Sample records for gamma reactions

  1. Measurement of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makii, H.; Miyatake, H.; Wakabayashi, Y.

    2012-11-12

    We have measured the {gamma}-ray angular distribution of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC (Tokai Radioactive Ion Accelerator Complex) to accurately determine the E1 and E2 cross sections. In this experiment, we used high efficiency anti-Compton NaI(T1) spectrometers to detect a {gamma}-ray from the reaction with large S/N ratio, intense pulsed {alpha}-beams to discriminate true event from background events due to neutrons from {sup 13}C({alpha},n){sup 16}O reaction with a time-of-flight (TOF) method. We succeeded in removing a background events due to neutrons and clearly detected {gamma}-ray from the {sup 12}C({alpha}{gamma}){sup 16}O reaction with high statistics.

  2. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Dashdorj, D.; Lawrence Livermore National Laboratory, Livermore, California 94551

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  3. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  4. Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgya, T.; Molnar, G.L.; Mutti, P.

    2005-05-24

    The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.

  5. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  6. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  7. Nonelastic nuclear reactions and accompanying gamma radiation

    NASA Technical Reports Server (NTRS)

    Snow, R.; Rosner, H. R.; George, M. C.; Hayes, J. D.

    1971-01-01

    Several aspects of nonelastic nuclear reactions which proceed through the formation of a compound nucleus are dealt with. The full statistical model and the partial statistical model are described and computer programs based on these models are presented along with operating instructions and input and output for sample problems. A theoretical development of the expression for the reaction cross section for the hybrid case which involves a combination of the continuum aspects of the full statistical model with the discrete level aspects of the partial statistical model is presented. Cross sections for level excitation and gamma production by neutron inelastic scattering from the nuclei Al-27, Fe-56, Si-28, and Pb-208 are calculated and compared with avaliable experimental data.

  8. Zn-71 levels populated in neutron-capture-gamma reactions

    NASA Astrophysics Data System (ADS)

    Huchison, Andrew; Harker, Jessica; Walters, William B.; Waite, Mark; Paul, Rick

    2015-04-01

    The level structure of 71 Zn was studied via the capture-gamma reaction on a highly-enriched 70 Zn target at the NIST Center for Neutron Research NG-7 beam line. The neutron separation energy was determined to be 5832.5(5) keV. Low-spin levels populated in this reaction will be presented, compared with data from other measurements, and discussed. This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under Grant No. DE-FG02-94ER40834.

  9. Low energy proton capture study of the 14N(p, gamma)15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  10. The 3H(d,gamma) Reaction and the 3 H(d,gamma)/ 3H(d, n) Branching Ratio for Ec.m. 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, Cody E.

    The 3H(d, gamma)5He reaction and the 3H(d, gamma)/3H(d, n) branching ratio have been measured using a 500-keV pulsed deuteron beam incident on a titanium tritide target of stopping thickness at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the gamma-rays from neutrons in the bismuth germinate (BGO) gamma-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)alpha reaction using both the pulse-shape discrimination and time-of-flight techniques. A target holder with an ion-implanted silicon detector at a fixed angle of 135° to the beam axis to simultaneously measure alpha-particles as a normalization for the number of neutrons was incorporated to reduce the uncertainty in the neutron yield over the preliminary measurement. The gamma-rays have been measured at laboratory angles of 0°, 4°, 9°, and 15°. Information about the gamma-ray energy distribution for the unbound ground state and first excited state of 5He have been obtained experimentally by comparing the BGO data to Monte Carlo simulations. The reported branching ratios for each angle contain only contributions from the ground-state gamma-ray branch.

  11. Study of the {sup 15}N(p,gamma){sup 16}O Reaction at LUNA with a Solid Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capogrosso, Valentina

    2010-03-01

    The case of the most recent measurement performed at LUNA, the {sup 15}N(p,gamma){sup 16}O reaction, is presented. This reaction, together with the {sup 15}N(p,alpha){sup 12}C, forms the branching point from the first to the second CNO cycle and the ratio of their respective reaction rates influences the nucleosynthesis yields of {sup 16}O, {sup 17}O e {sup 17}F. In particular, one of the three different campaigns performed by the LUNA collaboration to measure the cross section of this reaction will be discussed. This experiment was performed by impinging a proton beam from the LUNA accelerator with energies ranging from 77 tomore » 350 keV in the centre-of-mass reference frame on a TiN solid target, enriched in {sup 15}N to 98%. The gamma-rays following the (p, gamma) reaction were detected by means of an high-efficiency BGO detector.« less

  12. Reaction process of {alpha} {yields} {gamma} massive transformation in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1995-08-01

    Reaction sequence of the massive transformation from the high-temperature {alpha}-Ti phase to the {gamma}-TiAl phase ({gamma}{sub m}) in a Ti-48at.% Al alloy has been examined in terms of optical and transmission electron microscopes. Both transformed and untransformed regions were macroscopically observed in the sample quenched from the high-temperature {alpha} phase field, when the sample was held there for a extended period of time prior to quenching. The transformed region consists of randomly oriented fine {gamma} single phase grains, in which many thermal anti-phase domains (TAPDs), together with a number of stacking faults were observed. In contrast, the untransformed region comprisesmore » extremely fine lamellae of the {gamma} and {alpha}{sub 2}-Ti{sub 3}Al phases, and the {gamma} plates were found to run through the TAPDs caused by {alpha} {yields} {alpha}{sub 2} ordering. Subsequent aging at 1,273 K causes the microstructure change in the untransformed region from {alpha}{sub 2}/{gamma} lamellae to {gamma}/{gamma} lamellae spontaneously and expands the {gamma}{sub m} region. These observations suggest that the {alpha} {yields} {gamma}{sub m} transformation proceeds through formation of fine {gamma} plates.« less

  13. Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.

    1988-11-20

    Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.

  14. Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, P. E.; Lehmann, H.; Jolie, J.

    2001-08-01

    Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less

  15. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  16. [Study on the encapsulation technique of high purity gamma-linolenic acid, part 1--saponification reaction and saponification value].

    PubMed

    Liu, Feng-xia; Xue, Gang; Gao, Qiu-hua; Gao, Wei-xia; Zhang, Li-hua

    2005-03-01

    To measure the saponification value and fatty acid formation of evening primrose oil, to study the effects of pH value on production yield and fatty acid formation during the saponification reaction, and to provide rationales for the selection of raw material, the enhancement of production yield of saponification, and the encapsulation of gamma-linolenic acid with urea. To measure fatty acid's formation with gas chromatographic method and to measure the saponification value. The content of gamma-linolenic acid is 7%-10% in evening primrose oil. The content of gamma-linolenic acid is inversely correlated with that of unsaturated fatty acid. The saponification value, the amount of KOH for saponification of evening primrose oil, and the pH value for subsequent isolations of oils are determined. From the measurement of fatty acids of evening primrose oil in two different cultivation locations, the content of gamma-linolenic acid is determined to be 7%-10%, unsaturated oils account for 90%. The saponification value of evening primrose oil is between 180-200, pH value of isolated oil is 1.5-2.0 after saponification reaction. Fatty acids mainly include palmitic acid, stearic acid, oleic acid, linolic acid and gamma-linolenic acid.

  17. Resonance strengths in the {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marta, Michele; Trompler, Erik; Bemmerer, Daniel

    2010-05-15

    The {sup 14}N(p,gamma){sup 15}O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The {sup 15}N(p,alphagamma){sup 12}C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at E{sub p} = 1058 keV in {sup 14}N(p,gamma){sup 15}O and at E{sub p} = 897 and 430 keV in {sup 15}N(p,alphagamma){sup 12}C have beenmore » determined with improved precision, relative to the well-known resonance at E{sub p} = 278 keV in {sup 14}N(p,gamma){sup 15}O. The new recommended values are omegagamma=0.353+-0.018, 362+-20, and 21.9+-1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the E{sub p} = 1058 keV resonance in {sup 14}N(p,gamma){sup 15}O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the {sup 14}N(p,gamma){sup 15}O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in {sup 15}N(p,alphagamma){sup 12}C may be useful for hydrogen depth profiling.« less

  18. Toward an experimentally determined {sup 26}Al{sup m}(p,{gamma}){sup 27}Si reaction rate in ONe novae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deibel, C. M.; Physics Division, Argonne National Laboratory, Argonne, Illinois 60439; Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824

    2009-09-15

    Strong evidence of the nucleosynthesis of Galactic {sup 26}Al has been found through measurements involving excesses in {sup 26}Mg from the decay of {sup 26}Al in meteoritic inclusions and the 1.809-MeV {gamma}-ray line detected by satellites such as CGRO and INTEGRAL. Several sites for the production of {sup 26}Al have been suggested, including ONe novae. Destruction of {sup 26}Al in ONe novae is possible via the reactions {sup 26}Al{sup g}(p,{gamma}){sup 27}Si and {sup 26}Al{sup m}(p,{gamma}){sup 27}Si. In the present work, resonance parameters for the {sup 26}Al{sup m}(p,{gamma}){sup 27}Si reaction have been determined via studies of the {sup 27}Al({sup 3}He,t){sup 27}Si*(p){supmore » 26}Al{sup m} and {sup 28}Si({sup 3}He,{alpha}){sup 27}Si*(p){sup 26}Al{sup m} reactions. Several new {sup 26}Al{sup m}+p resonances have been discovered within 1 MeV above the proton threshold of 7.691 MeV. Excitation energies and proton-branching ratios for those and previously known states are reported.« less

  19. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  20. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less

  1. 15O(alpha,gamma)19Ne breakout reaction and impact on X-ray bursts.

    PubMed

    Tan, W P; Fisker, J L; Görres, J; Couder, M; Wiescher, M

    2007-06-15

    The breakout reaction 15O(alpha,gamma)19Ne, which regulates the flow between the hot CNO cycle and the rp process, is critical for the explanation of the burst amplitude and periodicity of x-ray bursters. We report on the first successful measurement of the critical alpha-decay branching ratios of relevant states in 19Ne populated via 19F(3He,t)19Ne. Based on the experimental results and our previous lifetime measurements of these states, we derive the first experimental rate of 15O(alpha,gamma)19Ne. The impact of our experimental results on the burst pattern and periodicity for a range of accretion rates is analyzed.

  2. The {sup 14}N(p,{gamma}){sup 15}O reaction studied with a composite germanium detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marta, M.; Bemmerer, D.; Formicola, A.

    2011-04-15

    The rate of the carbon-nitrogen-oxygen (CNO) cycle of hydrogen burning is controlled by the {sup 14}N(p,{gamma}){sup 15}O reaction. The reaction proceeds by capture to the ground states and several excited states in {sup 15}O. In order to obtain a reliable extrapolation of the excitation curve to astrophysical energy, fits in the R-matrix framework are needed. In an energy range that sensitively tests such fits, new cross-section data are reported here for the four major transitions in the {sup 14}N(p,{gamma}){sup 15}O reaction. The experiment has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400-kV accelerator placed deep underground inmore » the Gran Sasso facility in Italy. Using a composite germanium detector, summing corrections have been considerably reduced with respect to previous studies. The cross sections for capture to the ground state and to the 5181, 6172, and 6792 keV excited states in {sup 15}O have been determined at 359, 380, and 399 keV beam energy. In addition, the branching ratios for the decay of the 278-keV resonance have been remeasured.« less

  3. The p({gamma}, {pi}{sup 0}) reaction in the {Delta}(1232) region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R.M.; Gutenberg, J.; Mukhopadhyay, N.C.

    Linearly polarized photons from the Laser Electron Gamma Source (LEGS) have been used by Blanpied et al. to study the p({gamma}, {pi}{sup 0}) reaction, looking for the E2 transition amplitude in the nucleon to Delta(1232) excitation. These authors contrast their measured cross-section ratio d{sigma}{parallel}/d{sigma}{perpendicular}, with expectations of earlier analyses, by the authors and Wittman (DMW), by Nozawa et al. (NBL), and using the multipoles of Behrends and Donnachie directly, and find {open_quotes}large discrepancies{close_quotes} among them. Here the authors clarify these discrepancies. The crucial difference between DMW and NBL calculations is the inclusion of the u-channel {Delta} contribution in DMW, omittedmore » in NBL. The authors find for a fair, though not perfect, agreement with the new data: E{sub 1+}{sup {pi}}{sup 0} {r_arrow}2.1E{sub 1+}{sup {pi}}{sup 0}, keeping other multipoles fixed.« less

  4. Proton threshold states in the {sup 22}Na(p,{gamma}){sup 23}Mg reaction and astrophysical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisel, H.; Hategan, C.; Graw, G.

    Proton threshold states in {sup 23}Mg are important for the astrophysically relevant proton capture reaction {sup 22}Na(p,{gamma}){sup 23}Mg. In the indirect determination of the resonance strength of the lowest states, which were not accessible by direct methods, some of the spin-parity-assignments remained experimentally uncertain. We have investigated these states with shell model, Coulomb displacement, and Thomas-Ehrman shift calculations. From the comparison of calculated and observed properties, we relate the lowest relevant resonance state at E{sub x}=7643 keV to an excited 3/2{sup +} state in accordance with a recent experimental determination by Jenkins et al. From this we deduce significantly improvedmore » values for the {sup 22}Na(p,{gamma}){sup 23}Mg reaction rate at stellar temperatures below T{sub 9}=0.1 K.« less

  5. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  6. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    PubMed

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.

  7. Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution.

    PubMed

    Changotra, Rahil; Guin, Jhimli Paul; Varshney, Lalit; Dhir, Amit

    2018-06-01

    Gamma radiolytic degradation of an antibiotic, ofloxacin (OFX) was investigated under different experimental conditions. The parameters such as initial OFX concentration, solution pH, absorbed dose and the concentrations of inorganic (CO 3 2- ) and organic (t-BuOH) additives were optimized to achieve the efficient degradation of OFX. The degradation dose constant values of OFX were calculated as 2.364, 1.159, 0.776 and 0.618 kGy -1 for the initial OFX concentrations of 0.05, 0.1, 0.15 and 0.2 mM with their corresponding (G (-OFX)) values of 0.481, 0.684, 1.755 and 1.971, respectively. Degradation rate of OFX was significantly increased with increase in the absorbed dose and decrease in the initial OFX concentration under acidic condition when compared to neutral or alkaline condition. Reaction of OFX in the presence of CO 3 2- and t-BuOH showed that the degradation was primarily caused by the reaction of OFX with radiolytically generated reactive hydroxyl radicals. Mineralization extent of OFX was determined in terms of percentage reduction in total organic carbon (TOC) and results revealed that the addition of H 2 O 2 enhanced the mineralization of OFX from 29% to 36.1% with H 2 O 2 dose of 0.5 mM at an absorbed dose of 3.0 kGy. Based on the LC-QTOF-MS analysis, gamma radiolytic degradation intermediates/products of OFX were identified and the possible degradation pathways of OFX were proposed. Cytotoxicity study of the irradiated OFX solutions showed that gamma radiation has potential to detoxify OFX. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Extrapolation of astrophysical S factors for the reaction {sup 14}N((p, {gamma}) {sup 15}O to near-zero energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemov, S. V.; Igamov, S. B., E-mail: igamov@inp.uz; Tursunmakhatov, Q. I.

    2012-03-15

    The astrophysical S factors for the radiative-capture reaction {sup 14}N(p, {gamma}){sup 15}O in the region of ultralow energies were calculated on the basis of the R-matrix approach. The values of the radiative and protonic widths were fitted to new experimental data. The contribution of direct radiative capture to bound states of the {sup 15}O nucleus was determined with the aid of asymptotic normalization coefficients, whose values were refined in the present study on the basis of the results obtained from an analysis of the reaction {sup 14}N({sup 3}He, d){sup 15}O at three different energies of incident helium ions. A valuemore » of S(0) = 1.79 {+-} 0.31 keV b was obtained for the total astrophysical S factor, and the reaction rate was determined for the process {sup 14}N(p, {gamma}){sup 15}O.« less

  9. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    PubMed Central

    Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S

    2007-01-01

    Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642

  10. {gamma}-ray spectroscopy study of states in {sup 27}Si relevant for the {sup 26}Al{sup m}(p,{gamma}){sup 27}Si reaction in novae and supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotay, G.; Woods, P. J.; Seweryniak, D.

    2009-11-15

    The heavy-ion, fusion-evaporation reaction {sup 12}C({sup 16}O,n) was used to identify {gamma}-decay transitions from excited states in {sup 27}Si above the proton threshold. The precise level energy measurements, J{sup {pi}} assignments, and lifetime measurements of astrophysically important {sup 26}Al{sup m}+p resonances have allowed an evaluation of the {sup 26}Al{sup m}(p,{gamma}){sup 27}Si reaction rate. An l{sub p}=0 resonance has been newly identified at a center-of-mass energy in the {sup 26}Al{sup m}+p system of 146.3(3) keV and is expected to dominate the rate for low stellar temperatures. In addition, an l{sub p}=1 resonance has been identified at 378.3(30) keV and is likelymore » to dominate the rate at high astrophysical temperatures, such as those found in oxygen-neon novae and core-collapse supernovae.« less

  11. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  12. A novel system to diagnose cutaneous adverse drug reactions employing the cellscan--comparison with histamine releasing test and Inf-gamma Releasing Test.

    PubMed

    Goldberg, Ilan; Gilburd, Boris; Kravitz, Martine Szyper; Kivity, Shmuel; Chaim, Berta Ben; Klein, Tirza; Schiffenbauer, Yael; Trubniykovr, Ela; Brenner, Sarah; Shoenfeld, Yehuda

    2005-03-01

    There are several mechanisms to describe allergic drug reactions yet the methods to diagnose them are limited. To compare several conventional clinical and laboratory methods to diagnose skin reactions to drugs to a new method of diagnosing drug reactions by the CellScan system. The study entailed 21 patients who were diagnosed as suffering from drug eruptions, and 105 healthy controls with no history of drug allergy. The drugs were classified into two groups according to suspicion of causing drug allergy: high and low. Most of the patients were on more than one drug, leading to 41 patient-drug interactions (assays). Histamine releasing test (HRT), interferon (INF)-gamma releasing test and CellScan examination were performed on lymphocytes of the patients and controls. The HRTwas interpreted as positive in 9 out of 18 (50%) patients and in 13 out of 35 (37%) assays. Based on the INF-gamma releasing test, positive results were observed in 16 out of 21 (76%) patients and in 24 out of 41 (59%) assays. In the CellScan test (CST), positive results were observed in 17 out of 21 (81%) patients and in 29 out of 41 (71%) assays. The rate of identifying the drug for eruption in the high suspicion level drugs was 9 out of 22 (41%) assays in the HRT, 20 out of 24 (83%) assays in the INF-gamma releasing test, and 21 out of 24 (87%) studies with the CellScan method. The rate of determining of the drug that caused the eruption in the low suspicion level drugs was 4 out of 13 (31 %) in the HRT, 4 out of 17 (24%) assays in the INF-gamma releasing test, and 8 out of 17 (47%) analyses in the CST. When examined in the CellScan, 99 out of 105 (94%) controls were interpreted as negative. This preliminary study indicates that the CellScan seems to be an easy and promising method for the detection of drugs responsible for adverse skin reactions. In contrast to the HRT and to the Interferon-gamma secretion test, the CellScan method is characterized by its ability to track and monitor the

  13. Interferon-gamma (INF-gamma) release test can detect cutaneous adverse effects to statins.

    PubMed

    Goldberg, Ilan; Isman, Gila; Shirazi, Idit; Brenner, Sarah

    2009-12-01

    An increasing number of cutaneous adverse effects are being reported as use of statins becomes more widespread. A study was undertaken to establish the relationship between statin and a cutaneous reaction by the in vitro interferon-gamma (INF-gamma) release test. The lymphocytes of 20 patients with suspected drug-induced skin reaction were incubated with and without the drug. The level of INF-gamma from the supernatant was measured by enzyme-linked immunosorbent assay (ELISA), and the increase calculated. Response was positive in 27 (21.43%) of the 126 drugs. Statin was the only drug with a positive response in 80% of those cases. Nine of 20 patients (45.0%) had complete resolution after discontinuation of the drug; 6 (30.0%) who replaced one drug by another statin had partial or no resolution; and 5 (20.0%) had no resolution despite cessation of statins of all kinds. A positive INF-gamma release test was found in patients who developed skin reactions while taking statins; the test's reliability was strengthened by prompt improvement following elimination of the suspected drug in the majority of patients.

  14. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  15. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.K.C.; Sutton, M.; Evans, T.M.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and themore » cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.« less

  16. Simulation of prompt gamma-ray emission during proton radiotherapy.

    PubMed

    Verburg, Joost M; Shih, Helen A; Seco, Joao

    2012-09-07

    The measurement of prompt gamma rays emitted from proton-induced nuclear reactions has been proposed as a method to verify in vivo the range of a clinical proton radiotherapy beam. A good understanding of the prompt gamma-ray emission during proton therapy is key to develop a clinically feasible technique, as it can facilitate accurate simulations and uncertainty analysis of gamma detector designs. Also, the gamma production cross-sections may be incorporated as prior knowledge in the reconstruction of the proton range from the measurements. In this work, we performed simulations of proton-induced nuclear reactions with the main elements of human tissue, carbon-12, oxygen-16 and nitrogen-14, using the nuclear reaction models of the GEANT4 and MCNP6 Monte Carlo codes and the dedicated nuclear reaction codes TALYS and EMPIRE. For each code, we made an effort to optimize the input parameters and model selection. The results of the models were compared to available experimental data of discrete gamma line cross-sections. Overall, the dedicated nuclear reaction codes reproduced the experimental data more consistently, while the Monte Carlo codes showed larger discrepancies for a number of gamma lines. The model differences lead to a variation of the total gamma production near the end of the proton range by a factor of about 2. These results indicate a need for additional theoretical and experimental study of proton-induced gamma emission in human tissue.

  17. New astrophysical S factor for the {sup 15}N(p,{gamma}){sup 16}O reaction via the asymptotic normalization coefficient (ANC) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedzhanov, A. M.; Gagliardi, C. A.; Goldberg, V. Z.

    2008-07-15

    The {sup 15}N(p,{gamma}){sup 16}O reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J{sup {pi}}=1{sup -} resonances at E{sub R}=312 and 962 keV and direct capture to the ground state. Asymptotic normalization coefficients (ANCs) for the ground and seven excited states in {sup 16}O were extracted from the comparison of experimental differential cross sections for the {sup 15}N({sup 3}He,d){sup 16}O reaction with distorted-wave Born approximation calculations. Using these ANCs and proton and {alpha} resonance widths determined from an R-matrixmore » fit to the data from the {sup 15}N(p,{alpha}){sup 12}C reaction, we carried out an R-matrix calculation to obtain the astrophysical factor for the {sup 15}N(p,{gamma}){sup 16}O reaction. The results indicate that the direct capture contribution was previously overestimated. We find the astrophysical factor to be S(0)=36.0{+-}6.0 keV b, which is about a factor of 2 lower than the presently accepted value. We conclude that for every 2200{+-}300 cycles of the main CN cycle one CN catalyst is lost due to this reaction.« less

  18. Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 degrees off-axis parabolic mirrors.

    PubMed

    Malone, R M; Herrmann, H W; Stoeffl, W; Mack, J M; Young, C S

    2008-10-01

    Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

  19. Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction

    NASA Astrophysics Data System (ADS)

    Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.

    2016-09-01

    Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.

  20. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  1. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  2. Astrophysical S factor for the {sup 15}N(p,{gamma}){sup 16}O reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedzhanov, A. M.; La Cognata, M.; Kroha, V.

    2011-04-15

    The R-matrix approach has proved to be very useful in extrapolating the astrophysical factor down to astrophysically relevant energies, since the majority of measurements are not available in this region. However, such an approach has to be critically considered when no complete knowledge of the reaction model is available. To get reliable results in such cases one has to use all the available information from independent sources and, accordingly, fix or constrain variations of the parameters. In this paper we present a thorough R-matrix analysis of the {sup 15}N(p,{gamma}){sup 16}O reaction, which provides a path from the CN cycle tomore » the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong J{sup {pi}}=1{sup -} resonances at E{sub R}=312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the {sup 15}N(p,{gamma}){sup 16}O reaction has been published [P. J. LeBlanc et al., Phys. Rev. C 82, 055804 (2010)]. The analysis has been done using the R-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C{sup 2}=539.2 fm{sup -1}, which exceeds the previously measured value by a factor of {approx_equal}3. Here we present a new R-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C{sup 2}=200.34 fm{sup -1}. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present ten fits, seven unconstrained and three constrained. For the unconstrained fit with the boundary condition B{sub c}=S{sub c}(E{sub 2}), where E{sub 2} is the energy of the second level, we get S(0)=39.0{+-}1.1 keVb and normalized {chi}-tilde{sup 2}=1.84, i.e., the result

  3. Improving the {sup 33}S(p,{gamma}){sup 34}Cl Reaction Rate for Models of Classical Nova Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parikh, A.; Faestermann, Th.; Kruecken, R.

    2011-10-28

    Reduced uncertainty in the thermonuclear rate of the {sup 33}S(p,{gamma}){sup 34}Cl reaction would help to improve our understanding of nucleosynthesis in classical nova explosions. At present, models are generally in concordance with observations that nuclei up to roughly the calcium region may be produced in these explosive phenomena; better knowledge of this rate would help with the quantitative interpretation of nova observations over the S-Ca mass region, and contribute towards the firm establishment of a nucleosynthetic endpoint. As well, models find that the ejecta of nova explosions on massive oxygen-neon white dwarfs may contain as much as 150 times themore » solar abundance of {sup 33}S. This characteristic isotopic signature of a nova explosion could possibly be observed through the analysis of microscopic grains formed in the environment surrounding a nova and later embedded within primitive meteorites. An improved {sup 33}S(p,{gamma}){sup 34}Cl rate (the principal destruction mechanism for {sup 33}S in novae) would help to ensure a robust model prediction for the amount of {sup 33}S that may be produced. Finally, constraining this rate could confirm or rule out the decay of an isomeric state of {sup 34}Cl(E{sub x} = 146 keV, t{sub 1/2} = 32 m) as a source for observable gamma-rays from novae. We have performed several complementary experiments dedicated to improving our knowledge of the {sup 33}S(p,{gamma}){sup 34}Cl rate, using both indirect methods (measurement of the {sup 34}S({sup 3}He,t){sup 34}Cl and {sup 33}S({sup 3}He,d){sup 34}Cl reactions with the Munich Q3D spectrograph) and direct methods (in normal kinematics at CENPA, University of Washington, and in inverse kinematics with the DRAGON recoil mass separator at TRIUMF). Our results will be used with nova models to facilitate comparisons of model predictions with present and future nova observables.« less

  4. (p,$gamma$) ANGULAR DISTRIBUTION MEASUREMENTS ON F$sup 19$(p,$alpha$$gamma$)O$sup 16$ AT 340, 598, AND 669 kev (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retz-Schmidt, Th.

