconds. The associated thermal neutrino emission produces an e+–e − pair plasma by vv¯ annihilation. We show first results of a simulated burst which produces ∼1051 erg in γ rays of the correct spectral and temporal properties. PMID:27551592

  18. Current Topics in Gamma-Ray Astrophysics.

    PubMed

    Mathews, G J; Maronetti, P; Salmonson, J; Wilson, J R

    2000-01-01

    This paper reports on recent progress toward unraveling the origin of gamma-ray bursts. It is concluded that neutron-star binaries are one of the few remaining candidates. A model is proposed based upon general relativistic hydrodynamic studies which indicate a new physical process by which to power a gamma-ray burst. Relativistically driven compression, heating, and collapse of the individual neutron stars can occur many seconds before inspiral and merger. This compression may produce a neutrino burst of ∼10(53) ergs lasting several seconds. The associated thermal neutrino emission produces an e (+)-e (-) pair plasma by [Formula: see text] annihilation. We show first results of a simulated burst which produces ∼10(51) erg in γ rays of the correct spectral and temporal properties.

  19. Fermi-LAT View of Bright Flaring Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Bastieri, D.; Ciprini, S.; Gasparrini, D.

    2011-06-01

    The Fermi LAT provides a continuous and uniform monitoring of the Universe in the gamma-ray band. During the first year many gamma-ray blazar flares, some unidentified transients and emission by the Sun while in a quiet state were promptly detected. This is mainly due to the design of the mission, featuring a detector, the LAT with a wide field of view, and to the operation of the spacecraft itself, that can cover every region of the sky every 3 hours. Nevertheless, the scientific exploitation of this monitoring is more fruitful when early information about transients reaches a broader community. In this respect, the indefatigable activity of flare advocates, who worked on weekly shifts to validate the results and quickly broadcast information about flares and new detections, was the key to most scientific results.

  20. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  1. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  2. Handheld dual thermal neutron detector and gamma-ray spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less

  3. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  4. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  5. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-25

    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 × 10 –8 ph cm –2 s –1 (for E>100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 × 10 –8 ph cm –2 s –1 (for E>100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range ~1-5 GeV. The rotational energy-loss rate (more » $$\\dot{E}$$) of these neutron stars spans five decades, from ~3 × 10 33 erg s –1 to 5 × 10 38 erg s –1, and the apparent efficiencies for conversion to gamma-ray emission range from ~0.1% to ~ unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by ≳0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer

  6. Gamma-Ray Activity in the Crab Nebula: The Exceptional Flare of April 2011

    NASA Technical Reports Server (NTRS)

    Buehler, R.; Scargle, J. D.; Blandford, R. D.; Baldini, L; Baring, M. G.; Belfiore, A.; Charles, E.; Chiang, J.; DAmmando, F.; Dermer, C. D.; hide

    2012-01-01

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of approximately 11 ly across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 +/- 6) x 10(exp -7) /square cm/s above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 +/- 26) MeV at flare maximum. The observations imply that the emission region was relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  7. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  8. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  9. Fermi GBM Observations of Terrestrial Gamma-ray Flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Michael S.

    2011-09-21

    Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 kmmore » of the sub-spacecraft point.« less

  10. The Gamma-Ray Observatory: An overview

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.

    1989-01-01

    The Gamma-Ray Observatory (GRO) is a 16,000 kg spacecraft containing four instruments which span almost six decades of energy from about 50 keV to about 30 GeV. It will provide the first opportunity to make simultaneous observations over such a broad band of gamma-ray energies. GRO is assembled and undergoing testing prior to its scheduled June 4, 1990 launch aboard the Space Shuttle. The orbit will be circular with an altitude of 450 km and with an inclination of 28 degrees. Data will be recorded at 32 kilobits per second and dumped once per orbit via the Tracking and Data Relay Satellite System (TDRSS). The spacecraft is three-axis stabilized and timing will be maintained to .1 ms. The observing schedule will begin with an all sky survey, consisting of 30 two week pointings, covering the first 15 months of science operations. Following observations will emphasize source studies and deep searches. Originally selected as a Principal Class spacecraft with a two year mission, extension of the mission to six to ten years makes a vigorous Guest Investigator Program both possible and desirable. Such a program will be fully in place by the third year of the mission, with limited opportunities earlier. Each of the four instruments has a capability for observing both gamma-ray bursts and solar flare gamma-rays, and there is some solar neutron capability. Correlated observations with those at other wavelengths is also receiving considerable attention in the mission planning.

  11. The Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2008-04-01

    We describe a concept for a ˜km^2 ground-based gamma-ray experiment (AGIS) comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present the scientific drivers for AGIS including the prospects for contributions to understanding extragalactic sources such as nearby galaxies, active galaxies, galaxy clusters and GRB; galactic sources such as X-ray binaries, supernova remnants, and pulsar wind nebulae; as well as probes of fundamental physics including indirectly detecting dark matter and probing TeV-scale physics. With the current generation of atmospheric Cherenkov telescope arrays, TeV astronomy has become well established, with the number TeV gamma-ray sources now nearing 100, including many unidentified and serendipitous sources. Improvements in the instantaneous field of view, angular resolution, effective area and energy resolution of AGIS are certain to provide great scientific returns in high energy astrophysics as well as opening up new discovery space. Here we present an overview of the ongoing design studies for AGIS including the optimization of array parameters as well as an overview of the technical drivers for the observatory.

  12. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  13. Fermi LAT detection of enhanced gamma-ray emission from the Crab Nebula region

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Buehler, Rolf; Hays, Elizabeth; Dutka, Michael

    2012-07-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a significant increase in the gamma-ray activity from a source positionally consistent with the Crab Nebula on July 3, 2012. Preliminary LAT analysis indicates that the daily-averaged gamma-ray emission (E >100 MeV) from the direction of the Crab doubled from (2.4 +/- 0.5) x 10^-6 ph/cm2/sec (statistical errors only) on July 2nd to (5.5 +/- 0.7) x 10^-6 ph/cm2/sec on July 3rd, a factor of 2 greater than the average flux of (2.75 +/- 0.10) x 10^-6 ph/cm2/sec reported in the second Fermi LAT catalog (2FGL, Nolan et al.

  14. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  15. Gamma rays from accretion onto rotating black holes

    NASA Technical Reports Server (NTRS)

    Collins, M. S.

    1979-01-01

    Ionized matter falling onto an isolated rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000-solar mass) black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th erg/s with a spectrum peaked near 20 MeV.

  16. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Astrophysics Data System (ADS)

    Koch, D. G.; Hughes, B. E.

    1990-03-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  17. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  18. Albedo gamma-rays observation at energies above 30 MeV

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugriumov, V. G.; Liakhov, V. A.; Prokhorova, L. A.; Riumin, V. V.; Ulin, S. E.

    Albedo gamma-ray observations are presented, which were carried out with the small gamma-ray telescope Elena-F on Salyut-6 at the 30-410 MeV and 50-420 MeV energy ranges. For the equatorial region from 15.0-17.5 GV, the albedo gamma-ray fluxes are 40 plus or minus 20 ph/sq m-s-sr, and the measured power law index of the differential energy spectrum is 1.6 plus or minus 0.5. The orbital station data are compared with simultaneous observations performed on a balloon, and the power law index of the differential energy spectrum of albedo gamma-rays measured by the balloon amounts to 2.1 plus or minus 0.4.

  19. Dense gamma-ray and pair creation using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd

    2016-10-01

    We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.

  20. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  1. A giant gamma-ray flare from the magnetar SGR 1806-20.

    PubMed

    Palmer, D M; Barthelmy, S; Gehrels, N; Kippen, R M; Cayton, T; Kouveliotou, C; Eichler, D; Wijers, R A M J; Woods, P M; Granot, J; Lyubarsky, Y E; Ramirez-Ruiz, E; Barbier, L; Chester, M; Cummings, J; Fenimore, E E; Finger, M H; Gaensler, B M; Hullinger, D; Krimm, H; Markwardt, C B; Nousek, J A; Parsons, A; Patel, S; Sakamoto, T; Sato, G; Suzuki, M; Tueller, J

    2005-04-28

    Two classes of rotating neutron stars-soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars-are magnetars, whose X-ray emission is powered by a very strong magnetic field (B approximately 10(15) G). SGRs occasionally become 'active', producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806-20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 x 10(46) erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard gamma-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.

  2. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  3. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    NASA Technical Reports Server (NTRS)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  4. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    NASA Astrophysics Data System (ADS)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  5. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  6. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  7. QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka

    2012-08-10

    Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less

  8. Novel Chalcogenide Materials for X-ray and Gamma-ray Detection

    DTIC Science & Technology

    2016-05-01

    53 Novel Chalcogenide Materials for x-ray and y-ray Detection Distribution Statement A. Approved for public release; distribution is unlimited. 0...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Novel Chalcogenide Materials for x-ray and y-ray Detection Sb. GRANT NUMBER HDTRA 1-09-1-0044 Sc. PROGRAM...heavy atom chalcogenide family of semiconductors for room temperature gamma radiation detection . Its goal was to accelerate nuclear detector material

  9. ICF Gamma-Ray measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y.; Hoffman, N. M.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Sayre, D. B.; Liebman, J. A.; Cerjan, C. J.; Carpenter, A. C.; Grafil, E. M.; Khater, H. Y.; Horsfield, C. J.; Rubery, M.