    1958-10-01

    Experimental envestigations of the behavior of the 6.14-Mev radiation in the F/sup 19/(p, alpha gamma )O/sup 16/ reaction gave the following angular distributions: I gamma (669) ~ isotrop, I gamma (598) ~ 1 + 0.17 cos/sup 2/ THETA , and I gamma (340) ~ 1-0.035 cos/sup 2/ THETA . The result in the last case which deviates from earlier measurements is in better agreement with the basic assumption that in addition to the s-protons approximately 1% d-protons participate in the reaction at E/sub p/ = 340 kev. (tr-auth)

  5. Formation of fine {gamma} grain structure through fine {alpha}{sub 2}/{gamma} lamellar structure in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1997-12-31

    Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less

  6. The Reactions Gamma + Proton ---> Positive Pion Negative Pion Positive Pion Negative Pion Proton and Gamma + Proton ---> KAON(+,-) PION(-,+) Neutral Kaon Proton at 20 GEV

    NASA Astrophysics Data System (ADS)

    McCrory, Elliott Simkins

    The reactions (gamma)p (--->) (pi)('+)(pi)('-)(pi)('+)(pi)(' -)p and (gamma)p (--->) K('(+OR-))(pi)('(-OR+))K('0)p at 20 GeV are studied from data obtained during the BC72 experiment, run at the SLAC 1 meter Hybrid Bubble Chamber facility from 1980 to 1982. The 5702 events in the first channel represent a cross section of 2.54 (+OR-) 0.24 (mu)b; the 235 events in the second channel represent a cross section of 380 (+OR-) 40 nb. The primary radial excitation of the (rho)(770), commonly called the (rho)(1600), is observed in half of the 4(pi) channel, but with parameters markedly different from what has been previously published. Production of the resonance is peripheral, exponential t dependence of 7.5 (GeV)('-2), with s-channel helicity conserved at the 90% level. A variety of methods have been used to calculate the mass and the width of the (rho)' resonance, the strongest (and new for this channel) being a maximum likelihood fit to all aspects of the 4(pi) data. Forty percent of the 4(pi) channel is associated with (DELTA)('++)(1232) production. We have studied, in particular, (gamma)p (--->) A(,n)(DELTA)('++) and see predominantly production of the A(,2) tensor meson resonance with an admixture of the pseudoscalar A(,1) mean resonance. The KK(pi) channel is dominated by K*K production. The K*K system does not appear to be associated with resonance production.

  7. Measurements and analysis of alpha-induced reactions of importance for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    de Messieres, Genevieve Escande

    2011-11-01

    Reactions during stellar helium burning are of primary importance for understanding nucleosynthesis. A detailed understanding of the critical reaction chain 4He(2alpha, gamma)12C( alpha, gamma)16O(alpha, gamma) 20Ne is necessary both because it is the primary energy source and because it determines the ratio of 12C to 16O produced, which in turn significantly effects subsequent nucleosynthesis. Also during Helium burning, the reactions 22Ne(alpha, n)25Mg and 22Ne(alpha, gamma )26Mg are crucial in determining the amount of neutrons available for the astrophysical s-process. This thesis presents new experimental results concerning the 16O(alpha, gamma) 20Ne, 22Ne(alpha, n)25Mg, and 22Ne(alpha, gamma)26Mg reaction rates. These results are then applied to the calculation of the associated stellar reaction rates in order to achieve better accuracy.

  8. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  9. Off-shell test of the Moscow potential of nucleon-nucleon interaction on the basis of data on the reaction {gamma}d {sup {yields}} np in the photon-energy region around E{sub {gamma}} {approx_equal} 2 GeV, where this reaction is sensitive to quark effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.

    Various pieces of evidence in favor of the Moscow potential of nucleon-nucleon interaction are discussed. The formalism of a relativistic potential model as applied to deuteron photodintegration is expounded. The differential cross section calculated for the reaction {gamma}d {sup {yields}} np on the basis of the Moscow potential at incident-photon energies E{sub {gamma}} between 1.5 and 2.5 GeV are quite in accord with present-day experimental data, which are also described well in the literature on the basis of the model of quark-gluon strings. Further steps in testing the Moscow potential and microscopically substantiating it on the basis of quark modelsmore » are indicated.« less

  10. Zirconium and Yttrium (p, d) Surrogate Nuclear Reactions: Measurement and determination of gamma-ray probabilities: Experimental Physics Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J. T.; Hughes, R. O.; Escher, J. E.

    This technical report documents the surrogate reaction method and experimental results used to determine the desired neutron induced cross sections of 87Y(n,g) and the known 90Zr(n,g) cross section. This experiment was performed at the STARLiTeR apparatus located at Texas A&M Cyclotron Institute using the K150 Cyclotron which produced a 28.56 MeV proton beam. The proton beam impinged on Y and Zr targets to produce the nuclear reactions 89Y(p,d) 88Y and 92Zr(p,d) 91Zr. Both particle singles data and particle-gamma ray coincident data were measured during the experiment. This data was used to determine the γ-ray probability as a function of energymore » for these reactions. The results for the γ-ray probabilities as a function of energy for both these nuclei are documented here. For completeness, extensive tabulated and graphical results are provided in the appendices.« less

  11. Identification of analog states in the T=1/2 A=27 mirror system from low excitation energies to the region of hydrogen burning in the {sup 26}Al{sup g,m}(p,{gamma}){sup 27}Si reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotay, G.; Woods, P. J.; Seweryniak, D.

    2011-09-15

    The reactions {sup 26}Al{sup g}(p, {gamma}){sup 27}Si and {sup 26}Al{sup m}(p, {gamma}){sup 27}Si are important for influencing the galactic abundance of the cosmic {gamma}-ray emitter {sup 26}Al{sup g} and for the excess abundance of {sup 26}Mg found in presolar grains, respectively. Precise excitation energies and spin assignments of states from the ground state to the region of astrophysical interest in {sup 27}Si, including the identification and pairing of key astrophysical resonances with analog states in the mirror nucleus {sup 27}Al, are reported using {gamma} rays observed in the {sup 12}C + {sup 16}O fusion reaction. The detailed evolution of Coulombmore » energy differences between the states in {sup 27}Si and {sup 27}Al is explored, including the region above the astrophysical reaction thresholds.« less

  12. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less

  13. (n,{gamma}) Experiments on tin isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Walker, C. L.

    2013-04-19

    Neutron capture experiments on highly enriched {sup 117,119}Sn isotopes were performed with the DANCE detector array located at the Los Alamos Neutron Science Center. The DANCE detector provides detailed information about the multi-step {gamma}-ray cascade following neutron capture. Analysis of the experimental data provides important information to improve understanding of the neutron capture reaction, including a test of the statistical model, the assignment of spins and parities of neutron resonances, and information concerning the Photon Strength Function (PSF) and Level Density (LD) below the neutron separation energy. Preliminary results for the (n,{gamma}) reaction on {sup 117,119}Sn are presented. Resonance spinsmore » of the odd-A tin isotopes were almost completely unknown. Resonance spins and parities have been assigned via analysis of the multi-step {gamma}-ray spectra and directional correlations.« less

  14. Observation of the {chi}{sub c2}(2P) meson in the reaction {gamma}{gamma}{yields}DD at BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.

    2010-05-01

    A search for the Z(3930) resonance in {gamma}{gamma} production of the DD system has been performed using a data sample corresponding to an integrated luminosity of 384 fb{sup -1} recorded by the BABAR experiment at the PEP-II asymmetric-energy electron-positron collider. The DD invariant mass distribution shows clear evidence of the Z(3930) state with a significance of 5.8{sigma}. We determine mass and width values of (3926.7{+-}2.7{+-}1.1) MeV/c{sup 2} and (21.3{+-}6.8{+-}3.6) MeV, respectively. A decay angular analysis provides evidence that the Z(3930) is a tensor state with positive parity and C parity (J{sup PC}=2{sup ++}); therefore we identify the Z(3930) state asmore » the {chi}{sub c2}(2P) meson. The value of the partial width {Gamma}{sub {gamma}{gamma}x}B(Z(3930){yields}DD) is found to be (0.24{+-}0.05{+-}0.04) keV.« less

  15. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  16. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> etamore » p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.« less

  17. Comment on "Properties of (26)Mg and (26)Si in the sd shell model and the determination of the (25)Al(p,gamma) (26) Si reaction rate"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipps, K.; Bardayan, Daniel W; Liang, J Felix

    2011-01-01

    A recent discussion of theoretical work on the {sup 25}Al(p,{gamma}){sup 26}Si astrophysical reaction rate [W.A. Richter, B. Alex Brown, A. Signoracci and M. Wiescher Phys. Rev. C 83 065803 (2011)] omits some current and relevant experimental information in forming its scientific conclusions. Accounting for this new information has the potential to significantly alter the reaction rate derived in the paper.

  18. THE EFFECT OF THE {sup 14}N(p, {gamma}){sup 15}O REACTION ON THE BLUE LOOPS IN INTERMEDIATE-MASS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halabi, Ghina M.; El Eid, Mounib F.; Champagne, Arthur

    2012-12-10

    We present stellar evolutionary sequences of stars in the mass range 5-12 M{sub Sun }, having solar-like initial composition. The stellar models are obtained using updated input physics, including recent rates of thermonuclear reactions. We investigate the effects of a modification of the {sup 14}N(p, {gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the above mass range. We find that a reduced {sup 14}N(p, {gamma}){sup 15}O rate, as described in the text, has a striking impact on the physical conditions of burningmore » and mixing during shell hydrogen burning when the blue loops are formed. In particular, we find that the efficiency of shell hydrogen burning is crucial for the formation of an extended blue loop. We show that a significantly reduced {sup 14}N(p, {gamma}){sup 15}O rate affects severely the extension of the blue loops and the time spent by the star in the blue part of the Hertzsprung-Russell diagram in the mass range 5-7 M{sub Sun} if the treatment of convection is based on the Schwarzschild criterion only. In this case, envelope overshooting helps to restore well-extended blue loops as supported by the observations of the Cepheid stars. If core overshooting is included during the core hydrogen and core helium burning phases, the loop formation and its properties depend on how this overshooting is treated for a given stellar mass range, as well as on its efficiency.« less

  19. Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo.

    PubMed

    García-Martín, Elena; Ramos, María I; Cornejo-García, José A; Galván, Segismundo; Perkins, James R; Rodríguez-Santos, Laura; Alonso-Navarro, Hortensia; Jiménez-Jiménez, Félix J; Agúndez, José A G

    2018-01-01

    Background: The Gamma-aminobutyric acid type A receptor (GABA-A receptor) is affected by ethanol concentrations equivalent to those reached during social drinking. At these concentrations, ethanol usually causes impairment in reaction and motor times in most, but not all, individuals. Objectives: To study the effect of GABA-A receptor variability in motor and reaction times, and the effect of low ethanol doses. Methods: Two hundred and fifty healthy subjects received one single dose of 0.5 g/Kg ethanol per os . Reaction and motor times were determined before ethanol challenge (basal), and when participants reached peak ethanol concentrations. We analyzed all common missense polymorphisms described in the 19 genes coding for the GABA-A receptor subunits by using TaqMan probes. Results: The GABRA6 rs4454083 T/C polymorphisms were related to motor times, with individuals carrying the C/C genotype having faster motor times, both, at basal and at peak ethanol concentrations. The GABRA4 rs2229940 T/T genotype was associated to faster reaction times and with lower ethanol effects, determined as the difference between basal reaction time and reaction time at peak concentrations. All these associations remained significant after correction for multiple comparisons. No significant associations were observed for the common missense SNPs GABRB3 rs12910925, GABRG2 rs211035, GABRE rs1139916, GABRP rs1063310, GABRQ rs3810651, GABRR1 rs12200969 or rs1186902, GABRR2 rs282129, and GABRR3 rs832032. Conclusions: This study provides novel information supporting a role of missense GABA-A receptor polymorphisms in reaction time, motor time and effects of low ethanol doses in vivo .

  20. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology.

  1. Study of catalytic reaction processes on the {gamma}-Al{sub 2}O{sub 3} chemiluminescence-based gas sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsunomiya, K.; Nakagawa, M.; Nishiyama, K.

    The authors have investigated a new chemiluminescence (CL)-based gas sensor made of aluminum oxide ({gamma}-Al{sub 2}O{sub 3}) which emits CL during the catalytic oxidation of combustible vapors in air. The CL intensity is proportional to the concentration in the wide region from 1 to 1000 ppm of ethanol, butanol and acetone in air. However, it has a tendency to saturate in concentrations above 1000 ppm. For the detection of vapors in the environmental atmosphere, improvements of the sensitivity and the linear characteristics of the sensor are necessary. Catalytic reaction processes on the sensor were studied for this purpose.

  2. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to {gamma}-butyrolactone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messori, M.; Vaccari, A.

    1994-11-01

    The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by themore » similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6

  3. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  4. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  5. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  6. Measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalwani, Kavita

    2011-10-24

    In this paper we present the preliminary results on the measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with the WASA Detector at COSY. We have used a sample of 10{sup 7}{eta} mesons produced at the COSY ring using the pd{yields}{sup 3}He{eta} reaction close to threshold. We detail the intricate extraction of the signal, which has about 360{+-}70(stat){eta}{yields}{pi}{sup 0}{gamma}{gamma} events, from the overwhelming background channels for example {eta}{yields}3{pi}{sup 0}, pd{yields}{sup 3}He 3{pi}{sup 0} and pd{yields}{sup 3}He 2{pi}{sup 0}.

  7. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Erdene, Norov; Lee, Seung-Ki; Jeong, Dae-Hong; Park, Jae-Hyoung

    2011-12-01

    A fiber-optic localized surface plasmon (FO LSPR) sensor was fabricated by gold nanoparticles (Au NPs) immobilized on the end-face of an optical fiber. When Au NPs were formed on the end-face of an optical fiber by chemical reaction, Au NPs aggregation occurred and the Au NPs were immobilized in various forms such as monomers, dimers, trimers, etc. The component ratio of the Au NPs on the end-face of the fabricated FO LSPR sensor was slightly changed whenever the sensors were fabricated in the same condition. Including this phenomenon, the FO LSPR sensor was fabricated with high sensitivity by controlling the density of Au NPs. Also, the fabricated sensors were measured for the resonance intensity for the different optical systems and analyzed for the effect on sensitivity. Finally, for application as a biosensor, the sensor was used for detecting the antibody-antigen reaction of interferon-gamma.

  8. [The macrophage disappearance reaction in guinea pigs sensitized with bovine gamma globulin or human scrum albumin (author's transl)].

    PubMed

    Schimke, R; Bernstein, B; Ambrosius, H

    1977-01-01

    The macrophage disappearance reaction (MDR) is a suitable test for detection of cell mediated immunity against bovine gamma globulin (BGG) and human serum albumin (HSA) in guinea pigs. The MDR is a technical simple, good manipulable, and quantifiable test. The optimal test conditions for the antigens BGC and HSA are the following: Peritoneal exudat cells (PEC) were stimulated with paraffin oil. On the 5th day after receiving oil the animals were injected with 80 microgram BGG or 30 microgram HSA i.p. 5 hours later the PEC were harvested and counted. With the MDR it is possible to detect differences with respect to degree of cell-mediated immunity. Supernatants of sensitized lymphocytes produces the MDR too.

  9. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human.

    PubMed

    Omi, T; Brenig, B; Spilar Kramer, S; Iwamoto, S; Stranzinger, G; Neuenschwander, S

    2005-04-01

    The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid/thyroid/retinoid receptor superfamily, and is primarily expressed in fat tissue. To date, two major PPAR-gamma isoforms have been identified in pig, PPAR-gamma1 and PPAR-gamma2. Porcine PPAR-gamma1a consists of two leader exons, designated A1 and A2, followed by six exons containing the open reading frame. Here, we report the isolation and characterization of three novel PPAR-gamma1 transcripts. PPAR-gamma1b is derived from exon A1, with exon A2 spliced out. PPAR-gamma1c and PPAR-gamma1d are derived from the new exon, A', containing exon A2 (gamma1c) or without exon A2 (gamma1d). Based on PCR analysis of PAC clones that included sequences from the 5'-untranslated region of the PPAR-gamma gene, the new A' exon is located between the known exons A1 and A2. We also isolated the human homologue to exon A', as well as the two new PPAR-gamma1c and -gamma1d splice variants, from human adipose tissue. Studies of the expression of porcine PPAR-gamma by real time reverse transcription-polymerase chain reaction analysis show that transcripts derived from exon A1 were not expressed at significantly different levels in visceral fat (lamina subserosa) or subcutaneous fat (back fat, inner and outer layer). In contrast, exon A'-derived transcripts were expressed at progressively higher levels in the inner and outer layers of subcutaneous fat than in visceral fat. The same expression pattern was also observed for PPAR-gamma2. We hypothesize that there are three promoters, which differentially regulate PPAR-gamma1 and PPAR-gamma2 gene expression, depending on the specific localization of the fat tissue.

  10. Experimental review of light quark spectroscopy from e/sup +/e/sup -/ production and. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, W.H.

    1987-07-01

    This is an experimental review of light quark spectroscopy from e/sup +/e/sup -/ production and ..gamma gamma.. collision results presented at the 2nd International Conference on Hadron Spectroscopy at KEK, Japan. The recent results in ..gamma gamma.. production have evidence for the J/sup PC/ = 1/sup + +/, E/f/sub 1/(1420) and D/f/sub 1/(1285), mesons from the TPC and Mark II collaborations and upper limits for pseudoscalar resonances from the Crystal Ball collaboration. The results in J/psi reactions include D/f/sub 1/(1285) meson production in radiative decays and a complete measurement of the hadronic decays into pseudoscalar-vector pairs from the DM2 collaborationmore » and evidence for phi phi production in radiative decays and a study of the iota line shape from the Mark III collaboration. A short review of simple theoretical ideas is presented.« less

  11. Role of high-spin hyperon resonances in the reaction of $$\\gamma p \\to K^+ K^+ \\Xi^-$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ka Shing Man, Yongseok Oh, K. Nakayama

    The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction ofmore » $$\\gamma p \\to K^+ K^+ \\Xi^-$$ are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the $$\\Sigma(2030)$$ hyperon having spin-7/2 and positive parity has a key role to bring the model predictions into a fair agreement with the measured data for the $$K^+\\Xi^-$$ invariant mass distribution.« less

  12. Gamma Ray Spectroscopy and SASSYER

    NASA Astrophysics Data System (ADS)

    Pauerstein, Benjamin; Bonniwell, Cain; Allmond, J. M.; Beausang, C. W.

    2009-10-01

    An experiment was performed to study the Gd and Tb nuclei resulting from a 27 MeV proton beam on a 156Gd target. This was conducted at Lawrence Berkeley National Laboratory using the STARS/LIBERACE array. The main focus of the experiment was on charged particle channels (p,d) into 155Gd and (p,t) into 154Gd. However, the trigger was either gamma-gamma or particle-gamma so new data was also obtained on 155Tb nuclei following fusion evaporation reactions. Preliminary analysis was conducted at Wright Nuclear Structure Lab where RADWARE programs were used to analyze the data and search for unknown gamma rays. A second, separate, experiment was conducted using the SASSYER (a gas-filled separator at Yale). In this experiment, fission fragments from a 252Cf source were focused to a DSSD and a Ge detector was used to search for either gamma-decay from long lived isomers in the fission fragments or to find gammas from recoil-beta-decay tagging on the fission fragments. The data collection seems to have gone smoothly, and the data is currently being sorted for analysis. This work was supported by the US Department of Energy under grant numbers DE-FG02-52NA26206 and DE-FG02-05ER41379.

  13. Identification and characterization of gamma-glutamylamine cyclotransferase, an enzyme responsible for gamma-glutamyl-epsilon-lysine catabolism.

    PubMed

    Oakley, Aaron J; Coggan, Marjorie; Board, Philip G

    2010-03-26

    Gamma-glutamylamine cyclotransferase (GGACT) is an enzyme that converts gamma-glutamylamines to free amines and 5-oxoproline. GGACT shows high activity toward gamma-glutamyl-epsilon-lysine, derived from the breakdown of fibrin and other proteins cross-linked by transglutaminases. The enzyme adopts the newly identified cyclotransferase fold, observed in gamma-glutamylcyclotransferase (GGCT), an enzyme with activity toward gamma-glutamyl-alpha-amino acids (Oakley, A. J., Yamada, T., Liu, D., Coggan, M., Clark, A. G., and Board, P. G. (2008) J. Biol. Chem. 283, 22031-22042). Despite the absence of significant sequence identity, several residues are conserved in the active sites of GGCT and GGACT, including a putative catalytic acid/base residue (GGACT Glu(82)). The structure of GGACT in complex with the reaction product 5-oxoproline provides evidence for a common catalytic mechanism in both enzymes. The proposed mechanism, combined with the three-dimensional structures, also explains the different substrate specificities of these enzymes. Despite significant sequence divergence, there are at least three subfamilies in prokaryotes and eukaryotes that have conserved the GGCT fold and GGCT enzymatic activity.

  14. A reanalysis of radioisotope measurements of the $^9$Be$$(\\gamma,n)^8$$Be cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alan E.

    Themore » $^9$Be$$(\\gamma,n)^8$$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$$(\\gamma,n)$$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $$E_R=1738.8\\pm1.9$$ keV, $$\\Gamma_\\gamma=0.771\\pm0.021$$ eV, and $$\\Gamma_n=268\\pm15$$ keV for the $1/2^+$ state. A virtual $1/2^+$ state is excluded with 99.3\\% confidence.« less

  15. A reanalysis of radioisotope measurements of the $^9$Be$$(\\gamma,n)^8$$Be cross-section

    DOE PAGES

    Robinson, Alan E.

    2016-02-18

    Themore » $^9$Be$$(\\gamma,n)^8$$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$$(\\gamma,n)$$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $$E_R=1738.8\\pm1.9$$ keV, $$\\Gamma_\\gamma=0.771\\pm0.021$$ eV, and $$\\Gamma_n=268\\pm15$$ keV for the $1/2^+$ state. A virtual $1/2^+$ state is excluded with 99.3\\% confidence.« less

  16. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R; Bersntein, L; Burke, J

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less

  17. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  18. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  19. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  20. Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.; Ratkiewicz, Andrew; Escher, Jutta E.; Lepailleur, Alexandre; Pain, Steven D.; Potel, Gregory

    2018-01-01

    Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed.

  1. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  2. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  3. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  4. REVIEWS OF TOPICAL PROBLEMS: Gamma astronomy of the Sun and study of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Kuzhevskiĭ, B. M.

    1982-06-01

    A detailed discussion is given of the various nuclear reactions proceeding in the Sun's atmosphere under the influence of flare-accelerated particles. The role of such reactions in formation of the line spectrum and continuum of gamma-rays from the disturbed and quiet Sun is discussed. The gamma-ray fluxes in individual lines and in the continuum are estimated. The possibility of applying data on gamma-ray emission from the Sun to analysis of particle acceleration in solar flares and the conditions of their ejection into interplanetary space is analyzed.

  5. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2017-06-28

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less

  6. Some Nuclear Reaction Rates of Importance for Nucleosynthesis around Mass 45

    NASA Astrophysics Data System (ADS)

    Mitchell, Leon William

    1985-06-01

    This thesis describes the measurement of absolute cross sections and the determination of thermonuclear reaction rates for a series of reactions which are of importance in stellar nucleosynthesis. The yield of (gamma)-rays from the reaction ('42)Ca(p,(gamma))('43)Sc has been measured as a function of bombarding energy over the range 0.63 - 3.01 MeV, from ('44)Ca(p,(gamma))('45)Sc over the range 0.775 - 4.00 MeV, from ('42)Ca((alpha),(gamma))('46)Ti over the range 3.62 - 5.62 MeV, from ('42)Ca((alpha),p(gamma))('45)Sc over the range 4.06 - 5.92 MeV, from ('44)Ca(p,p'(gamma))('44)Ca over the range 1.90 - 5.03 MeV and from ('42)Ca(p,p'(gamma))('42)Ca over the range 2.24 - 3.01 MeV. High resolution Ge(Li) detectors have been used for all meas- urements. The cross section of the reaction ('44)Ca(p,n)('44)Sc has been measured from threshold up to a bombarding energy of 5.05 MeV by observation of the 1157 keV (gamma)-ray associated with the residual 3.93 h ('44)Sc activity, and the cross section of ('45)Sc(p,n)('45)Ti has been measured from threshold to a bombarding energy of 4.00 MeV both by observation of the annihilation radiation associated with the residual 3.09 h ('45)Ti activity and by measurement of the total neutron yield with a wide angle BF(,3) tube and paraffin detector. The cross section for the ('42)Ca((alpha),p(,0,1))('45)Sc reaction has been measured over the range 4.78 - 5.92 MeV by observing the emitted protons with a surface barrier detector. Experimental procedures for these measurements are detailed in the thesis, and in particular the efficient preparation of calcium targets with very low levels of ('19)F contamination is discussed. Data from all reactions are compared with the predictions of the statistical model code HAUSER*4, which employs global optical model parameters in the calculation of transmission coefficients and includes width fluctuation corrections. Satisfactory agreement is achieved, being better than a factor of 2 for all reactions

  7. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  8. Gamma Anna’: a classroom demonstration for teaching the concepts of gamma imaging

    NASA Astrophysics Data System (ADS)

    Wolff, Nicola; Griffiths, Jennifer; Yerworth, Rebecca

    2017-01-01

    Gamma imaging is at the interface of medicine and physics and thus its teaching is important in both fields. Pedagogic literature highlights the benefits of interactive demonstrations in teaching: an increase in enjoyment and interest, as well as improvement in academic achievement. However gamma imaging uses radioactive sources, which are potentially dangerous and thus their use is tightly controlled. We have developed a demonstration which uses a localised exothermic reaction within a rag doll as an analogue of radioactivity. This can be safely used in classrooms to demonstrate the principles of gamma imaging. The tool is easy to make, cheap, robust and portable. The supplementary material in this paper gives teacher notes and a description of how to make the rag doll demonstrator. We have tested the tool using six participants, acting as ‘teachers’, who carried out the demonstration and described the doll as easy to use, and the ‘tumour’ clearly identifiable. The teaching tool was separately demonstrated to a group of 12 GCSE physics students and a group of 12 medical students. Feedback showed increased student engagement, enjoyment and understanding of gamma imaging. Previous research has shown that these benefits have an impact on learning and academic outcomes.

  9. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  10. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  11. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  12. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-06-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  13. Active interrogation using low-energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula

    2005-09-01

    High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.

  14. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  15. Interferon-gamma promotes the survival and Fc epsilon RI-mediated histamine release in cultured human mast cells.