    2013-10-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostic is to provide bang time and burn width information in order to constrain implosion simulation parameters such as shell velocity and confinement time. This is accomplished by measuring DT fusion gamma-rays with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. Burn-weighted CH ablator areal density is also inferred based on measurement of the 12C(n,n') gammas emitted at 4.44 MeV from DT neutrons inelastically scattering off carbon nuclei as they pass through the plastic ablator. This requires that the four independent GRH gas cells be set to differing Cherenkov thresholds (e.g., 2.9, 4.5, 8 & 10 MeV) in order to be able to unfold the primary spectral components predicted to be in the gamma ray energy spectrum (i.e., DT γ 27Al & 28Si (n,n') γ from the thermo-mechanical package (TMP); and 12C(n,n' γ from the ablator). The GRH response to 12C(n,n') γ is calibrated in-situ by placing a known areal density of carbon in the form of a puck placed ~6 cm from a DT exploding pusher implosion. Comparisons between inferred gamma fluences and simulations based on the nuclear cross sections databases will be presented. Supported by US DOE NNSA.

  10. Dark Matter Indirect Detection with Gamma Rays

    DOE PAGES

    Patrick Harding, J.

    2017-07-27

    Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.

  11. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  12. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objectsmore » (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.« less

  13. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  14. A possible relation between flare activity in super-luminous supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Wei; Li, Shao-Ze

    2017-09-01

    Significant undulations appear in the light curve of a recently discovered super-luminous supernova (SLSN) SN 2015bn after the first peak, while the underlying profile of the light curve can be explained well by a continuous energy supply from a central engine, possibly the spin-down of a millisecond magnetar. We propose that these undulations are caused by an intermittent pulsed energy supply, indicating the energetic flare activity of the central engine of the SLSN. Many post-burst flares were discovered during X-ray afterglow observations of gamma-ray bursts (GRBs). We find that the SLSN flares described here approximately obey the empirical correlation between the luminosity and time-scale of GRB flares, extrapolated to the relevant longer time-scales of SLSN flares. This somewhat confirms the possible connection between these two different phenomena, as recently suggested by Yu et al.

  15. Comparison Of Optical, UV, X-ray, And Gamma-ray Variations Of Selected Blazars In 2011

    NASA Astrophysics Data System (ADS)

    Consiglio, Santina; Marscher, A. P.; Jorstad, S. G.; Walker, G.

    2012-01-01

    We present multi-wavelength observations of several gamma-ray bright blazars. We combine optical data obtained at Maria Mitchell Observatory on Nantucket Island with space- and ground-based observations carried out with a variety of instruments. These include a number of other optical telescopes, the Fermi Gamma-ray Space Telescope at photon energies of 0.1-200 GeV, the Rossi X-Ray Timing Explorer at 2.4-10 keV, and the Swift satellite at 0.3-10 keV plus optical and UV wavelengths. Three of the observed blazars proved to be particularly active - BL Lac, 3C 279, and PKS 1510-089. BL Lac was of special interest, varying greatly in optical brightness from night to night. In addition, as reported by the VERITAS group, it exhibited a remarkable, short-lived flare at TeV gamma-ray energies on one of the nights. We cross-correlate the variations in the different wavebands in an effort to guide theoretical interpretations of the optical and high-energy emission from blazars. This project was supported by NSF/REU grant AST-0851892 and by the Nantucket Maria Mitchell Association. The research at Boston University was supported in part by NSF grants AST-0907893, and by NASA through Fermi grants NNX08AV65G and NNX11AQ03G.

  16. Designing a Gamma-Ray Telescope on a Budget

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    Major space-based observatories are imperative in astronomy, but they take a long time to plan, build, and launch and they arent cheap. A new study examines an interesting compromise: a low-cost, space-based gamma-ray detector that we could use while we wait for the next big observatory to launch.Coverage and sensitivity of past and future missions for the X-ray to gamma-ray energy range (click for a better look!). The only past mission to explore the 1 MeV region was COMPTEL, on board CGRO. e-ASTROGAM is a proposed future space mission that would explore this range. [Lucchetta et al. 2017]A Gap in CoverageIn the last few decades, weve significantly expanded our X-ray and gamma-ray viewof the sky. One part of the electromagnetic spectrum remains poorly explored, however: the approximate transition point between X-rays and gamma rays near 1 MeV.Space-based gamma-ray telescopes have been proposed for the future to better explore this energy range. But these major observatories have costs of around half a billion Euros and will take roughly a decade to build and launch. Is there a way to get eyes on this energy range sooner?Scaling Down with CubeSatA team of scientists led by Giulio Lucchetta (University of Padova and INFN Padova, Italy) has proposed an intriguing solution for the more immediate future: a nano-satellite telescope based on the CubeSat standard.Structure of the proposed gamma-ray detector, in a 2U CubeSat design. [Lucchetta et al. 2017]A CubeSat is a miniaturized satellite design that can be easily deployed in space, either from the International Space Station or by hitching a ride as a secondary payload on a large rocket. The size of a CubeSat is a standardized unit of measurement: a single CubeSat unit, or 1U, is a mere 10x10x10 cm and a maximum of 1.33 kg in weight.The gamma-ray telescope proposed by Lucchetta and collaborators would use a 2U standard for the instrument, so the instrument would be only 10x10x20 cm in size! The design for the

  17. Future Gamma-Ray Observations of Pulsars and their Environments

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2006-01-01

    Pulsars and pulsar wind nebulae seen at gamma-ray energies offer insight into particle acceleration to very high energies under extreme conditions. Pulsed emission provides information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars, while the pulsar wind nebulae yield information about high-energy particles interacting with their surroundings. During the next decade, a number of new and expanded gamma-ray facilities will become available for pulsar studies, including Astro-rivelatore Gamma a Immagini LEggero (AGILE) and Gamma-ray Large Area Space Telescope (GLAST) in space and a number of higher-energy ground-based systems. This review describes the capabilities of such observatories to answer some of the open questions about the highest-energy processes involving neutron stars.

  18. The second fermi large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  19. The second FERMI large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  20. Long gamma-ray bursts and core-collapse supernovae have different environments.

    PubMed

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  1. In-Flight Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Esposito, J. A.; Bertsch, D. L.; Chen, A. W.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; hide

    1998-01-01

    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory has been operating for over seven years since its launch in 1991 April. This span of time far exceeds the design lifetime of two years. As the instrument has aged, several changes have occurred due to spark chamber gas exchanges as well as some hardware degradation and failures, all of which have an influence on the instrument sensitivity. This paper describes post-launch measurements and analysis that are done to calibrate the instrument response functions. The updated instrument characteristics are incorporated into the analysis software.

  2. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  3. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    NASA Astrophysics Data System (ADS)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  4. Gamma rays from accretion onto rotating black holes

    NASA Technical Reports Server (NTRS)

    Collins, M. S.

    1978-01-01

    Ionized matter falling onto an isolated, rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000 M sub circled dot), black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th power engs/s, with a spectrum peaked near 20 MeV.

  5. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  6. SLAC All Access: Fermi Gamma-ray Space Telescope

    ScienceCinema

    Romani, Roger

    2018-04-16

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  7. Fermi Gamma-Ray Space Telescope - Science Highlights for the First Two Years on Orbit

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Fermi science objectives cover probably everything in high energy astrophysics: How do super massive black holes in Active Galactic Nuclei create powerful jets of material moving at nearly light speed? What are the jets made of? What are the mechanisms that produce Gamma-Ray Burst (GRB) explosions? What is the energy budget? How does the Sun generate high-energy gamma-rays in flares? How do the pulsars operate? How many of them are around and how different are they? What are the unidentified gamma-ray sources found by EGRET? What is the origin of the cosmic rays that pervade the Galaxy? What is the nature of dark matter? Fermi LAT successfully operates on the orbit for more than 2 years and demonstrates excellent performance, which is continuously monitored and calibrated. LAT collected> 100 billion on-orbit triggers

  8. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  9. GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, R.; Blandford, R. D.; Charles, E.

    2012-04-10

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of Almost-Equal-To 11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 {+-} 6) Multiplication-Sign 10{sup -7} cm{sup -2} s{sup -1} above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 {+-} 26) MeV at flaremore » maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.« less

  10. Gamma-Ray Activity In The Crab Nebula: The Exceptional Flare Of 2011 April

    DOE PAGES

    Buehler, R.; Scargle, J. D.; Blandford, R. D.; ...

    2012-03-19

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of ≈11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 ± 6) × 10 –7 cm –2 s –1 above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 ± 26) MeV at flare maximum.more » The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.« less

  11. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  12. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix

    2017-01-01

    By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.

  13. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  14. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  15. Gamma ray cosmology: The extra galactic gamma spectrum and methods to detect the underlying source

    NASA Technical Reports Server (NTRS)

    Cline, David B.

    1990-01-01

    The possible sources of extragalactic gamma rays and methods to distinguish the different sources are discussed. The sources considered are early universe decays and annihilation of Particles, active galactic nuclei (AGN) sources, and baryon-antibaryon annihilation in a baryon symmetric cosmology. The energy spectrum and possible angular fluctuations due to these sources are described.