    PubMed Central

    Yanagida, M; Fukamachi, H; Takei, M; Hagiwara, T; Uzumaki, H; Tokiwa, T; Saito, H; Iikura, Y; Nakahata, T

    1996-01-01

    We examined the effects of interferon-gamma (IFN-gamma) on 100% pure human mast cells generated in suspension cultures of umbilical cord blood mononuclear cells in the presence of stem cell factor (SCF) and interleukin-6 (IL-6). When mast cells were suspended in serum-free medium without any cytokine after the withdrawal of SCF and IL-6, they died over a period of 5 days because of apoptosis. IFN-gamma in the cultures suppressed apoptosis and prolonged their survival in a dose-dependent manner. This survival-promoting effect of IFN-gamma was blocked by neutralizing antibodies to IFN-gamma or to IFN-gamma receptor (IFN-gamma R). When mast cells were incubated with IFN-gamma in serum-free medium for more than 4 hr during sensitization, immunoglobulin E (IgE)/anti-IgE antibody-induced histamine release was effectively enhanced. Polymerase chain reaction (PCR) amplification of the alpha-chain of IFN-gamma R (IFN-gamma R alpha) yielded products of the correct size predicted from the sequence of the receptor. In addition, flow cytometry using anti-IFN-gamma R monoclonal antibodies (mAbs) indicated that these mast cells bear IFN-gamma R on their surface. These findings suggested that IFN-gamma activates human mast cells via specific receptors in certain aspects of inflammatory reactions. Images Figure 2 Figure 4 PMID:9014819

  16. Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, Anton

    Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission productsmore » 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the first measurement of RIF neutrons in any laboratory fusion system, and the magnitude

  17. Structure determination of 3-O-caffeoyl-epi-gamma-quinide, an orphan bitter lactone in roasted coffee.

    PubMed

    Frank, Oliver; Blumberg, Simone; Krümpel, Gudrun; Hofmann, Thomas

    2008-10-22

    Recent investigations on the bitterness of coffee as well as 5- O-caffeoyl quinic acid roasting mixtures indicated the existence of another, yet unknown, bitter lactone besides the previously identified bitter compounds 5- O-caffeoyl- muco-gamma-quinide, 3- O-caffeoyl-gamma-quinide, 4- O-caffeoyl- muco-gamma-quinide, 5- O-caffeoyl- epi-delta-quinide, and 4- O-caffeoyl-gamma-quinide. In the present study, this orphan bitter lactone was isolated from the reaction products generated by dry heating of 5- O-caffeoylquinic acid model, and its structure was determined as the previously unreported 3- O-caffeoyl- epi-gamma-quinide by means of liquid chromatography-mass spectrometry (LC-MS) and one-/two-dimensional NMR experiments. The occurrence of this bitter lactone, exhibiting a low bitter recognition threshold of 58 micromol/L, in coffee beverages could be confirmed by LC-MS/MS (negative electrospray ionization) operating in the multiple reaction monitoring mode.

  18. The Feasibility of Studying 44Ti(α, p)47V Reaction at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Al-Abdullah, Tariq; Bemmerer, D.; Elekes, Z.; Schumann, D.

    2018-01-01

    The gamma-ray lines from the decay of 44Ti have been observed by space-based gamma-ray telescopes from two supernova remnants. It is believed that the 44Ti(α, p)47V reaction dominates the destruction of 44Ti. This work presents a possible technique to determine its reaction rate in forward kinematics at astrophysically relevant energies. Several online and offline measurements in parallel with Monte Carlo simulations were performed to illustrate the feasibility of performing this reaction. The results will be discussed.

  19. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  20. Prompt-gamma monitoring in hadrontherapy: A review

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.

    2018-01-01

    Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.

  1. Nuclear Structure of the Closed Subshell Nucleus 90Zr Studied with the (n,n'(gamma)) Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, P E; Younes, Y; Becker, J A

    States in {sup 90}Zr have been observed with the (n,n{prime}{gamma}) reaction using both spallation and monoenergetic accelerator-produced neutrons. A scheme comprised of 81 levels and 157 transitions was constructed concentrating on levels below 5.6 MeV in excitation energy. Spins have been determined by considering data from all experimental studies performed for {sup 90}Zr. Lifetimes have been deduced using the Doppler-shift attenuation method for many of the states and transition rates have been obtained. A spherical shell-model interpretation in terms of particle-hole excitations assuming a {sup 88}Sr closed core is given. In some cases, enhancements in B(M1) and B(E2) values aremore » observed that cannot be explained by assuming simple particle-hole excitations. Shell-model calculations using an extended f pg-shell model space reproduce the spectrum of excited states very well, and the gross features of the B(M1) and B(E2) transition rates. Transition rates for individual levels show discrepancies between calculations and experimental values.« less

  2. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2016-12-15

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To

  3. GammadeltaT cells positively regulate contact sensitivity (CS) reaction via modulation of INF-gamma, IL-12 and TNF-alpha production.

    PubMed

    Strzepa, Anna; Majewska-Szczepanik, Monika; Szczepanik, Marian

    2013-01-01

    The gammadeltaT cells were identified as positive as well as negative regulators of immune responses. They take part in pathogen clearance, modulation of innate and adaptive immunity as well as in healing and tissue maintenance. The course of many pathological conditions such as collagen induced arthritis (CIA), experimental autoimmune encephalomyelitis (EAE) and airway hyperresponsiveness is positively regulated by gammadeltaT cells. It was shown previously that contact sensitivity (CS), an example of antigen-specific cell-mediated immune response, is also positively regulated by gammadeltaT cells. The current work confirmed the regulatory function of gammadeltaT cells in CS response as their depletion with anti-TCRdelta monoclonal antibody and complement significantly decreased adoptive transfer of the CS reaction. In vitro study showed that removal of gammadeltaT cells with magnetic beads significantly decreased the production of the proinflammatory cytokines IFN-gamma, IL-12 and TNF-alpha. Reconstitution of gammadeltaT-depleted cells with gammadeltaT-enriched cells restored cytokine production, proving the reversibility of the investigated process. In summary, gammadeltaT cells positively regulate the CS reaction via modulation of proinflammatory cytokine production.

  4. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Human antirabies gamma globulin*

    PubMed Central

    Hosty, Thomas S.; Kissling, R. E.; Schaeffer, M.; Wallace, Gordon A.; Dibble, E. H.

    1959-01-01

    To obviate the foreign protein reactions experienced with the use of hyperimmune serum in rabies-exposed individuals, an attempt was made to produce a rabies antiserum of human origin. Five doses of an inactivated rabies virus duck-egg vaccine were administered to 34 volunteers at 4-day intervals (i.e., on days 0, 4, 8, 12 and 16). An additional dose of chick-embryo attenuated virus vaccine—Flury HEP (high egg passage)—was given on the 46th day, followed by a final booster dose of duck-egg vaccine on the 288th day. Twenty-four days later, i.e., on the 312th day after the first dose, the participants were bled and the serum pooled and converted to gamma globulin. These volunteers, having no initial antibody, responded with variable titres, the pooled serum having a titre of 1: 100 against 50 LD50 of rabies virus in neutralization tests and the gamma globulin prepared from this pool a titre of 1: 300. In five individuals inoculated with the antirabies gamma globulin, blood samples tested at intervals for residual antibody showed significant titres through 21 days. While the passive antibody levels resulting from the administration of a more potent immune horse serum were much higher than those achieved by the weaker human antirabies gamma globulin used, the decrease in titre was more gradual with the human globulin. With more booster inoculations in a larger group of human volunteers, it is believed that a human rabies immune gamma globulin could be produced which would be equal in effect to immune horse serum. The advantages of a human source of antibody in rabies prophylaxis are discussed. PMID:14403320

  6. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF

    PubMed Central

    Lemieux, Daniel A.; Baudet, Camille; Grim, Gary P.; Barber, H. Bradford; Miller, Brian W.; Fasje, David; Furenlid, Lars R.

    2013-01-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world’s leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, 12C(n,n’γ)12C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10−3 of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented. PMID:23420688

  7. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF

    NASA Astrophysics Data System (ADS)

    Lemieux, Daniel A.; Baudet, Camille; Grim, Gary P.; Barber, H. Bradford; Miller, Brian W.; Fasje, David; Furenlid, Lars R.

    2011-09-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, 12C(n,n'γ)12C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10-3 of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  8. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF.

    PubMed

    Lemieux, Daniel A; Baudet, Camille; Grim, Gary P; Barber, H Bradford; Miller, Brian W; Fasje, David; Furenlid, Lars R

    2011-09-23

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, (12)C(n,n'γ)(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  9. Role of high-spin hyperon resonances in the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, J. Ka Shing; Oh, Yongseok; Excited Baryon Analysis Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

    The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -} are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the {Sigma}(2030) hyperon having spin-7/2 and positive parity has amore » key role to bring the model predictions into a fair agreement with the measured data for the K{sup +}{Xi}{sup -} invariant mass distribution.« less

  10. Astrophysical S factor for the radiative capture {sup 12}N(p,{gamma}){sup 13}O determined from the {sup 14}N({sup 12}N,{sup 13}O){sup 13}C proton transfer reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, A.; Al-Abdullah, T.; Fu, C.

    2009-02-15

    The cross section of the radiative proton capture reaction on the drip line nucleus {sup 12}N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the {sup 14}N({sup 12}N,{sup 13}O){sup 13}C proton transfer reaction at 12 MeV/nucleon to extract the ANC for {sup 13}O{yields}{sup 12}N+p and calculate from it the direct component of the astrophysical S factor of the {sup 12}N(p,{gamma}){sup 13}O reaction. The optical potentials used and the distorted-wave Born approximation analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out atmore » the same time as the transfer measurement. From the transfer, we determined the square of the ANC, C{sub p{sub 1/2}}{sup 2}({sup 13}O{sub g.s.})=2.53{+-}0.30 fm{sup -1}, and hence a value of 0.33(4) keV b was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of S{sub total}(0)=0.42(6) keV b. The {sup 12}N(p,{gamma}){sup 13}O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.« less

  11. Gamma abnormalities during perception of illusory figures in autism.

    PubMed

    Brown, Caroline; Gruber, Thomas; Boucher, Jill; Rippon, Gina; Brock, Jon

    2005-06-01

    This experiment was designed to test the hypothesis that perceptual abnormalities in autism might be associated with alteration of induced gamma activity patterns overlying visual cortical regions. EEG was recorded from six adolescents with autism and eight controls matched on chronological age, and verbal and nonverbal mental age, whilst identifying the presence or absence of an illusory Kanizsa shape. Although there were no reaction time or accuracy differences between the groups there were significant task-related differences in cortical activity. Control participants showed typical gamma-band activity over parietal regions at around 350 msec post onset of shape trials, similar to gamma patterns found in previous studies with non-impaired adults. In contrast, autistic participants showed overall increased activity, including an early 100 msec gamma peak and a late induced peak, 50 to 70 msec earlier than that shown by the control group. We interpret the abnormal gamma activity to reflect decreased "signal to noise" due to decreased inhibitory processing. In this experiment we did not establish a link between altered perception and abnormal gamma, as the autistic participants' behaviour did not differ from the controls. Future work should be designed to replicate this phenomenon and establish the perceptual consequences of altered gamma activity.

  12. Re-evaluating reaction rates relevant to nova nucleosynthesis from a nuclear structure perspective

    NASA Astrophysics Data System (ADS)

    Jenkins, D. G.; Lister, C. J.; Janssens, R. V. F.; Khoo, T. L.; Moore, E. F.; Rehm, K. E.; Seweryniak, D.; Wuosmaa, A. H.; Davinson, T.; Woods, P. J.; Jokinen, A.; Penttila, H.; Martınez-Pinedo, G.; Jose, J.

    2006-03-01

    Conventionally, reaction rates relevant to nova nucleosynthesis are determined by performing the relevant proton capture reactions directly for stable species, or as has become possible more recently in inverse kinematics using short-lived accelerated radioactive beams with recoil separators. A secondary approach is to compile information on the properties of levels in the Gamow window using transfer reactions. We present a complementary technique where the states of interest are populated in a heavy-ion fusion reaction and their gamma decay studied with a state-of-the-art array of high-purity germanium detectors. The advantages of this approach, including the ability to determine resonance energies with high precision and the possibility of determining spins and parities from gamma-ray angular distributions are discussed. Two specific examples related to the 22Na(p,γ) and 30P(p,γ) reactions are presented.

  13. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  14. Analogues of methotrexate and aminopterin with gamma-methylene and gamma-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity.

    PubMed

    Rosowsky, A; Bader, H; Freisheim, J H

    1991-01-01

    Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.

  15. Measurement of Reactions on 30P for Nova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Guidry, M. W.; Hix, W. R.; Smith, M. S.

    2003-05-01

    Replace these paragraphs with your abstract. We encourage you to include a sentence acknowledging your funding agency. In a recent study the 30P(p,gamma)31S rate played a crucial role in the synthesis of heavier nuclear species, from Si to Ca, in nova outbursts on ONe White Dwarfs [1]. The adopted rate of this reaction, based on a Hauser-Feshbach calculation [2], has a large uncertainty and could be as much as a factor of 100 too high or too low [3]. In their study, Jose et al.[1] varied the 30P(p,gamma)31S reaction rate within this uncertainty and found that, when rate is reduced by a factor of 100, the synthesis of elements above Si is lowered by a factor 10 with respect to the values found with the nominal rate. This has important consequences for nova nucleosynthesis, as overproduction of isotopes in the Si to Ca mass region has been observed in the ejecta from some nova explosions (e.g.,[4,5]). While generally valid at higher temperatures, Hauser-Feshbach calculations of the rates at nova temperatures can have large uncertainties. At these temperatures, the rate is more likely dominated by a few individual nuclear resonances. At present there are about 10 31S resonances known above the 30P + p threshold that may contribute to the 30P(p,gamma)31S reaction rate at nova temperatures. The excitation energies of these levels are known but spins and parities (for all but two) are not. We plan to measure the 30P(p,p)30P and 30P(p,gamma)31S reactions at HRIBF to better determine this reaction rate. A detailed description of the experiments will be given. We are also conducting a new nova nucleosynthesis simulation over multiple spatial zones of the exploding envelope to investigate the influence of the 30P(p,gamma)31S reaction rate on nova nucleosynthesis. The results of these calculations will be discussed. 1. Jose , J., Coc, A., Hernanz, M., Astrophys. J., 560, 897(2001). 2. Thielemann, F.-K et al., 1987, Advances in Nuclear Astrophysics, ed. E. Vangioni-Flam ( Gif

  16. Gold-catalyzed and N-iodosuccinimide-mediated cyclization of gamma-substituted allenamides.

    PubMed

    Hyland, Christopher J T; Hegedus, Louis S

    2006-10-27

    Chiral gamma-substituted allenamides have been shown to undergo efficient gold-catalyzed and N-iodosuccinimide-mediated cyclization to highly functionalized dihydrofurans. These reactions proceed rapidly and without loss of stereochemistry.

  17. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navin, A.; Tripathi, V.; Chatterjee, A.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He atmore » 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.« less

  18. Antioxidant effects of gamma-oryzanol on human prostate cancer cells.

    PubMed

    Klongpityapong, Papavadee; Supabphol, Roongtawan; Supabphol, Athikom

    2013-01-01

    To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow- color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

  19. ICF Gamma-Ray measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y.; Hoffman, N. M.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Sayre, D. B.; Liebman, J. A.; Cerjan, C. J.; Carpenter, A. C.; Grafil, E. M.; Khater, H. Y.; Horsfield, C. J.; Rubery, M.

    2013-10-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostic is to provide bang time and burn width information in order to constrain implosion simulation parameters such as shell velocity and confinement time. This is accomplished by measuring DT fusion gamma-rays with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. Burn-weighted CH ablator areal density is also inferred based on measurement of the 12C(n,n') gammas emitted at 4.44 MeV from DT neutrons inelastically scattering off carbon nuclei as they pass through the plastic ablator. This requires that the four independent GRH gas cells be set to differing Cherenkov thresholds (e.g., 2.9, 4.5, 8 & 10 MeV) in order to be able to unfold the primary spectral components predicted to be in the gamma ray energy spectrum (i.e., DT γ 27Al & 28Si (n,n') γ from the thermo-mechanical package (TMP); and 12C(n,n' γ from the ablator). The GRH response to 12C(n,n') γ is calibrated in-situ by placing a known areal density of carbon in the form of a puck placed ~6 cm from a DT exploding pusher implosion. Comparisons between inferred gamma fluences and simulations based on the nuclear cross sections databases will be presented. Supported by US DOE NNSA.

  20. Gamma-ray pulsars: Radiation processes in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1996-01-01

    We describe an emission model for gamma ray pulsars based on curvature radiation-reaction limited charges in the outer magnetosphere. We show how pair production on thermal surface flux can limit the acceleration zones. Estimates for the efficiency of GeV photon production eta gamma and the gamma-ray beaming fraction are derived, including their dependence on pulsar parameters. In general eta gamma increases with pulsar age, but is decreased for low magnetic fields and for small magnetic inclinations. We argue that this produces GeV pulse profiles, curvature spectra and detection statistics consistent with the observations. We also describe the optical through X-ray pulsar synchrotron spectrum and the spectral variations with pulsar phase. A test computation for Vela-like parameters reproduces phase-resolved GeV spectra consistent with those observed by EGRET. Finally we comment on very high energy pulsed emission and particle production and note extensions needed to allow a more complete pulsar model.

  1. Anticonvulsant properties of alpha, gamma, and alpha, gamma-substituted gamma-butyrolactones.

    PubMed

    Klunk, W E; Covey, D F; Ferrendelli, J A

    1982-09-01

    Derivatives of gamma-butyrolactone (GBL) substituted on the alpha- and/or gamma-positions were synthesized and tested for their effects on behavior in mice, on the electroencephalographs and blood pressure of paralyzed-ventilated guinea pigs, and on electrical activity of incubated hippocampal slices. Several compounds, including alpha-ethyl-alpha-methyl GBL (alpha-EMGBL), alpha, alpha-dimethyl GBL, alpha, gamma-diethyl-alpha, gamma-dimethyl GBL, and gamma-ethyl-gamma-methyl GBL, prevented seizures induced by pentylenetetrazol, beta-ethyl-beta-methyl-gamma-butyrolactone (beta-EMGBL), picrotoxin, or all three compounds in mice and guinea pigs but had no effect on seizures induced by maximal electroshock or bicuculline. Neither gamma-hydroxybutyrate (GHB) nor alpha-isopropylidine GBL had any anticonvulsant activity. The anticonvulsant alpha-substituted compounds had a potent hypotensive effect and antagonized the hypertensive effect of beta-EMGBL, alpha-EMGBL was tested in incubated hippocampal slices and was found to depress basal activity and antagonize excitation induced by beta-EMGBL. These results demonstrate that alpha-alkyl-substituted GBL and, to a lesser extent, gamma-substituted derivatives are anticonvulsant agents and that their effects are strikingly different from those of GHB or beta-alkyl-substituted GBLs, which are epileptogenic. Possibly beta- and alpha-substituted GBLs act at the same site as agonists and antagonists, respectively.

  2. Study of the invariant structure function of the reaction. pi. /sup -/p. --> gamma. /sup +/xxx at 5 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaglobeli, N.S.; Budagov, Y.A.; Valkar, S.

    1977-07-01

    The invariant differential cross section f (x,p/sub perpendicular/) of the reaction ..pi../sup -/p..--> gamma../sup +/xxx at 5 GeV/c was measured in a broad range of x and p/sub perpendicular/. An approximating formula is found for f (x,p/sub perpendicular/). It is shown that the function f (x,p/sub perpendicular/) is not factorizable in the variables x and p/sub perpendicular/. In some regions of phase space scale-invariant (scaling) behavior of the differential cross section is observed. Analysis of the asymmetry of the longitudinal momentum spectrum of the photons indicates that the production mechanisms of neutral and charged pions are similar in the centralmore » region. The results of the analysis are in qualitative agreement with the predictions of the quark model of hadrons.« less

  3. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO,more » DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.« less

  4. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-05-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  5. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  6. Effect of gamma-oryzanol on cytochrome P450 activities in human liver microsomes.

    PubMed

    Umehara, Ken; Shimokawa, Yoshihiko; Miyamoto, Gohachiro

    2004-07-01

    The effects of gamma-oryzanol, a drug mainly used for the treatment of hyperlipidaemia, on several cytochrome P450 (CYP) specific reactions in human liver microsomes were investigated to predict drug interactions with gamma-oryzanol in vivo from in vitro data. The following eight CYP catalytic reactions were used in this study: CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. gamma-Oryzanol had little inhibitory effects on CYP activities, indicating that this compound would not be expected to cause clinically significant interactions with other CYP-metabolized drugs at expected therapeutic concentrations.

  7. γ spectroscopy of states in Cl 32 relevant for the S 31 ( p , γ ) Cl 32 reaction rate

    DOE PAGES

    Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.; ...

    2017-09-01

    Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less

  8. Test of the statistical model in {sup 96}Mo with the BaF{sub 2}{gamma} calorimeter DANCE array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheets, S. A.; Mitchell, G. E.; Agvaanluvsan, U.

    2009-02-15

    The {gamma}-ray cascades following the {sup 95}Mo(n,{gamma}){sup 96}Mo reaction were studied with the {gamma} calorimeter DANCE (Detector for Advanced Neutron Capture Experiments) consisting of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The {gamma}-ray energy spectra for different multiplicities were measured for s- and p-wave resonances below 2 keV. The shapes of these spectra were found to be in very good agreement with simulations using the DICEBOX statistical model code. The relevant model parameters used for the level density and photon strength functions were identical with those that provided the best fit of the data frommore » a recent measurement of the thermal {sup 95}Mo(n,{gamma}){sup 96}Mo reaction with the two-step-cascade method. The reported results strongly suggest that the extreme statistical model works very well in the mass region near A=100.« less

  9. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  10. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  11. Predominant expansion of V gamma 9/V delta 2 T cells in a tularemia patient.

    PubMed Central

    Sumida, T; Maeda, T; Takahashi, H; Yoshida, S; Yonaha, F; Sakamoto, A; Tomioka, H; Koike, T; Yoshida, S

    1992-01-01

    We describe a 58-year-old man with tularemia and expanding gamma delta T cells in his peripheral blood lymphocytes (PBL) (32.7% of total PBL). In the present work, we analyzed the T-cell receptor V gamma/V delta repertoire of these cells by making use of the polymerase chain reaction and flow cytometry and found that they were mostly CD4- CD8- CD3+ V gamma 9/V delta 2+. The sequence analysis of 16 cDNA clones encoding the V gamma 9-J region revealed that the V gamma 9-Jp combination was strikingly overrepresented but that the junctional (N) region was heterogeneous. This suggested that the gamma delta T cells in PBL from a patient with tularemia were polyclonally expanded. Images PMID:1534075

  12. Large gamma-ray detector arrays and electromagnetic separators

    NASA Astrophysics Data System (ADS)

    Lee, I.-Yang

    2013-12-01

    The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.

  13. Synthesis and $gamma$-irradiation of verbenone and verbenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesza, J.; Tsankova, E.; Gora, J.

    1972-01-01

    Verbenone and verbenol which can be obtained by catalytic oxidation of $alpha$-pinene, are very useful for the perfumery industry. They can be used directly in perfume compositions or for the production of a number of other perfumery synthetics. The authors have attempted to transform verbenol and verbenone into other compounds by gamma irradiation. It was found, that verbenone exhibits resistance to the gamma irradiation and even at the doses of 500 Mrad it was only with small yield transformed in chrysantenone. The gamma irradiation of cis and trans verbenol by the doses of 220 Mrad has showed no change inmore » the case of trans isomer, and on the other hand the cis isomer was transformed mainly into trans verbenol and verbenone. The results of the investigation of the conditions having influence on the yield and the composition of the reaction products in the process of the catalytic oxidizing of $alpha$- pinene are given. (auth)« less

  14. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous

  15. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  16. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  17. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  18. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    NASA Astrophysics Data System (ADS)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  19. Effect of gamma irradiation on high temperature hardness of low-density polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh

    2015-11-01

    Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.

  20. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  1. Cycloartenyl ferulate, a component of rice bran oil-derived gamma-oryzanol, attenuates mast cell degranulation.

    PubMed

    Oka, T; Fujimoto, M; Nagasaka, R; Ushio, H; Hori, M; Ozaki, H

    2010-02-01

    IgE-targeting therapy could provide significant progress in the treatment of allergic inflammation. In this study, we examined the effect of cycloartenyl ferulate (cycloartenol ferulic acid ester; CAF), a natural product from rice bran oil-derived gamma-oryzanol, on allergic reaction. When CAF and gamma-oryzanol were injected intradermally with anti-DNP IgE into the dorsal skin of rats, the passive cutaneous anaphylaxis reaction induced by DNP-HSA was attenuated. CAF and gamma-oryzanol also inhibited the degranulation of DNP-IgE sensitized RBL-2H3 mast cells stimulated with anti-DNP-HSA. IgE conjugated with CAF could not be detected by anti-IgE antibody in the ELISA analysis. Although incubation of IgE with CAF did not decrease the amount of IgE, it was possible to precipitate IgE by centrifugation. These results demonstrate that CAF captures IgE, prevents it from binding to FcepsilonRI, and attenuates mast cell degranulation. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Repeated irradiations with gamma-rays at a Dose of 0.5 Gy may exacerbate asthma.

    PubMed

    Fang, Su-ping; Tago, Fumitoshi; Tanaka, Takashi; Simura, Noriko; Muto, Yasuko; Goto, Resuke; Kojima, Shuji

    2005-06-01

    We previously showed that 0.5 Gy whole-body gamma-ray irradiation with a single or small number of repeated exposures inhibits tumor growth in mice, via elevation of the IFN-gamma/IL-4 ratio concomitantly with a decrease in the percentage of B cells. Here we examined whether repeated 0.5 Gy gamma-rays irradiation can improve asthma in an OVA-induced asthmatic mouse model. We found that repeated irradiation (10 times) with 0.5 Gy of gamma-rays significantly increased total IgE in comparison with the disease-control group. The levels of IL-4 and IL-5 were also significantly higher in the gamma-ray-irradiated group, while that of IFN-gamma was significantly lower, resulting in a further decrease of the IFN-gamma/IL-4 ratio from the normal value. These results indicate that the repeated irradiation with gamma-rays may exacerbate asthma, and may have opposite effects on different immune reactions unlike the irradiation with a single or small number of repeated exposures.

  3. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  4. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into

  5. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  6. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  7. Initial results from a multiple monoenergetic gamma radiography system for nuclear security

    NASA Astrophysics Data System (ADS)

    O'Day, Buckley E.; Hartwig, Zachary S.; Lanza, Richard C.; Danagoulian, Areg

    2016-10-01

    The detection of assembled nuclear devices and concealed special nuclear materials (SNM) such as plutonium or uranium in commercial cargo traffic is a major challenge in mitigating the threat of nuclear terrorism. Currently available radiographic and active interrogation systems use ∼1-10 MeV bremsstrahlung photon beams. Although simple to build and operate, bremsstrahlung-based systems deliver high radiation doses to the cargo and to potential stowaways. To eliminate problematic issues of high dose, we are developing a novel technique known as multiple monoenergetic gamma radiography (MMGR). MMGR uses ion-induced nuclear reactions to produce two monoenergetic gammas for dual-energy radiography. This allows us to image the areal density and effective atomic number (Zeff) of scanned cargo. We present initial results from the proof-of-concept experiment, which was conducted at the MIT Bates Research and Engineering Center. The purpose of the experiment was to assess the capabilities of MMGR to measure areal density and Zeff of container cargo mockups. The experiment used a 3.0 MeV radiofrequency quadrupole accelerator to create sources of 4.44 MeV and 15.11 MeV gammas from the 11B(d,nγ)12C reaction in a thick natural boron target; the gammas are detected by an array of NaI(Tl) detectors after transmission through cargo mockups . The measured fluxes of transmitted 4.44 MeV and 15.11 MeV gammas were used to assess the areal density and Zeff. Initial results show that MMGR is capable of discriminating the presence of high-Z materials concealed in up to 30 cm of iron shielding from low- and mid-Z materials present in the cargo mockup.

  8. Photodisintegration reactions for nuclear astrophysics studies at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Balabanski, D.; Filipescu, D. M.; Tesileanu, O.

    2018-01-01

    Extreme Light Infrastructure - Nuclear Physics facility will come online in Bucharest-Magurele, Romania, in 2018 and will deliver high intensity laser and brilliant gamma beams. We present the physics cases and instruments proposed at ELI-NP to measure capture reactions by means of the inverse photodisintegration reaction. We propose to study the 16O(γ, α)12C reaction using a Time Projection Chamber detector with electronic readout. Several other reactions, such as 24Mg(γ, α)20Ne and reactions on heavy nuclei relevant in the p-process, are central to stellar evolution and will be investigated with a proposed Silicon Strip Detector array and a 4π neutron detector. The status of the experimental facilities and first-day experiments will be presented in detail.

  9. Isomer ratios for products of photonuclear reactions on 121Sb

    NASA Astrophysics Data System (ADS)

    Bezshyyko, Oleg; Dovbnya, Anatoliy; Golinka-Bezshyyko, Larisa; Kadenko, Igor; Vodin, Oleksandr; Olejnik, Stanislav; Tuller, Gleb; Kushnir, Volodymyr; Mitrochenko, Viktor

    2017-09-01

    Over the past several years various preequilibrium model approaches for nuclear reactions were developed. Diversified detailed experimental data in the medium excitation energy region for nucleus are needed for reasonable selection among these theoretical models. Lack of experimental data in this energy region does essentially limit the possibilities for analysis and comparison of different preequilibrium theoretical models. For photonuclear reactions this energy region extends between bremsstrahlung energies nearly 30-100 MeV. Experimental measurements and estimations of isomer ratios for products of photonuclear reactions with multiple particle escape on antimony have been performed using bremsstrahlung with end-point energies 38, 43 and 53 MeV. Method of induced activity measurement was applied. For acquisition of gamma spectra we used HPGe spectrometer with 20% efficiency and energy resolution 1.9 keV for 1332 keV gamma line of 60Co. Linear accelerator of electrons LU-40 was a source of bremsstrahlung. Energy resolution of electron beam was about 1% and mean current was within (3.8-5.3) μA.

  10. The {sup 17}F(p,{gamma}){sup 18}Ne3{sup +} resonance state studied with the {sup 16}O({sup 3}He,n){sup 18}Ne reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parpottas, Y.; Grimes, S.M.; Brune, C.R.

    2005-08-01

    The astrophysically important 3{sup +} resonance of the {sup 17}F(p,{gamma}){sup 18}Ne reaction has been studied with the {sup 16}O({sup 3}He,n){sup 18}Ne reaction. High-resolution measurements were carried out for three different kinematic configurations. We find an excitation energy of 4527(4) keV and a proton width of 17(4) keV for the 3{sup +} state. Measured differential cross sections were compared with Hauser-Feshbach predictions to assign the spin of the 4527-keV state and confirm the spin assignments of the two known levels in this region. Our results differ from the earlier {sup 16}O({sup 3}He,n){sup 18}Ne findings of Garcia et al. [Phys. Rev. Cmore » 43, 2012 (1991)], but they agree well with the {sup 17}F(p,p){sup 17}F measurements of Bardayan et al. [Phys. Rev. C 62, 055804 (2002)].« less

  11. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  12. An Overview of the XGAM Code and Related Software for Gamma-ray Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, W.

    2014-11-13

    The XGAM spectrum-fitting code and associated software were developed specifically to analyze the complex gamma-ray spectra that can result from neutron-induced reactions. The XGAM code is designed to fit a spectrum over the entire available gamma-ray energy range as a single entity, in contrast to the more traditional piecewise approaches. This global-fit philosophy enforces background continuity as well as consistency between local and global behavior throughout the spectrum, and in a natural way. This report presents XGAM and the suite of programs built around it with an emphasis on how they fit into an overall analysis methodology for complex gamma-raymore » data. An application to the analysis of time-dependent delayed gamma-ray yields from 235U fission is shown in order to showcase the codes and how they interact.« less

  13. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  14. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction

    NASA Astrophysics Data System (ADS)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  15. Next generation gamma-ray Cherenkov detectors for the National Ignition Facility.

    PubMed

    Herrmann, H W; Kim, Y H; McEvoy, A M; Zylstra, A B; Young, C S; Lopez, F E; Griego, J R; Fatherley, V E; Oertel, J A; Stoeffl, W; Khater, H; Hernandez, J E; Carpenter, A; Rubery, M S; Horsfield, C J; Gales, S; Leatherland, A; Hilsabeck, T; Kilkenny, J D; Malone, R M; Hares, J D; Milnes, J; Shmayda, W T; Stoeckl, C; Batha, S H

    2016-11-01

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.

  16. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  17. The Excitation of High Spin States with Quasielastic and Deep Inelastic Reactions.

    NASA Astrophysics Data System (ADS)

    Knott, Clinton Neal

    1988-12-01

    The feasibility of populating high spin states using reactions induced by a 220 MeV ^{22 }Ne beam on a ^{170} Er target was studied. The experiment was carried out using a multidetector array for high resolution gamma-ray spectroscopy, a 14 element sum multiplicity spectrometer and six DeltaE-E particle telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  18. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  19. (E)-5-(Tributylstannylmethylidene)-5H-furan-2-ones: versatile synthons for the stereospecific elaboration of gamma-alkylidenebutenolide skeletons.

    PubMed

    Rousset, S; Abarbri, M; Thibonnet, J; Duchêne, A; Parrain, J L

    1999-09-09

    [reaction: see text] Stereoselective construction of (E)-gamma-tributylstannylmethylidene butenolides 1 was achieved through the palladium-catalyzed tandem cross-coupling/cyclization reactions of tributylstannyl 3-iodopropenoate derivatives with tributyltinacetylene. Iododestannylation of 1 occurs with inversion of the configuration of the exocyclic double bond while the observed selectivity in the Stille reaction was found to be dependent on the nature of the aryl halide.

  20. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  1. Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard

    2015-02-01

    The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-­to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-­5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less

  2. Constraining the S factor of {sup 15}N(p,{gamma}){sup 16}O at astrophysical energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, P. J.; Goerres, J.; Beard, M.

    2010-11-15

    The {sup 15}N(p,{gamma}){sup 16}O reaction represents a breakout reaction linking the first and second cycles of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances, at E{sub p}=338 and 1028 keV, and a direct capture contribution to the ground state of {sup 16}O. Interference effects between these contributions both in the low-energy region (E{sub p}<338 keV) and between the two resonances (338gamma}){sup 16}O reaction has been remeasured coveringmore » the energy range from E{sub p}=1800 keV down to 130 keV. The results have been analyzed in the framework of a multilevel R-matrix theory and an S(0) value of 39.6 keV b has been found.« less

  3. Gamma-Ray Signatures Improvement of the EURITRACK Tagged Neutron Inspection System Database

    NASA Astrophysics Data System (ADS)

    Kanawati, Wassila El; Carasco, Cedric; Perot, Bertrand; Mariani, Alain; Raoux, Anne-Cecile; Valkovic, Vladivoj; Sudac, Davorin; Obhodas, Jasmina; Baricevic, Martina

    2010-10-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Reactions induced by fast neutrons inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle, the detection of which allows the neutron direction to be determined. The neutron path length is obtained from a neutron time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined, while the chemical composition of the target material is correlated with their energy spectrum. Gamma-ray spectra have been collected with the inspection portal equipped with large volume NaI (Tl) detectors, in order to build a database of signatures for various elements (C, O, N, Fe, Pb, Al, Na, Si, Cl, Cu, Zn) with a low energy threshold of 0.6 MeV. The spectra are compared with previous ones, which were acquired with a 1.35 MeV threshold. The new library is currently being tested to unfold the energy spectra of transported goods into elemental contributions. Results are compared with data processed with the old 1.35 MeV threshold database, thus illustrating the improvement for material identification.

  4. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  5. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  6. Structure of Sn 107 studied through single-neutron knockout reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerizza, G.; Ayres, A.; Jones, K. L.

    2016-02-04

    The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2 +, and first-excited, 7/2 +, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.

  7. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    PubMed

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  8. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  9. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  10. Next Generation Gamma-Ray Cherenkov Detectors for the National Ignition Facility

    DOE PAGES

    Herrmann, Hans W.; Kim, Yong Ho; McEvoy, Aaron Matthew; ...

    2016-10-19

    The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3more » will inform the design of a heavily-shielded “Super” GCD to be located as close as 20 cm from TCC. In conclusion, it will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ~100 ps state-of-the-art photomultiplier tubes (PMT) to ~10 ps Pulse Dilation PMT technology currently under development.« less

  11. Dual specific oral tolerance induction using interferon gamma for IgE-mediated anaphylactic food allergy and the dissociation of local skin allergy and systemic oral allergy: tolerance or desensitization?

    PubMed

    Noh, G; Jang, E H

    2014-01-01

    Specific oral tolerance induction (SOTI) for IgE-mediated food allergy (IFA) can be successfully achieved using interfero gamma (classic SOTI). In this study, a tolerable dose was introduced during tolerance induction with interferon gamma (dual SOTI), and its effectiveness was evaluated. The study population comprised 25 IFA patients. Blood samples were taken for analysis, including complete blood count with differential counts of eosinophils, serum total IgE levels, and specific IgE for allergenic foods. Skin prick tests were conducted with the allergens. Oral food challenges were performed to diagnose IFA. Ten patients received dual SOTI, 5 received classic SOTI, 5 received SOTI without interferon gamma (original SOTI), and 5 were not treated (controls). Patients treated with dual SOTI and classic SOTI using interferon gamma became tolerant to the allergenic food. The tolerable dose was introduced successfully in dual SOTI. It was difficult to proceed with the same dosing protocol used for classic SOTI in cases treated with original SOTI. Following dual SOTI, the systemic reaction to oral intake subsided, but the local skin reaction to contact with the allergenic food persisted. Dual SOTI is an improved protocol for SOTI using interferon gamma for IFA.The local skin reaction and systemic reaction to oral intake were dissociated following dual SOTI. In cases of food allergy, tolerance appears to result from desensitization to allergens.

  12. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.

    PubMed

    Byk, Gerardo; Kabha, Eihab

    2004-01-01

    In a previous preliminary study, we found that a cyclic five-member ring beta-keto ester (lactone) reacts with one molecule of urea and two of aldehyde to give a new family of spiro heterobicyclic aliphatic rings in good yields with no traces of the expected dihydropyrimidine (Biginelli) products. The reaction is driven by a regiospecific condensation of two molecules of aldehyde with urea and beta-keto-gamma-lactone to afford only products harboring substitutions exclusively in a syn configuration (Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. J. Comb. Chem. 2000, 2, 732-735). In the present work ((a) Presented in part at ISCT Combitech, October 15, 2002, Israel, and Eurocombi-2, Copenhagen 2003 (oral and poster presentation). (b) Also in American Peptide Society Symposium, Boston, 2003 (poster presentation). (c) Abstract in Biopolymers 2003, 71 (3), 354-355), we report a large and exciting extension of this new reaction utilizing parallel organic synthesis arrays, as demonstrated by the use of chiral beta-keto-gamma-lactams, derived from natural amino acids, instead of tetronic acid (beta-keto-gamma-lactone) and the potential of the spirobicyclic products for generating "libraries from libraries". Interestingly, we note an unusual and important anisotropy effect induced by perpendicular interactions between rigid pi systems and different groups placed at the alpha position of the obtained spirobicyclic system. Stereo/regioselectivity of the aldehyde condensation is driven by the nature of the substitutions on the starting beta-keto-gamma-lactam. Aromatic aldehydes can be used as starting reagents with good yields; however, when aliphatic aldehydes are used, the desired products are obtained in poor yields, as observed in the classical Biginelli reaction. The possible reasons for these poor yields are addressed and clarify, to some extent, the complexity of the Biginelli multicomponent reaction mechanism and, in particular, the mechanism of the present

  13. First results from gamma ray diagnostics in EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R. J.; Hu, L. Q.; Zhong, G. Q., E-mail: gqzhong@ipp.ac.cn

    2016-11-15

    Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions {sup 207}Pb(n, n′){sup 207m}Pb, H(n, γ) D, and D(p, γ){sup 3}He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based onmore » high sample frequency digitizers with digital pulse processing algorithms.« less

  14. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  15. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce J. Mincher; Stephen P. Mezyk; Gary S. Groenewold

    Abstract The group actinide/lanthanide complexing agent octylphenylcarbamoylmethyl phosphine oxide (CMPO) has been examined for its radiation stability by measuring the kinetics of its reactions with free radicals in both the aqueous and organic phases for the free and metal-complexed ligand, identifying its degradation products for both alpha and gamma irradiation, measuring the effects on solvent extraction performance, and measuring the G-values for its degradation under various conditions. This includes the G-values for CMPO in the absence of, and in contact with the acidic aqueous phase, where it is shown that the acidic aqueous phase provides radio-protection for this ligand. Itmore » was found that both solvent and metal complexation affect the kinetics of the reaction of the •NO3 radical, a product of HNO3 radiolysis, with CMPO. For example, CMPO complexed with lanthanides has a rate constant for this reaction an order of magnitude higher than for the free ligand, and the reaction for the free ligand in the organic phase is about three times faster than in the aqueous phase. In steady state radiolysis kinetics it was determined that HNO3, although not NO3- anion, provides radio-protection to CMPO, with the G-value for its degradation decreasing with increasing acidity, until it was almost completely suppressed by irradiation in contact with 5 M HNO3. The same degradation products were produced by irradiation with alpha and gamma-sources, except that the relative abundances of these products varied. For example, the product of C-C bond scission was produced only in low amounts for gamma-radiolysis, but it was an important product for samples irradiated with a He ion beam. These results are compared to the new data appearing in the literature on DGA radiolysis, since CMPO and the DGAs both contain the amide functional group.« less

  16. SYNTHESIS OF ALPHA-AMINO GAMMA-LACTONE VIA A NOVEL TANDEM THREE-COMPONENT REACTION OF ALKENES, GLYOXYLATES AND AMINES. (R822668)

    EPA Science Inventory

    Abstract

    small alpha, Greek-Amino gamma.gif" alt="small gamma, Greek" border=0>-lactones were generated by an InCl3...

  17. Resonance production in. gamma gamma. collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (qmore » anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)« less

  18. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  19. Enzymatic characteristics of I213T mutant presenilin-1/gamma-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs gamma-site cleavage of amyloid precursor protein C-terminal fragment beta.

    PubMed

    Shimojo, Masafumi; Sahara, Naruhiko; Mizoroki, Tatsuya; Funamoto, Satoru; Morishima-Kawashima, Maho; Kudo, Takashi; Takeda, Masatoshi; Ihara, Yasuo; Ichinose, Hiroshi; Takashima, Akihiko

    2008-06-13

    Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.

  20. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis.

    PubMed

    Ohkama-Ohtsu, Naoko; Oikawa, Akira; Zhao, Ping; Xiang, Chengbin; Saito, Kazuki; Oliver, David J

    2008-11-01

    The degradation pathway of glutathione (GSH) in plants is not well understood. In mammals, GSH is predominantly metabolized through the gamma-glutamyl cycle, where GSH is degraded by the sequential reaction of gamma-glutamyl transpeptidase (GGT), gamma-glutamyl cyclotransferase, and 5-oxoprolinase to yield glutamate (Glu) and dipeptides that are subject to peptidase action. In this study, we examined if GSH is degraded through the same pathway in Arabidopsis (Arabidopsis thaliana) as occurs in mammals. In Arabidopsis, the oxoprolinase knockout mutants (oxp1-1 and oxp1-2) accumulate more 5-oxoproline (5OP) and less Glu than wild-type plants, suggesting substantial metabolite flux though 5OP and that 5OP is a major contributor to Glu steady-state levels. In the ggt1-1/ggt4-1/oxp1-1 triple mutant with no GGT activity in any organs except young siliques, the 5OP concentration in leaves was not different from that in oxp1-1, suggesting that GGTs are not major contributors to 5OP production in Arabidopsis. 5OP formation strongly tracked the level of GSH in Arabidopsis plants, suggesting that GSH is the precursor of 5OP in a GGT-independent reaction. Kinetics analysis suggests that gamma-glutamyl cyclotransferase is the major source of GSH degradation and 5OP formation in Arabidopsis. This discovery led us to propose a new pathway for GSH turnover in plants where GSH is converted to 5OP and then to Glu by the combined action of gamma-glutamyl cyclotransferase and 5-oxoprolinase in the cytoplasm.

  1. The relevance of TH1 and TH2 cells in immediate and nonimmediate reactions to gelatin-containing vaccine.

    PubMed

    Ohsaki, M; Tsutsumi, H; Kumagai, T; Yamanaka, T; Wataya, Y; Furukawa, H; Kojima, H; Saito, A; Yano, S; Chiba, S

    1999-02-01

    The immune mechanism of gelatin allergy, especially the participation of TH1 and TH2 cells and their cytokine secretion, has not been investigated. We investigated the characteristics of T lymphocytes from patients allergic to gelatin-containing vaccine by secondary in vitro stimulation of circulating mononuclear cells with gelatin. We studied 8 children with a history of immediate-type reactions and 8 with nonimmediate-type reactions after inoculation of gelatin-containing vaccine. The expression of IFN-gamma (TH1 ), IL-2 (TH1 ), IL-4 (TH2 ), and IL-13 (TH2 ) mRNA was examined semiquantitatively by using a reverse transcriptase PCR. IgE antibody to bovine gelatin was measured with the fluorometric ELISA system, and gelatin-specific T-cell responses were detected by an in vitro lymphocyte proliferation assay. Patients with an immediate reaction all had gelatin-specific IgE antibody, whereas others did not. However, all patients exhibited positive T-lymphocyte responses specific to gelatin. Lymphocytes from subjects with nonimmediate-type reactions generally expressed very weak or sometimes no IFN-gamma, IL-2, or IL-13 genes and especially no IL-4 gene. On the other hand, the lymphocytes of subjects with immediate-type reactions significantly expressed not only IL-4 and IL-13 but also IFN-gamma and IL-2 mRNA. Our observations suggest that both gelatin-specific TH2 and TH1 responses are involved in the pathogenesis of the immediate reaction to gelatin. The gelatin-specific IL-4 and/or IL-13 responses consistently observed in patients with an immediate reaction may be associated with the production of gelatin-specific IgE antibody.

  2. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    NASA Astrophysics Data System (ADS)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  3. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts.

    PubMed

    Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude

    2008-09-01

    The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.

  4. Statistical gamma-ray decay studies at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.; Brits, C. P.; Sowazi, K.; Görgen, A.; Goldblum, B. L.; Guttormsen, M.; Kheswa, B. V.; Larsen, A. C.; Majola, S. N. T.; Malatji, K. L.; Negi, D.; Nogwanya, T.; Siem, S.; Zikhali, B. R.

    2017-09-01

    A program to study the γ-ray decay from the region of high-level density has been established at iThemba LABS, where a high-resolution gamma-ray detector array is used in conjunction with silicon particle-telescopes. Results from two recent projects are presented: 1) The 74Ge(α,α'γ) reaction was used to investigate the Pygmy Dipole Resonance. The results were compared to (γ,γ') data and indicate that the dipole states split into mixed isospin and relatively pure isovector excitations. 2) Data from the 95Mo(d,p) reaction were used to develop a novel method for the determination of spins for low-lying discrete levels utilizing statistical γ-ray decay in the vicinity of the neutron separation energy. These results provide insight into the competition of (γ,n) and (γ,γ') reactions and highlights the need to correct for angular momentum barrier effects.

  5. The gamma subunit of transducin is farnesylated.

    PubMed Central

    Lai, R K; Perez-Sala, D; Cañada, F J; Rando, R R

    1990-01-01

    Protein prenylation with farnesyl or geranylgeranyl moieties is an important posttranslational modification that affects the activity of such diverse proteins as the nuclear lamins, the yeast mating factor mata, and the ras oncogene products. In this article, we show that whole retinal cultures incorporate radioactive mevalonic acid into proteins of 23-26 kDa and one of 8 kDa. The former proteins are probably the "small" guanine nucleotide-binding regulatory proteins (G proteins) and the 8-kDa protein is the gamma subunit of the well-studied retinal heterotrimeric G protein (transducin). After deprenylating purified transducin and its subunits with Raney nickel or methyl iodide/base, the adducted prenyl group can be identified as an all-trans-farnesyl moiety covalently linked to a cysteine residue. Thus far, prenylation reactions have been found to occur at cysteine in a carboxyl-terminal consensus CAAX sequence, where C is the cysteine, A is an aliphatic amino acid, and X is undefined. Both the alpha and gamma subunits of transducin have this consensus sequence, but only the gamma subunit is prenylated. Therefore, the CAAX motif is not necessary and sufficient to direct prenylation. Finally, since transducin is the best understood G protein, both structurally and mechanistically, the discovery that it is farnesylated should allow for a quantitative understanding of this post-translational modification. Images PMID:2217200

  6. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  7. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  8. Severe Paradoxical Reaction During Treatment of Disseminated Tuberculosis in a Patient With Neutralizing Anti-IFNγ Autoantibodies

    PubMed Central

    Xie, Yingda L.; Rosen, Lindsey B.; Sereti, Irini; Barber, Daniel L.; Chen, Ray Y.; Hsu, Denise C.; Qasba, S. Sonia; Zerbe, Christa S.; Holland, Steven M.; Browne, Sarah K.

    2016-01-01

    Interferon-gamma (IFNγ) neutralizing autoantibodies are associated with disseminated nontuberculous mycobacterial infections. We report a previously healthy Thai woman with disseminated tuberculosis and high-titer IFNγ-neutralizing autoantibodies, who developed a severe inflammatory reaction during anti-tuberculosis treatment. IFNγ contributes to host control of tuberculosis but appears inessential for tuberculosis paradoxical reactions. PMID:26646678

  9. Improvement of sensitivity in PIGE analysis of steels by neutron-gamma coincidences measurement

    NASA Astrophysics Data System (ADS)

    Ene, Antoaneta

    2004-07-01

    In this work the sensitivities of minor elements in a standard steel sample EURONORM-CRM No. 085-1 irradiated with beams of 5.5 MeV protons and 5 MeV deuterons have been determined both by regular proton- (p-PIGE) and deuteron-induced prompt gamma-ray emission (d-PIGE) methods and with the selection of the (p, n) and (d, n) reaction channels, measuring the neutron-gamma coincidences. A check on the elemental composition of the steel standard has also been carried out using combined INAA and PIXE and quantitative determinations have been done for some elements whose concentrations were not specified by the manufacturer, such as Al, As, Cr, Mo, Na, Ni, W. This complex study has resulted in a significant improvement of the sensitivities for some minor elements in steel by reducing the background and increasing the peak-to-background ratio in the coincident prompt gamma-rays spectra as a result of the elimination of the competing nuclear reactions originating from isotopes of the adjacent elements in the periodic table, present in the steel target. This extension of the PIGE method could be adapted by any analyst with the necessary equipment for the analysis of a wide variety of matrices that are refractory enough to withstand the heating effect of the bombarding beam, taking into account that this type of experiment requires longer irradiation times.

  10. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  11. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  12. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  13. KINETIC STUDY OF RADIATION-REACTION-LIMITED PARTICLE ACCELERATION DURING THE RELAXATION OF UNSTABLE FORCE-FREE EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan

    2016-09-10

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less

  14. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  15. Production of levulinic acid, furfural, and gamma valerolactone from C.sub.5 and C.sub.6 carbohydrates in mono- and biphasic systems using gamma-valerolactone as a solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumesic, James A.; Alonso, David Martin; Gurbuz, Elif I.

    A method to make levulinic acid (LA), furfural, or gamma-valerolactone (GVL). React cellulose (and/or other C.sub.6 carbohydrates) or xylose (and/or other C.sub.5 carbohydrates) or combinations thereof in a monophasic reaction medium comprising GVL and an acid; or (ii) a biphasic reaction system comprising an organic layer comprising GVL, and a substantially immiscible aqueous layer. At least a portion of the cellulose (and/or other C.sub.6 carbohydrates), if present, is converted to LA and at least a portion of the xylose (and/or other C.sub.5 carbohydrates), if present, is converted into furfural.

  16. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  17. Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1994-01-01

    The heterogeneous reactions of ClONO2 + H2O yields HNO3 + HOCl (1), ClONO2 + HCl yields C12 + HNO3 (2), and HOCl + HCl yields Cl2 + H2O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate: (a) the temperature dependence of these reactions at a fixed H2O partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H2SO4 content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of HNO3 on the reaction probabilities due to the formation of a H2SO4/HNO3/H2O ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H2O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability (gamma(sub 1)) for ClONO2 hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for gamma(sub 2) and gamma(sub 3) are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO2 hydrolysis and ClONO2 reaction with HCl may depend on temperature (or H2SO4 Wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (less than 200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H2SO4/HNO3/ H2O ternary solutions do not exhibit noticeable deviation from those performed on the H2SO4/H2O binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as ClONO2 and HCl) can take place on stratospheric sulfate aerosols at

  18. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  19. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  20. Experiments with brilliant gamma beams at ELI-NP: A glimpse in the future

    NASA Astrophysics Data System (ADS)

    Balabanski, Dimiter L.

    2018-02-01

    The emerging experimental program with brilliant gamma beams at the Extreme Light Infrastructure - Nuclear Physics facility (ELI-NP), which is under construction in Magurele, Romania is presented with emphasis on the prepared day-one experiments. Experiments at ELI-NP will cover nuclear resonance fluorescence (NRF) measurements, studies of large-amplitude motions in nuclei, photofission and photonuclear reactions of astrophysics interest, and measurements of photonuclear reaction cross sections. The physics cases of the flagship experiments at ELI-NP are discussed, as well as the related instruments which are under construction for their realization.

  1. Investigation of Nuclear Structure and Quasi-Discrete Features in 150,152Sm via the (p,t) Reaction

    NASA Astrophysics Data System (ADS)

    Humby, Peter James Charnall

    The (p,t) reaction was used to identify new levels and gamma-ray transitions in 150,152Sm utilising the particle-gamma and particle-gamma-gamma coincidence techniques. The experiment was performed using the STARLiTeR array located at the Cyclotron Institute of Texas A&M University. The relative partial cross sections for the observed levels, angle averaged between 34 and 58 degrees, were measured. A narrow peak-like structure was observed between 2.3-3.0 MeV excitation energy, in between the region of strongly populated discrete states at low energy and the high energy continuum region. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states, which compares to a value of 93(15)% for 152Sm. The orbital angular-momentum transfer was probed by comparison of the experimental angular distributions to those calculated using the DWBA theory. The experimental angular distributions for the population of the peak-like structures are very similar in the two reactions, and significantly different to both the angular distribution of the background under the structures, and to the distribution obtained from the nearby continuum region at higher excitation energy. Post irradiation, the half-lives of isomeric states in 152Eu, populated in the 154Sm(p,3n) reaction, were obtained by measuring the decrease in intensity of the gamma rays emitted in the decay of these long lived levels. The half-life of the Jpi = 8- isomer 152m2Eu was measured to be 95.8(4) min, which is a factor of 2.5 reduction in uncertainty compared to the previous literature value of 96(1) min.