  16. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  17. e-ASTROGAM mission: a major step forward for gamma-ray polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatischeff, Vincent; De Angelis, Alessandro; Gouiffes, Christian

    e-ASTROGAM is a gamma-ray space mission proposed for the fifth medium-size mission (M5) of the European Space Agency. It is dedicated to the study of the nonthermal universe in the photon energy range from ~ 0.15 MeV to 3 GeV with unprecedented sensitivity and angular and energy resolution, together with a ground-breaking capability for gamma-ray polarimetric measurements over its entire bandwidth. We discuss here the main polarization results expected at low energies, between 150 keV and 5 MeV, using Compton interactions in the e-ASTROGAM instrument, from observations of active galactic nuclei, gamma-ray bursts, microquasars, and the Crab Pulsar and Nebula.more » The anticipated performance of the proposed observatory for polarimetry is illustrated by simulations of the polarization signals expected from various sources. We show that polarimetric analyses with e-ASTROGAM should provide definitive insight into the geometry, magnetization, and content of the high-energy plasmas found in the emitting sources, as well as on the processes of radiation of these plasmas.« less

  18. e-ASTROGAM mission: a major step forward for gamma-ray polarimetry

    DOE PAGES

    Tatischeff, Vincent; De Angelis, Alessandro; Gouiffes, Christian; ...

    2017-11-28

    e-ASTROGAM is a gamma-ray space mission proposed for the fifth medium-size mission (M5) of the European Space Agency. It is dedicated to the study of the nonthermal universe in the photon energy range from ~ 0.15 MeV to 3 GeV with unprecedented sensitivity and angular and energy resolution, together with a ground-breaking capability for gamma-ray polarimetric measurements over its entire bandwidth. We discuss here the main polarization results expected at low energies, between 150 keV and 5 MeV, using Compton interactions in the e-ASTROGAM instrument, from observations of active galactic nuclei, gamma-ray bursts, microquasars, and the Crab Pulsar and Nebula.more » The anticipated performance of the proposed observatory for polarimetry is illustrated by simulations of the polarization signals expected from various sources. We show that polarimetric analyses with e-ASTROGAM should provide definitive insight into the geometry, magnetization, and content of the high-energy plasmas found in the emitting sources, as well as on the processes of radiation of these plasmas.« less

  19. Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells.

    PubMed

    Tsukimoto, Mitsutoshi; Tamaishi, Nana; Homma, Takujiro; Kojima, Shuji

    2010-01-01

    The transcription factor nuclear erythroid-derived 2-related factor 2 (Nrf2) regulates expression of genes encoding antioxidant proteins involved in cellular redox homeostasis, while gamma-ray irradiation is known to induce reactive oxygen species in vivo. Although activation of Nrf2 by various stresses has been studied, it has not yet been determined whether ionizing irradiation induces activation of Nrf2. Therefore, we investigated activation of Nrf2 in response to gamma-irradiation in mouse macrophage RAW264.7 cells. Irradiation of cells with gamma-rays induced an increase of Nrf2 expression. Even 0.1 Gy of gamma-irradiation induced a translocation of Nrf2 from cytoplasm to the nucleus, indicating the activation of Nrf2 by low-dose irradiation. Expression of heme oxygenase-1, which is regulated by Nrf2, was also increased at 24 h after irradiation with more than 0.1 Gy of gamma-rays. Furthermore, the activation of Nrf2 was suppressed by U0126, which is an inhibitor of the extracellular signal regulated protein kinase 1/2 (ERK1/2) pathway, suggesting involvement of ERK1/2-dependent pathway in the irradiation-induced activation of Nrf2. Our results indicate that low-dose gamma-irradiation induces activation of Nrf2 through ERK1/2-dependent pathways.

  20. Magnetic pair creation transparency in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Magnetic pair creation, gamma → e+e- , is a key component in polar cap models of gamma-ray pulsars, and has informed assumptions about the still poorly understood radio emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 gamma-ray pulsars, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Fermi observations have established that the high-energy spectra of most of these pulsars have exponential turnovers in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide a physically motivated lower bound to the typical altitude of GeV band emission. This work computes pair creation opacities for photon propagation in neutron star magnetospheres. It explores the constraints that can be placed on the emission location of Fermi gamma-rays due to single-photon pair creation transparency below the turnover energy, as well as the limitations of this technique. These altitude bounds are typically in the range of 2--6 neutron star radii for the Fermi pulsar sample, and provide one of the few possible constraints on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles.

  1. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  2. Modeling the non-recycled Fermi Gamma-ray pulsar population

    DOE PAGES

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; ...