  2. The gamma delta T cell repertoire in Graves' disease and multinodular goitre.

    PubMed Central

    McIntosh, R S; Tandon, N; Pickerill, A P; Davies, R; Barnett, D; Weetman, A P

    1993-01-01

    gamma delta T cells are a subset of T cells with unknown function, and restriction of the gamma delta T cell receptor (TCR) repertoire has been described in rheumatoid arthritis and multiple sclerosis. Elevated numbers of gamma delta T cells have been reported in the peripheral blood and thyroids of patients with Graves' disease. We have carried out flow cytometric analysis on peripheral blood mononuclear cells (PBMC) and intrathyroidal lymphocytes (ITL) from 12 patients with Graves' disease and nine patients with multinodular goitre (MNG), a thyroid disease of unknown etiology. There was no significant difference between the proportion of gamma delta T cells in the PBMC of Graves' and MNG patients, nor between the PBMC and ITL populations in either patient group. We have also carried out polymerase chain reaction amplification on RNA prepared from matched PBMC, ITL and the activated (CD25+) subset of ITL using six TCR V delta-family specific primers. Although there were differences in the amounts of each V delta transcript amplified from PBMC and ITL, there was no difference between the two patient groups. No consistent differences were therefore found between the gamma delta T cell populations in Graves' and MNG patients, arguing against the direct involvement of this T cell subset in the pathogenesis of Graves' disease. Images Fig. 1 PMID:8252809

  3. Gamma-resonance Contraband Detection using a high current tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, B. F.; Beis, J.; Dale, D.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerablemore » confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.« less

  4. Evaluation of prompt gamma-ray data and nuclear structure of niobium-94 with statistical model calculations

    NASA Astrophysics Data System (ADS)

    Turkoglu, Danyal

    Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated

  5. Optical gamma thermometer

    DOEpatents

    Koster, Glen Peter; Xia, Hua; Lee, Boon Kwee

    2013-08-06

    An optical gamma thermometer includes a metal mass having a temperature proportional to a gamma flux within a core of a nuclear reactor, and an optical fiber cable for measuring the temperature of the heated metal mass. The temperature of the heated mass may be measured by using one or more fiber grating structures and/or by using scattering techniques, such as Raman, Brillouin, and the like. The optical gamma thermometer may be used in conjunction with a conventional reactor heat balance to calibrate the local power range monitors over their useful in-service life. The optical gamma thermometer occupies much less space within the in-core instrument tube and costs much less than the conventional gamma thermometer.

  6. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  7. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    PubMed

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  8. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  9. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  10. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  11. Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy

    NASA Astrophysics Data System (ADS)

    Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.

    2015-10-01

    Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.

  12. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.

    2017-09-01

    Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  13. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  14. Transfer Reactions on Neutron-rich Nuclei at REX-ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.; Physik-Department E12, Technische Universitaet Muenchen, Garching; Bildstein, V.

    2009-08-26

    We report on one- and two-neutron transfer reactions to study the single-particle properties of nuclei at the border of the ''island of inversion.'' The (d, p)- and (t, p)-reactions in inverse kinematics on the neutron-rich isotope {sup 30}Mg, delivered as radioactive beam by the REX-ISOLDE facility, have been investigated. The outgoing protons have been detected and identified by a newly built array of Si detectors. The {gamma}-decay of excited states has been detected in coincidence by the MINIBALL array. First results for {sup 31}Mg and from the search for the second, spherical, 0{sup +} state in {sup 32}Mg are presented.

  15. Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to

  16. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-01-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo. PMID:1534001

  17. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    PubMed

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  18. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    NASA Astrophysics Data System (ADS)

    Golda, K. S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R. P.; Behera, B. R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R. K.; Govil, I. M.; Datta, S. K.; Chatterjee, M. B.

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5-8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper.

  19. Gamma-based Measurement of ``Dark Mix'' in ICF Capsules

    NASA Astrophysics Data System (ADS)

    Meaney, Kevin; Herrmann, H.; Kim, Yh; Zylstra, Ab; Geppert-Kleinrath, H.; Hoffman, Nm; Yi, As

    2017-10-01

    Mix of capsule ablator material into the fusion fuel is a source of yield degradation in inertial confinement fusion. Jetting or chunk mix, such as the elusive ``meteors'' that have been observed at NIF, can be difficult to diagnose because the chunks may not get hot enough to excite dopant x-rays, nor atomized enough for separated-reactants to fuse. Using the gamma reaction history (GRH-6m) diagnostic, (n,n') gammas from strategically placed carbon layer within a beryllium capsule gives a measure of the time-resolved areal density of this carbon during the burn and hence an indication of the compression and spatial distribution of this layer. As the carbon moves further from the fuel, the areal density nominally decreases as 1/r2 for unablated material. However, mix of this carbon into the cold dense fuel layer or hot spot will have a significant effect on the carbon gamma signal. Different types of mix (e.g., jetting, Rayleigh-Taylor fingers, diffusive, ...) as well as features that can seed this mix (eg., tents, fill,...) will be discussed along with their expected effect on the carbon signal. The design for upcoming OMEGA shots, which will demonstrate this technique, and the potential for use on the NIF will be presented.

  20. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  1. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  2. A polymorphism in the bovine gamma-S-crystallin gene revealed by allele-specific amplification.

    PubMed

    Kemp, S J; Maillard, J C; Teale, A J

    1993-04-01

    A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.

  3. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  4. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  5. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  6. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  7. Influence of gamma irradiation on carbon nanotube-reinforced polypropylene.

    PubMed

    Castell, P; Medel, F J; Martinez, M T; Puértolas, J A

    2009-10-01

    Single walled carbon nanotubes (SWNT) have been incorporated into a polypropylene (PP) matrix in different concentrations (range: 0.25-2.5 wt%). The nanotubes were blended with PP particles (approximately 500 microm in size) before mixing in an extruder. Finally, rectangular plates were obtained by compression moulding. PP-SWNT composites were gamma irradiated at different doses, 10 and 20 kGy, to promote crosslinking in the matrix and potentially enhance the interaction between nanotubes and PP. Extensive thermal, structural and mechanical characterization was conducted by means of DSC, X-ray diffraction, Raman spectroscopy, uniaxial tensile tests and dynamic mechanical thermal (DMTA) techniques. DSC thermograms reflected higher crystallinity with increasing nanotube concentration. XRD analysis confirmed the only presence of a monoclinic crystals and proved unambiguously that CNTs generated a preferred orientation. Raman spectroscopy confirmed that the intercalation of the polymer between bundles is favored at low CNTs contents. Elastic modulus results confirmed the reinforcement of the polypropylene matrix with increasing SWNT concentration, although stiffness saturation was observed at the highest concentration. Loss tangent DMTA curves showed three transitions for raw polypropylene. While gamma relaxation remained practically unchanged in all the samples, beta relaxation temperatures showed an increase with increasing CNT content due to the reduced mobility of the system. Gamma-irradiated PP exhibited an increase in the beta relaxation temperature, associated with changes in glass transition due to radiation-induced crosslinking. On the contrary, gamma-irradiated nanocomposites did not show this effect probably due to the reaction of radiative free radicals with CNTs.

  8. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Greg; Bacquias, A.; Capdevielle, O.

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {supmore » nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)« less

  9. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    PubMed

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  10. Future prospects of nuclear reactions induced by gamma-ray beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Balabanski, D. L.; Camera, F.; Gheorghe, I.; Ghita, D.; Glodariu, T.; Kaur, J.; Ur, C. A.; Utsunomiya, H.; Varlamov, V. V.

    2017-01-01

    The future prospects of photonuclear reactions studies at the new Extreme Light Infrastructure—Nuclear Physics (ELI-NP) facility are discussed in view of the pursuit of investigating the electromagnetic response of nuclei using γ-ray beams of unprecedented energy resolution and intensity characteristics. We present here the features of the γ-ray beam source, the emerging ELI-NP experimental program involving photonuclear reactions cross section measurements and spectroscopy and angular measurements of γ-rays and neutrons along with the detection arrays currently under implementation.

  11. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  12. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  13. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  15. Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel

    NASA Astrophysics Data System (ADS)

    Takács, S.; Tárkányi, F.; Király, B.; Hermanne, A.; Sonck, M.

    2007-07-01

    Activation cross sections for deuteron induced nuclear reactions on natural nickel target were studied by using a standard stacked foil technique and gamma spectrometry up to 50 MeV deuteron bombarding energy. Reaction products with half life of at least half an hour were studied. Experimental elemental activation cross sections were determined for reactions on nickel resulting in 61,64Cu, 56,57Ni, 55,56,57,58,60,61Co, 52,54,56Mn and 51Cr radionuclides and were compared with earlier measured data.

  16. Gamma radiation combined with cinnamon oil to maintain fish quality

    NASA Astrophysics Data System (ADS)

    Lyu, Fei; Zhang, Jing; Wei, Qianqian; Gao, Fei; Ding, Yuting; Liu, Shulai

    2017-12-01

    Effects of gamma radiation combined with cinnamon oil on quality of Northern Snakehead fish fillets were observed during storage at 4 °C. Fish fillets were treated with 1-5 kGy gamma radiation, 0.05-0.5% cinnamon oil or the combination of radiation and cinnamon oil. The antimicrobial activity increased with radiation dose and cinnamon oil concentration. During storage, the combination of 1 kGy radiation and 0.5% cinnamon oil displayed better inhibiting activities on aerobic plate counts, total volatile basic nitrogen, thiobarbituric acid reaction substances than 1 kGy radiation or 0.5% cinnamon oil used alone. Moreover, the combination could arrive at the similar inhibiting activities of cinnamon oil with higher concentration of 0.5% or radiation with higher dose of 5 kGy. Thus, the combination could decrease the radiation dose and cinnamon oil concentration without decreasing the effect of them on maintaining fish quality.

  17. The gamma cycle.

    PubMed

    Fries, Pascal; Nikolić, Danko; Singer, Wolf

    2007-07-01

    Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  18. A Platinum-Enriched gamma+gamma' Two-Phase Bond Coat on Ni-Base Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Haynes, James A

    2005-01-01

    Pt-enriched {gamma} + {gamma}{prime} two-phase coating was applied to directionally-solidified Ni-based superalloy Ren{acute e} 142 substrates with three different Hf levels (0.02, 0.76, and 1.37 wt.%). The coating was prepared by electroplating a thin layer of Pt on the superalloy followed by a diffusion treatment. The as-deposited coating exhibited a {gamma} + {gamma}{prime} two-phase microstructure with a major composition of Ni-16Al-18Pt-7Cr-9Co (in at.%) along with some incorporation of refractory elements from the substrates. Cyclic oxidation testing at 1100 C in air indicated improved oxidation resistance of the Ren{acute e} 142 alloys with the Pt-enriched {gamma} + {gamma}{prime} coatings. In addition,more » the oxidation resistance of both uncoated and coated alloys was proportional to the Hf content in the substrate. Compared with the single-phase {beta}-(Ni,Pt)Al coating, slightly higher mass gains and localized spallation were observed on the {gamma} + {gamma}{prime} two-phase coating, which might be due to the segregation of refractory elements and high sulfur levels in these superalloy substrates.« less

  19. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  20. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  1. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  2. A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.

    2013-11-01

    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.

  3. Biodistribution and catabolism of 18F-labelled isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine.

    PubMed

    Hultsch, C; Bergmann, R; Pawelke, B; Pietzsch, J; Wuest, F; Johannsen, B; Henle, T

    2005-12-01

    Isopeptide bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of glutamine are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases. Despite the wide use of a microbial transglutaminase in food biotechnology, up to now little is known about the metabolic fate of the isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine. In the present study, N-succinimidyl-4-[(18)F]fluorobenzoate was used to modify N(epsilon)-(gamma-glutamyl)-L-lysine at each of its two alpha-amino groups, resulting in the 4-[(18)F]fluorobenzoylated derivatives, for which biodistribution, catabolism, and elimination were investigated in male Wistar rats. A significant different biochemical behavior of the two labelled isopeptides was observed in terms of in vitro stability, in vivo metabolism as well as biodistribution. The results suggest that the metabolic fate of isopeptides is likely to be dependent on how they are reabsorbed - free or peptide bound.

  4. Cloning, sequencing and expression of white rhinoceros (Ceratotherium simum) interferon-gamma (IFN-gamma) and the production of rhinoceros IFN-gamma specific antibodies.

    PubMed

    Morar, D; Tijhaar, E; Negrea, A; Hendriks, J; van Haarlem, D; Godfroid, J; Michel, A L; Rutten, V P M G

    2007-01-15

    Bovine tuberculosis (BTB) is endemic in African buffalo (Syncerus caffer) in the Kruger National Park (KNP). In addition to buffalo, Mycobacterium bovis has been found in at least 14 other mammalian species in South Africa, including kudu (Tragelaphus strepsiceros), Chacma baboon (Papio ursinus) and lion (Panthera leo). This has raised concern about the spillover into other potentially susceptible species like rhinoceros, thus jeopardising breeding and relocation projects aiming at the conservation of biodiversity. Hence, procedures to screen for and diagnose BTB in black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum) need to be in place. The Interferon-gamma (IFN-gamma) assay is used as a routine diagnostic tool to determine infection of cattle and recently African buffalo, with M. bovis and other mycobacteria. The aim of the present work was to develop reagents to set up a rhinoceros IFN-gamma (RhIFN-gamma) assay. The white rhinoceros IFN-gamma gene was cloned, sequenced and expressed as a mature protein. Amino acid (aa) sequence analysis revealed that RhIFN-gamma shares a homology of 90% with equine IFN-gamma. Monoclonal antibodies, as well as polyclonal chicken antibodies (Yolk Immunoglobulin-IgY) with specificity for recombinant RhIFN-gamma were produced. Using the monoclonals as capture antibodies and the polyclonal IgY for detection, it was shown that recombinant as well as native white rhinoceros IFN-gamma was recognised. This preliminary IFN-gamma enzyme-linked immunosorbent assay (ELISA), has the potential to be developed into a diagnostic assay for M. bovis infection in rhinoceros.

  5. Direct Reaction Measurements Using GODDESS

    DOE PAGES

    Pain, S. D.; Ratkiewicz, A.; Baugher, T.; ...

    2017-10-26

    GODDESS is a coupling of the charged-particle detection system ORRUBA to the gamma-ray detector array Gammasphere. This coupling has been developed in order to facilitate the high-resolution measurement of direct reactions in normal and inverse kinematics with stable and radioactive beams. GODDESS has been commissioned using a beam of 134Xe at 10 MeV/A, in a campaign of stable beam measurements. The measurement demonstrates the capabilities of GODDESS under radioactive beam conditions, and provides the first data on the single-neutron states in 135Xe, including previously unobserved states based on the orbitals above the N=82 shell closure.

  6. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  7. Measurements of the $$\\mathrm{ pp \\to W \\gamma\\gamma }$$ and $$\\mathrm{ pp \\to Z \\gamma\\gamma }$$ cross sections and limits on anomalous quartic gauge couplings at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-10-11

    Here, measurements are presented ofmore » $$ \\mathrm{ W \\gamma\\gamma } $$ and $$ \\mathrm{ Z \\gamma\\gamma } $$ production in proton-proton collisions. Fiducial cross sections are reported based on a data sample corresponding to an integrated luminosity of 19.4 fb$$^{-1}$$ collected with the CMS detector at a center-of-mass energy of 8 TeV. Signal is identified through the $$\\mathrm{ W } \\to \\ell\

  8. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays ofmore » strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.« less

  9. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  10. Gamma-resonance Contraband Detection using a high current tandem accelerator

    NASA Astrophysics Data System (ADS)

    Milton, B. F.; Beis, J.; Dale, D.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Rogers, J.; Ruegg, R.; Sredniawski, J.

    1999-04-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14N of gammas produced using 13C(p,γ)14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  11. [Regulating human interferon-gamma gene expression in marrow stromal cells in mice by Tet-off system].

    PubMed

    Qin, Xin-Tian; Lu, Yue; Tan, Yin-Duo; Chen, Xiao-Qin; Gen, Qi-Rong

    2008-01-01

    We have constructed plasmid "pTre-IFN-gamma" and proved that the Tet-off system could regulate the expression of human interferon-gamma (IFN-gamma) gene in murine marrow stromal cells in vitro. This study was to investigate the regulatory reversibility of Tet-off system and its effect on the expression of human IFN-gamma gene in murine marrow stromal cells in mice. Plasmids pTet-off and pTre-IFN-gamma were co-transfected into murine marrow stromal cells. The expression of IFN-gamma in marrow stromal cells was detected with ELISA. The marrow stromal cells were transfused into BABL/c naked mice after co-transfection. The expression of IFN-gamma mRNA in the spleen was detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). IFN-gamma protein was detected in the culture solution of marrow stromal cells after co-transfection. The secretion peak appeared within the first 72 h. The protein level of IFN-gamma was significantly lower in 300 ng/ml tetracycline hydrochloride-treated marrow stroma cells than in untreated cells [(67.11+/-22.14) pg/1 x 10(7) cells vs. (319.96+/-29.04) pg/1 x 10(7) cells, P<0.001]; its expression was increased when removed tetracycline hydrochloride (P=0.032). The expression of human IFN-gamma mRNA was detected in the spleen. The mRNA level of IFN-gamma was significantly higher in untreated group than in continuous tetracycline hydrochloride-treated group [(1.5+/-0.7)x10(5) copies . (100 mg)(-1) vs. (6.9+/-5.3)x10(2) copies . (100 mg)(-1), P<0.001]; its expression in the mice received tetracycline hydrochloride for one single time lay between the above two groups with significant difference. In mice, Tet-off system could rapidly, efficiently and reversibly regulate the expression of human IFN-gamma gene in marrow stromal cells in vitro and in vivo.

  12. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  13. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  14. Radiolabelling of isopeptide N epsilon-(gamma-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.

    PubMed

    Wüst, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine 4 was labelled with 18F via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). A modified approach for the convenient synthesis of [18F]SFB was used, and [18F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n = 20) and radiochemical purity >95% within 40 min after EOB. For labelling N(epsilon)-(gamma-glutamyl)-L-lysine with [18F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3GBq of [18F]SFB could be converted into 447MBq (46%, decay-corrected) of [18F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  15. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  16. Incomplete mass transfer processes in 28Si +93Nb reaction

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Ramachandran, K.; Sharma, S. K.; Pujari, P. K.

    Cross sections of reaction products were measured in 28Si +93Nb reaction using recoil catcher technique involving by off-line gamma-ray spectrometry at beam energies of 105 and 155MeV. At Elab = 155MeV, the contribution from different incomplete mass transfer processes is investigated. Results of the present studies show the contribution from deep inelastic collision (DIC), massive transfer or incomplete fusion (ICF) and quasi-elastic transfer (QET). The contribution from massive transfer reactions was confirmed from the fractional yield of the reaction products in the forward catcher foil. The present results are different from those from the reactions with comparatively higher entrance channel mass asymmetry with lighter projectiles, for which dominant transfer processes are ICF and QET which involve mass transfer predominantly from projectile to target. The N/Z values of the products close to the target mass were observed to be in a wide range, starting from N/Z of the target (93Nb) and extending slightly below the N/Z of the composite system, consistent with the contribution from DIC and QET reactions. At Elab = 105MeV, a small contribution from QET was observed in addition to complete fusion.

  17. Pregnancy IFN-gamma responses to foetal alloantigens are altered by maternal allergy and gravidity status.

    PubMed

    Breckler, L A; Hale, J; Taylor, A; Dunstan, J A; Thornton, C A; Prescott, S L

    2008-11-01

    During pregnancy, variations in maternal-foetal cellular interactions may influence immune programming. This study was carried out to determine if maternal responses to foetal alloantigens are altered by maternal allergic disease and/or previous pregnancies. For this cohort study, peripheral blood was collected from allergic (n = 69) and nonallergic (n = 63) pregnant women at 20, 30, 36-week gestation and 6-week postpartum (pp). Cord blood was collected at delivery. Mixed lymphocyte reactions were used to measure maternal cytokine responses [interleukin-6 (IL-6), IL-10, IL-13 and (interferon-gamma) IFN-gamma] at each time point towards foetal mononuclear cells. Maternal cytokine responses during pregnancy (20, 30 and 36 weeks) were suppressed compared to the responses at 6-week pp. The ratio of maternal IFN-gamma/IL-13 and IFN-gamma/IL-10 responses were lower during pregnancy. Allergic mothers had lower IFN-gamma responses at each time-point during pregnancy with the greatest difference in responses observed at 36-week gestation. When allergic and nonallergic women were further stratified by gravidity group, IFN-gamma responses of allergic multigravid mothers were significantly lower than nonallergic multigravid mothers during pregnancy. During normal pregnancy, peripheral T-cell cytokine responses to foetal alloantigens may be altered by both allergic status of the mother and previous pregnancies. These factors could influence the cytokine milieu experienced by the foetus and will be further explored in the development of allergic disease during early life.

  18. Fractionated irradiation of carbon beam and the isoeffect dose on acute reaction of skin

    PubMed Central

    Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Koda, Kana; Koike, Sachiko; Ando, Koichi; Furusawa, Yoshiya

    2014-01-01

    Purpose: The aim of this study was to clear any specific LETs cause change in skin reaction. We irradiated mice feet with mono-energetic and SOBP carbon ions, to obtain dose–response of early skin reaction at different LETs. Materials and methods: Mice: C3H/HeMsNrsf female mice aged 4 months old were used for this study. The animals were produced and maintained in specific pathogen-free (SPF) facilities. Irradiation: The mice right hind legs received daily fractionated irradiation ranged from single to six fractions. Carbon ions (12C6+) were accelerated by the HIMAC synchrotron to 290 MeV/u. Irradiation was conducted using horizontal carbon-ion beams with a dose rate of ∼3 Gy/min. We chose the LETs at entrance of plateau (20keV/μm) and the SOBP (proximal: 40 keV/μm, middle: 45 keV/μm, distal: 60 keV/μm, distal-end: 80 keV/μm). The reference beam was 137Cs gamma rays with a dose rate of 1.2 Gy/min. Skin reaction: Skin reaction of the irradiated legs was scored every other day, between the14th and 35th post-irradiation days. Our scoring scale consisted of seven steps, ranging from 0.5 to 3.5 [ 1]. The skin score analyzed a result by the method that described by Ando et al. [ 2]. The Fe-plot proposed by Douglas and Fowler was used as a multifraction linear quadratic model. A plot between the reciprocal of the isoeffect dose and the dose per fraction resulted in a straight line. Results: Required isoeffect total dose increased linearly with the fraction numbers on a semi-logarithmic chart at LET 20–60 keV/µm SOBP beam. The isoeffect total dose decreased with the increase in the LET. However, no increases in isoeffect total dose were observed at few fractionations at 80 keV/µm. (data not shown) Using an Fe-plot, we analyzed the isoeffect total dose to evaluate the dependence on Carbon beam, or gamma ray. When I irradiate it by gamma ray, an Fe-plot shows linearly. But, irradiated by Carbon beam, an Fe-plot bent at low fractions (Fig. 1). Conclusion: The LQ

  19. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  20. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  1. Analysis of Nuclear Lifetimes Using the Gamma-ray Induced Doppler Shift Attenuation Method

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.

    2018-05-01

    Lifetime measurements allow extraction of fundamental information on the nature of the excited states of a nuclear system. Since nuclear lifetimes cover many orders of magnitude, a number of experimental techniques and detection setups have been developed depending on the range of the lifetime of interest. The Gamma-ray Induced Doppler Shift Attenuation (GRIDSA) Method presented here is applied to the measurement of very short lifetimes, in the femtosecond range. It allows determining the nuclear lifetime by measuring the Doppler shift of a gamma ray emitted from the state of interest, in different directions with respect to a coincident preceding gamma ray, populating the same state and inducing a recoil of the nucleus in the target material with velocities of the order of 104-105 m/s. We realized an experiment in order to test the GRIDSA technique for the measurement of fs lifetimes after (n,γ) reactions. The measurement was performed at the Institut Laue-Langevin (ILL) with the 8 Ge-clover detectors of the FIPPS array. Preliminary results are discussed.

  2. STING-Dependent Interferon-λ1 Induction in HT29 Cells, a Human Colorectal Cancer Cell Line, After Gamma-Radiation.

    PubMed

    Chen, Jianzhou; Markelc, Bostjan; Kaeppler, Jakob; Ogundipe, Vivian M L; Cao, Yunhong; McKenna, W Gillies; Muschel, Ruth J

    2018-05-01

    To investigate the induction of type III interferons (IFNs) in human cancer cells by gamma-rays. Type III IFN expression in human cancer cell lines after gamma-ray irradiation in vitro was assessed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Signaling pathways mediating type III IFN induction were examined by a variety of means, including immunoblotting, flow cytometry, confocal imaging, and reverse transcription-quantitative polymerase chain reaction. Key mediators in these pathways were further explored and validated using gene CRISPR knockout or short hairpin RNA knockdown. Exposure to gamma-rays directly induced type III IFNs (mainly IFNL1) in human cancer cell lines in dose- and time-dependent fashions. The induction of IFNL1 was primarily mediated by the cytosolic DNA sensors-STING-TBK1-IRF1 signaling axis, with a lesser contribution from the nuclear factor kappa b signaling in HT29 cells. In addition, type III IFN signaling through its receptors serves as a positive feedback loop, further enhancing IFN expression via up-regulation of the kinases in the STING-TBK1 signaling axis. Our results suggest that IFNL1 can be up-regulated in human cancer cell lines after gamma-ray treatment. In HT29 cells this induction occurs via the STING pathway, adding another layer of complexity to the understanding of radiation-induced antitumor immunity, and may provide novel insights into IFN-based cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Conformational dependence of a protein kinase phosphate transfer reaction.

    PubMed

    Henkelman, Graeme; LaBute, Montiago X; Tung, Chang-Shung; Fenimore, P W; McMahon, Benjamin H

    2005-10-25

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. With the protein in TC, the motions involved in reaction are small, with only P(gamma) and the catalytic proton moving >0.5 A. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site.

  4. The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    McCleskey, E.; Banu, A.; McCleskey, M.; Roeder, B.; Saastamoinen, A.; Spiridon, A.; Trache, L.; Tribble, R. E.; Davinson, T.; Doherty, D.; Lotay, G. J.; Wallace, J.; Woods, P. J.

    2013-10-01

    The main creation site of 26Al is currently under debate. The reactions for its creation or destruction are also not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25Al(β + v)25Mg(p,γ)26Al, but this chain can be by-passed by another chain: 25Al(p,γ)26Si(p,γ)27P and it can also be destroyed directly. Another way to by-pass it is through 26mAl(p,γ)27Si* which is dominated by resonant capture. Using the Momentum Achromat Recoil Spectrometer (MARS) at the Texas A&M Cyclotron Institute and inverse kinematics, this destruction reaction was studied by the beta-delayed proton and gamma decay of 27P. Due to selection rules, states populated above the proton threshold in the compound system (27Si*) can decay to 26mAl, which are the states of interest for the capture reaction. James Madison University, VA, USA.

  5. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  6. OH REACTION KINETICS OF GAS-PHASE A- AND G-HEXACHLOROCYCLOHEXANE AND HEXACHLOROBENZENE. (R825377)

    EPA Science Inventory

    Rate constants for the gas-phase reactions of the hydroxyl
    radical (OH) with - and gamma.gif" BORDER=0 >-hexachlorocyclohexane (-
    and The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants.

    PubMed

    Mohamed, Heba Ibrahim

    2011-12-01

    The effect of lead acetate in the presence or absence of cowpea seeds irradiated with gamma rays on morphological criteria, protein electrophoresis, isozymes, and random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) of leaves was investigated. A highly significant decrease in shoot and root length was observed upon lead acetate exposure (300 and 600 μM). On the other hand, in seeds irradiated with gamma rays (2, 5, and 8 krad), these morphological parameters were increased after lead acetate treatments. Meanwhile, all treatments (lead acetate and gamma rays) caused variations in number, intensity, and/or density of SDS electrophoretic bands of proteins. In addition, electrophoretic studies of esterase, acid phosphatase, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase isozyme activities were increased with increasing the concentrations of lead acetate and gamma ray doses. The variation in DNA profile in response to lead acetate and gamma irradiation treatments was detected by RAPD-PCR technique. The result of RAPD analysis using the five primers indicated the appearance and disappearance of DNA polymorphic bands at all treatments (gamma rays and lead stress). The relatively high concentrations of lead acetate (600 μM) induced more changes in genomic DNA pattern.

  10. Gamma radiation effects on siloxane-based additive manufactured structures

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  11. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    NASA Astrophysics Data System (ADS)

    Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-01

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  12. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  13. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapymore » was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  14. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  15. Enantioselective gamma- and delta-Borylation of Unsaturated Carbonyl Derivatives: Synthesis, Mechanistic Insights, and Applications

    NASA Astrophysics Data System (ADS)

    Hoang, Gia L.

    Chiral boronic esters are valuable synthetic intermediates widely used in a variety of stereospecific transformations. Transition metal-catalyzed asymmetric hydroboration (CAHB) of alkenes is among the most popular methods for their preparation. Enantioselective hydroboration of activated alkenes (i.e., vinyl arene derivatives or conjugated carbonyl compounds) have been extensively studied by many research groups. We, on the other hand, are interested in enantioselective hydroboration of unactivated alkenes utilizing coordinating functional groups (e.g., carbonyl derivatives) to give functionalized, chiral boronic esters. While conjugate addition and C-H activation methodologies provide efficient alternatives to CAHB for enantioselective beta-borylation of carbonyl compounds, direct gamma- and delta-borylations were essentially unknown prior to our wok on CAHB. The gamma-borylated products were used for understanding stereochemical aspects of Suzuki-Miyaura cross-coupling reactions resulting in stereoretention and in contrast to similar beta-borylated carbonyl derivatives reported in literature. Some other selected transformations were carried out to construct a number of biologically relevant structural motifs, such as lignan precursors, 1,4-amino alcohols, gamma-amino acid derivatives, 5-substitued-gamma-lactone and lactam ring systems. In addition, collaborative experimental and computational studies of the enantioselective desymmetrization via CAHB gain a better understanding of the mechanistic pathways.

  16. Excited nuclei, resonances and reactions in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V.

    2018-01-01

    The short review of research results concerning the study of reactions and processes that occur in the neutron star crusts is given. The peculiarities of electron capture reactions by a nucleus in overdense crystalline structures have been demonstrated for various nuclei, in particular some even-even nuclei at electron capture reactions give daughter nuclei in excited states. Excited nuclei due to nonlinear interactions lead to a high-order harmonic generation. High energy gammas interact with charged particles, give a neutrino radiation and also knock out nucleons from neighbour nuclei. It is also shown that interactions of neutrons with two and more nuclei in an overdence lattice give a large number of new resonance states. These resonances result in a formation of specific local oscillations in the corresponding layers of the lattice. The periodic enhancement of these processes in the dependence on the elemental composition of the primary neutron star matter is considered.

  17. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  18. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  19. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  1. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  2. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  3. A High Current Tandem Accelerator for Gamma-Resonance Contraband Detection

    NASA Astrophysics Data System (ADS)

    Milton, Bruce

    1997-05-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by ^14N of gammas produced using ^13C(p,γ)^14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non -resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H^- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  4. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  5. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  6. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Yoon, D; Shin, H

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show thatmore » the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  7. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  8. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.; Capote, R.; Carlson, B.V.

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approachmore » (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6

  9. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  10. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  11. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  12. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells.

    PubMed

    Asea, A; Hansson, M; Czerkinsky, C; Houze, T; Hermodsson, S; Strannegård, O; Hellstrand, K

    1996-08-01

    Monocytes, recovered from human peripheral blood by counter-current centrifugal elutriation, effectively inhibit the production of IFN-gamma by CD3-/56+ NK cells in response to IL-2. This study aimed at defining the nature of the inhibitory signal, particularly the importance of monocyte-derived reactive metabolites of oxygen. It was found that monocytes recovered from patients with chronic granulomatous disease (CGD), a condition characterized by deficient NADPH-oxidase activity of phagocytes, did not inhibit IFN-gamma production by NK cells. Further, catalase, a scavenger of hydrogen peroxide, completely reversed the inhibitory signal whereas scavengers of the superoxide anion, hypohalous acids, the hydroxyl radical, or nitric oxide synthesis inhibitors such as L-NMMA were ineffective. Inhibition of IFN-gamma production was operating on a pretranslational level, as indicated by the inability of enriched NK cells to accumulate IFN-gamma mRNA in the presence of elutriated monocytes. Hydrogen peroxide, at micromolar concentrations, reconstituted the inhibition of IFN-gamma production when added to enriched NK cells. Histamine, a biogenic amine which inhibits the generation of reactive oxygen metabolites in monocytes, abrogated the inhibition of IFN-gamma production in NK cells; by this mechanism, histamine strongly synergized with IL-2 to induce IFN-gamma in mixtures of NK cells and monocytes. The synergizing effect of histamine was specifically mediated by H2-type histamine receptors. We conclude that: (i) the induction of IFN-gamma mRNA in NK cells is effectively down-regulated by products of the oxidative metabolism of monocytes; and (ii) histamine effectively enhances IFN-gamma production by preventing monocyte-induced oxidative damage to NK cells.

  13. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  14. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  15. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  16. A coincidence measurement of the D(gamma, pp pi(-)) cross section in the region of the Delta resonance

    NASA Astrophysics Data System (ADS)

    Quraan, Maher A.

    Photonuclear reactions are excellent means for understanding final state interactions (FSI). The photon interacts only electromagnetically, allowing a clean separation of the strong interaction channels in the final state. The availability of high duty factor electron machines and large acceptance detectors in the past decade have allowed a further investigation of these effects covering wider regions of phase space. In this experiment, we have successfully measured the D(/gamma, pp/pi/sp-) reaction cross section at the Saskatchewan Accelerator Laboratory (SAL) utilizing the Saskatchewan- Alberta Large Acceptance Detector (SALAD). This is the first measurement of the /gamma D /to pp/pi/sp--cross section covering a wide range of phase space with an attempt to study the FSI's and the /Delta - N interaction that has successfully reproduced the normalizations. The cross section for this reaction is compared to the calculation of J. M. Laget. Laget's theory is quite successful in describing the shapes of the distributions. as well as the overall magnitude of the cross section. The different FSI's and the /Delta - N interaction have an overall effect of 10%-15% on the single differential cross section, with the calculation that includes /Delta - N interaction having the best normalization compared to the data.

  17. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    PubMed

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  18. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  19. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  20. Gamma-resonance investigation of the kinetics of the reduction of (. cap alpha. -benzil dioximato-1)(. cap alpha. -benzil dioximato-2)di(pyridine)iron(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turte, K.I.; Bulgak, I.I.; Stukan, R.A.

    1986-07-01

    (..cap alpha..-Benzil dioximato-1)(..cap alpha..-benzil dioximato-2)di(pyridine)iron(III) in the form of the diacetone solvate (II) is spontaneously converted at room temperature into (..cap alpha..-benzil dioximato-1)(..cap alpha..-benzil dioximato-2)di(pyridine)iron(II) (III). The quantitative composition of a sample containing complexes II and III has been determined as a function of the temperature and the time by gamma-resonance spectroscopy, which made it possible to investigate the kinetics of this reaction. The changes obtained in the percentage of complex II in the sample as a function of time at a given temperature was treated with the use of the Kolmogorov-Erofeev equation for a topochemical reaction of the typemore » A/sub s/ ..-->.. B/sub s/ + C/sub g/. The rate constants of the reaction at various temperatures and the activation energy *E have been determined. In the temperature range from 293 to 304/sup 0/K *E = 25.6 kcal/mole. The possibilities of gamma-resonance spectroscopy in the investigation of topochemical reactions associated with changes in the oxidation state of iron ions have been demonstrated.« less

  1. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  2. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  3. GammaM23K, gammaM232K, and gammaL77K single substitutions in the TF1-ATPase lower ATPase activity by disrupting a cluster of hydrophobic side chains.

    PubMed

    Bandyopadhyay, Sanjay; Allison, William S

    2004-07-27

    In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.

  4. The effect of gamma irradiation on rice protein aqueous solution

    NASA Astrophysics Data System (ADS)

    Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria

    2018-05-01

    The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.

  5. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-04-01

    This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.

  6. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  7. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  8. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  9. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  10. Gamma Strength Functions and Level Densities from High-Resolution Proton Scattering under 0°

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk; Tamii, Atsushi

    2018-05-01

    Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0° provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5 - 20 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. From the two test cases studied, 208Pb remains inconclusive in the energy region of the PDR because of large Porter-Thomas fluctuations due to the small level density (LD), while the BA hypothesis seems to hold in case of 96Mo. A fluctuation analysis of the high-resolution data also provides a direct measure of the LD in the energy region of the isovector giant dipole resonance (IVGDR) well above the neutron threshold, where hardly any experimental information is available. This permits an independent test of the decomposition of GSF and LD in Oslo-type experiments.

  11. A Wavelet Packet Transform Inspired Method of Neutron-Gamma Discrimination

    NASA Astrophysics Data System (ADS)

    Shippen, David I.; Joyce, Malcolm J.; Aspinall, Michael D.

    2010-10-01

    A Simplified Digital Charge Collection (SDCC) method of discrimination between neutron and gamma pulses in an organic scintillator is presented and compared to the Pulse Gradient Analysis (PGA) discrimination method. Data used in this research were gathered from events arising from the 7Li(p,n)7Be reaction detected by an EJ-301 organic liquid scintillator recorded with a fast digital oscilloscope. Time-of-Flight (TOF) data were also recorded and used as a second means of identification. The SDCC method is found to improve on the figure of merit (FOM) given by PGA method at the equivalent sampling rate.

  12. Over-expression of bacterial gamma-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremula x Populus alba) dependent on the resulting gamma-glutamylcysteine and glutathione levels.

    PubMed

    Herschbach, Cornelia; Rizzini, Luca; Mult, Susanne; Hartmann, Tanja; Busch, Florian; Peuke, Andreas D; Kopriva, Stanislav; Ensminger, Ingo

    2010-07-01

    We compared three transgenic poplar lines over-expressing the bacterial gamma-glutamylcysteine synthetase (GSH1) targeted to plastids. Lines Lggs6 and Lggs12 have two copies, while line Lggs20 has three copies of the transgene. The three lines differ in their expression levels of the transgene and in the accumulation of gamma-glutamylcysteine (gamma-EC) and glutathione (GSH) in leaves, roots and phloem exudates. The lowest transgene expression level was observed in line Lggs6 which showed an increased growth, an enhanced rate of photosynthesis and a decreased excitation pressure (1-qP). The latter typically represents a lower reduction state of the plastoquinone pool, and thereby facilitates electron flow along the electron transport chain. Line Lggs12 showed the highest transgene expression level, highest gamma-EC accumulation in leaves and highest GSH enrichment in phloem exudates and roots. This line also exhibited a reduced growth, and after a prolonged growth of 4.5 months, symptoms of leaf injury. Decreased maximum quantum yield (F(v)/F(m)) indicated down-regulation of photosystem II reaction centre (PSII RC), which correlates with decreased PSII RC protein D1 (PsbA) and diminished light-harvesting complex (Lhcb1). Potential effects of changes in chloroplastic and cytosolic GSH contents on photosynthesis, growth and the whole-plant sulphur nutrition are discussed for each line.

  13. The effects of gamma radiation, UV and visible light on ATP levels in yeast cells depend on cellular melanization.

    PubMed

    Bryan, Ruth; Jiang, Zewei; Friedman, Matthew; Dadachova, Ekaterina

    2011-10-01

    Previously we have shown that growth of melanized fungi is stimulated by low levels of gamma radiation. The goal of this study was to examine the effects of visible light, UV light, and gamma radiation on the energy level (ATP concentration) in melanized Cryptococcus neoformans cells. Melanized C. neoformans cells as well as non-melanized controls were subjected to visible, UV or gamma radiation, and ATP was quantified by measuring the amount of light emitted by the ATP-dependent reaction of luciferase with luciferin. We found that all three forms of radiation led to a reduction in the ATP levels in melanized C. neoformans cells. This points to a universal melanin-related mechanism underlying observation of ATP decrease in irradiated melanized cells. In contrast, in non-melanized cells visible light led to increase in ATP levels; gamma radiation did not cause any changes while UV exposure resulted in some ATP decrease, however, much less pronounced than in melanized cells. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Alopecia of IFN-gamma knockout mouse as a model for disturbance of the hair cycle: a unique arrest of the hair cycle at the anagen phase accompanied by mitosis.

    PubMed

    Hirota, Ryuichiro; Tajima, Sadao; Yoneda, Yukio; Tamayama, Takumi; Watanabe, Masahito; Ueda, Kouichi; Kubota, Takahiro; Yoshida, Ryotaro

    2002-09-01

    Interferon-gamma(-/-) (IFN-gamma(-/-)) and IFN-gamma(+/+) C57BL/6 mice (3 weeks of age) completed the production of morphogenesis-derived hair. Around 6 weeks of age, however, most of the IFN-gamma(-/-) but none of the IFN-gamma(+/+) mice began to lose hairs in the dorsal and occipital areas in the absence of inflammatory reactions, and the alopecia was sustained for at least several 10-week periods of observation. A single subcutaneous injection of IFN-gamma to IFN-gamma(-/-) mice at 3, but not 4, 5, or 8 weeks of age could protect all the mice from alopecia, revealing that the lack of IFN-gamma around 3 weeks of age is directly responsible for the alopecia. Histologic features showed that the hair follicles of the IFN-gamma(+/+) mice passed through the anagen (4-5 weeks of age) and catagen/telogen ( approximately 6 weeks of age) phases, whereas those of IFN-gamma(-/-) mice (5 weeks of age or older) stayed in the anagen phase. TUNEL and bromodeoxyuridine experiments suggested that an arrest with unlimited DNA synthesis of the hair cycle in the anagen phase by the lack of IFN-gamma-dependent apoptosis in the midfollicle region and diffuse shedding of previously formed hair induced alopecia in IFN-gamma(-/-) mice.

  15. Evaluation of gamma interferon (IFN-gamma)-induced protein 10 (IP-10) responses for detection of cattle infected with Mycobacterium bovis: comparisons to IFN-gamma responses

    USDA-ARS?s Scientific Manuscript database

    Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...

  16. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2015-12-01

    (7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV). This work studies bombarding energies up to 2.05 MeV, different beam incidence angles and the effect of the undesirable gamma production via the (7)Li(p,γp') (7)Li reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Colliding neutron stars. Gravitational waves, neutrino emission, and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Janka, H.-Th.

    1998-10-01

    Three-dimensional hydrodynamical simulations are presented for the direct head-on or off-center collision of two neutron stars, employing a basically Newtonian PPM code but including the emission of gravitational waves and their back-reaction on the hydrodynamical flow. A physical nuclear equation of state is used that allows us to follow the thermodynamical evolution of the stellar matter and to compute the emission of neutrinos. Predicted gravitational wave signals, luminosities and waveforms, are presented. The models are evaluated for their implications for gamma-ray burst scenarios. We find an extremely luminous outburst of neutrinos with a peak luminosity of more than 4* 10(54) erg/s for several milliseconds. This leads to an efficiency of about 1% for the annihilation of neutrinos with antineutrinos, corresponding to an average energy deposition rate of more than 10(52) erg/s and a total energy of about 10(50) erg deposited in electron-positron pairs around the collision site within 10 ms. Although these numbers seem very favorable for gamma-ray burst scenarios, the pollution of the e(+/-) pair-plasma cloud with nearly 10(-1} M_{sun) of dynamically ejected baryons is 5 orders of magnitude too large. Therefore the formation of a relativistically expanding fireball that leads to a gamma-ray burst powered by neutrino emission from colliding neutron stars is definitely ruled out.

  18. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing

    PubMed Central

    Insel, Nathan; Patron, Lilian A.; Hoang, Lan T.; Nematollahi, Saman; Schimanski, Lesley A.; Lipa, Peter; Barnes, Carol A.

    2012-01-01

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30–100 Hz “gamma” oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40–70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials (LFPs), later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited inter-spike intervals consistent with a fast (70–100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the neurons’ average firing rates. We propose that an average lengthening of the cortical 15–25 ms gamma cycle is one factor contributing to age-related slowing, and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs. PMID:23152616

  19. Lewis acid tuned facial stereodivergent HDA reactions using beta-substituted N-vinyloxazolidinones.

    PubMed

    Gohier, Frédéric; Bouhadjera, Keltoum; Faye, Djibril; Gaulon, Catherine; Maisonneuve, Vincent; Dujardin, Gilles; Dhal, Robert

    2007-01-18

    The [4 + 2] acido-catalyzed heterocycloaddition between new beta-substituted N-vinyl-1,3-oxazolidin-2-ones (with R' = Me, Ar, CH2 Ar) and beta,gamma-unsaturated alpha-ketoesters (R = Ar) afforded heteroadducts with high levels of endo and facial selectivities. A complete reversal of facial differentiation was achieved by varying the Lewis acid, leading to the stereoselective formation of either endo-alpha or endo-beta adducts. [reaction: see text].

  20. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  1. Studying 10Be and 11Be Halo States through the (p,d) Single-Neutron Transfer Reaction

    NASA Astrophysics Data System (ADS)

    Kuhn, Keri; Sarazin, Fred; Tigress Collaboration; (Pcb) 2 Collaboration

    2017-09-01

    One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as 11Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the 11Be ground-state but also a possible excited halo state in 10Be. The 11Be(p, d)10Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)2) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in 10Be around 6 MeV, including the suspected halo state (2- state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the 10Be populated states will be shown along with their FRESCO fits. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03- 93ER40789 (Colorado School of Mines).

  2. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  3. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  4. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene.

    PubMed

    Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R

    1997-04-28

    We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.

  5. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  6. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  7. HCl Vapour Pressures and Reaction Probabilities for ClONO2 + HCl on Liquid H2SO4-HNO3-HCl-H20 Solutions

    NASA Technical Reports Server (NTRS)

    Elrod, M. J.; Koch, R. E.; Kim, J. E.; Molina, M. J.

    1995-01-01

    Henry's Law solubility constants for HCl have been measured for liquid H2SO4-HNO3-HCl-H2O solutions; the results are in good agreement with predictions from published semiempirical models. The ClONO2 + HCl reaction on the surfaces of such solutions with compositions simulating those of stratospheric aerosols has been investigated; as the composition changes following the temperature drop characteristic of the high-latitude stratosphere the reaction probability gamma increases rapidly. Furthermore, the gamma values remain essentially unchanged when HN03 uptake is neglected; the controlling factor appears to be the solubility of HCl. These results corroborate our earlier suggestion that supercooled liquid sulfate aerosols promote chlorine activation at low temperatures as efficiently as solid polar stratospheric cloud particles.

  8. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.

  9. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    NASA Astrophysics Data System (ADS)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  10. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    DTIC Science & Technology

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA

  11. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  12. PANDORA, a large volume low-energy neutron detector with real-time neutron-gamma discrimination

    NASA Astrophysics Data System (ADS)

    Stuhl, L.; Sasano, M.; Yako, K.; Yasuda, J.; Baba, H.; Ota, S.; Uesaka, T.

    2017-09-01

    The PANDORA (Particle Analyzer Neutron Detector Of Real-time Acquisition) system, which was developed for use in inverse kinematics experiments with unstable isotope beams, is a neutron detector based on a plastic scintillator coupled to a digital readout. PANDORA can be used for any reaction study involving the emission of low energy neutrons (100 keV-10 MeV) where background suppression and an increased signal-to-noise ratio are crucial. The digital readout system provides an opportunity for pulse shape discrimination (PSD) of the detected particles as well as intelligent triggering based on PSD. The figure of merit results of PANDORA are compared to the data in literature. Using PANDORA, 91 ± 1% of all detected neutrons can be separated, while 91 ± 1% of the detected gamma rays can be excluded, reducing the gamma ray background by one order of magnitude.

  13. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    PubMed

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  14. Effect of alpha/gamma phase ratio on corrosion behavior of dual-phase stainless steels.

    PubMed

    Lim, Y J; Reyes, M; Thongthammachat, S; Sukchit, K; Panich, M; Oshida, Y

    1999-01-01

    Dual-phase stainless steels have been developed in order to reduce the nickel content, which is potentially responsible to an allergic reaction when these steels are used as medical or dental applications. In this study, two different dual-phase stainless steels (2205 and Z100) were electrochemically tested to evaluate their corrosion resistance in three corrosive solutions (i.e., synthetic saliva, 0.9% NaCl solution, and Ringer solution). Particularly, an attempt was made to correlate the corrosion resistance to a metallographic parameter, which is, in this study, the alpha/gamma phase ratio. It was concluded that (1) type 2205 stainless steel exhibited excellent corrosion resistance in all three corrosion media; however 2205 stainless steel decreases its corrosion resistance by increasing chloride concentration in tested electrolytes from synthetic saliva through 0.9% NaCl solution to Ringer solution. (2) X-ray diffraction analysis indicated that the alpha/gamma phase ratio of 2205 (1.735) was higher than that of Z100 (0.905). As a result, it is suggested that by increasing the alpha/gamma phase ratio the material shows more corrosion-prone behavior when being subjected to a hostile environment containing higher chloride ion concentration.

  15. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  16. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  17. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2.

    PubMed

    Cui, Lei; Yin, Shuo; Liu, Wei; Li, Ningli; Zhang, Wenjie; Cao, Yilin

    2007-06-01

    Multipotent mesenchymal stem cells (MSCs) in adult tissue are known to be less immunogenic and immunosuppressive. Previous study showed that primary cultures of human adipose-derived stem cells (ADSCs) shared their immunomodulatory properties with other MSCs. However, whether passaged human ADSCs can retain their immunomodulatory effect after in vitro expansion remains unknown. In addition, the mechanism of ADSC-mediated immunomodulatory effect remains to be elucidated. This study aimed to investigate these issues by using passaged human ADSCs as an in vitro study model. Flow cytometry showed that passaged ADSCs expressed human leukocyte antigen (HLA) class I but not class II molecules, which could be induced to express to a high level with interferon-gamma (IFN-gamma) treatment. The study found that passaged ADSCs could not elicit lymphocyte proliferation after co-culturing with them, even after IFN-gamma treatment. In addition, either IFN-gamma-treated or non-treated ADSCs could inhibit phytohemagglutinin (PHA)-stimulated lymphocyte proliferation. Moreover, passaged ADSCs could serve as the third-party cells to inhibited two-way mixed lymphocyte reaction (MLR). Further study using a transwell system also showed that this type of immunosuppressive effect was not cell-cell contact dependent. In defining possible soluble factors, we found that passaged ADSCs significantly increased their secretion of prostaglandin E2 (PGE2), but not transforming growth factor-beta (TGF-beta) and hepatocyte growth factor (HGF), when they were co-cultured with MLR. Furthermore, the result demonstrated that only PGE2 production inhibitor indomethacine, but not TGF-beta- and HGF-neutralizing antibodies, could significantly counteract ADSC-mediated suppression on allogeneic lymphocyte proliferation. These results indicated that in vitro expanded ADSCs retain low immunogenicity and immunosuppressive effect, and PGE2 might be the major soluble factor involved in the in vitro inhibition of

  18. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  19. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  20. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  1. Hard gamma radiation background from coding collimator of gamma telescope under space experiment conditions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.

    1985-09-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  2. Apoptosis of Trypanosoma musculi co-cultured with LPS activated macrophages: enhanced expression of nitric oxide synthase INF-gamma and caspase.

    PubMed

    Gugssa, A; Gebru, S; Lee, C M; Baccetti, B; Anderson, W

    2005-08-01

    Trypanosoma musculi-macrophage co-cultures were studied to investigate the biological role of lipopolysaccharide (LPS) induced cytokines in controlling the proliferation of parasites in vitro. Macrophages, isolated by peritoneal lavage, sustained the growth and proliferation of the parasites. Macrophages activated with LPS were characterized by up-regulation of nitric oxide synthase (iNOS) and phagocytosis of fluorescent latex spheres. Activated macrophages showed marked inhibition of the association and proliferation of the parasites. The LPS treated macrophages produced cytokines, especially interferon gamma (INF-gamma), which was detected by Western blot. Trypanosomes, inhibited from association with macrophages, did not proliferate and instead formed clusters held together by their flagella. Cells in these clusters were apoptotic, as demonstrated by the Apoptag reaction and gel fragmentation assay. In addition, high levels of caspase 8 and caspase 3 were shown in floating trypanosome clusters. The results would suggest that INF-gamma and other cytokines released by activated macrophages, possibly functioning through the INF-gammaR1, Fas ligand, CD95 or other death ligands in the trypanosome plasma membrane initiates the apoptosis cascade in trypanosomes.

  3. Spontaneous Gamma Activity in Schizophrenia.

    PubMed

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  4. Prompt fission gamma-ray emission spectral data for 239Pu(n,f) using fast directional neutrons from the LICORNE neutron source

    NASA Astrophysics Data System (ADS)

    Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.

    2018-03-01

    Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.

  5. Feasibility study of single photon emission coupled tomography imaging technique based on prompt gamma ray during antiproton therapy using boron particle

    NASA Astrophysics Data System (ADS)

    Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Sunmi; Choi, Yong; Yoon, Do-Kun; Suh, Tae Suk

    2018-06-01

    In this study, we proposed an absorbed-dose monitoring technique using prompt gamma rays emitted from the reaction between an antiproton and a boron particle, and demonstrated the greater physical effect of the antiproton boron fusion therapy in comparison with proton beam using Monte Carlo simulation. The physical effect of the treatment, which was 3.5 times greater, was confirmed from the antiproton beam irradiation compared to the proton beam irradiation. Moreover, the prompt gamma ray image is acquired successfully during antiproton irradiation to boron regions. The results show the application feasibility of absorbed dose monitoring technique proposed in our study.

  6. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  7. A comparison of the product formation induced by ultrasonic waves and gamma-rays in aqueous D-glucose solution.

    PubMed

    Heusinger, H

    1987-08-01

    The oxidation products obtained in aerated, aqueous alpha-D-glucose solutions after irradiation with ultrasonic waves and gamma-rays were compared. Separation and identification were performed by gas chromatography/mass spectrometry and three methods for the derivatization of the products were used: (1) trimethylsilylation of the OH groups; (2) methoximation of the carbonyl groups followed by trimethylsilylation of the OH groups; (3) reduction of the carbonyl and carboxyl groups to alcohols by sodium borodeuteride, followed by trimethylsilylation of the OH groups. When using ultrasound and gamma-irradiation identical products were observed: D-glucono-1,4-lactone, D-glucono-1,5-lactone, D-arabino-hexos-2-ulose, D-ribo-hexos-3-ulose, D-xylo-hexos-4-ulose, D-xylo-hexos-5-ulose, D-glucohexodialdose and arabino-1,4-lactone. From the results it was concluded that in ultrasound and gamma-irradiation the same primary species and consecutive reactions are involved in product formation.

  8. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  9. Digital gamma-gamma coincidence HPGe system for environmental analysis.

    PubMed

    Marković, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-08-01

    The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cross Sections for the Reactions e+e to K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.; Poireau, V.; Prencipe, E.

    2011-08-19

    We study the processes e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}-{gamma}, K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0}{gamma}, and K{sup +}K{sup -}K{sup +}K{sup -}{gamma}, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb{sup -1} of BABAR data. The invariant mass of the hadronic final state defines the e{sup +}e{sup -} center-of-mass energy, so that the K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{gamma} data can be compared with direct measurements of the e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}{sup -} reaction. No direct measurements exist for the e{sup +}e{supmore » -} {yields} K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0} or e{sup +}e{sup -} {yields} K{sup +}K{sup -}K{sup +}K{sup -} reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e{sup +}e{sup -} {yields} {phi}(1020){pi}{pi}{gamma} reaction, and confirm the presence of the Y (2175) resonance in the {phi}(1020)f{sub 0}(980) and K{sup +}K{sup -} f{sub 0}(980) modes. In the charmonium region, we observe the J/{psi} in all three final states and in several intermediate states, as well as the {phi}(2S) in some modes, and measure the corresponding branching fractions.« less

  11. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.