    2013-09-25

    Here, we use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L γ depends on the period P and the period derivativemore » $$\\dot{P}$$. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L γ on P and $$\\dot{P}$$, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is $$L_\\gamma \\propto P^{-a} \\dot{P}^{b}$$ where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed $$L_\\gamma \\propto \\sqrt{\\dot{E}} \\propto P^{-1.5} \\dot{P}^{0.5}$$. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 1010 G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. As a result, we note that these predictions significantly depend on our model assumptions.« less

  3. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  4. Did A Galactic Gamma-Ray Burst Kill the Dinosaurs?

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1997-12-01

    Gamma-ray bursts now appear to be primarily of extragalactic origin. Statistically, assuming isotropic emission, the observed event rates and fluxes imply that one event occurs per 10(4) \\ - 10(6) \\ years per galaxy, with about 10(51) \\ - 10(53) \\ ergs in gamma-rays emitted per event. Unless the Milky Way is unusual, a gamma-ray burst should occur within 10(2) \\ - 10(3) \\ pc of the Sun in a time span of order 10(8) \\ years. Independent of the underlying cause of the event, it would irradiate the solar system with a brief flash of MeV gamma-rays with a fluence as large as 10(9) - 10(11) \\ erg cm(-2) . What is the effect of such an event on the Earth and objects nearby? Ruderman (\\underbar{Science}, 184, 1079, 1974) and subsequent authors have considered a number of effects of a flash of gamma-rays from a nearby supernova explosion on the Earth's atmosphere, and on its biota. However, with regard to the demise of the dinosaurs, it appears that there was a marked increase in the deposition rate of the rare earth iridium coincident with their extinction. For this reason, an asteroid-Earth impact has been considered the leading contender for the death of the dinosaurs. Here we consider a new mechanism for mass biological extinctions, caused by small comets nudged into the inner solar system by nearby gamma-ray bursts. If comets populate the Oort cloud with a wide distribution of masses, radii and orbital eccentricities, we find that small (< 1 km), low density (10(-2) \\ gm cm(-3) ) objects in highly eccentric orbits can be injected into the inner solar system by a nearby gamma-ray burst. For a relatively brief period of time, the near Earth comet population would increase dramatically. The consequent increased probability of comet-Earth impacts of appropriate energy and material content could account for many of the characteristics of the Cretaceous-Tertiary or other terrestrial mass biological extinctions.

  5. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  6. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  7. FIREFLY: A cubesat mission to study terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Klenzing, J. H.; Rowland, D. E.; Hill, J.; Weatherwax, A. T.

    2009-12-01

    FIREFLY is small satellite mission to investigate the link between atmospheric lightning and terrestrial gamma-ray flashes scheduled to launch in late 2010. The instrumentation includes a Gamma-Ray Detector (GRD), VLF receiver, and photometer. GRD will measure the energy and arrival time of x-ray and gamma-ray photons, as well as the energetic electron flux by using a phoswitch-style layered scintillator. The current status of the instrumentation will be discussed, including laboratory tests and simulations of the GRD. FIREFLY is the second in a series of NSF-funded cubesats designed to study the upper atmosphere.

  8. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  9. A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ming; Wang Jiancheng, E-mail: mzhou@ynao.ac.cn

    2013-06-01

    In this paper, we repeatedly use the method of image stacking to study the origin of the extragalactic gamma-ray background (EGB) at GeV bands, and find that the Faint Images of the Radio Sky at Twenty centimeters (FIRST) sources undetected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope can contribute about (56 {+-} 6)% of the EGB. Because FIRST is a flux-limited sample of radio sources with incompleteness at the faint limit, we consider that point sources, including blazars, non-blazar active galactic nuclei, and starburst galaxies, could produce a much larger fraction of the EGB.

  10. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  11. Hard X rays and low-energy gamma rays from the Moon: Dependence of the continuum on the regolith composition and the solar activity

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Gasnault, O.

    2008-07-01

    The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.

  12. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  13. Observation of nuclear reactors on satellites with a balloon-borne gamma-ray telescope

    NASA Technical Reports Server (NTRS)

    O'Neill, Terrence J.; Kerrick, Alan D.; Ait-Ouamer, Farid; Tumer, O. Tumay; Zych, Allen D.

    1989-01-01

    Four Soviet nuclear-powered satellites flying over a double Compton gamma-ray telescope resulted in the detection of gamma rays with 0.3-8.0 MeV energies on April 15, 1988, as the balloonborne telescope searched, from a 35-km altitude, for celestial gamma-ray sources. The satellites included Cosmos 1900 and 1932. The USSR is the only nation currently employing moderated nuclear reactors for satellite power; reactors in space may cause significant problems for gamma-ray astronomy by increasing backgrounds, especially in the case of gamma-ray bursts.