    PubMed

    Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G

    2001-03-02

    Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.

  12. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  13. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  14. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    NASA Astrophysics Data System (ADS)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  15. The solar gamma ray spectrum between 4 and 8 MeV

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Suri, A. N.

    1976-01-01

    The properties of nuclear gamma ray emission in the 4 to 8 MeV range were evaluated. This emission consists of broad and narrow lines resulting from nuclear reactions of energetic H, He, C and O nuclei with ambient matter. Calculations were compared with observations of the 1972, August 4 flare and show that: (1) essentially all the observed radiation in the 4 to 8 MeV region is to the superposition of broad and narrow lines of nuclear origin with almost no contribution from other mechanisms; (2) the accelerated particles in the energy region from about 10 to 100 MeV/amu have a relatively flat Energy spectrum; (3) the calculated gamma ray spectrum, obtained from an isotropic distribution of accelerated particles, fits the observed spectrum better than the spectrum derived from an anisotropic distribution for which the particles' velocity vectors point towards the photosphere; and (4) it is possible to set a stringent upper limit on the ratio of relativistic electrons to protons in flares, consistent with the small, but finite, electron-to-proton ratio in galactic cosmic rays.

  16. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  17. The Influence of the Level Structure of Sodium -20 upon the Stellar Reaction Rate for NEON-19(PROTON, PHOTON)(20)SODIUM.

    NASA Astrophysics Data System (ADS)

    Lamm, Larry Odell

    The level structure of ^{20 }Na has been measured up to excitation energies of 3.33 MeV using the charge-exchange reaction 20Ne(^3He,t) 20Na. Angular distributions have been measured for 14 levels at laboratory angles ranging from 10 to 60 degrees. Assignments of spin and parities have been made for the levels based on DWBA analysis of the angular distributions and comparisons with the level structure of the analog nuclei. The reaction rate for ^{19 }Ne(p,gamma)^{20 }Na has been calculated to include the effects of the resonant levels of temperatures of interest in the operation of the hot CNO cycle. The result is an increase of nearly three orders of magnitude in the stellar reaction rate for 19Ne(p, gamma)20Na, as compared to previous estimates made before the measurement of the level structure of 20Na. This increase may indicate that 19 Ne(p,gamma)20 Na is the sought after breakout mechanism to allow for the transport of mass from the CNO region into the Ne-Na-Mg regions, with applications for the rp-process and the possible explanation of the observed neon overabundances in some nova events. A detailed description of the experiment is given, including a discussion of the development of a new type of position sensitive detector for use with the broad range magnetic spectrograph which has allowed, for the first time, the unambiguous identification to tritons within the spectrograph.

  18. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  19. Heterogeneous Reaction of ClONO2(g) + NaCl(s) to Cl2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun; Keyser, Leon F.

    1994-01-01

    The heterogeneous reaction of ClON02 + NaCl yields Cl2 + NaNO3 (eq 1) was investigated over a temperature range 220-300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer. Partial pressures of ClON02 in the range 10(exp -8) - 10(exp -5) Torr were used. Granule sizes and surface roughness of the NaCl substrates were determined by using a scanning electron microscope, and in separate experiments, surface areas of the substrates were measured by using BET analysis of gas-adsorption isotherms. For dry NaCl substrates, both the decay rates of ClON02 and the growth rates Of C12 were used to obtain reaction probabilities, gamma(sub l) = (4.6 +/- 3.0) x 10(exp -3) at 296 K and (6.7 +/- 3.2) x 10(exp -1) at 225 K, after considering the internal surface area, The error bars represent 1 standard deviation. The Cl2 yield based on the ClONO2 reacted was measured to be 1.0 +/- 0.2. In order to mimic the conditions encountered in the lower stratosphere, the effect of water vapor pressures between 5 x 10(exp -5) and 3 x 10(exp -4) Torr on reaction 1 was also studied. With added H20, reaction probabilities, gamma = (4.1 +/- 2.1) x 10(exp -3) at 296 K and (4.7 +/- 2.9) x 10(exp -3) at 225 K, were obtained. A trace of HOCl, the reaction product from the ClON02 + H20 yield HOCl + HN03 reaction, was observed in addition to the C12 product from reaction 1. The implications of this result for the enhancement of hydrogen chloride in the stratosphere after the El Chichon volcanic eruption and for the marine troposphere are discussed.

  20. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  1. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  2. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  3. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  4. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  5. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats

    PubMed Central

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-01-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003

  6. GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.

    2016-08-01

    The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.

  7. Spectroscopic Investigations with Dual Neutron-Gamma Scintillators

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Morse, C.; Rogers, A. M.; Wilson, G. L.; Devlin, M.; Fotiades, N.; Gomez, J. A.; Mosby, S.

    2017-09-01

    The spectroscopic capabilities of 7Li-enriched Cs27LiYCl6 (C7LYC) dual neutron-gamma scintillators are being tested in diverse application arenas to exploit the excellent pulse-shape discrimination together with the unprecedented pulse height resolution ( 10%) for fast neutrons in the < 8 MeV range via the 35Cl(n,p) reaction. Test experiments include both elastic and inelastic neutron scattering cross-sections on 56Fe at Los Alamos with a pulsed white neutron source, as well as (p,n) and (d,n) reactions on low-Z targets using mono-energetic proton and deuteron beams from the 5.5 MV Van de Graaff accelerator at the UMass Lowell Radiation Laboratory. Tests of waveform digitizers with different sampling rates are also being performed. A key goal is to evaluate whether the low intrinsic efficiency of C7LYC for fast neutrons compared to traditional neutron detectors, such as liquid scintillators, can be effectively offset by the gain in solid angle obtained by positioning the detectors much closer to the target, since the typical long time-of-flight arms for energy resolution are not necessary. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA0002932.

  8. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  9. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  11. Attrition resistant gamma-alumina catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  12. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  13. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  14. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  15. Joining of Gamma Titanium Aluminides

    DTIC Science & Technology

    2002-09-01

    AFRL-ML-WP-TR-2003-4036 JOINING OF GAMMA TITANIUM ALUMINIDES LTC William A. Baeslack, III Metals Branch (AFRL/MLLM) Metals, Ceramics, and...GAMMA TITANIUM ALUMINIDES 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER MO2R 5e. TASK NUMBER 10 6. AUTHOR(S) LTC William A...comparatively discusses the results of research and development performed on the joining of gamma titanium aluminides during the past two decades. Although

  16. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  17. Measurement of key resonance states for the P 30 ( p , γ ) S 31 reaction rate, and the production of intermediate-mass elements in nova explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kankainen, A.; Woods, P. J.; Schatz, H.

    2017-06-01

    We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P-30(p, gamma)S-31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P-30(d,n)S-31 reaction was studied in inverse kinematics using the GRETINA gamma-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicatemore » the dominance of a single 3/2(-) resonance state at 196 keV in the region of nova burning T approximate to 0.10-0.17 GM, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.« less

  18. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  19. The control and data acquisition structure for the GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, Andrey

    2016-07-01

    The GAMMA-400 space project is intended for precision investigation of the cosmic gamma-emission in the energy band from keV region up to several TeV, electrons and positrons fluxes from ˜~1~GeV up to ˜~10~TeV and high energy cosmic-ray nuclei fluxes. A description of the control and data acquisition structure for gamma-telescope involved in the GAMMA 400 space project is given. The technical capabilities of all specialized equipment providing the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands and program commands transmitted via onboard control system and scientific data acquisition system. Up to 100~GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified experimentally with the scientific complex prototype in the laboratory conditions.

  20. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  1. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  2. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  3. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    NASA Astrophysics Data System (ADS)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  4. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  6. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  7. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  8. Volume effects in the decay of free radicals in organic crystals. [cobalt 60 gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markaryan, R.E.; Kovarskii, A.L.; Tshetinin, V.G.

    The decay kinetics of the free radicals produced by {gamma}-irradiation of single crystals of organic dicarboxylic acids is studied at hydrostatic pressures up to 200 MPa. Correlation is established between the reaction's activation parameters (V{sup *} and E{sup *}) and the crystals macrocharacteristics - the compressibility and thermal expansion coefficients. A common equation is proposed to describe the variation of the radical decay rate constant with temperature and pressure in malonic, succinic, adipic, glutaric, suberic, and sebacic acids.

  9. Quality assurance for gamma knives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys,more » interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.« less

  10. Regulation of PPAR{gamma} function by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewedmore » with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.« less

  11. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  12. Laser pyrolysis fabrication of ferromagnetic gamma'-Fe4N and FeC nanoparticles

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Qian, D.; Dickey, E. C.; Allen, J. L.; Eklund, P. C.

    2000-01-01

    Using the laser pyrolysis method, single phase gamma'-Fe4N nanoparticles were prepared by a two step method involving preparation of nanoscale iron oxide and a subsequent gas-solid nitridation reaction. Single phase Fe3C and Fe7C3 could be prepared by laser pyrolysis from Fe(CO)5 and 3C2H4 directly. Characterization techniques such as XRD, TEM and vibrating sample magnetometer were used to measure phase structure, particle size and magnetic properties of these nanoscale nitride and carbide particles. c2000 American Journal of Physics.

  13. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  14. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  15. Cortical volume and sex influence visual gamma.

    PubMed

    van Pelt, Stan; Shumskaya, Elena; Fries, Pascal

    2018-06-05

    Visually induced gamma-band activity (GBA) has been implicated in several central cognitive functions, in particular perceptual binding, the feedforward routing of attended stimulus information and memory encoding. Several studies have documented that the strength and frequency of GBA are influenced by both subject-intrinsic factors like age, and subject-extrinsic factors such as stimulus contrast. Here, we investigated the relative contributions of previously tested factors, additional factors, and their interactions, in a cohort of 158 subjects recorded with magnetoencephalography (MEG). In agreement with previous studies, we found that gamma strength and gamma peak frequency increase with stimulus contrast and stimulus velocity. Also in confirmation of previous findings, we report that gamma peak frequency declines with subject age. In addition, we found that gamma peak frequency is higher for subjects with thicker occipital cortex, but lower for larger occipital cortices. Also, gamma peak frequency is higher in female than male subjects. Extrinsic factors (stimulus contrast and velocity) and intrinsic factors (age, cortical thickness and sex) together explained 21% of the variance in gamma peak frequency and 20% of the variance in gamma strength. These results can contribute to our understanding of the mechanisms, by which gamma is generated, and the mechanisms, through which it affects the cognitive performance of a given individual subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is

  17. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  18. Process gg{yields}h{sub 0}{yields}{gamma}{gamma} in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, F.; Underwood, T. E. J.; Zwicky, R.

    2008-01-01

    The process gg{yields}h{sub 0}{yields}{gamma}{gamma} is studied in the Lee-Wick extension of the standard model (LWSM) proposed by Grinstein, O'Connell, and Wise. In this model, negative norm partners for each SM field are introduced with the aim to cancel quadratic divergences in the Higgs mass. All sectors of the model relevant to gg{yields}h{sub 0}{yields}{gamma}{gamma} are diagonalized and results are commented on from the perspective of both the Lee-Wick and higher-derivative formalisms. Deviations from the SM rate for gg{yields}h{sub 0} are found to be of the order of 15%-5% for Lee-Wick masses in the range 500-1000 GeV. Effects on the rate formore » h{sub 0}{yields}{gamma}{gamma} are smaller, of the order of 5%-1% for Lee-Wick masses in the same range. These comparatively small changes may well provide a means of distinguishing the LWSM from other models such as universal extra dimensions where same-spin partners to standard model fields also appear. Corrections to determinations of Cabibbo-Kobayashi-Maskawa (CKM) elements |V{sub t(b,s,d)}| are also considered and are shown to be positive, allowing the possibility of measuring a CKM element larger than unity, a characteristic signature of the ghostlike nature of the Lee-Wick fields.« less

  19. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  20. Helicity Asymmetry in gamma p -> pi+ n with FROST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen Strauch

    2012-04-01

    The main objective of the FROST experiment at Jefferson Lab is the study of baryon resonances. The polarization observable E for the reaction gamma p to pi+n has been measured as part of this program. A circularly polarized tagged photon beam with energies from 0.35 to 2.35 GeV was incident on a longitudinally polarized frozen-spin butanol target. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer. Preliminary polarization data agree fairly well with present SAID and MAID partial-wave analyses at low photon energies. In most of the covered energy range, however, significant deviations are observed. These discrepancies underlinemore » the crucial importance of polarization observables to further constrain these analyses.« less

  1. Estimation of neutron spectrum in the low-level gamma spectroscopy system using unfolding procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knežević, D., E-mail: david.knezevic@df.uns.ac.rs; Jovančević, N.; Krmar, M.

    2016-03-25

    The radiation resulting from neutron interactions with Ge nuclei in active volume of HPGe detectors is one of the main concerns in low-level gamma spectroscopy measurements [1,2]. It is usually not possible to measure directly spectrum of neutrons which strike detector. This paper explore the possibility of estimation of neutron spectrum using measured activities of certain Ge(n,γ) and Ge(n,n’) reactions (obtained from low-level gamma measurements), available ENDF cross section data and unfolding procedures. In this work HPGe detector with passive shield made from commercial low background lead was used for the measurement. The most important objective of this study wasmore » to reconstruct muon induced neutron spectrum created in the shield of the HPGe detector. MAXED [3] and GRAVEL [4] algorithms for neutron spectra unfolding were used. The results of those two algorithms were compared and we analyzed the sensitivity of the unfolding procedure to the various input parameters.« less

  2. Ionizing radiation potentiates the induction of nitric oxide synthase by interferon-gamma (Ifn-gamma) or Ifn-gamma and lipopolysaccharide in bnl cl.2 murine embryonic liver cells: role of hydrogen peroxide.

    PubMed

    Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T

    2000-02-01

    The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.

  3. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  4. Development of a Monte Carlo code for the data analysis of the 18F(p,α)15O reaction at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Caruso, A.; Cherubini, S.; Spitaleri, C.; Crucillà, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Rapisarda, G.; Romano, S.; Sergi, ML.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; Hammache, F.; de Séréville, N.

    2015-02-01

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called "narrow systems" because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of "hot hydrogen burning" are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as 13N and 18F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of 18F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of 18F . Among these, the 18F(p,α)15O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the 18F(p,α)15O reaction, using a beam of 18F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data analysis process.

  5. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52MeV.

    PubMed

    Ditrói, F; Takács, S; Haba, H; Komori, Y; Aikawa, M

    2016-12-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope 117m Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets 117m Sn, 113 Sn, 110 Sn, 117m,g In, 116m In, 115m In, 114m In, 113m In, 111 In, 110m,g In, 109m In, 108m,g In, 115g Cd and 111m Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  7. TEMPORAL EVOLUTION OF SUB-NANOMETER COMPOSITIONAL PROFILES ACROSS THE GAMMA/GAMMA' INTERFACE IN A MODEL Ni-Al-Cr SUPERALLOY

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2005-01-01

    Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.

  8. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts).

    PubMed

    Gattoni, A; Parlato, A; Vangieri, B; Bresciani, M; Derna, R

    2006-01-01

    This review is aimed at exhaustively presenting and discussing the interferon-gamma (IFN-gamma), a cytokine that plays an important role in inducing and modulating an array of immune responses. A review of the most significant and recent clinical trials was performed. Although IFN-gamma has some antiviral activity, it is much less active in this regard than type I IFNs. IFN-gamma is involved in the regulation of nearly all phases of the immune and inflammatory responses, including the activation and differentiation of T cells, B cells, NK cells, macrophages, and others. It is therefore best regarded as a distint immunoregulatory cytokine. IFN-gamma secretion is a hallmark of Th1 lymphocytes. It is also secreted by nearly all CD8 T cells, by some Th0 cells, and by NK cells. Each of these cell types secretes IFN-gamma only when activated, usually as part of immune response and especially in response to IL-2 and IL-12. IFN-gamma production is inhibited by IL-4, IL-10, TGFbeta, glucocorticoids, cyclosporin A and FK506. Nearly all cell types express the heterodimeric receptor for IFN-beta and respond to this cytokine by increasing the surface expression of class I MHC proteins. As a result, virtually any cell in the vicinity of an IFN-beta-secreting cell becomes more efficient at presenting endogenous antigens and hence a better target for cytotoxic killing if it harbors an intracellular pathogen. Unlike the type I IFNs, IFN-gamma also increases the expression of class II MHC proteins on professional APCs, and so promotes antigen presentation to helper T cells as well. It also induces de novo expression of class II MHC proteins on venular endothelial cells and on some other epithelial and connective tissue cells that do not otherwise express them, thus enabling these cell types to function as temporary APCs at sites of intense immune reactions. The effector functions of NK cells are to lyse virus-infected cells and to secrete IFN-gamma, which activates macrofages to

  9. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology

    PubMed Central

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects. PMID:25851655

  10. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry

    NASA Astrophysics Data System (ADS)

    Batista, Adriana S. M.; Faria, Luiz O.

    2017-11-01

    Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.

  11. Human EEG gamma oscillations in neuropsychiatric disorders.

    PubMed

    Herrmann, C S; Demiralp, T

    2005-12-01

    Due to their small amplitude, the importance of high-frequency EEG oscillations with respect to cognitive functions and disorders is often underestimated as compared to slower oscillations. This article reviews the literature on the alterations of gamma oscillations (about 30-80 Hz) during the course of neuropsychiatric disorders and relates them to a model for the functional role of these oscillations for memory matching. The synchronous firing of neurons in the gamma-band has been proposed to bind multiple features of an object, which are coded in a distributed manner in the brain, and is modulated by cognitive processes such as attention and memory. In certain neuropsychiatric disorders the gamma activity shows significant changes. In schizophrenic patients, negative symptoms correlate with a decrease of gamma responses, whereas a significant increase in gamma amplitudes is observed during positive symptoms such as hallucinations. A reduction is also observed in Alzheimer's Disease (AD), whereas an increase is found in epileptic patients, probably reflecting both cortical excitation and perceptual distortions such as déjà vu phenomena frequently observed in epilepsy. ADHD patients also exhibit increased gamma amplitudes. A hypothesis of a gamma axis of these disorders mainly based on the significance of gamma oscillations for memory matching is formulated.

  12. Fatigue crack propagation behaviour of unidirectionally solidified gamma/gamma-prime-delta eutectic alloys. [Ni-Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Bretz, P. E.; Hertzberg, R. W.

    1979-01-01

    Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.

  13. Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment.

  14. Combination neutron-gamma ray detector

    DOEpatents

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  15. Cross sections for production of the 15.10 MeV and other astrophysically significant gamma-ray lines through excitation and spallation of sup 12 C and sup 16 O with protons

    NASA Technical Reports Server (NTRS)

    Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.

    1986-01-01

    The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.

  16. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  17. Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.

    PubMed

    Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M

    1992-01-01

    The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.

  18. First data with the Hybrid Array of Gamma Ray Detector (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, K.; Baugher, T.; Burcher, S.; Carter, A. B.; Cizewski, J. A.; Chipps, K. A.; Febbraro, M.; Grzywacz, R.; Jones, K. L.; Munoz, S.; Pain, S. D.; Paulauskas, S. V.; Ratkiewicz, A.; Schmitt, K. T.; Thornsberry, C.; Toomey, R.; Walter, D.; Willoughby, H.

    2018-01-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reactions and β-decay measurements. These experiments benefit from particle-γ coincidence measurements which provide information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries which are often used to increase the γ efficiency in other systems. First experiments with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA are discussed.

  19. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  1. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  2. Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential.

    PubMed

    Suzuki, H; Hashimoto, W; Kumagai, H

    1993-09-01

    Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.

  3. Effect of gamma irradiation on the TlBa2Ca2Cu3O9-δ superconducting properties

    NASA Astrophysics Data System (ADS)

    Kadhim, Bahjat B.; Khaleel, Imad H.; Hussein, Bushra H.; Jasim, Kareem Ail; Shaban, Auday H.; AL-Maiyaly, Bushra K. H.; Mahdi, Shatha H.

    2018-05-01

    The aim of the present work is studing the influence of gamma irradiation on the superconducting properties of TlBr2Ca2Cu3O9-δ compound, at room temperature by using 137Cs source with dose 10,20 and 30 MRad. Specimen has been prepared by solid state reaction process. Superconductor properties and X-ray diffraction (XRD) studied before and after irradiation. It is showed that our compound has tetragonal structure correspond to the 1223 phase with decreasing of the ratio c/a due to gamma irradiation. In addition, the transition temperature (Tc(on)&Tc(off)) were decreasing from 110 to 85 K, and 129 to 117 K respectivelya,when the dose increasing from 0 to 20 MRad and increase Tc(on) to 119 K &Tc(off) 132 for dose 30 MRad.

  4. Effect of continuous gamma-ray exposure on performance of learned tasks and effect of subsequent fractionated exposures on blood-forming tissue

    NASA Technical Reports Server (NTRS)

    Spalding, J. F.; Holland, L. M.; Prine, J. R.; Farrer, D. N.; Braun, R. G.

    1972-01-01

    Sixteen monkeys trained to perform continuous and discrete-avoidance and fixed-ratio tasks with visual and auditory cues were performance-tested before, during, and after 10-day gamma-ray exposures totaling 0, 500, 750, and 1000 rads. Approximately 14 months after the performance-test exposures, surviving animals were exposed to 100-rad gamma-ray fractions at 56-day intervals to observe injury and recovery patterns of blood-forming tissues. The fixed-ratio, food-reward task performance showed a transient decline in all dose groups within 24 hours of the start of gamma-ray exposure, followed by recovery to normal food-consumption levels within 48 to 72 hours. Avoidance tasks were performed successfully by all groups during the 10-day exposure, but reaction times of the two higher dose-rate groups in which animals received 3 and 4 rads per hour or total doses of 750 and 1000 rads, respectively, were somewhat slower.

  5. IAEA Co-ordinated Research Project: update of X-ray and gamma-ray decay data standards for detector calibration and other applications.

    PubMed

    Nichols, Alan L

    2004-01-01

    A Co-ordinated Research Project (CRP) was established in 1998 by the IAEA Nuclear Data Section (Update of X-ray and gamma-ray Decay Data Standards for Detector Calibration and Other Applications), in order to improve further the recommended decay data used to undertake efficiency calibrations of gamma-ray detectors. Participants in this CRP reviewed and modified the list of radionuclides most suited for detector efficiency calibration, and also considered the decay-data needs for safeguards, waste management, dosimetry, nuclear medicine, material analysis and environmental monitoring. Overall, 62 radionuclides were selected for decay-data evaluation, along with four parent-daughter combinations and two natural decay chains. gamma-ray emissions from specific nuclear reactions were also included to extend the calibrant energy well beyond 10 MeV. A significant number of these decay-data evaluations have been completed, and an IAEA-TECDOC report and database are in the process of being assembled for planned completion by the end of 2003.

  6. Technical Note: Relationships between gamma criteria and action levels: Results of a multicenter audit of gamma agreement index results.

    PubMed

    Crowe, Scott B; Sutherland, Bess; Wilks, Rachael; Seshadri, Venkatakrishnan; Sylvander, Steven; Trapp, Jamie V; Kairn, Tanya

    2016-03-01

    The aim of this work was to use a multicenter audit of modulated radiotherapy quality assurance (QA) data to provide a practical examination of gamma evaluation criteria and action level selection. The use of the gamma evaluation method for patient-specific pretreatment QA is widespread, with most commercial solutions implementing the method. Gamma agreement indices were calculated using the criteria 1%/1 mm, 2%/2 mm, 2%/3 mm, 3%/2 mm, 3%/3 mm, and 5%/3 mm for 1265 pretreatment QA measurements, planned at seven treatment centers, using four different treatment planning systems, delivered using three different delivery systems (intensity-modulated radiation therapy, volumetric-modulated arc therapy, and helical tomotherapy) and measured using three different dose measurement systems. The sensitivity of each pair of gamma criteria was evaluated relative to the gamma agreement indices calculated using 3%/3 mm. A linear relationship was observed for 2%/2 mm, 2%/3 mm, and 3%/2 mm. This result implies that most beams failing at 3%/3 mm would also fail for those criteria, if the action level was adjusted appropriately. Some borderline plans might be passed or failed depending on the relative priority (tighter tolerance) used for dose difference or distance to agreement evaluation. Dosimeter resolution and treatment modality were found to have a smaller effect on the results of QA measurements than the number of dimensions (2D or 3D) over which the gamma evaluation was calculated. This work provides a method (and a large sample of results) for calculating equivalent action levels for different gamma evaluation criteria. This work constitutes a valuable guide for clinical decision making and a means to compare published gamma evaluation results from studies using different evaluation criteria. More generally, the data provided by this work support the recommendation that gamma criteria that specifically prioritize the property of greatest clinical importance for each

  7. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  8. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  9. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  10. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  11. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  12. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  13. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047 Gamma radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where...

  14. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  15. Regulation of gamma-Secretase in Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less

  16. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  17. Measuring B to S Gamma, B to D Gamma and |V(Td)/V(Ts)| at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bard, Deborah; /SLAC

    2012-06-01

    Using a sample of 471 million B{bar B} events collected with the BaBar detector, we study the sum of seven exclusive final states b {yields} X{sub s(d)}{gamma}, where X{sub s(d)} is a strange (non-strange) hadronic system with a mass of up to 2.0 Gev/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b {yields} d{gamma} of (9.2 {+-} 2.0(stat.) {+-} 2.3(syst.)) x 10{sup -6} in this mass range, and a branching fraction for b {yields} s{gamma} of (23.0 {+-} 0.8(stat.) {+-} 3.0(syst.)) x 10{sup -5} in the same mass range. We find BF(b {yields} d{gamma})/BF(bmore » {yields} s{gamma}) = 0.040 {+-} 0.009(stat.) {+-} 0.010(syst.), from which we determine |V{sub td}/V{sub ts}| = 0.199 {+-} 0.022(stat.) {+-} 0.024(syst.) {+-} 0.002(th.).« less

  18. One-step synthesis of gene carrier via gamma irradiation and its application in tumor gene therapy

    PubMed Central

    Kim, Eun-Ji; Heo, Hun; Park, Jong-Seok; Gwon, Hui-Jeong; Lim, Youn-Mook; Jang, Mi-Kyeong

    2018-01-01

    Introduction Although numerous studies have been conducted with the aim of developing drug-delivery systems, chemically synthesized gene carriers have shown limited applications in the biomedical fields due to several problems, such as low-grafting yields, undesirable reactions, difficulties in controlling the reactions, and high-cost production owing to multi-step manufacturing processes. Materials and methods We developed a 1-step synthesis process to produce 2-aminoethyl methacrylate-grafted water-soluble chitosan (AEMA-g-WSC) as a gene carrier, using gamma irradiation for simultaneous synthesis and sterilization, but no catalysts or photoinitiators. We analyzed the AEMA graft site on WSC using 2-dimensional nuclear magnetic resonance spectroscopy (2D NMR; 1H and 13C NMR), and assayed gene transfection effects in vitro and in vivo. Results We revealed selective grafting of AEMA onto C6-OH groups of WSC. AEMA-g-WSC effectively condensed plasmid DNA to form polyplexes in the size range of 170 to 282 nm. AEMA-g-WSC polyplexes in combination with psi-hBCL2 (a vector expressing short hairpin RNA against BCL2 mRNA) inhibited tumor cell proliferation and tumor growth in vitro and in vivo, respectively, by inducing apoptosis. Conclusion The simple grafting process mediated via gamma irradiation is a promising method for synthesizing gene carriers. PMID:29416333

  19. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  20. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  2. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  3. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  4. Measurement of absolute gamma emission probabilities

    NASA Astrophysics Data System (ADS)

    Sumithrarachchi, Chandana S.; Rengan, Krish; Griffin, Henry C.