  14. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    New findings from two X-ray satellites suggest that gamma-ray bursts, some of the most intense blasts in the universe, may be created in the same area where stars are born. Dr. Luigi Piro of the Consiglio Nazionale delle Ricerche (CNR) in Rome, Italy, presented data from NASA's Chandra X-ray Observatory and the Italian-Dutch ASI BeppoSAX observatory today at the Gamma Ray 2001 conference in Baltimore, MD. "We know that when a gamma-ray burst explodes, it produces a blast of material called a fireball, which expands at relativistic speeds like a rapidly inflating bubble," said Piro, who works within CNR's Istituto di Astrofisica Spaziale. "Our team found evidence that the blast wave caused by the fireball brakes against a wall of very dense gas, which we believe is the crowded region where stars form." Several theories exist about what causes gamma-ray bursts. Among more popular theories are that gamma-ray bursts come from various combinations of merging neutron stars and black holes, or, from the explosion of massive stars, called hypernovae. "Because gamma-ray bursts are going off in extremely distant galaxies, it is difficult to 'see' the regions that harbor them," said Piro. "We can only gather circumstantial evidence as to where and how they form." Piro's observations support the hypernova model. Scientists believe that within dense star-forming regions, the massive star required for a hypernova explosion evolves extremely rapidly. On astronomical time scales, the supermassive star would evolve over the course of only about one million years. Thus, the hypernova explosion may occur in the same stellar environment that originally produced the massive star itself, and perhaps may trigger even more star formation. The hint that gamma-ray bursts can occur in dense media came during a Chandra observation of an afterglow that occurred on September 26, 2000. Prof. Gordon Garmire of Pennsylvania State University, University Park, PA, found X-ray emission to be greater

  15. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  16. The Highest-Energy Photons Seen by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; ONeal, R. H., Jr.

    2005-01-01

    During its nine-year lifetime, the Energetic Gamma Ray Experiment Telescope (EGBET) on the Compton Gamma Ray Observatory (CGRO) detected 1506 cosmic photons with measured energy E>10 GeV. Of this number, 187 are found within a 1 deg of sources that are listed in the Third EGRET Catalog and were included in determining the detection likelihood, flux, and spectra of those sources. In particular, five detected EGRET pulsars are found to have events above 10 GeV, and together they account for 37 events. A pulsar not included in the Third EGRET Catalog has 2 events, both with the same phase and in one peak of the lower-energy gamma-ray light-curve. Most of the remaining 1319 events appear to be diffuse Galactic and extragalactic radiation based on the similarity of the their spatial and energy distributions with the diffuse model and in the E>100, MeV emission. No significant time clustering which would suggest a burst was detected.

  17. Neutron/Gamma-ray discrimination through measures of fit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-07-01

    Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less

  18. Energy dependence of polarization across broad deexcitation gamma-ray line profiles

    NASA Astrophysics Data System (ADS)

    Werntz, Carl; Lang, F. L.

    1998-04-01

    The energy profiles of deexcitation gamma-ray lines from recoiling inelastically scattered nuclei exhibit detailed structure. MeV-wide gamma-ray lines from the direction of the Orion nebula have been detected (H. Bloemen, et al., Astr. and Astrophys. L5, 281 (1994).) by COMPTEL whose source is postulated to be cosmic ray carbon and oxygen nuclei shock accelerated near supernova remnants colliding with ambient hydrogen and helium. Even when the heavy ion velocity distributions are isotropic, structure characteristic of the multipolarity of the gamma transition remains (A. M. Bykov et al, Astr. and Astrophys. 607, L37 (1996); B. Kozlovsky et al, Astrophys. J. 484, (1997).). In experiments in which the energy dependent structure of the deexcitation gamma-ray profiles is not resolved, the gammas display a high degree of linear polarization that rapidly changes with gamma-beam angle. We calculate the polarization, both linear and circular, as a function of gamma-ray energy across the laboratory line profiles of C12*(4.44) and O16*(6.13) inelastically excited by protons and alphas. We then investigate the polarization in the surviving structures for isotropic energetic ions colliding with ^1H and ^4He.

  19. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  20. Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño deLeón, S.; De la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hernandez, S.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-07-01

    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico that has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index 1.66, the high-energy component is extended to higher energies with no cutoff other than that from extragalactic background light attenuation, HAWC would observe gamma-rays with a peak energy of ˜300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift and Fermi, including 3 GRBs that were also detected by the Large Area Telescope (Fermi-LAT). An ON/OFF analysis method is employed, searching on the timescale given by the observed light curve at keV-MeV energies and also on extended timescales. For all GRBs and timescales, no statistically significant excess of counts is found and upper limits on the number of gamma-rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi satellite (Fermi-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cutoff in an additional high-energy component to be less than 100 {GeV} for reasonable assumptions about the energetics and redshift of the burst.

  1. Leptonic v.s. Hadronic Origin of the Gamma-ray Emission of the Fermi bubbles: Updates from Fermi-LAT and Forecast for Future Gamma-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2014-06-01

    Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.

  2. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    PubMed

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gamma ray satellite to be launched from Africa

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.; Senstad, K.

    1972-01-01

    The announcement is presented of the launch of NASA's Small Astronomy Satellite B (SAS-B) on 2 Nov. 1972, to study gamma rays. The launch is to be from the Italian-operated San Marco Equatorial Range in the Indian Ocean for ease in acquiring an equatorial orbit. The spacecraft systems described include: stabilization and control, communication, and spark chamber gamma ray telescope. The results of Uhuru (Explorer 42) are also presented.

  4. Lightning leader models of terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.

  5. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; hide

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  6. Prediction of ECS and SSC Models for Flux-Limited Samples of Gamma-Ray Blazars

    NASA Technical Reports Server (NTRS)

    Lister, Matthew L.; Marscher, Alan P.

    1999-01-01

    The external Compton scattering (ECS) and synchrotron self-Compton (SSC) models make distinct predictions for the amount of Doppler boosting of high-energy gamma-rays emitted by Nazar. We examine how these differences affect the predicted properties of active galactic nucleus (AGN) samples selected on the basis of Murray emission. We create simulated flux-limited samples based on the ECS and SSC models, and compare their properties to those of identified EGRET blazars. We find that for small gamma-ray-selected samples, the two models make very similar predictions, and cannot be reliably distinguished. This is primarily due to the fact that not only the Doppler factor, but also the cosmological distance and intrinsic luminosity play a role in determining whether an AGN is included in a flux-limited gamma-ray sample.

  7. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  8. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  9. Passive Gamma-Ray Emission for Soil-Disturbance Detection

    DTIC Science & Technology

    2016-08-01

    radioisotope Potassium-40 (40K) should be sensitive to changes in the soil bulk density and reflect the soil’s disturbance history. If natural...4 Generalized gamma-ray spectrum showing peaks at various energy levels that are characteristic of different radioisotopes ...occurring in situ soil radioisotopes such as potas- sium-40 (40K) because the measured radionuclide activity in soil is a func- tion of the mass of the

  10. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  11. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  12. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less

  13. A possible origin of gamma rays from the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Thoudam, Satyendra

    2014-11-01

    One of the most exciting discoveries of recent years is a pair of gigantic gamma-ray emission regions, the so-called Fermi bubbles, above and below the Galactic center. The bubbles, discovered by the Fermi space telescope, extend up to ∼50° in Galactic latitude and are ∼40° wide in Galactic longitude. The gamma-ray emission is also found to correlate with radio, microwave and X-rays emission. The origin of the bubbles and the associated non-thermal emissions are still not clearly understood. Possible explanations for the non-thermal emission include cosmic-ray injection from the Galactic center by high speed Galactic winds/jets, acceleration by multiple shocks or plasma turbulence present inside the bubbles, and acceleration by strong shock waves associated with the expansion of the bubbles. In this paper, I will discuss the possibility that the gamma-ray emission is produced by the injection of Galactic cosmic-rays mainly protons during their diffusive propagation through the Galaxy. The protons interact with the bubble plasma producing π°-decay gamma rays, while at the same time, radio and microwave synchrotron emissions are produced by the secondary electrons/positrons resulting from the π± decays.

  14. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; hide

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  15. The First FERMI-LAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  16. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  17. Gamma-ray emission from black holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.

    1991-01-01

    Strong continuum gamma-ray emission at about 1 MeV possibly correlated with a narrow annihilation line at 511 keV has been observed from both Cygnus X-1 and the Galactic center. Such correlated emission has been interpreted as a unique gamma-ray signature for theoretically predicted relativistic, positron-electron pair-dominated plasma in regions surrounding the black holes. In this paper, the Cygnus X-1 results, which have provided important new insights about the source, are reviewed. Cygnus X-1 may be considered a canonical reference stellar black hole whose spectral and temporal characteristics can be used for comparison with those of other black-hole candidates including the Galactic center and AGN.

  18. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  19. Benchmark gamma-ray skyshine experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nason, R.R.; Shultis, J.K.; Faw, R.E.

    1982-01-01

    A benchmark gamma-ray skyshine experiment is descibed in which /sup 60/Co sources were either collimated into an upward 150-deg conical beam or shielded vertically by two different thicknesses of concrete. A NaI(Tl) spectrometer and a high pressure ion chamber were used to measure, respectively, the energy spectrum and the 4..pi..-exposure rate of the air-reflected gamma photons up to 700 m from the source. Analyses of the data and comparison to DOT discrete ordinates calculations are presented.

  20. The structure and content of the galaxy and galactic gamma rays. [conferences

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Stecker, F. W.

    1976-01-01

    Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.