    2003-06-01

    The energies and emission probabilities (intensities) of gamma-rays emitted in radioactive decays of particular nuclides are the most important characteristics by which to quantify mixtures of radionuclides. Often, quantification is limited by uncertainties in measured intensities. A technique was developed to reduce these uncertainties. The method involves obtaining a pure sample of a nuclide using radiochemical techniques, and using appropriate fractions for beta and gamma measurements. The beta emission rates were measured using a liquid scintillation counter, and the gamma emission rates were measured with a high-purity germanium detector. Results were combined to obtain absolute gamma emission probabilities. All sources of uncertainties greater than 0.1% were examined. The method was tested with 38Cl and 88Rb.

  5. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  6. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  7. Gamma-delta t-cell lymphomas.

    PubMed

    Foppoli, Marco; Ferreri, Andrés J M

    2015-03-01

    Gamma-delta T-cell lymphomas are aggressive and rare diseases originating from gamma-delta lymphocytes. These cells, which naturally play a role in the innate, non-specific immune response, develop from thymic precursor in the bone marrow, lack the major histocompatibility complex restrictions and can be divided into two subpopulations: Vdelta1, mostly represented in the intestine, and Vdelta2, prevalently located in the skin, tonsils and lymph nodes. Chronic immunosuppression such as in solid organ transplanted subjects and prolonged antigenic exposure are probably the strongest risk factors for the triggering of lymphomagenesis. Two entities are recognised by the 2008 WHO Classification: hepatosplenic gamma-delta T-cell lymphoma (HSGDTL) and primary cutaneous gamma-delta T-cell lymphoma (PCGDTL). The former is more common among young males, presenting with B symptoms, splenomegaly and thrombocytopenia, usually with the absence of nodal involvement. Natural behaviour of HSGDTL is characterised by low response rates, poor treatment tolerability, common early progression of disease and disappointing survival figures. PCGDTL accounts for <1% of all primary cutaneous lymphomas, occurring in adults with relevant comorbidities. Cutaneous lesions may vary, but its clinical behaviour is usually aggressive and long-term survival is anecdotal. Available literature on gamma-delta T-cell lymphomas is fractioned, mostly consisting of case reports or small cumulative series. Therefore, clinical suspicion and diagnosis are usually delayed, and therapeutic management remains to be established. This review critically analyses available evidence on diagnosis, staging and behaviour of gamma-delta T-cell lymphomas, provides recommendations for therapeutic management in routine practice and discusses relevant unmet clinical needs for future studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. AN ORIENTATIONAL RESPONSE TO WEAK GAMMA RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, F.A. Jr.

    1963-10-01

    The common planarian worm, Duesia dorotocephsla, displays a significant orientational response to increase in Cs/sup 137/ gamma radiation when the increase is no greater than six times background. The worms are able to distinguish the direction of the weak gamma source, turning away from it, whether it is presented on the right or left side. The response sign is, therefore, the same as that of the response of these negatively phototactic worms to visible light. There is a clear compass-directional relationship of the responsiveness to the experimental gamma radiation. A conspicuous negative response is present when the worms are travelingmore » northward or southward in the earth's field with the gamma change in an east-west axis. No statistically significant mean turning response to the gamma radiation is found when the worms are traveling eastward or westward in the earth's field with the gamma change in a north-south axis. The previously observed annual fluctuation in the character of the monthly orientational rhythm of north-directed worms has been confirmed in an additional year of study. During colder months, the rhythm is monthly; during warmer months it is semi-monthly. There is a semi-monthly fluctuation in the response of Dugesia to weak gamma radiation during mid-morning hours, the worms turning away from the source for four days prior to new end full moon, and toward it for two days following new and full moon. The stronger the field strength, up to 9 times backgound, the larger the amplitude of the rhythm. There is a direct relationship between intensities of gamma radiation between that of background and nine times backgound, and the strength of the negative response of the worms. Evidence suggests that the negative response of Dugesia to a gamma source may be modified by experimental alteration of the natural ambient electrostatic field. Some possible biological significances of this remarkable responsiveness to gamma radiation, and its particular

  9. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  10. Increased visual gamma power in schizoaffective bipolar disorder.

    PubMed

    Brealy, J A; Shaw, A; Richardson, H; Singh, K D; Muthukumaraswamy, S D; Keedwell, P A

    2015-03-01

    Electroencephalography and magnetoencephalography (MEG) studies have identified alterations in gamma-band (30-80 Hz) cortical activity in schizophrenia and mood disorders, consistent with neural models of disturbed glutamate (and GABA) neuron influence over cortical pyramidal cells. Genetic evidence suggests specific deficits in GABA-A receptor function in schizoaffective bipolar disorder (SABP), a clinical syndrome with features of both bipolar disorder and schizophrenia. This study investigated gamma oscillations in this under-researched disorder. MEG was used to measure induced gamma and evoked responses to a visual grating stimulus, known to be a potent inducer of primary visual gamma oscillations, in 15 individuals with remitted SABP, defined using Research Diagnostic Criteria, and 22 age- and sex-matched healthy controls. Individuals with SABP demonstrated increased sustained visual cortical power in the gamma band (t 35 = -2.56, p = 0.015) compared to controls. There were no group differences in baseline gamma power, transient or sustained gamma frequency, alpha band responses or pattern onset visual-evoked responses. Gamma power is increased in remitted SABP, which reflects an abnormality in the cortical inhibitory-excitatory balance. Although an interaction between gamma power and medication can not be ruled out, there were no group differences in evoked responses or baseline measures. Further work is needed in other clinical populations and at-risk relatives. Pharmaco-magnetoencephalography studies will help to elucidate the specific GABA and glutamate pathways affected.

  11. Cen A Optical Gamma Composite

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 The gamma-ray output from Cen A's lobes exceeds their radio output by more than ten times. High-energy gamma rays detected by Fermi's Large Area Telescope are depicted as purple in this gamma ray/optical composite of the galaxy. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  12. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  13. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.

    PubMed

    Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina

    2015-09-01

    The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.

  14. Impact of Image Noise on Gamma Index Calculation

    NASA Astrophysics Data System (ADS)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  15. Effects of aberrant gamma frequency oscillations on prepulse inhibition.

    PubMed

    Jones, Nigel C; Anderson, Paul; Rind, Gil; Sullivan, Caley; van den Buuse, Maarten; O'Brien, Terence J

    2014-10-01

    Emerging literature implicates abnormalities in gamma frequency oscillations in the pathophysiology of schizophrenia, with hypofunction of N-methyl-D-aspartate (NMDA) receptors implicated as a key factor. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating, which is disrupted in schizophrenia. We studied relationships between ongoing and sensory-evoked gamma oscillations and PPI using pharmacological interventions designed to increase gamma oscillations (ketamine, MK-801); reduce gamma oscillations (LY379268); or disrupt PPI (amphetamine). We predicted that elevating ongoing gamma power would lead to increased 'neural noise' in cortical circuits, dampened sensory-evoked gamma responses and disrupted behaviour. Wistar rats were implanted with EEG recording electrodes. They received ketamine (5 mg/kg), MK-801 (0.16 mg/kg), amphetamine (0.5 mg/kg), LY379268 (3 mg/kg) or vehicle and underwent PPI sessions with concurrent EEG recording. Ketamine and MK-801 increased the power of ongoing gamma oscillations and caused time-matched disruptions of PPI, while amphetamine marginally affected ongoing gamma power. In contrast, LY379268 reduced ongoing gamma power, but had no effect on PPI. The sensory gamma response evoked by the prepulse was reduced following treatment with all psychotomimetics, associating with disruptions in PPI. This was most noticeable following treatment with NMDA receptor antagonists. We found that ketamine and MK-801 increase ongoing gamma power and reduce evoked gamma power, both of which are related to disruptions in sensorimotor gating. This appears to be due to antagonism of NMDA receptors, since amphetamine and LY379268 differentially impacted these outcomes and possess different neuropharmacological substrates. Aberrant gamma frequency oscillations caused by NMDA receptor hypofunction may mediate the sensory processing deficits observed in schizophrenia.

  16. Photonuclear reactions on the cadmium isotopes {sup 106,108}Cd at the bremsstrahlung endpoint energy of 55.5 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyshev, S. S.; Kuznetsov, A. A.; Stopani, K. A., E-mail: hatta@depni.sinp.msu.ru

    The gamma-activation technique was used to measure the absolute yields of photonuclear reactions on the cadmium isotopes {sup 106,108}Cd. The results obtained in this way were compared with the results of the calculations based on the statistical model. For reactions on the isotope {sup 108}Cd, agreement between these theoretical and experimental results is good, but the experimental ratio of the yields of photoproton and photoneutron reactions on the isotope {sup 106}Cd differs substantially from its theoretical counterpart. The results of our present study are discussed from the point of view of the production of bypassed nuclei in the p-process ofmore » nucleosynthesis.« less

  17. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  18. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  19. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII.

    PubMed

    Takizawa, F; Adamczewski, M; Kinet, J P

    1992-08-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation.

  20. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  1. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  2. Metabolic modulation of neuronal gamma-band oscillations.

    PubMed

    Vodovozov, Wadim; Schneider, Justus; Elzoheiry, Shehabeldin; Hollnagel, Jan-Oliver; Lewen, Andrea; Kann, Oliver

    2018-05-28

    Gamma oscillations (30-100 Hz) represent a physiological fast brain rhythm that occurs in many cortex areas in awake mammals, including humans. They associate with sensory perception, voluntary movement, and memory formation and require precise synaptic transmission between excitatory glutamatergic neurons and inhibitory GABAergic interneurons such as parvalbumin-positive basket cells. Notably, gamma oscillations are exquisitely sensitive to shortage in glucose and oxygen supply (metabolic stress), with devastating consequences for higher cognitive functions. Herein, we explored the robustness of gamma oscillations against changes in the availability of alternative energy substrates and amino acids, which is partially regulated by glial cells such as astrocytes. We used organotypic slice cultures of the rat hippocampus expressing acetylcholine-induced persistent gamma oscillations under normoxic recording conditions (20% oxygen fraction). Our main findings are (1) partial substitution of glucose with pyruvate and the ketone body β-hydroxybutyrate increases the frequency of gamma oscillations, even at different stages of neuronal tissue development. (2) Supplementation with the astrocytic neurotransmitter precursor glutamine has no effect on the properties of gamma oscillations. (3) Supplementation with glycine increases power, frequency, and inner coherence of gamma oscillations in a dose-dependent manner. (4) During these treatments switches to other frequency bands or pathological network states such as neural burst firing or synchronized epileptic activity are absent. Our study indicates that cholinergic gamma oscillations show general robustness against these changes in nutrient and amino acid composition of the cerebrospinal fluid; however, modulation of their properties may impact on cortical information processing under physiological and pathophysiological conditions.

  3. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    PubMed Central

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  4. Shear rupture of a directionally solidified eutectic gamma/gamma prime - alpha (Mo) alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1978-01-01

    Directionally solidified Mo alloys are evaluated to determine the shear rupture strength and to possibly improve it by microstructural and heat treatment variations. Bars of the alloy containing nominally 5.7% Al and 33.5% Mo by weight with balance Ni were directionally solidified at rates between 10 and 100 mm per hour in furnaces with thermal gradients at the liquid-solid interface of 250 or 100 C per cm. A limited number of longitudinal shear rupture tests were conducted at 760 C and 207 MPa in the as - solidified and in several heat treated conditions. It is shown that shear rupture failures are partly transgranular and that resistance to failure is prompted by good fiber alignment and a matrix structure consisting mainly of gamma prime. Well aligned as - solidified specimens sustained the shear stress for an average of 81 hours. A simulated coating heat treatment appeared to increase the transformation of gamma to gamma prime and raised the average shear life of aligned specimens to 111 hours. However, heat treatments at 1245 C and especially at 1190 C appeared to be detrimental by causing partial solutioning of the gamma prime, and reducing lives to 47 and 10 hours, respectively.

  5. POCKET $beta$ AND $gamma$ RADIOMETER (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markelov, V.V.; Lushikhin, A.M.; Nikoforov, V.I.

    A pocket BETA and gamma rate meter was designed by the Academy of Medical Sciences of U.S.S.R. for detecting gamma radiation of 0.25 to 2 Mev and for BETA particles of 0 to 50 and 0 to 500 particles/cm/sup 2/sec, with energies of 0.5 to 2 Mev. Measurements of BETA particles are made through the hack wall opening in the appuratus. The opening is closed durtng the recording of gamma radiation, which permits differentiation between the BETA and gamma radiation. The accuracy of the counter is within plus or minus 15%. (R.V.J.)

  6. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  7. Stable homotopical algebra and [Gamma]-spaces

    NASA Astrophysics Data System (ADS)

    Schwede, Stefan

    1999-03-01

    In this paper we advertise the category of [Gamma]-spaces as a convenient framework for doing ‘algebra’ over ‘rings’ in stable homotopy theory. [Gamma]-spaces were introduced by Segal [Se] who showed that they give rise to a homotopy category equivalent to the usual homotopy category of connective (i.e. ([minus sign]1)-connected) spectra. Bousfield and Friedlander [BF] later provided model category structures for [Gamma]-spaces. The study of ‘rings, modules and algebras’ based on [Gamma]-spaces became possible when Lydakis [Ly] introduced a symmetric monoidal smash product with good homotopical properties. Here we develop model category structures for modules and algebras, set up (derived) smash products and associated spectral sequences and compare simplicial modules and algebras to their Eilenberg-MacLane spectra counterparts.

  8. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  9. Estimation of radiation doses in TGFs and gamma ray glows

    NASA Astrophysics Data System (ADS)

    Celestin, S. J.; Pincon, J. L.; Trompier, F.

    2017-12-01

    ] concluded that TGF-associated neutrons produced by photonuclear reactions would cause serious hazard on aircraft avionics. In this work, we present new simulation-driven estimations of doses received by humans that would be irradiated by TGFs and gamma ray glows.

  10. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  11. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  12. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII

    PubMed Central

    1992-01-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation. PMID:1386873

  13. Fluorescence-Assisted Gamma Spectrometry for Surface Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Ihantola, Sakari; Sand, Johan; Perajarvi, Kari; Toivonen, Juha; Toivonen, Harri

    2013-02-01

    A fluorescence-based alpha-gamma coincidence spectrometry approach has been developed for the analysis of alpha-emitting radionuclides. The thermalization of alpha particles in air produces UV light, which in turn can be detected over long distances. The simultaneous detection of UV and gamma photons allows detailed gamma analyses of a single spot of interest even in highly active surroundings. Alpha particles can also be detected indirectly from samples inside sealed plastic bags, which minimizes the risk of cross-contamination. The position-sensitive alpha-UV-gamma coincidence technique reveals the presence of alpha emitters and identifies the nuclides ten times faster than conventional gamma spectrometry.

  14. Absence of Fc epsilonRI alpha chain results in upregulation of Fc gammaRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between Fc epsilonRI and Fc gammaRIII for limiting amounts of FcR beta and gamma chains.

    PubMed Central

    Dombrowicz, D; Flamand, V; Miyajima, I; Ravetch, J V; Galli, S J; Kinet, J P

    1997-01-01

    In mouse mast cells, both Fc epsilonRI and Fc gammaRIII are alpha beta gamma2 tetrameric complexes in which different alpha chains confer IgE or IgG ligand recognition while the signaling FcR beta and gamma chains are identical. We used primarily noninvasive techniques (changes in body temperature, dye extravasation) to assess systemic anaphylactic responses in nonanesthetized wild-type, Fc epsilonRI alpha chain -/- and FcR gamma chain -/- mice. We confirm that systemic anaphylaxis in mice can be mediated largely through IgG1 and Fc gammaRIII and we provide direct evidence that these responses reflect activation of Fc gammaRIII rather than Fc gammaRI. Furthermore, we show that Fc gammaRIII-dependent responses are more intense in normal than in congenic mast cell-deficient KitW/KitW-v mice, indicating that Fc gammaRIII responses have mast cell-dependent and -independent components. Finally, we demonstrate that the upregulation of cell surface expression of Fc gammaRIII seen in Fc epsilonRI alpha chain -/- mice corresponds to an increased association of Fc gammaRIII alpha chains with FcR beta and gamma chains and is associated with enhanced Fc gammaRIII-dependent mast cell degranulation and systemic anaphylactic responses. Therefore, the phenotype of the Fc epsilonRI alpha chain -/- mice suggests that expression of Fc epsilonRI and Fc gammaRIII is limited by availability of the FcR beta and gamma chains and that, in normal mice, changes in the expression of one receptor (Fc epsilonRI) may influence the expression of functional responses dependent on the other (Fc gammaRIII). PMID:9062349

  15. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  16. Developing the (d,p γ) reaction as a surrogate for (n, γ) in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Lepailleur, Alexandre; Baugher, Travis; Cizewski, Jolie; Ratkiewicz, Andrew; Walter, David; Pain, Steven; Smith, Karl; Garland, Heather; Goddess Collaboration

    2016-09-01

    The r-process that proceeds via (n, γ) reactions on neutron-rich nuclei is responsible for the synthesis of about half of the elements heavier than iron. Because (n, γ) measurements on short-lived isotopes are not possible, the (d,p γ) reaction is being investigated as a surrogate for (n, γ). Of particular importance is validating a surrogate in inverse kinematics. Therefore, the 95Mo(d,p γ) reaction was measured in inverse kinematics with stable beams from ATLAS and CD2 targets. Reaction protons were measured in coincidence with gamma rays with GODDESS - Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies. The Oak Ridge Rutgers University Barrel Array (ORRUBA) of position-sensitive silicon strip detectors was augmented with annular arrays of segmented strip detectors at backward and forward angles, resulting in a high-angular coverage for light ejectiles. Preliminary results from the 95Mo(d,p γ) study will be presented. This work was supported in part by the U.S. Department of Energy and National Science Foundation.

  17. Investigation of the charged particle nuclear reactions on natural boron for the purposes of the thin layer activation (TLA)

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Fenyvesi, A.; Bergman, J.; Heselius, S.-J.; Solin, O.

    1995-12-01

    Boron of natural composition was investigated in the form of NiBSi metallic-glass foil to determine the cross-section functions of the natB(p,x) 7Be and the natB(d,x) 7Be nuclear reactions. These reactions are very important from the point of view of Thin Layer Activation (TLA) technique to monitor the wear of boron-containing superhard materials (e.g. BN), because the 7Be with its half-life of 53 d and gamma-energy of 447 keV is very suitable for wear measurements. The possibility of recoil-implantation of the radioactive nuclei was also studied.

  18. Amorphous and crystalline optical materials used as instruments for high gamma radiation doses estimations

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-06-01

    Nuclear radiation induce some changes to the structure of exposed materials. The main effect of ionizing radiation when interacting with optical materials is the occurrence of color centers, which are quantitatively proportional to the up-taken doses. In this paper, a relation between browning effect magnitude and dose values was found. Using this relation, the estimation of a gamma radiation dose can be done. By using two types of laser wavelengths (532 nm and 633 nm), the optical powers transmitted thru glass samples irradiated to different doses between 0 and 59.1 kGy, were measured and the associated optical browning densities were determined. The use of laser light gives the opportunity of using its particularities: monochromaticity, directionality and coherence. Polarized light was also used for enhancing measurements quality. These preliminary results bring the opportunity of using glasses as detectors for the estimation of the dose in a certain point in space and for certain energy, especially in particles accelerators experiments, where the occurred nuclear reactions are involving the presence of high gamma rays fields.

  19. Hydration effect on ion exchange resin irradiated by swift heavy ions and gamma rays

    NASA Astrophysics Data System (ADS)

    Boughattas, I.; Labed, V.; Gerenton, A.; Ngono-Ravache, Y.; Dannoux-Papin, A.

    2018-06-01

    Gamma radiolysis of ion exchange resins (IER) is widely studied since the sixties, as a function of different parameters (resin type, dose, atmosphere, water content …). However, to our knowledge, there are very few data concerning hydrogen emission from anionic and cationic resins irradiated at high Linear Energy Transfers (LET). In the present work, we focus on the influence of hydration on hydrogen emission, in anionic and cationic resins irradiated under inert atmosphere using Swift Heavy Ions (SHI) and gamma irradiations. The radiation chemical yield of molecular hydrogen is nonlinear with water content for both resins. The molecular hydrogen production depends first on the water form in IER (free or linked) and second on the solubility of degradation products. Three steps have been observed: at lower water content where G(H2) is stable, at 50%, G(H2) increases due to reactions between water radiolytic species and the resin functional groups and at high water content, G(H2) decreases probably due to its accumulation in water and its consumption by hydroxyl radicals in the supernatant.

  20. Monte Carlo source simulation technique for solution of interference reactions in INAA experiments: a preliminary report

    NASA Astrophysics Data System (ADS)

    Allaf, M. Athari; Shahriari, M.; Sohrabpour, M.

    2004-04-01

    A new method using Monte Carlo source simulation of interference reactions in neutron activation analysis experiments has been developed. The neutron spectrum at the sample location has been simulated using the Monte Carlo code MCNP and the contributions of different elements to produce a specified gamma line have been determined. The produced response matrix has been used to measure peak areas and the sample masses of the elements of interest. A number of benchmark experiments have been performed and the calculated results verified against known values. The good agreement obtained between the calculated and known values suggests that this technique may be useful for the elimination of interference reactions in neutron activation analysis.

  1. Chemical effects induced by gamma-irradiation in solid and in aqueous methanol solutions of 4-iodophenol

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.

    2005-05-01

    The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.

  2. Comparison of penumbra regions produced by ancient Gamma knife model C and Gamma ART 6000 using Monte Carlo MCNP6 simulation.

    PubMed

    Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali

    2018-07-01

    The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  4. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  5. Thermal-neutron capture gamma-rays. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuli, J.K.

    1997-05-01

    The energy and photon intensity of gamma rays as seen in thermal-neutron capture are presented in ascending order of gamma energy. All those gamma-rays with intensity of {ge} 2% of the strongest transition are included. The two strongest transitions seen for the target nuclide are indicated in each case. Where the target nuclide mass number is indicated as nat the natural target was used. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. All data for A > 44 are taken from Evaluated Nuclear Structure Data File (4/97), a computermore » file of evaluated nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory, on behalf of the Nuclear Structure and Decay and Decay Data network, coordinated by the International Atomic Energy Agency, Vienna. These data are published in Nuclear Data Sheets, Academic Press, San Diego, CA. The data for A {le} 44 is taken from ``Prompt Gamma Rays from Thermal-Neutron Capture,`` M.A. Lone, R.A. Leavitt, D.A. Harrison, Atomic Data and Nuclear Data Tables 26, 511 (1981).« less

  6. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  7. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  8. Self-induced intracerebral gamma oscillations in the human cortex.

    PubMed

    Corlier, Juliana; Rimsky-Robert, Daphné; Valderrama, Mario; Lehongre, Katia; Adam, Claude; Clémenceau, Stéphane; Charpier, Stéphane; Bastin, Julien; Kahane, Philippe; Lachaux, Jean-Philippe; Navarro, Vincent; Le Van Quyen, Michel

    2016-12-01

    Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  10. Serial measurement of serum cytokines, cytokine receptors and neopterin in leprosy patients with reversal reactions.

    PubMed

    Faber, W R; Iyer, A M; Fajardo, T T; Dekker, T; Villahermosa, L G; Abalos, R M; Das, P K

    2004-09-01

    Serum levels of cytokines (IL-4, IL-5, IFN-gamma, TNF-alpha), cytokine receptors (TNFR I and II) and one monokine (neopterin) were estimated in seven leprosy patients to establish disease associated markers for reversal reactions (RR). Sera were collected at diagnosis of leprosy, at the onset of reversal reaction and at different time points during and at the end of prednisone treatment of reactions. It was expected that the serum cytokine and monokine profile before and at different time points during reactions would provide guidelines for the diagnosis and monitoring of reversal reactions in leprosy. The cytokines and cytokine receptors were measured by ELISA, whereas a radioimmunoassay was used for neopterin measurement. Six of the seven patients showed increased levels of neopterin either at the onset of RR or 1 month thereafter, and levels declined on prednisone treatment to that seen at the time of diagnosis without reactions. No consistent disease associated cytokine profile was observed in these patients. Interestingly, serum TNF-alpha levels were increased in the same patients even after completion of prednisone treatment, indicating ongoing immune activity. In conclusion, this study demonstrates that despite cytokines levels in leprosy serum being inconsistent in relation to reversal reactions, serum neopterin measurement appears to be an useful biomarker in monitoring RR patients during corticosteroid therapy.

  11. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  12. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  13. Microphysics in the Gamma-Ray Burst Central Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus andmore » outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.« less

  14. [FAB immunoglobulin fragments. I. The comparative characteristics of the serological and virus-neutralizing properties of a gamma globulin against tick-borne encephalitis and of the FAB fragments isolated from it].

    PubMed

    Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G

    1976-06-01

    A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).

  15. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  16. Total synthesis of (+)-achalensolide based on the rh(i)-catalyzed allenic Pauson-Khand-type reaction.

    PubMed

    Hirose, Toshiyuki; Miyakoshi, Naoki; Mukai, Chisato

    2008-02-01

    The first total synthesis of (+)-achalensolide was achieved from a commercially available d-(-)-isoascorbic acid. The known epoxide, derived from d-(-)-isoascorbic acid, was converted into the allenyne, the Rh(I)-catalyzed Pauson-Khand-type reaction of which directly provided the bicyclo[5.3.0]decane system, a core framework of the title natural product. The construction of the gamma-lactone moiety and some chemical modifications resulted in the completion of the total synthesis of (+)-achalensolide.

  17. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  18. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  19. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  20. The gamma knife in ophthalmology. Part One--Uveal melanoma.

    PubMed

    Wygledowska-Promieńska, Dorota; Jurys, Małgorzata; Wilczyński, Tomasz; Drzyzga, Łukasz

    2014-01-01

    The Gamma Knife was designed by Lars Leksell in the early 1950's. It gave rise to a new discipline of medicine--stereotactic radiosurgery. Primarily dedicated to neurosurgery, the Gamma Knife has become an alternative, widely used surgery technique. According to Elekta's statistics, approximately 60,000 people are treated with Leksell Gamma Knife every year and it is the most extensively studied stereotactic radiosurgery system in the world. The Leksell Gamma Knife can also be used in ophthalmology. The gamma ray beam concentration enables effective treatment of uveal melanoma, choroidal hemangioma, orbital tumors or even choroidal neovascularization. The virtue of Leksell Gamma Knife is its extreme precision, non-invasiveness and the possibility of outpatient treatment, which significantly reduces costs and diminishes post-operative complications. Innovative solutions shorten a single session to a minimum, which is very comfortable and safe for both staff and patients. Advantages and possible side effects of gamma knife radiosurgery are well-documented in the professional literature. The objective of this review is to present the recognized applications of Leksell Gamma Knife in ophthalmology.